

Skagway Ore Basin Risk Assessment

Submitted to:

White Pass & Yukon Route Railway PO Box 435 Skagway, AK 99840

Report Number: 1657231-006-R-Rev2

Distribution:

1 electronic copy – White Pass & Yukon Route Railway 1 electronic copy – Golder Associates Ltd.

Executive Summary

What was the issue?

Previous investigations had documented the presence of lead, zinc and mercury at concentrations that exceeded sediment guidelines for the protection of benthic organisms. The magnitude of these exceedances was considerable in some samples, and the pattern of contamination indicated that the ore concentrate handling facility was the likely source. Consequently, some previous investigations have recommended that the Ore Basin needed to be dredged as a priority action.

What was the goal of the investigation?

A decision to dredge based only on total sediment concentrations is not necessarily based on an understanding of risk. The risk associated with a contaminant source will be influenced by bioavailability, spatial extent, and other considerations. Golder designed and executed a supplemental sampling program to help inform risk-based management. This program included sediment transport analysis, sediment chemistry, toxicity testing (baseline and toxicity identification evaluation) and tissue chemistry. All available data (historical and data collected by Golder) were assessed using a risk assessment approach consistent with State guidance.

What did we learn about hazards to aquatic organisms?

The preliminary sediment transport analysis showed that the site is largely depositional and likely receiving inputs of clean sediment from the Skagway River. There are some areas where propeller scouring appears to be occurring, but they are limited in spatial extent and do not appear to overlap with the areas with highly-elevated ore concentrations. The sediment chemistry data collected by Golder supports the sediment transport analysis. Concentrations of ore-related metals in the current surface sediment of the Ore Basin are lower than previous investigations.

Toxicity testing was conducted to find out if sediment caused negative effects to benthic organisms. A battery of three different toxicity tests to represent different parts of the benthic community was used. Samples for toxicity testing covered the range of concentrations in the current surface sediment and included samples from elsewhere in Skagway Harbor as well as reference areas. Many of the samples showed an unacceptable effect, even though the concentrations of ore-related metals and polycyclic aromatic hydrocarbons did not exceed conservative guidelines for the protection of benthic organisms.

A toxicity identification evaluation was completed on a subset of samples which confirmed that ore-related metals such as copper, lead, zinc and mercury were not causing toxicity. This conclusion was supported by statistical analysis which showed there was not a statistically significant relationship between ore-related metals in sediment and the effects observed in the toxicity tests. The conclusion is also consistent with the findings from a toxicity identification evaluation completed by a previous consultant. Golder concluded that sewage inputs (including ammonia) may be exerting a negative effect on sediment quality in the Ore Basin based on the balance of available information.

What did we learn about metal bioaccumulation in shellfish?

Although ore-related metals do not appear to be exerting direct toxicity on benthic organisms, the mass of the contamination present in sediment is still influencing aquatic food chains. Tissue samples were collected for mussels, shrimp and crabs from within the Ore Basin, elsewhere in Skagway Harbor, and at reference areas.

There were species-specific differences in how metals are being accumulated, which is expected based on differences in feeding strategy and home range mobility. Overall, concentrations in mussels appear to be decreasing over time.

What did we learn about hazards related to shellfish consumption by people?

All seven of the ore-related metals exceeded conservative screening values for the consumption of shellfish. Exceedances of these screening limits were also observed in samples from the reference area, but overall, concentrations of metals related to ore concentrates were higher in at least one tissue sample collected from the site relative to reference concentrations.

The presence of a maximum concentration that exceeds a conservative screening value does not necessarily mean that there are risks to people consuming shellfish from the harbor. The preliminary sampling also showed that there were a small number of shellfish samples that were also accumulating polycyclic aromatic hydrocarbons, and that metals unrelated to ore concentrates also exceeded the conservative screening values in some samples. Further sampling to determine a defensible average concentration in the specific shellfish types being consumed may be appropriate and would be necessary to provide a more refined evaluation regarding risks to humans.

Further risk evaluation, if conducted, should also consider administrative controls on shellfish consumption. Administrative controls are a common element of risk management plans for contaminated sediment. Golder understands that shellfish harvesting from Skagway Harbor is not permitted because of the presence of the municipal wastewater discharge.

What did we learn about hazards related to shellfish consumption by wildlife?

Golder concludes that there are low hazards to birds and mammals that could consume shellfish from the site from ore-related contaminants. The food chain model used conservative, no-observed effect toxicity reference values and assumed that the receptor would obtain 100% of their food from a given area. Realistically, receptors would consume prey items harvested over a much larger area than the Ore Basin. The model also assumes that 100% of the tissue concentrations are absorbed by the animal through its gastrointestinal tract when in fact, a large proportion of the ingested dose is passed through the wildlife and is not absorbed by the gastrointestinal tract. Golder concluded that it was reasonable to use the average tissue concentration based on all tissue samples (from a given area) under these circumstances because otters and oystercatchers are expected to consume all three prey types (crabs, mussels and shrimp) from all parts of a given area. Further refinement of the food chain model to evaluate different dietary proportions would not be expected to substantially change this conclusion. However, Golder notes that average tissue concentrations were used in the model because there were insufficient tissue samples available from each area to allow for the calculation of a more conservative exposure estimate (e.g., the 95th upper confidence limit of the mean), and therefore, the model should be updated with any additional tissue data that might be collected as part of a post-remedial monitoring program to confirm that these conclusions continue to be valid.

What are the major sources of uncertainty in this conclusion?

Any risk management decision based on this risk evaluation should consider the uncertainty associated with both the underlying data and how it was evaluated. Uncertainty is present in all environmental assessments, and therefore, steps are taken through the assessment process to minimize uncertainty to the extent possible, and then to describe the residual sources of uncertainty clearly so that risk managers and regulatory decision-makers

can balance those factors in deciding an appropriate course of action. Methodological uncertainty in chemistry and toxicity data was minimized by applying accepted procedures for quality assurance and quality control during all stages of data acquisition. No substantive quality issues were identified during the investigation that would limit the utility of the data for making a site management decision. Data that were collected with variance from standardized protocols (such as chemical analysis on archive samples outside the hold-time) are identified in the report and the merits of considering such data discussed. In those instances, data are typically treated as a qualitative indicator. Other sources of uncertainty include study design topics such as the number and spatial coverage of sampling. Tissue sampling, for example, was limited in this respect, but still appropriate for a screening-level risk assessment. Risk assessment is inherently a tiered process, and therefore, conservative assumptions and guidelines were applied throughout the risk evaluation to avoid erroneously concluding that a risk is present if in fact it is not. In a screening-level risk assessment, the goal is to eliminate issues that do not require further consideration based on a conservative evaluation. Issues that cannot be eliminated at the screening level do not necessarily present an actual risk, and the decision to proceed with a more refined risk evaluation would typically be done in conjunction with a remedial options analysis.

What are the next steps?

Golder concludes that metals are not the major cause of adverse effects observed in the toxicity tests, although ore-related metals are accumulating in the portion of the aquatic food chain that was assessed. This conclusion was based on a robust toxicity testing program in conjunction with a specialized toxicity identification evaluation process. Additional toxicity testing or assessment of the benthic community structure in the Ore Basin are not considered likely to change this conclusion.

Further discussion with the appropriate regulatory agency about the value of conducting a more refined evaluation of human health exposures is recommended. The main uncertainty relates to the fact that the human health calculation was completed on a relatively small number of samples (which is appropriate for a screening-level assessment). The screening-level risk assessment identified several issues that may relate to wastewater discharges that are subject to other state regulatory processes and have approved initial dilution zones that encompass the Ore Basin. Wastewater management practices may already have resulted in administrative controls that would mitigate the human health exposures via the shellfish consumption pathway. Notwithstanding the technical rationale to refine some elements of the risk assessment, Golder acknowledges that that there may be practical or operational considerations regarding the need to dredge some parts of the Ore Basin. Removal of a portion of the mass of metals related to ore concentrates would be expected to further reduce the potential uptake of these metals by shellfish and follow-up sampling of shellfish tissue concentrations as part of post-remedial monitoring is considered appropriate. These data can be used to provide more information about potential hazards to human health and wildlife as described in this report.

In terms of remedial design, Golder notes that the available data are not sufficient to establish a quantitative relationship between mass removed and future tissue concentrations, nor is it likely that such a relationship would be developed in the future. However, the limits of the volume to be dredged should not be established using default sediment guidelines because multiple lines of evidence in the assessment have established that metal bioavailability to benthic organisms is substantially lower than the assumptions that are inherent in the guideline derivation.

Study Limitations

This report (the "Report") was prepared for the exclusive use of White Pass & Yukon Route for the express purpose of providing an indication of the environmental condition of the Site. In evaluating the Site, Golder Associates Ltd. has relied in good faith on information provided by others as noted in the Report. We have assumed that the information provided is factual and accurate. We accept no responsibility for any deficiency, misstatement or inaccuracy contained in this report as a result of omissions, misinterpretations or fraudulent acts of persons interviewed or contacted.

Any use which a third party makes of this Report, or any reliance on or decisions to be made based on it, are the sole responsibility of the third parties. If a third party require reliance on this Report, written authorization from Golder is required. Golder disclaims responsibility of consequential financial effects on transactions or property values, or requirements for follow-up actions and costs.

The scope and the period of Golder's assessment are described in this Report, and are subject to restrictions, assumptions and limitations. Except as noted herein, the work was conducted in accordance with the scope of work and terms and conditions within Golder's proposal. Golder did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Report. Conditions may therefore exist which were not detected given the limited nature of the assessment Golder was retained to undertake with respect to the Site and additional environmental studies and actions may be required. In addition, it is recognized that the passage of time affects the information provided in the Report. Golder's opinions are based upon information that existed at the time of the writing of the Report. It is understood that the services provided for in the scope of work allowed Golder to form no more than an opinion of the actual conditions at the Site at the time the site was visited, and cannot be used to assess the effect of any subsequent changes in any laws, regulations, the environmental quality of the site or its surroundings.

The findings and conclusions documented in this report have been prepared for the specific application to this project, the services performed as described in this report were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

The content of this report is based on information collected during our environmental sampling, our present understanding of the Site, and our professional judgment in light of such information available at the time of this report. This report provides a professional opinion, and therefore no warranty is either expressed, implied or made as to the conclusions, advice and recommendations offered in this report. This report does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statutes are subject to change.

i

Table of Contents

1.0	INTRODUCTION				
	1.1	Project Context	1		
	1.2	Site Description	1		
	1.3	General Approach for Risk Assessment	4		
	1.4	Report Organization	4		
2.0	PROB	LEM FORMULATION	6		
	2.1	Review of Historical Data	6		
	2.1.1	Overview	ε		
	2.1.2	Sediment Chemistry	g		
	2.1.3	Sediment Toxicity Testing	15		
	2.1.4	Surrogates for Bioavailability	17		
	2.1.5	Bioaccumulation	18		
	2.1.6	Benthic Community Structure	19		
	2.1.7	Other Historical Information	19		
	2.2	Conceptual Site Model	20		
	2.2.1	Contaminant Sources	20		
	2.2.2	Ecological Receptors	22		
	2.2.3	Human Health Receptors	22		
	2.2.4	Release Mechanisms	23		
	2.3	Data Gaps	25		
	2.4	Problem Formulation Conclusions	25		
3.0	SUPP	LEMENTAL INVESTIGATIONS	27		
	3.1	Sediment Transport Analysis	27		
	3.2	Supplemental Surface Sampling Program	29		
	3.3	Sediment Core Sampling	31		
4.0	RISK	ASSESSMENT IMPLICATIONS	37		
	4.1	Objective and General Approach	37		
	4.2	Sediment Chemistry	38		

i

4.2.1	Selection of Screening Values	38
4.2.2	Physical Characteristics	39
4.2.3	Bulk Chemistry Data	40
4.2.4	Assessment of Potential Bioavailability of Selected Metals	44
4.2.5	Principal Components Analyses	45
4.3	Sediment Toxicity	48
4.3.1	Decision Framework	48
4.3.2	Summary of Results	49
4.3.3	Consideration of Sulfides as a Confounding Factor	51
4.3.4	Consideration of Ammonia as a Confounding Factor	52
4.3.5	Consideration of Grain Size as a Confounding Factor	53
4.3.6	Correlation Analysis	53
4.4	Toxicity Identification Evaluation	54
4.4.1	Approach and Results	55
4.4.2	Discussion	57
4.4.3	Conclusion	59
4.5	Bioaccumulation	60
4.5.1	Approach	60
4.5.2	Changes in Tissue Concentrations over Time	60
4.5.3	Potential Hazards for Consumption of Shellfish by People	62
4.5.3.1	Approach	62
4.5.3.2	Potential for Bioaccumulation	63
4.5.3.3	Shellfish Consumption Rates	63
4.5.3.4	Calculation of Shellfish Screening Levels for Consumption	64
4.5.3.5	Results for Ore-Related Metals	66
4.5.3.6	Conclusions and Risk Management Considerations	68
4.5.4	Potential Hazards for Consumption by Wildlife	69
4.5.4.1	Approach	69
4.5.4.2	Results	71
4.5.4.3	Conclusions and Risk Management Considerations	72

5.0	CONC	LUSION	73
	5.1	Summary of Findings and Recommendations	73
	5.2	Closure	77
6.0	REFE	RENCES	78
TAB	LES		
Tabl	е 1: Тур	bes of Data Collected During Historical Investigations in the Vicinity of the Ore Basin	6
Tabl	e 2: Sur	mmary Sediment Screening Values Used in the Risk Assessment	39
Tabl	e 3: Sur	mmary of Spearman Rank Correlations	54
Tabl	e 4: Sur	nmary of Round 1 TIE	56
Tabl	e 5: Sur	nmary of Round 2 TIE	56
Tabl	e 6: Nu	mber of Shellfish Samples Collected	60
Tabl	e 7: Eq	uation Inputs for Shellfish Screening Levels	64
Tabl	e 8: Sui	mmary of Shellfish Tissue Screening Results for Ore-Related Metals (mg/kg wet weight)	67
Tabl	e 9: Re	ceptor Parameterization	70
Tabl	e 10: A	verage Shellfish Concentrations Used in Food Chain Model	71
Tabl	e 11: Sı	ummary of NOAEL-based Toxicity Reference Values (mg/kg/day)	71
Tabl	e 12: A	verage Shellfish Concentrations Used in Food Chain Model	71
FIGI	JRES		
		e location	3
Figu	re 2: Lo	cation of Historical Sediment Sample Locations	7
Figu	re 3: Lo	cation of Historical Reference Sediment Sample Locations	8
Figu	re 4: To	tal Hazard Quotients for Surface Samples	11
Figu	re 5: To	tal Hazard Quotients for Near-Surface Samples	12
Figu	re 6: Di	stribution of Hazard Quotients for Surface Samples	13
Figu	re 7: Di	stribution of Hazard Quotients for Near-Surface Samples	14
Figu	re 8: Se	diment and Surface Water Toxicity Test Sample Locations (Tetra Tech, 2008)	15
Figu	re 9: An	nphipod and Polychaete Survival (Tetra Tech, 2008)	16
Figu	re 10: C	Conceptual site model	24
Figu	re 11: S	patial Distribution of Lead Concentrations along the Ore Dock and into the Ore Basin (view look	
Figu		ediment collection locations for chemistry, toxicity and archived benthic community samples fror	m 34

Figure 13	Sediment collection locations for chemistry, toxicity and archived benthic community samples from reference areas	35
Figure 14	Tissue collection locations	.36
Figure 15	Concentrations of ore-related metals in surficial sediment samples	.42
Figure 16	Concentrations of Simultaneously Extracted Metals (SEM) versus the Concentrations of Acid Volatile Sulphide (AVS) in the Sediment Samples Collected for the 2017 Field Investigation.	.44
Figure 17	Principal component analysis for metals (surface samples – top; all samples – bottom)	.47
Figure 18	Summary of sediment toxicity test performance	.50
Figure 19	: Ammonia concentrations versus sea urchin normal survival (modified from Nautilus TIE report)	.59
Figure 20	Copper concentrations in mussel samples	.61
Figure 21	Lead concentrations in mussel samples	.61
Figure 22:	Zinc concentrations in mussel tissue	.62

APPENDICES

APPENDIX A

Sediment Transport Analysis

APPENDIX B

Sampling and Analysis Plan for Surficial Sediment Sampling

APPENDIX C

Surficial Sediment Field Data Report

APPENDIX D

Sediment Coring Field Data Report

APPENDIX E

Supplemental Information for Risk Assessment

List of Commonly Used Abbreviations and Acronyms

ADEC	Alaska Department of Environmental Conservation
AIDEA	Alaska Industrial Development and Export Authority
ALS	ALS Laboratory Group, Environmental Division
ASTM	American Society for Testing and Materials
AVS	Acid Volatile Sulphide
CRM	
CSL	Cleanup Screening Levels
DL	Detection Limit
DO	Dissolved Oxygen
DQO	Data Quality Objective
DRO	Diesel Range Organics
HPAH	High Molecular Weight PAH
LPAH	Light Molecular Weight PAH
PAH	Polycyclic Aromatic Hydrocarbons
PSEP	Puget Sound Estuary Program
QA/QC	Quality Assurance / Quality Control
RPD	Relative Percent Difference
RRO	Residual Range Organics
SAP	Sampling and Analysis Plan
SCO	Sediment Cleanup Objective
SEM	Simultaneously Extractable Metals
TIE	Toxicity Identification Evaluation
TOC	Total Organic Carbon
USEPA	United States Environmental Protection Agency
ww	Wet Weight
WDOE	Washington State Department of Ecology
MOVD	White Pass & Vukon Route

THE STATE OF THE S

SKAGWAY ORE BASIN RISK ASSESSMENT

1.0 INTRODUCTION

1.1 Project Context

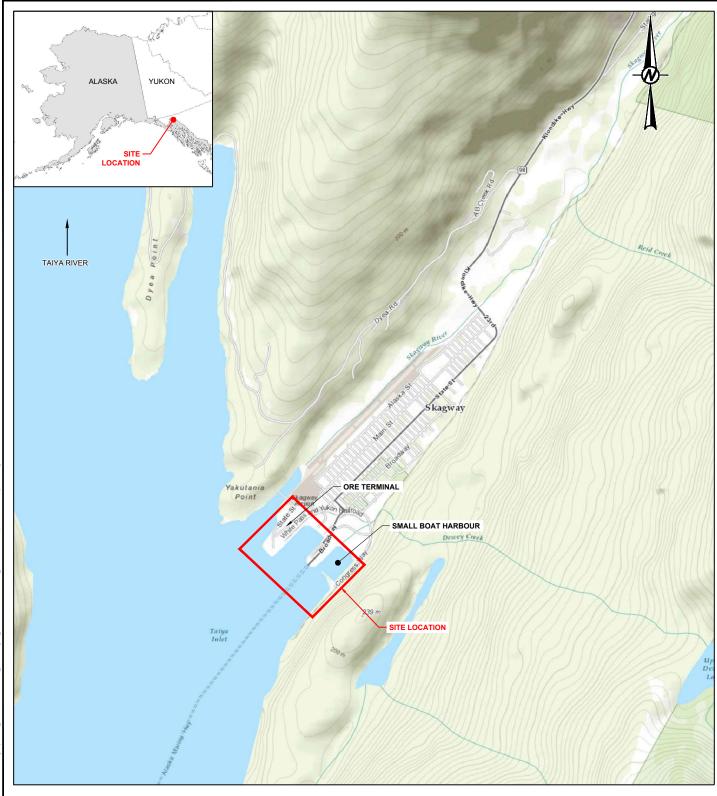
White Pass & Yukon Route (WPYR) railway engaged Golder Associates Limited (Golder) to provide risk assessment and risk management services related to sediment issues in the Skagway Ore Terminal Basin (the "Ore Basin" or the "site") located in Skagway, Alaska. The site has been the subject of multiple environmental investigations dating back to at least 1984. A broad conclusion that the Ore Basin requires immediate dredging to remove sediment contamination has been described by some of the previous investigators. Golder was requested to review the available site data, identify and address data gaps, and present the totality of data in the context of the practices and principles established by regulatory guidance and the scientific literature around sediment toxicology and risk assessment. The objective (as defined by WPYR) was to provide a science-based analysis of the potential risks to human and ecological receptors as a result of the current surficial sediment contamination in the Ore Basin to assist them to make informed decisions about the timing, nature and magnitude of potential remedial activities.

To meet this objective, Golder has:

- Reviewed previous reports and Site data to identify data gaps.
- Conducted a supplementary sediment sampling program.
- Evaluated the available data in a risk assessment context to determine if contaminants related to ore handling activities were contributing to unacceptable risks to humans or aquatic organisms near the site.
- Provided recommendations regarding risk assessment or risk management considerations that could be integrated into site management planning.

1.2 Site Description

Skagway Harbor lies at the terminus of a deep fjord (Lynn Canal) on the historical alluvial fan of the Skagway River. The harbor consists of a limited near-shore zone with a typical water depth of between 30 and 40 feet which transitions rapidly to deeper water in Lynn Canal (Anchor 2015). The site location is provided in Figure 1. The shoreline of Skagway Harbour was established through dredging and filling in the early 1900s (Tetra Tech 2008). Changes to the harbour configuration involved construction of the Small Boat Harbour (circa 1958), the State Ferry Terminal (circa 1963), and the expansion of the Ore Terminal (circa 1968), all of which involved dredging and use of the dredged material (Anchor 2015). A brief summary of the history of site activities (Anchor 2015) is provided as further context for the sampling program:


- The Ore Terminal portion of the harbour was leased by WPYR from the Municipality of Skagway in the late 1960s and was used for the trans-shipment of lead and zinc ore concentrate from the Faro Mine using an open conveyor system between 1967 and 1982.
- Sporadic use of the facility for shipping ore concentrates continued between 1982 and 1997 with a variety of terminal operators. The conveyor system was enclosed in 1991.

- A concrete dock was added in 2000 to allow the facility to be used by cruise ships, and the historical ore concentrate building was demolished in 2003. A new concentrate building was constructed and has been used for shipment of copper concentrates from the Minto Mine since 2007.
- The terminal is currently operated by Alaska Industrial Development and Export Authority (AIDEA). Infrastructure includes a fuel depot (operated by Petro Marine Services) and a container facility (operated by Alaska Marine Lines) in addition to the ore concentrate shipping and cruise ship docking.

REFERENCE

BACKGROUND IMAGE SOURCES: ESRI, HERE, DELORME, TOMTOM, INTERMAP, INCREMENT P CORP., GEBCO, USGS, FAO, NPS, NRCAN, GEOBASE, IGN, KADASTER NL, ORDNANCE SURVEY, ESRI JAPAN, METI, ESRI CHINA (HONG KONG), SWISSTOPO, MAPMYINDIA, © OPENSTREETMAP CONTRIBUTORS, AND THE GIS USER COMMUNITY

CONSULTANT

WHITE PASS AND YUKON ROUTE

Golder Associates

YYYY-MM-DD	2018-07-16
PREPARED	RTJ
DESIGN	LC
REVIEW	PM
APPROVED	BM

OREBASIN SEDIMENT ASSESSMENT SKAGWAY, ALASKA

TITLE SITE LOCATION

PROJECT No.	PHASE	Rev.	FIGURE
1657231	2000	0	1

MILES

Nobler adsignation St John CAD-GISWhite Pass and Yukon Routel Former Wharf Tanks, Skagway AKI99 PROJECTSI 1654357 Monitoring 102

1.3 General Approach for Risk Assessment

Risk assessment is a structured approach to assemble and interpret environmental data. The general approach for ecological and human health risk assessment is described in multiple guidance documents from federal (e.g., United States Environmental Protection Agency) and state (e.g., Alaska Department of Environmental Conservation [ADEC]) agencies. Sediment-specific technical guidance is also available from Washington State Department of Ecology [WDOE]) as well as from the scientific literature. The scientific literature on how to integrate and interpret different types of data obtained during sediment investigations into an overall conclusion is relatively robust, and originates with the sediment quality triad first described by Long and Chapman (1985). The triad approach has since evolved in a broader weight-of-evidence approach for integrating lines of evidence beyond the classic triad of chemistry, toxicity and benthic community (e.g., Chapman 1990, Chapman et al. 2002; Chapman and Anderson 2005) which in turn has led to the incorporation of explicit weight of evidence approaches in the regulatory guidance for risk assessment (USEPA 2016). The primary guidance manuals consulted during the preparation of this report were:

- "Risk Assessment Procedures Manual" prepared by ADEC (2015). This document outlines how a generic risk assessment process should be applied to contaminated sites risk assessments in Alaska. ADEC (2015) provides checklists and clarity about the expected content of a risk assessment and emphasizes the value of maintaining dialogue with ADEC staff during the risk assessment process. A tiered approach for risk assessment is described.
- "Sediment Clean-up Users Manual" prepared by WDOE (2015). ADEC (2015) provides a process for all contaminated sites whereas WDOE (2015) is specifically intended as a methodology to use chemistry and other lines of evidence to establish numerical clean-up standards. WDOE (2015) also contains technical guidance related to sediment toxicity testing.

The available data considered in this report is consistent with a screening-level risk assessment (ADEC 2015). Sediment chemistry and toxicity data collected during the 2017 field investigation were evaluated following guidance from WDOE (2015). Several specialized approaches (e.g., a sediment transport assessment; a toxicity identification evaluation; measurement of metals in tissue samples) were also used that do not have specific regulatory decision criteria but provide insight into the environmental fate and transport of substances in sediment at the site. An overall conclusion about the magnitude of risks associated with the specific metals associated with ore handling operation was developed based on consideration of all available lines of evidence.

1.4 Report Organization

This report is organized as follows:

Section 2 – Problem formulation. This section provides a summary of the available data collected prior to 2017 and identifies potential gaps in how that historical data would inform risk-based management decisions. The historical information was used to establish a conceptual site model that describes the contaminants of potential concern, relevant exposure pathways and receptors of potential concern. A conceptual site model helps to focus sampling and investigation activities on the key issues that need risk management.

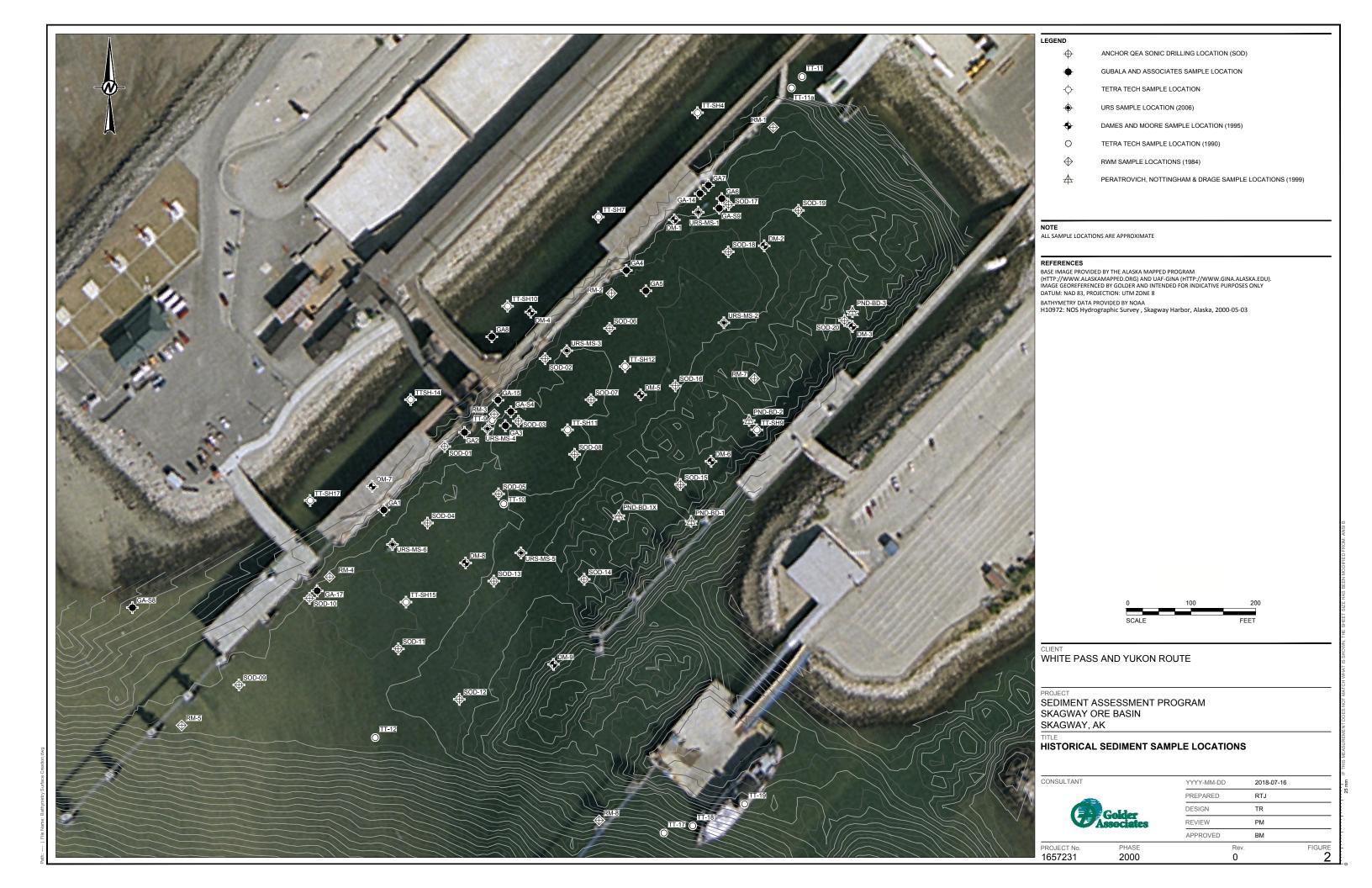
- Section 3 Supplemental sampling. This section outlines the methods used in the supplemental sampling, provides a factual summary of the data collected, and discusses the quality assurance / quality control measures that were applied.
- Section 4 Risk evaluation. This section discusses how the available site data (historical and new data collected in 2017) help to inform our understanding of potential risks to ecological and human receptors Information from the literature was incorporated into this assessment.
- Section 5 Conclusions and recommendations. This section highlights the main findings of the screening-level risk assessment and discusses how the conclusions help to inform possible risk management alternatives.

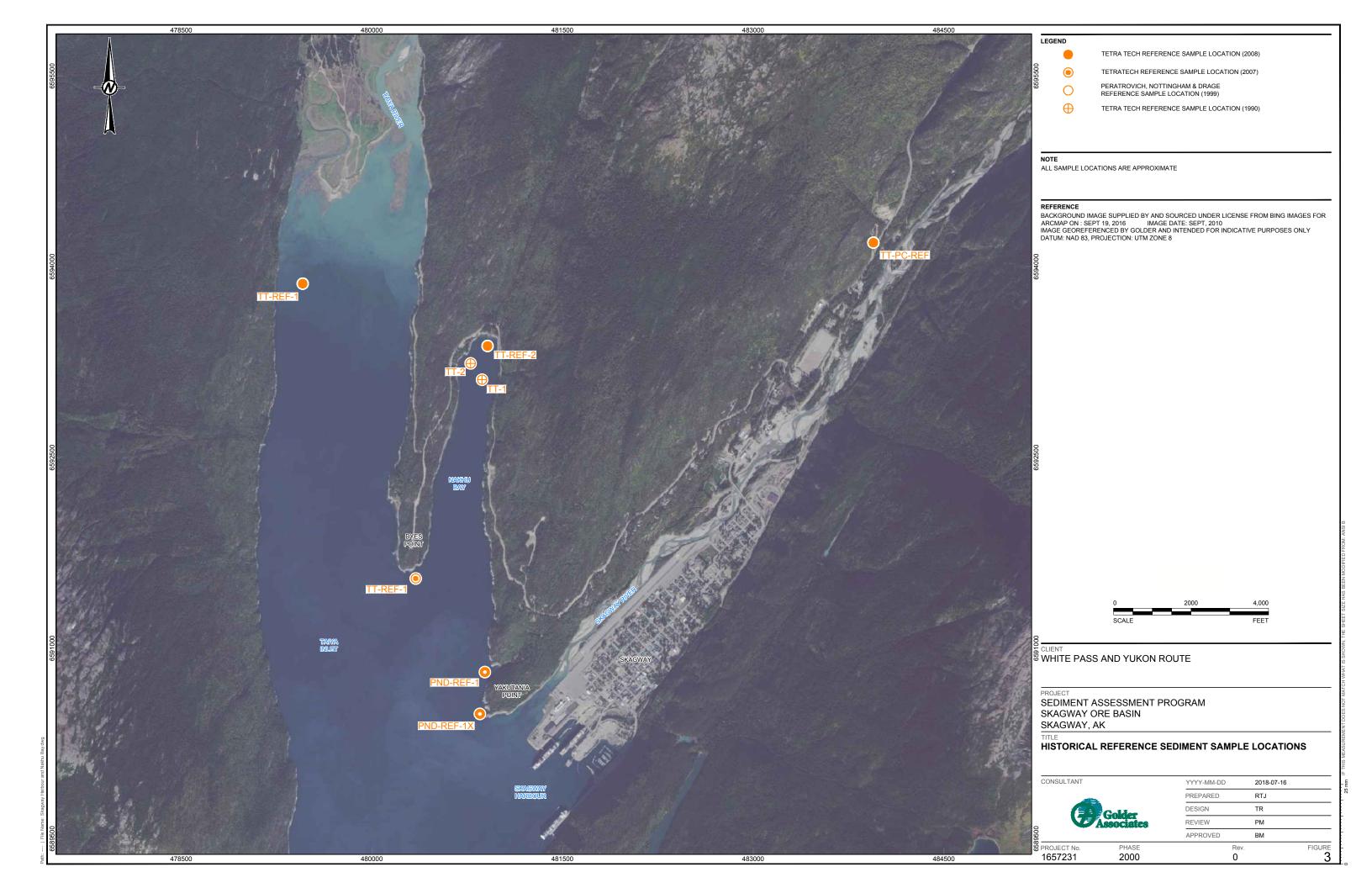
2.0 PROBLEM FORMULATION

The problem formulation provides a process to define the scope and objectives of the risk assessment based on the available site information. The goal of the problem formulation is to identify the likely sources of contamination and relevant contaminants of potential concern, identify relevant ecological and human receptors, and describe the exposure pathway between the source and the receptors of potential concern. This information is summarized in a conceptual site model and used to articulate assessment and measurement endpoints that help provide structure and focus to the risk assessment.

2.1 Review of Historical Data

2.1.1 Overview


Several investigations have evaluated the environmental quality in the vicinity of the Ore Basin. Copies of these reports (with supporting appendices, where available) were provided by WPYR, ADEC or the Municipality of Skagway and were reviewed by Golder. A brief overview of the types of data collected is provided in Table 1 and described in more detail in subsequent sections. The locations of historical samples are provided in Figures 2 and 3.


Table 1: Types of Data Collected During Historical Investigations in the Vicinity of the Ore Basin

Desument	Sediment Chemistry (Surface Grabs / Cores)		Water Chemistry		Toxicity	AVS	Tissue	Benthic	
Document	Metals	Hydrocarbons	Grain Size	PW	sw	Testing	AVS	Chemistry	Community
RWM (1984)	Yes / NA	_	Yes	_	Yes	_	_	Crabs, mussels, sole	Summary statistics only
SRK (1989)	Yes / Yes	_	Yes	_	_	_	_	_	_
TetraTech (1990a, b)	Yes / NA	Yes / —	Yes	_	Yes	_	Yes	Mussels, sole, sculpin	Visual inspection
Dames and Moore (1995)	Pb and Zn only	_	Yes	_	Yes	_	_	Mussels	Collected, but not analyzed
PND (1999)	Yes / —	Yes /—	Yes / —	_	_	_	_	_	_
PND (2005)	Yes / Yes	Yes	Yes	_	_	_	_	_	_
URS (2006)	Cu, Pb and Zn only	_	_	_	_	_	_	_	_
Gubala (2007)	Yes/Yes	_	_	_	_	_	_	_	_
TetraTech (2008)	Yes / Yes	_	Yes	Yes	Yes	Yes	Yes	Mussels	_
TetraTech (2009)	_	Yes / Yes	_	_	_	_	_	_	_
Gubala (2011)	Yes / Yes	Yes / Yes	_	_	_	_	_	_	_
Gubala (2013)	Yes / Yes (no Cu, Zn)	Yes / Yes	_	_	_	_	_	_	_
Anchor QEA (2015)	Yes / Yes	Yes / Yes	Yes / Yes	_		_	_	_	_

Notes: PW = pore water; SW = surface water; AVS = acid volatile sulphides

2.1.2 Sediment Chemistry

Evaluation of the Data

There is considerable sediment chemistry data available for the Site and its surroundings in the available historical reports. Observations from a review of the historical chemistry data include:

- There was considerable variability in the surface concentrations between different data sets, despite locations that appeared to be close to each other (e.g., within 15–20 feet). This variability is likely from the ongoing deposition of material (see Section 3.1).
- There are gaps in the historical data—historical sampling was often limited to analysis of metals, and in several instances, specifically limited to lead and zinc. The potential influence of other contaminants has not been fully evaluated—in particular, hydrocarbons. Several historical reports¹ note that hydrocarbons were present in samples, but this did not result in PAHs being systematically assessed.

Data were screened against WDOE (2015) sediment cleanup objective (SCO) and cleanup screening levels (CSL)². The SCO represents a long-term sediment quality goal, while the CSL is a maximum chemical concentration allowed as a sediment cleanup level in a Washington State remedial dredging program in the absence of biological information that demonstrates that effects are not present. There were multiple samples that had lead and zinc concentration greater than the SCO value.

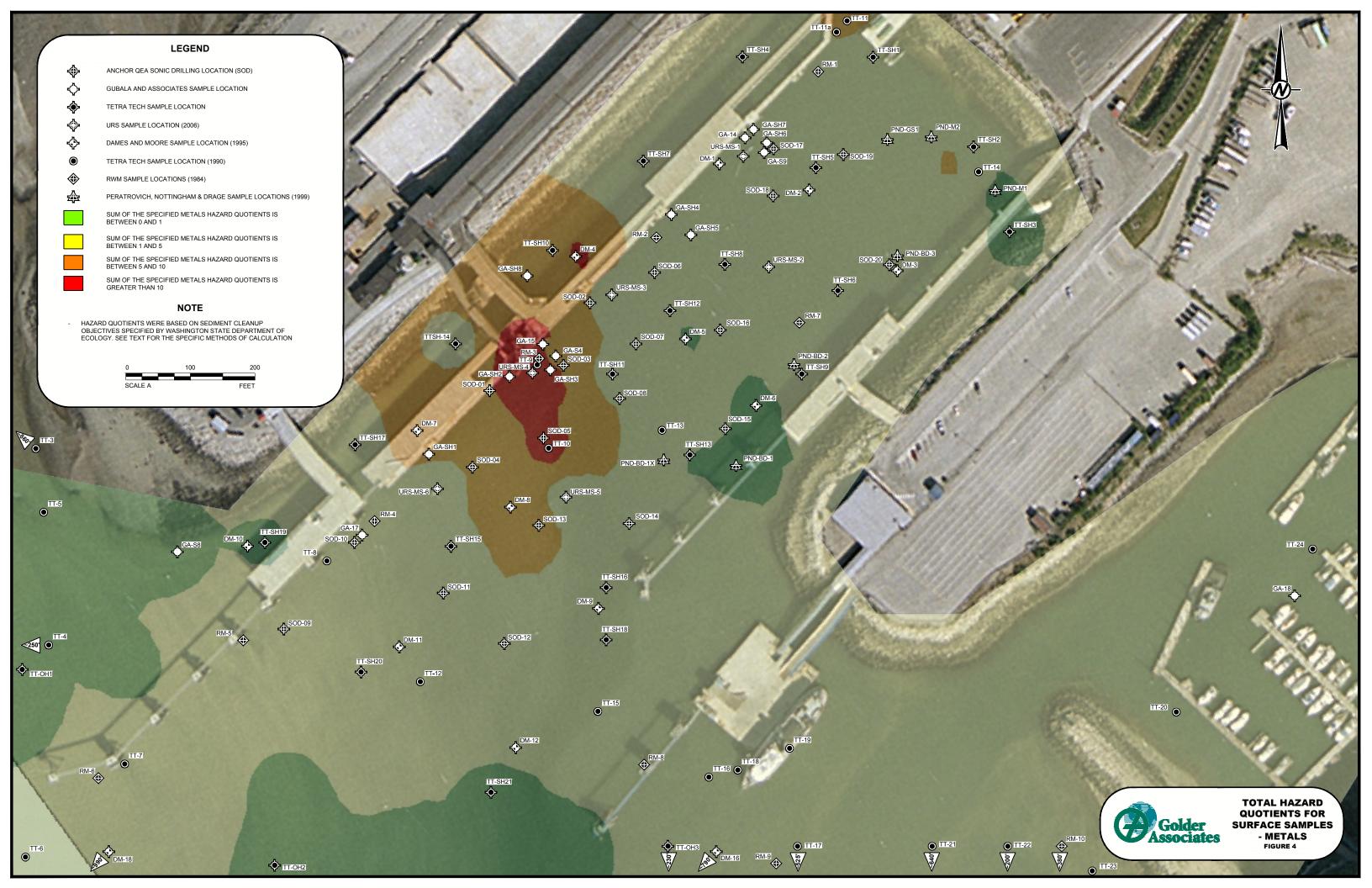
Evaluation of Patterns

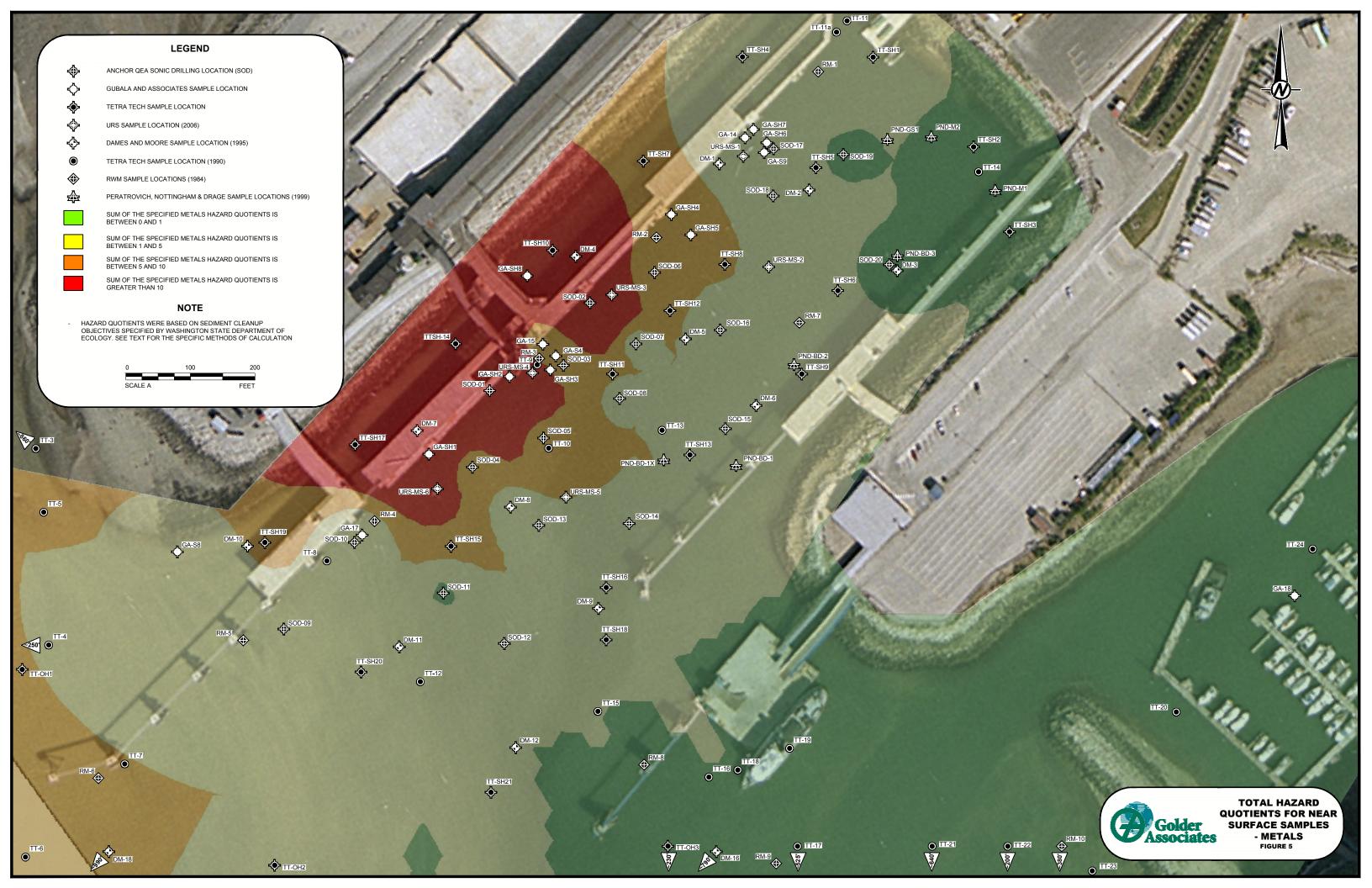
Golder concluded that an integrated evaluation of all available historical chemistry data was warranted. The purpose of this compilation was to look for patterns in the distribution of selected contaminants of interest which might indicate likely sources of contamination. If the Ore Basin was identified as a likely source, the goal was to determine a contaminant gradient to help focus the sampling program. Compilation and analysis consisted of the following:

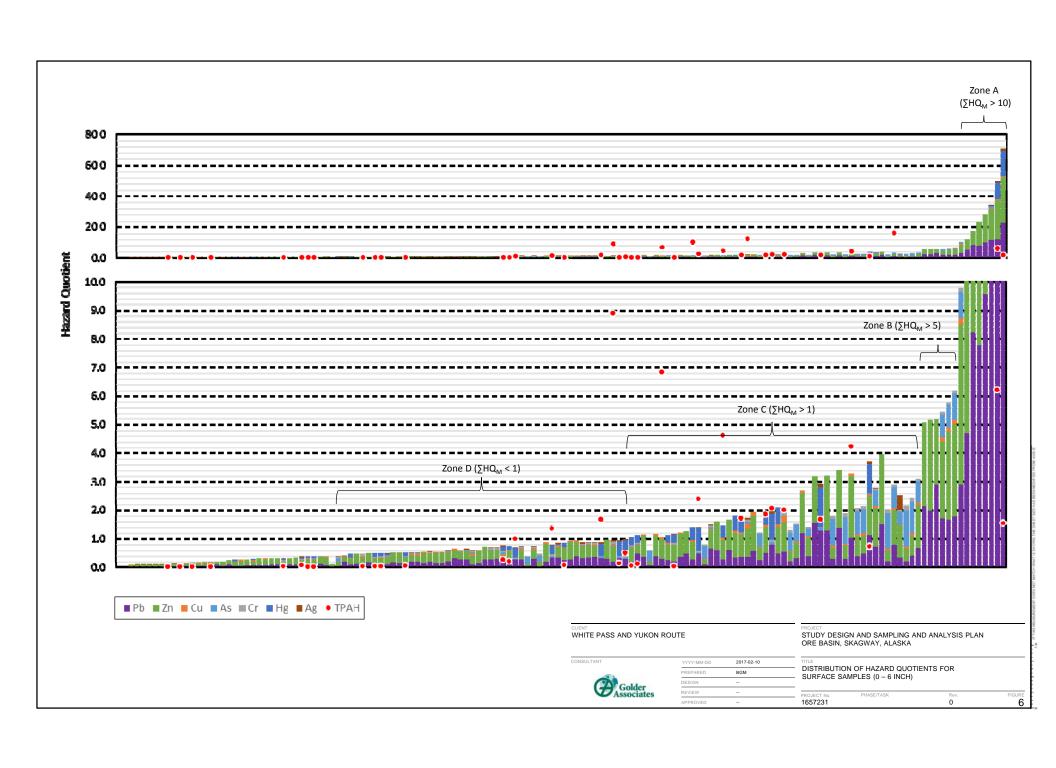
- All data were transcribed into an Excel spreadsheet (provided in Appendix E). Golder relied on the chemistry and depth information as presented in the tables of the original authors and did not conduct an extensive review of certificates of analysis, borehole logs or quality assurance / quality control measures. In some instances, detailed appendices with the original certificates or logs were either not available or had not been prepared by the original author. The depths of samples were not normalized to a theoretical 2017 datum to account for possible changes in the depth of the Ore Basin over time.
- The cumulative hazard associated with the historical chemistry data was evaluated in greater detail by calculating a hazard index. A hazard index is the sum of the individual hazard quotients (i.e., the concentration of zinc in a sample divided by the CSL for zinc). All metals that have a CSL were included in the hazard index

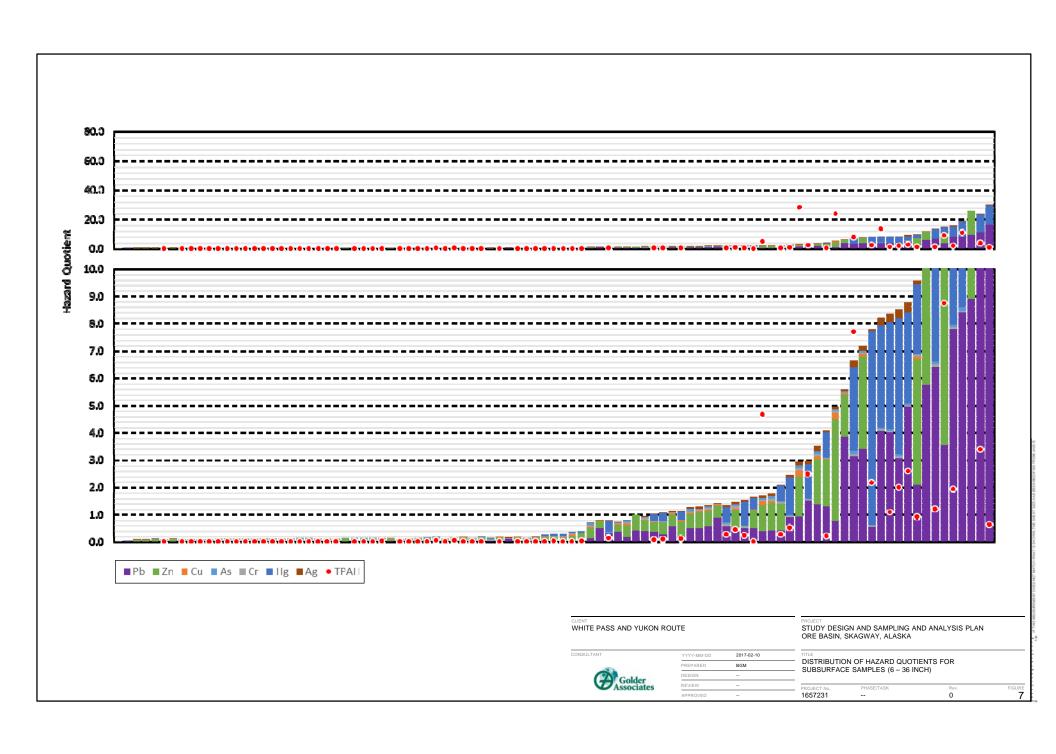
² The Apparent Effect Threshold (AET)-based numerical criteria were used per WDOE (2015) guidance to use AET-based criteria when samples have a total organic carbon (TOC) content of less than 0.5%. The average TOC in samples collected from the Ore Basin was 0.2%.

¹ For example, Anchor (2015) found that hydrocarbon concentrations exceeded generic sediment guidelines in two of the samples for the ore basin. Tetra Tech (1990a) commented on the presence of hydrocarbon odours and sheens in a relatively large number of samples collected.




calculation (arsenic, cadmium, chromium, copper, lead, mercury, silver and zinc). Samples were divided into surface (0–6 inches) and near-surface (6–36 inches) groups, and krieging³ was used to interpolate hazard index values for the entire Ore Basin based on the available data. These interpolations are provided in Figures 4 and 5, and show that:


- There appears to be an area adjacent to the ore conveyor belt where surficial sediment has metals concentrations resulting in a hazard index of greater than 10.
- The size of the area with a hazard index greater than 10 is larger in deeper samples.
- The hazard index data were also used to examine patterns in how different metals contributed to the overall hazard index. Hazard index values were rank-ordered as a stacked-bar chart (Figures 6 and 7). Four "zones" were defined for the purposes of designing the sampling program.
 - Zone A represents a cumulative hazard index value greater than 10. This is the same rule of thumb threshold used in Figures 4 and 5 to identify the area of greatest interest.
 - Zone D represents a cumulative hazard index value of less than 1. This area would not be expected to have significant effects to benthic organisms as a result of metals because all concentrations are less than the conservative screening value.
 - Zones B and C subdivide the remaining area and help to show the gradient of contamination associated with the point-source associated with the ore conveyor belt.
- The distribution of the stacked-bar charts are provided in Figures 6 and 7 and show that:
 - The majority of the calculated hazard index is from lead and zinc, although there are some samples that also have concentrations of arsenic or mercury that have hazard quotients greater than 1. Copper, chromium and silver do not appear to contribute significantly to the hazard index.
 - There was no obvious association between metals and PAHs based on visual inspection. PAHs have a hazard index greater than 10 in several samples which suggests that it may have the potential to cause adverse effects to benthic organisms. The lack of an association indicates that PAHs do not appear to be originating from the ore loading facility.


³ Kreiging is a statistical approach used to predict values on a continuous surface based on consideration of the relationships between pairs of nearby data points.

3

SKAGWAY ORE BASIN RISK ASSESSMENT

2.1.3 Sediment Toxicity Testing

Historical toxicity testing was limited to Tetra Tech (2008) from areas near the ore loading facility where worst-case concentrations of lead and zinc have been described (Figure 8). Test methods followed standardized protocols defined by the American Society for Testing and Materials (ASTM International)⁴ and appropriate quality assurance / quality control measures were followed. No issues were noted by Golder in terms of the quality assurance / quality control measures and the data are considered reliable and appropriate for use.

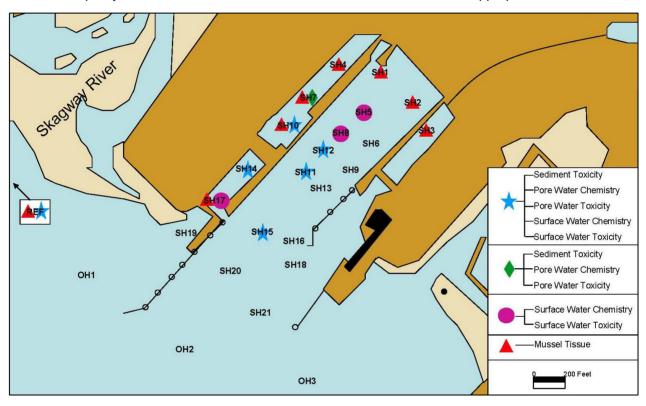


Figure 8: Sediment and Surface Water Toxicity Test Sample Locations (Tetra Tech 2008)

Whole-Sediment Testing

Two whole-sediment toxicity tests (10-d amphipod and 10-d polychaete survival and growth)⁵ were completed on six samples from the Site, plus one reference sample. There was no significant decrease in growth relative to the negative control for either species (Tetra Tech 2008), and survival data are summarized in Figure 9.

⁴ Although there are USEPA or Washington state test protocols for both tests, the decision by Tetra Tech (2008) is defensible. ASTM test methods are robust and reputable and any actual differences in methodology relative to USEPA or state protocols are minor.

⁵ Leptocheirus plumulosus and Neanthes arenaceodentata

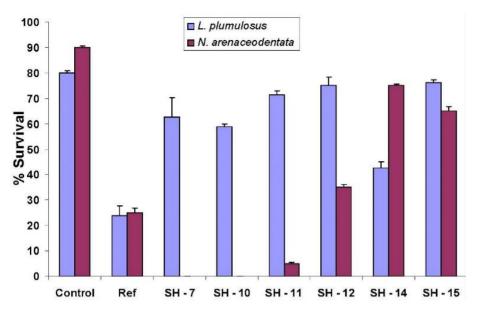


Figure 9: Amphipod and Polychaete Survival (Tetra Tech 2008)

Overall, the reference station was acutely lethal to both species despite not having elevated contaminant concentrations (Tetra Tech 2008). This highlights that physical factors (e.g., coarse grain size, low organic carbon) can lead to a false positive in terms of toxicity testing. All six stations collected from the Site had higher amphipod survival than the reference station (Tetra Tech 2008). Three of the six stations had higher polychaete survival than the reference station, although the three samples that did have a reduction in polychaete survival were also those that were located closest to the ore loading facility (Tetra Tech 2008).

Porewater Toxicity and Toxicity Identification Evaluation

Porewater was extracted from the seven sediment samples for a 96-h shrimp water-only survival test⁶. There were no effects on shrimp survival in SH-14 and SH-15 (Tetra Tech 2008). The remaining four stations (and the reference station) had 100% mortality (Tetra Tech 2008). Dissolved porewater metal concentrations were non-detectable for cadmium and mercury in all seven samples (Tetra Tech 2008). For the remaining metals:

- Copper: 4.2-5.4 µg/L relative to 6.4 µg/L in the reference sample
- Lead: 6.6–20 μg/L⁷ relative to a non-detectable concentration in the reference sample
- Nickel: 4.4–15 µg/L relative to 17 µg/L in the reference sample
- Zinc: 9.5–9.7 μg/L relative to a non-detectable concentration in the reference sample.

⁷ See Table 9 of Tetra Tech (2008). Note that SH-11 was reported to have a total Pb concentration of 6.6 μg/L and a dissolved Pb concentration of 20 µg/L. Dissolved concentrations are unlikely to be greater than total when the analyses are made on the same sample. Concentrations of the other metals had higher total than dissolved concentrations, as expected. Golder concludes that the Pb data for SH-11 was reversed in Table 9, and therefore, 6.6 µg/L is assumed to be the dissolved Pb concentration, not the total concentration.

⁶ Americamysis bahia

Tetra Tech (2008) concluded that metals were not likely to cause the observed porewater toxicity because the dissolved metals concentrations were substantially lower than the LC50 or chronic toxicity thresholds reported for the test species. Tetra Tech (2008) also noted that the porewater samples had a high biological oxygen demand, and petroleum sheens and odours.

There was sufficient sample volume from the reference station, SH-7 and SH-11 to conduct a toxicity identification evaluation (TIE). A TIE involves manipulating the sample to remove specific groups of potential toxicants. If the manipulation results in the elimination of toxicity, it suggests that the substance targeted by the manipulation was contributing to the toxicity. Each of the following treatment were run in parallel on different aliquots: 1) addition of EDTA to remove lead, zinc and other select metals⁸; 2) aeration to remove volatile compounds and 3) filtration to remove the possible confounding effect of suspended particles. Tetra Tech (2008) commented that the aeration treatment would not be expected to remove hydrocarbons. The TIE confirmed that toxicity was not related to metals (i.e., adding EDTA to remove lead and zinc did not result in a reduction in toxicity).

Water Toxicity

Two water toxicity tests (48-h larval fish survival and 96-h shrimp survival) were completed on eight samples from Skagway Harbour and one sample from a reference location (Tetra Tech 2008). No effects were observed (Tetra Tech 2008).

2.1.4 Surrogates for Bioavailability

Acid volatile sulfides-simultaneously extractable metals (AVS-SEM) provides a surrogate measurement of bioavailability for metals such as copper, lead, mercury and zinc. The presence of sulfides in porewater reduce metal bioavailability by forming an insoluble precipitate with dissolved metal ions. A sample with more AVS than the sum of SEM is unlikely to have significant concentrations of bioavailable metals in porewater.

Data for AVS was limited to two historical reports:

- Tetra Tech (2008) analyzed 21 surficial sediment samples for AVS-SEM. Seven of the ten samples with measurable AVS were unlikely to have high bioavailability (i.e., there was more AVS than SEM). The remaining samples did not have any measurable AVS.
- Tetra Tech (1990) also measured AVS in 24 samples collected from various parts of Skagway Harbour and found that AVS concentrations were highest in protected areas (e.g., in the small craft harbour or head of the ore basin) or near the municipal sewage outfall. Tetra Tech (1990) did not include SEM analysis, and therefore, no calculation of AVS-SEM ratios can be made.

⁸ Ethylenediaminetetraacetic acid (EDTA) forms insoluble precipitates with divalent cationic metals like aluminum, barium, cadmium, cobalt, copper, iron, lead, manganese, nickel, strontium and zinc (USEPA 2007). Other metals such as arsenic are also chelated by EDTA but at a lesser degree than divalent metals.

2.1.5 Bioaccumulation

Tissue sampling was generally limited in terms of the diversity and number of samples collected by historical reports:

- RWM (1984) provide average tissue concentrations for Dungeness crabs, yellowfin sole (liver and muscle) and mussels⁹ from the ore basin and the control area at Nakhu Bay. The number of individual samples within each average was not specified. Mussels were collected by divers from pilings and were not depurated. There were no differences¹⁰ in tissue concentrations for lead, zinc, copper, cadmium or mercury for crab or sole. There was an increased concentration for lead and zinc in mussel tissues from within the ore basin relative to the control area, but no difference for copper, mercury or cadmium.
- Tetra Tech (1990a) report tissue concentrations for yellowfin sole muscle (n = 5), yellowfin sole liver (n = 1), sculpin (species unknown; n = 3), and mussels (n = 35; five samples collected from seven locations in the ore basin). Mussels were collected by divers from sediment and depurated for 24 hours prior to analysis. Samples were analyzed for lead, zinc and mercury.
- Dames and Moore (1995) report tissue concentrations for mussels collected from the control area (Nakhu Bay), ore dock and the Broadway dock. One composite sample per area was analyzed for lead and zinc. Mussels were collected from boat by hand from rocks or pilings and were not depurated.
- Tetra Tech (2008) report tissue concentrations for mussels collected from seven locations within the ore basin and a reference area (Taiya Inlet). Mussels were collected by hand from rocks or pilings and depurated for 24 hours prior to analysis. Samples were analyzed for cadmium, copper, lead, nickel and zinc¹¹. Tetra Tech (2008) concluded that lead and zinc concentrations increased with proximity to the ore dock.

The observation by Tetra Tech (2008) that tissue concentrations of lead and zinc were higher in mussels collected from the vicinity of the ore dock than those collected elsewhere was generally supported by the other historical data. The historical data is not sufficient to evaluate patterns for other tissue types.

¹¹ Mercury was also analyzed but the data were not considered reliable because of poor matrix spike recovery in the QA/QC samples.

⁹ Cancer magister, Limanda aspera and Mytilus edulis.

¹⁰ Statistical significance (p > 0.05) using a t-test. Data presented in the report is limited to the mean results by area with a conclusion about statistical significance. Data for individual samples and replicates are not provided.

2.1.6 Benthic Community Structure

Information about the types and numbers of organisms that are utilizing the available sediment habitat was limited in the historical reports:

- RWM (1984) provide summary statistics for abundance and diversity for three areas ("within" the ore basin; "outside" the ore basin and "control")¹². The diversity and abundance of benthic organism in the "within" area was reduced relative¹³ to the "control" area, as was the diversity and abundance of benthic organisms from the "outside" area. The diversity of benthic organisms was also reduced in the "within" area relative to the "outside" area.
- Tetra Tech (1990a) reported that the benthic community near the ore terminal was "obviously stressed" because there were few organisms present in the two stations that had the highest lead and zinc sediment concentrations. However, Tetra Tech (1990a) also identified at least three other stations without organisms that did not have highly elevated concentrations of metals. Information from Tetra Tech (1990a) is limited to visual inspection of a limited number of samples, and did not involve quantitative analysis by a benthic taxonomist.

2.1.7 Other Historical Information

Anchor (2015) collected data on four composite sediment samples to support a preliminary evaluation of dredge disposal options:

- A sequential batch leaching test (SBLT) was conducted which involves mixing sediment with artificial seawater at a ratio of 1:4, agitating the sample on a shaker table for 24 hours, and then centrifuging the mixture to remove sediment. The process was then repeated three additional times with the original aliquot of sediment to generate four sequentially extracted water samples. Water samples were submitted for chemical analysis (e.g., dissolved metals). Data were compared to the Alaskan ambient water quality guidelines.
- A toxicity characteristic leachate procedure (TCLP) test was conducted which involves an acidic extraction to simulate typical landfill conditions. The leachable concentrations were compared to federal hazardous waste screening limits.

Anchor (2015) concluded that unconfined disposal options that involve continued contact of the dredged material with seawater or freshwater (e.g., open water disposal; placement as upland fill) may be problematic because dissolved metal concentrations in the SBLT exceeded state water quality guidelines. The lead concentrations in TCLP exceeded federal hazardous waste limits which would limit the use of local landfills. Anchor noted that dredged sediment may be appropriate for beneficial reuse in a marine or upland setting if amendments were

¹³ Statistical significance (p > 0.05) using a t-test. Data presented in the report is limited to the mean results by area with a conclusion about statistical significance. Data for individual samples and replicates are not provided.

¹² Each benthic sample consisted of between 3 and 5 replicates of a Smith-McIntyre grab screened to 0.44 cm². There were five "within" samples ranging from 0 to 180 meters from the ore conveyor; five "outside" samples ranging from 200 to 375 meters from the ore conveyor from locations outside the ore basin, and four "control" samples at distances of more than 3,000 meters from the ore conveyor taken from Nakhu Bay.

utilized. A sediment treatability study was completed which demonstrated that the leachability of metals and PAHs could be reduced to levels that met water quality guidelines with the addition of bone meal, ferrous sulfate and Portland cement (Anchor 2016). Confined disposal options have not been evaluated.

2.2 Conceptual Site Model

The conceptual site model integrates information about the sources of contaminants of potential concern, major release mechanisms, operable exposure pathways, and receptors of potential concern into a single figure. The purpose of the conceptual site model is to distill the available information into a more simplified depiction of the key issues that need to be evaluated in a contaminated sites investigation and risk assessment (ADEC 2010)—the conceptual site model evolves over time as new information is obtained. A conceptual site model for the current assessment is presented in Figure 8 to integrate the information about contaminant sources, pathways and receptors described in the following sections.

2.2.1 Contaminant Sources

Sediment quality in an urbanized harbour is influenced by numerous point and non-point sources of contamination that are gradually mixed over time due to sediment resuspension and distribution. The vertical distribution of sediment contamination tends to reflect changes in contaminant inputs over time as older sediment is buried by newer material. The following section describes potential sources of contamination to Skagway Harbor. The current investigation focuses on the ore concentrates that were shipped through the ore handling facility. Previous investigations have tended to focus on lead and zinc, but ore concentrates can also contain other metals depending on the type and quality of ore being concentrated. Skagway Harbour also receives inputs from other sources which may also influence how data collected during the risk assessment should be evaluated. The discussion of other sources is not intended to provide a comprehensive inventory.

- Metals Associated with Ore Concentrates. There have been two different sources of ore concentrate:
 - Faro Mine This material consists of lead and zinc concentrates shipped between 1967 and 1997. The primary contaminants of concern associated with this material are lead and zinc, but other metals are also likely present in the concentrate in varying concentrations. The Faro Mine focused on lead and zinc, but silver and gold were also present in the ore body (Government of Yukon 2013), Historical investigations in Skagway identified arsenic, mercury and cadmium as contaminants associated with the Faro Mine concentrate (ADHSS 1989). The loading system was enclosed in 1991, which means the majority of the lead zinc concentrates were loaded to ships using an open-air conveyor belt system.
 - Minto Mine This material consists of copper concentrates shipped since 2007. Other metals that are potentially present in the concentrate are gold and silver. This material started shipment after the enclosure of the loading system.

The primary contaminants of concern for the ore concentrate are expected to be lead and zinc. The Faro Mine concentrate was on the order of 65% lead and 35% zinc (E&E 1989). This material was transported for more than 20 years using an open conveyor belt. Arsenic, cadmium, copper, gold, mercury and silver are also potentially associated with the ore concentrate.

- Metals and Hydrocarbons from Non-Point Sources Metals can also originate from non-point sources in the watershed. Stormwater discharges carry dust and other particulates from roads and parking lots to the harbour (either directly, or indirectly via discharge to Pullen Creek). These non-point sources of metals would likely be of a lower order of magnitude than the point-source associated with the ore loading facility. Hydrocarbons can also originate from point sources (e.g., releases from underground storage tanks to groundwater near the receiving environment) but also from non-point sources (e.g., stormwater runoff, incidental releases from small craft fueling, use of creosote-preserved timbers).
- Substances Associated with Wastewater Discharges A third category of potential contaminant sources to harbour sediment relates to wastewater discharges from municipal or vessel sources. Common substances associated with wastewater discharges include ammonia, biological oxygen demand and coliforms. Other substances can also be present depending on the type of treatment prior to discharge. There are two potential wastewater sources near the Ore Basin.
 - Municipal Outfall The discharge point is located adjacent to the ore basin off the end of the Broadway Dock¹⁴ (Tetra Tech 1988). The facility provides primary treatment. An ambient environment monitoring program conducted in 1999 concluded that there was no evidence of organic material buildup associated with the outfall; however, this assessment was based on two locations (one near the outfall; the other at the edge of a 140-foot diameter initial dilution zone) (USEPA 2002). The municipal wastewater discharge is now subject to a State permitting process¹⁵. A mixing zone for fecal coliforms of 1,600 meters radial distance from the outfall is required in addition to the 140-foot diameter dilution zone. Shellfish harvesting should not take place within the mixing zone. This 1,600-meter radial mixing zone encompasses the entirety of Skagway Harbor.
 - Vessels Seven large cruise ships are currently authorized to discharge treated wastewater while docked at Skagway. Smaller vessels (e.g., ferries, ships with fewer than 250 overnight berths) are also authorized to discharge provided they have an approved plan¹⁶. Substances that are typically monitored in vessel wastewater discharges includes ammonia, fecal coliforms, biological oxygen demand, metals (copper, nickel and zinc) and total suspended solids. Ambient water quality monitoring has also been conducted at various locations within Skagway Harbour during discharge events for ammonia, copper, nickel and zinc. Data from 2015 and 2016 showed detectable concentrations of ammonia in water samples collected from all parts of Skagway Harbour.¹⁷ Cruise ships also conduct routine maintenance while in port, which includes hull cleaning below the waterline and painting above the waterline¹⁸.

¹⁸ E-mail from Edward White, Commercial Passenger Vessel Environmental Compliance Program, Alaska Department of Environmental Conservation, 22 November 2016.

¹⁴ Coordinates are: 59° 26' 54.8" N, 135° 19' 36.6" W (USEPA 2002).

¹⁵ Information on the permit issued by Alaska Department of Environmental Conservation can be found at: http://dec.alaska.gov/Water/WPSdocs/AK0020010_docs.pdf

¹⁶ E-mail from Edward White, Commercial Passenger Vessel Environmental Compliance Program, Alaska Department of Environmental Conservation, 23 January2018.

¹⁷ Information about cruise ship discharges and monitoring data can be found at: https://dec.alaska.gov/water/cruise_ships/reports.htm. Data for Skagway Harbour ambient monitoring stations was provided via e-mail by Kara Kusche, Alaska Department of Environmental Conservation, 22 November 2016.

2.2.2 Ecological Receptors

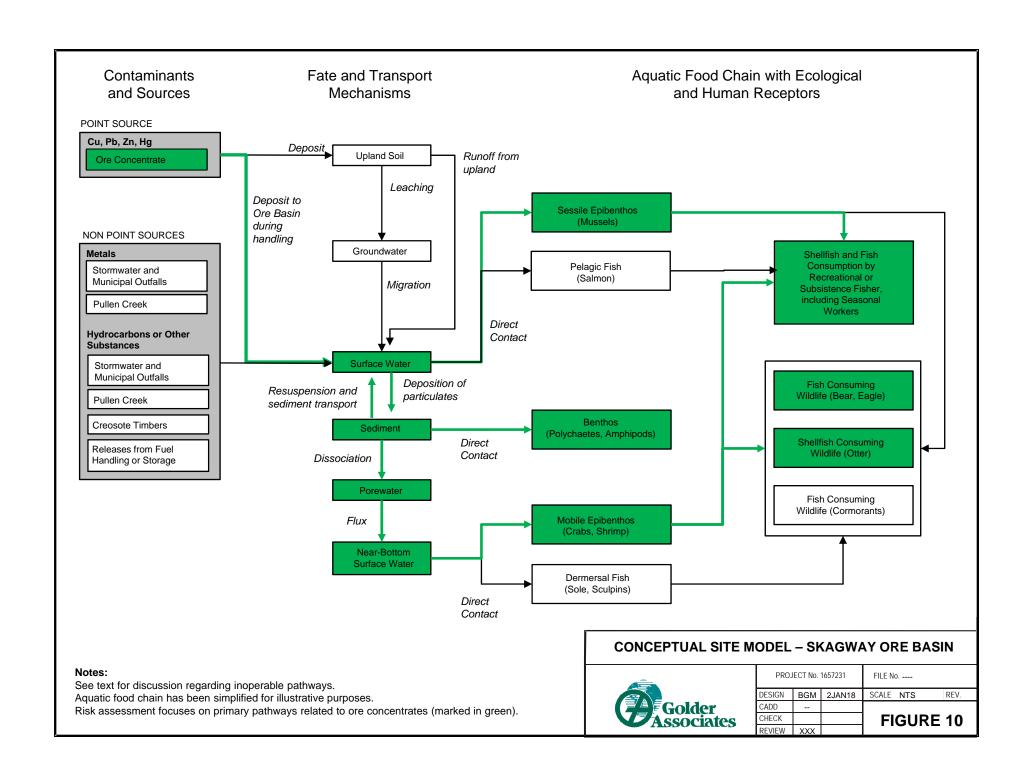
Near-shore marine environments support a wide diversity of different types of organisms. From a risk assessment perspective, the ecological community can be divided into different components that reflect how different organisms would likely interact with metals and other contaminants associated with sediment:

- Benthic invertebrates Examples of benthic invertebrates include amphipods, polychaetes (worms) and other taxa that burrow into the sediment. Benthic invertebrates are exposed to sediment contaminants through a variety of mechanisms, including direct contact with porewater and ingestion of sediment particles. The specific taxa that inhabit sediment within the ore basin will be influenced by depth, substrate type and the level of physical disturbance.
- Sessile epibenthic invertebrates An example of a sessile epibenthic invertebrates (i.e., those associated with the surface of sediment) are mussels. Mussels are immobile, and attach to pilings, rocks or other submerged hard surfaces. These taxa are exposed to sediment contamination primarily through ingestion of suspended sediment particles which they filter from the water column.
- Mobile epibenthic invertebrates Example of epibenthic invertebrates include crabs, seastars and shrimp. These taxa are exposed to sediment contamination primarily through their diet, or through ingestion of suspended particulates.
- Dermersal fish These are typically small-bodied fish like sole or sculpin that would occupy near-bottom habitats and are exposed to sediment contamination through their diet. Home ranges tend to be smaller than larger fish, which can increase their exposure.
- Pelagic fish These are typically larger fish like salmon that would be exposed via dietary consumption. Home ranges tend to be larger, which can limit their exposure to a localized area of sediment contamination.
- Wildlife There are numerous bird and mammal species that consume shellfish and fish. The specific exposure of a given wildlife receptor depends on the degree to which a sediment contaminant is bioaccumulating in the tissues of prey items. Habitat ranges tend to be very large which limit their exposure to a localized area of sediment contamination.

2.2.3 Human Health Receptors

People can be exposed to sediment-related contaminants in a variety of ways, depending on how they interact with the marine environment. The site is located within an urbanized/industrial harbour that has been constructed on placed material. Intertidal areas are steep, and predominantly consist of rip-rap and engineered structures. There were no significant intertidal areas with sands noted that would likely lead to direct contact or ingestion of sediment during recreational activities. Field personnel observed people fishing and setting crab and prawn traps throughout the harbour (i.e., within the 1,600-meter mixing zone associated with the municipal outfall where harvesting is not considered to be appropriate). The following exposure scenarios for humans were identified:

Resident: This scenario considers a resident who lives in Skagway and catches shellfish from the harbour for consumption. Receptors for this scenario include adults and children of all ages.



- Seasonal Resident: This scenario considers a seasonal resident who works in Skagway for six months of the year during the tourist season (i.e., May to October, inclusive). It was assumed that they would consume shellfish from the harbour during their stay. Receptors for this scenario include teens and adults.
- Recreational Fisher: This scenario is similar to the resident, but considers a person who more regularly catches shellfish from the harbour for consumption. Receptors for this scenario include adults and children of all ages.

2.2.4 Release Mechanisms

As noted above, sediment tends to accumulate contaminants from a variety of sources which then gradually mix over time depending on sediment transport dynamics. Point-sources of sediment contamination tend to create "hot spots" in contaminant distributions within an overall background level of contamination that reflects non-point sources. This interaction between point-sources and sediment transport dynamics is particularly relevant in the current assessment because the ore dock (the point source for metals related to ore concentrates) overlaps with sources of wastewater. In terms of specific release mechanisms related to the ore concentrate, ADHSS (1989) noted that historical ore handling activities involved significant fugitive dust releases from the conveyor system (prior to its enclosure). Deposited ore dust near the conveyor system was reportedly swept from the docks (ADHSS 1989). Ore concentrate would have a higher specific gravity than dust originated from native soils. The net effect of these release mechanisms would be likely a hot spot in the immediate vicinity of the ore conveyor belt where fugitive dusts would be deposited directly to the ocean, surrounded by an area where fugitive dusts were swept or rinsed from the dock or ships, surrounded by a larger area where deposited material would be subject to resuspension and distribution over time through sediment transport dynamics.

2.3 Data Gaps

As described in Section 2.1, the Ore Basin and its surroundings have been the subject of multiple investigations dating back more than 20 years. A broad conclusion that the Ore Basin requires immediate dredging to remove sediment contamination has been described by some previous investigators (Gubala 2011, 2013) which in turn led to the development of a preliminary dredge design and treatability study (Anchor 2015, 2016). The historical data is sufficient to conclude that ore concentrates have contributed to elevated concentrations of multiple metals (primarily, lead and zinc, but also other metals such as mercury) in sediment. These concentrations exceeded conservative screening limits in multiple samples, and concentrations of ore-related metals tended to increase with proximity to the ore handling facility. However, there were data gaps identified during the review that could influence risk management planning:

- There was conflicting information about whether concentrations of ore-related metals in sediment were increasing or decreasing over time through sediment transport. A sediment transport analysis was not part of the historical information.
- Although there was sufficient information about the vertical and horizontal distribution of copper, lead and zinc in sediment based on the totality of samples collected (see Appendix A for the distribution of these three metals), many historical samples were limited to these primary contaminants of concern. There were limited data for other metals, and only a moderate number of measurements of concentrations of other contaminants of potential concern (such as polycyclic aromatic hydrocarbons).. Multiple historical studies excluded analysis of samples for hydrocarbon concentrations. The available data show that there are exceedances of numerical screening limits for polycyclic aromatic hydrocarbons (PAHs) in several locations. The source of these hydrocarbons has not been conclusively established, but is likely consistent with other harbors where PAHs are related to the use of creosote preservatives and releases of petroleum products.
- Historical toxicity data were limited to one study (Tetra Tech 2008) which appeared to show that adverse effects in standardized toxicity testing were not related to metal concentrations in sediment. Information on the diversity, abundance and biomass of resident benthic organisms was also limited.
- Historical tissue chemistry data were also limited, both in terms of the diversity of sampling types, as well as spatial coverage. Mussels were the most frequently sampled organism. Several authors commented there was a general spatial pattern with tissue concentrations of lead and zinc higher in mussels collected from the vicinity of the ore dock relative to those collected elsewhere.

2.4 Problem Formulation Conclusions

A problem formulation and conceptual site model was developed based on a review of the available historical information for the site. Data gaps were identified for further investigation (described further in Section 3) to support risk management planning for the contaminated sediment known to be present within the Ore Basin. The problem formulation identified that contaminants related to ore concentrates were not necessarily limited to only lead, zinc and copper. Other metals that are potentially associated with the ore concentrate are arsenic, cadmium, gold, mercury and silver. There are other non-point sources of metals present in Skagway Harbour, and other substances that have the potential to contribute to adverse effects to the aquatic environment were identified (hydrocarbons, and substances such as ammonia that are related to municipal outfall or other sources).

A conceptual model was used to identify the primary exposure pathways to be considered in a screening-level risk assessment. Benthic invertebrates (e.g., amphipods, polychaetes and other burrowing organisms) were identified as the primary ecological receptor of concern because they would be in direct contact with sediment and porewater. Other ecological taxa (e.g., mussels, crabs and shrimp) were also identified as relevant receptors, although the exposure of some taxa like crabs and shrimp to ore-related contaminants in sediment may be limited because they are mobile and can forage over larger areas. Fish and wildlife species that consume fish or shellfish are relevant receptors. Human receptors were also identified as relevant in terms of potential exposure to ore-related sediment contamination through consumption of shellfish (crabs, shrimp and mussels) from the site. Direct contact between human receptors and ore-related contamination was not considered to be an operable pathway.

3.0 SUPPLEMENTAL INVESTIGATIONS

This section describes a brief overview of the approaches and major findings from three supplemental investigations conducted by Golder Associates:

- Screening-level sediment transport analysis (Winter 2016). A desktop review of site information was completed to provide an assessment of the potential for natural processes to re-suspend sediment from within the Ore Basin. An assessment of the influence of vessel propellers to scour and re-suspend bedded sediment was also completed. The purpose of this investigation was to determine if the Ore Basin was predominantly erosional or depositional in nature.
- Supplemental field investigation (Summer and Fall 2017). A field investigation was conducted to collect surface grab samples for toxicity testing and chemical analysis from multiple locations in Skagway Harbour (and off-site reference areas). Shrimp, crab and mussel tissue samples were also collected. Two rounds of a toxicity identification evaluation were completed to determine the cause of the sediment toxicity observed in some samples.
- Sediment core sampling (Fall 2017). A second field investigation was conducted to obtain additional information about the vertical distribution of sediment contaminants. Coring was completed using a truck-mounted rig on a landing craft, with sampling focused on the vicinity of the ore-loading facility, with additional cores along the dock frontage.

Further details (e.g., sampling and analysis plan; quality assurance / quality control measures, field data summaries, certificates of analysis from the contract laboratories; tabular summaries) can be found in the respective appendices. All available data (historical and supplemental information collected by Golder) was then evaluated in terms of its implications for site management using a screening-level risk assessment which is discussed in Section 4.

3.1 Sediment Transport Analysis

The sediment transport analysis using existing data is provided in Appendix A. The scope of the assessment was limited to the readily available information and did not include direct measurements at the site to determine the travel distance or locations where re-suspended sediment (from propeller scour) or suspended particulates (from wastewater discharges) would likely accumulate over time. In brief:

A review of the site history and background with respect to shoreline reconfiguration and dredging was conducted using existing data. The site was constructed on deltaic deposits in 1969 by placement of dredged material. The eastern portion of the Ore Basin by the Broadway dock was dredged in 1995, 1999 and 2005. Substrate descriptions from previous investigations generally show that sediment consists of a proportion of fine material accumulating over time, especially near the ore terminal. This fine-grained material overlays a gravelly sand which is interpreted as the relict deposits from the Skagway River prior to construction of the harbour.

- Sea level data from the Skagway NOAA monitoring station between 1945 and 2015 and bathymetric surveys between 1943 and 2014 were obtained and used to determine changes in bathymetry over time. Bathymetric analysis showed that the total sediment deposition between 1990 and 2015 in the western side of the Ore Basin was between 0.4 and 0.9 m (1.3–3.0 feet), even when the uncertainty in older bathymetric data and isostatic rebound was accounted for. The eastern side of the Ore Basin showed an aggregate increase in depth over the same time due to repeated dredging.
- Sediment inputs from the Skagway River were considered. The interaction of freshwater from the Skagway River with marine water creates a saltwater wedge which would create a mechanism for fine-grained material to be deposited in the Ore Basin during a flooding tide. Visual confirmation of this deposition mechanism was identified in site photographs.
- The potential for resuspension of bedded material in the Ore Basin was assessed. Typical wind-generated waves, wind-driven currents and tidal currents do not have sufficient energy to re-suspend significant amounts of sediment from within the Ore Basin. An extreme wind-generated wave and storm surge event (e.g., a 1 in 50 year) event would be needed to re-suspend sandy and silty material. Propeller wash from a tugboat, bulk ore carrier or cruise ship has sufficient energy to re-suspend bedded material. However, the spatial extent of the area subject to propeller scouring is limited—the energy from the propeller activity rapidly disperses over distance. High-resolution bathymetric images were available from 2014, and three distinct depressions are evident in locations that may correspond to expected locations for ships tied at dock and tugs used to assist cruise ships. The size of these scour depressions was limited in spatial extent (consistent with the calculations), and were not located in areas with highly elevated metals concentrations.

Overall, the conclusion from the desktop-level sediment transport analysis is that the site is predominantly depositional, and that fine-grained material from the Skagway River will gradually accumulate in the Ore Basin over time, especially near the ore dock. This material is relatively stable, and unlikely to be re-suspended unless located within specific, limited areas where propeller scouring may occur. This broad conclusion based on consideration of the available historical information was reviewed based on observations from the field sampling program. There are areas where grab sampling did not successfully penetrate the sediment, and therefore, direct evidence of the grain size distribution in those areas is not available. Some of these areas may be cobble, which would be expected in the vicinity of the scour depressions noted above. Grain size distribution in the samples that were collected from the Ore Basin by Golder were predominantly sandy (average percent sand: 51%) with a significant fraction of fine-grained material (average percent clay + silt: 39%). One sample collected from the Ore Basin (of the 16 samples in total) was predominantly a gravel (48%) which is consistent with the desktop conclusion that the area is predominantly depositional with a few areas of propeller scouring. Coring along the face of the Ore Dock (see Section 3.3) also confirmed that there is a thick depositional layer of fine-grained material overlying a sandy layer. Golder concluded that the field observations from the sampling program were consistent with the findings from the screening-level sediment transport analysis. The conclusions from the sediment transport analysis were not solely dependent on grain size distributions or visual observations. The conclusions also considered the mechanistic basis for material from the Skagway River being deposited in the Ore Basin (which was reinforced by photographs showing that deposition occurs) as well as the analysis of changes in bathymetric data.

3.2 Supplemental Surface Sampling Program

The purpose of this section is to provide a concise overview of the supplemental field program conducted by Golder in May 2017. The field program included:

- Preparation of a sampling and analysis plan for review and approval by ADEC prior to the start of field sampling activities (Appendix B).
- Preparation of a field data report (Appendix C) to meet the requirements of ADEC (2016) in terms of documenting the specific methods used and quality assurance / quality control measures taken.

A brief overview of the study design is provided below to describe how the study design was executed in the field, and provide a brief factual overview of the different types of data collected. Specific references to the field data report (Appendix C) are made where appropriate to provide reviewers with further details regarding sample methodology, field observations, datasheets, certificates of analysis and quality assurance / quality control evaluation. Interpretation of the available data from a risk assessment perspective is provided in Section 4.

In brief, the supplemental field program consisted of the following:

- The available historical data was used to establish a gradient of contamination that could be reasonably attributed to ore concentrate handling activities. This was done using the hazard index calculation described in Section 2.1.2 (i.e., the sum of hazard quotients for ore-related metals was calculated for individual surficial locations and then extrapolated to the remainder of the Ore Basin using krieging).
- The gradient of ore-related contamination was divided into four zones based on the magnitude of contamination¹⁹. Each zone was targeted for four to fivesamples to provide spatial coverage of the zone. Each sample was intended to involve multiple grab samples for surficial sediment (which were then composited and subdivided in chemistry and toxicity aliquots) and replicate samples for benthic community analysis²⁰. Sediment was collected from a total of 24 stations²¹ from the following areas:
 - Zone A Four samples
 - Zone B Five samples
 - Zone C Three samples
 - Zone D Four samples
 - Zone E (Other parts of Skagway Harbor) Three samples
 - Zone F (Reference areas²²) Five samples

Benthic community samples were also collected and archived from 14 of the 24 stations (Figures 12 and 13).

²² Reference locations were selected to match reference areas previously sampled in historical investigations. Targeted locations were Dyea Point, near the mouth of the Taiya River, and at the head of Nakhu Bay. See Section 2.2.2 of Appendix A for more information.

¹⁹ Zone A – The hazard index is greater than 10; Zone B – The hazard index is greater than 5; Zone C – The hazard index is greater than 1; Zone D – The hazard index is less than 1.

²⁰ It was not possible to collect benthic community samples at all locations because of substrate and time limitations.

²¹ See Section 3 of Appendix C for a detailed description of the sample collection, handling, storage and transport methods.

- All 24 stations were analyzed for chemistry (metals, PAHs, grain size, organic carbon). Hazard index values for the ore-related metals were less than 10 in all samples (i.e., the worst-case samples collected in 2017 were consistent with Zone B). Fourteen stations were selected for sediment toxicity testing to represent the range of concentrations of metals and PAHs. Toxicity testing consisted of three different tests (10-d amphipod survival; 20-d polychaete survival and growth; 96-h sea urchin larval development). Testing included samples with a range of ore-related metal concentrations, as well as three samples from reference areas.
- Three of the stations were ultimately selected for a porewater toxicity identification evaluation based on the outcome of the sediment toxicity testing. The benthic community samples were archived but were not analyzed as part of the current scope of work based on the outcome of the toxicity identification evaluation.
- Crab, mussel and shrimp tissue samples were collected from three different areas (Figure 14). Crab and shrimp traps were deployed throughout the sampling program, and mussels were collected from hard surfaces accessible by hand from the sampling vessel. All tissue samples were analyzed for metals and PAHs. The total number of samples were:
 - Near-field (inside the Ore Basin): Prawns (n = 5), crabs (n = 3), mussels (n = 5)
 - Mid-field (outside the Ore Basin but still in Skagway Harbor): Crabs (n = 5), mussels (n = 5)
 - Reference: Prawns (n = 3), crabs (n = 3), mussels (n = 5).
- Field quality assurance / quality control measures included the use of field duplicates as well as trip, field and equipment blanks. Laboratory quality assurance / quality control measures included laboratory duplicates and matrix spikes for the chemical analysis, and the use of negative controls and reference tests in the toxicological analysis. Further discussion of the specific quality assurance / quality control data is provided in Appendix C. Overall, the data was considered to be reliable, representative and suitable for use.
- Site photographs, field records, laboratory certificates of analysis and laboratory review checklists are included in Appendix C following the guidance from ADEC (2016).

It was not possible to collect all 31 sediment stations identified in the sampling and analysis plan because of weather delays, challenges in achieving adequate grab penetration in some locations, and the impending arrival of large vessels. The plan was to collect sufficient sediment from each station for chemical analysis with sufficient volume held as an archive for toxicity testing. Benthic community samples for archiving were also planned for all 31 stations. Ultimately, Golder was able to collect all three study components from a majority of locations but opted to focus on sediment chemistry (with toxicity archive) as the field program progressed. Golder concludes that the absence of seven stations²³ was not a significant limitation because the sampling was still able to achieve adequate spatial coverage within the Ore Basin and included all zones from the underlying gradient of ore-related contamination. There were still sufficient samples from which to select representative locations for toxicity testing.

²³ All proposed sample locations were assigned a sample ID which was retained irrespective of whether a location was successfully sampled. SED17-02, SED17-04, SED17-16, SED17-23, SED17-25, SED17-26 and SED17-30 were not sampled, and therefore, those IDs do not contain data in this current data report.

The reduced number of stations for benthic community analysis did not impact the study quality because benthic community analysis was ultimately not used as a line of evidence. The locations where sampling components were not collected (relative to the original study design) are identified on figures in Appendix E.

3.3 Sediment Core Sampling

Based on a review of existing site data, ten locations near the Ore dock were selected for subsurface investigation to complement the surficial sediment sampling completed for the risk assessment and other recent coring data to ultimately provide more information when conducting remediation planning.

Sampling was conducted in late October 2017. A total of ten stations were sampled for metals, hydrocarbons and sewage indicators with additional sample volume archived for potential future testing. The drill rig operated by Aquasource LLC of Haines, AK was positioned on board a landing craft, with drill rods placed through the gap at the hinge when the 17' long bow ramp was lowered down parallel to the water. The landing craft was tied to the dock and the seven locations (SED17-32 to SED17-35 and SED17-39 to SED17-41) along the ore dock were measured to be at a distance of 17 feet from the dock (i.e., the vessel would position itself such that the ramp was pushing against the dock pilings). A second row of samples (SED17-36 to SED17-38) was collected at a distance of 75 feet (i.e., the length of the vessel held in position by reversing against the pilings) from the dock.

Three main sediment units were identified during the subsurface sediment sampling program:

- All sample locations along the dock intersected a layer of black organic mud that transitioned from being very soft to soft. This mud had a hydrogen sulfur odour and commonly contained biota (e.g., mussel shells, tube worms). This layer of organic sediment was found at a thickness ranging from 2.5 to 6.7 feet. The soft mud was not encountered in the three sample locations located 75 feet from the dock.
- A unit of brown silt and fine sand ranging between 0.2 and 1.2 feet thick was present beneath the organic mud near the dock and as the surficial unit in the locations 75 feet from the dock. Some mussel shells were also found mixed in with this sediment unit.
- Underlying the silt and fine sand sediment was a light grey, coarse sand and gravel unit extending to the maximum depth investigated.

The laboratory data was screened against numerical standards (SCO: sediment cleanup objective, and CSL: cleanup screening levels) as described by the Washington State Department of Ecology (WDOE 2015). Data are provided in Appendix D, but overall, the majority of samples had one or more ore-related metals that exceeded the SCO values.

The highest concentrations were associated with lead, zinc, mercury and copper, and were typically found in the organic mud (shallow samples) and the silt and fine sand unit (mid-level samples) collected along the dock, to a maximum depth of approximately 7.7 feet below mudline with the highest concentrations occurring adjacent to the ship loader. In the samples collected in the step out locations from the dock, directly across from the ore loader, high concentrations of lead and zinc were present in the silt and fine sand unit (middle unit) to a maximum depth of approximately 5.5 feet below mudline as the organic mud was not present.

The highest concentrations of metals are co-located. The locations with high concentrations of lead also have high concentrations of zinc and elevated concentrations of mercury and cadmium. The areas near the loading dock also contained elevated concentrations of copper and silver. The following graphic shows the spatial distribution of the magnitude of lead concentrations with depth along the Ore Dock (left to right) and across the Ore basin. The figure indicates that the highest concentrations are localized near the Ore loader while the majority of the Ore Basin is less than the SCO and CSLs.

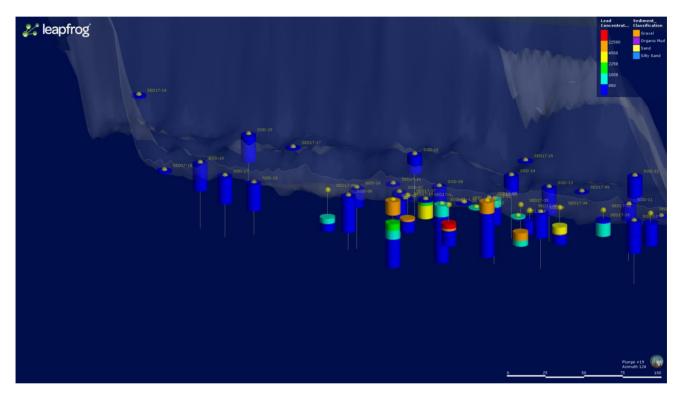
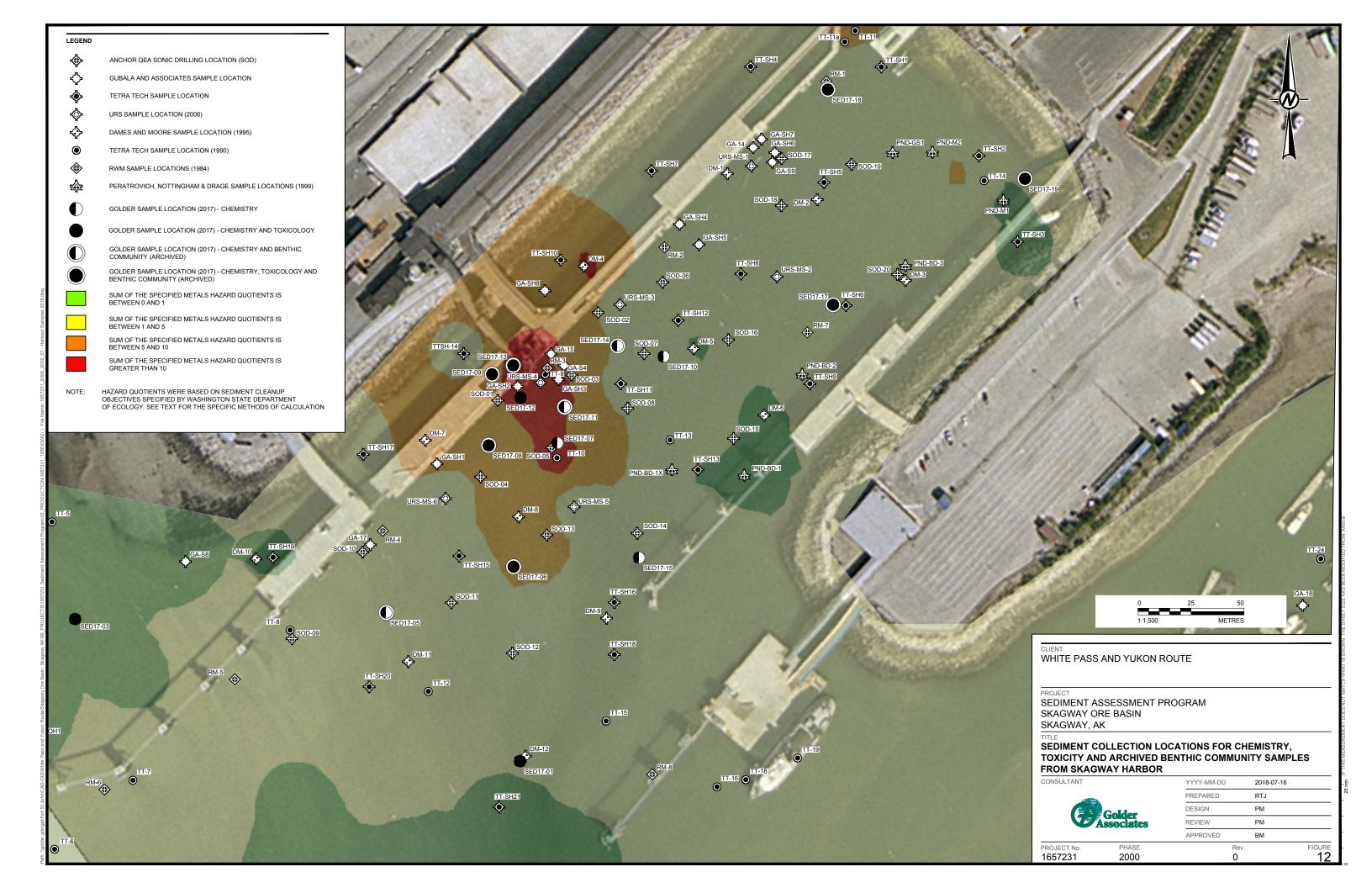
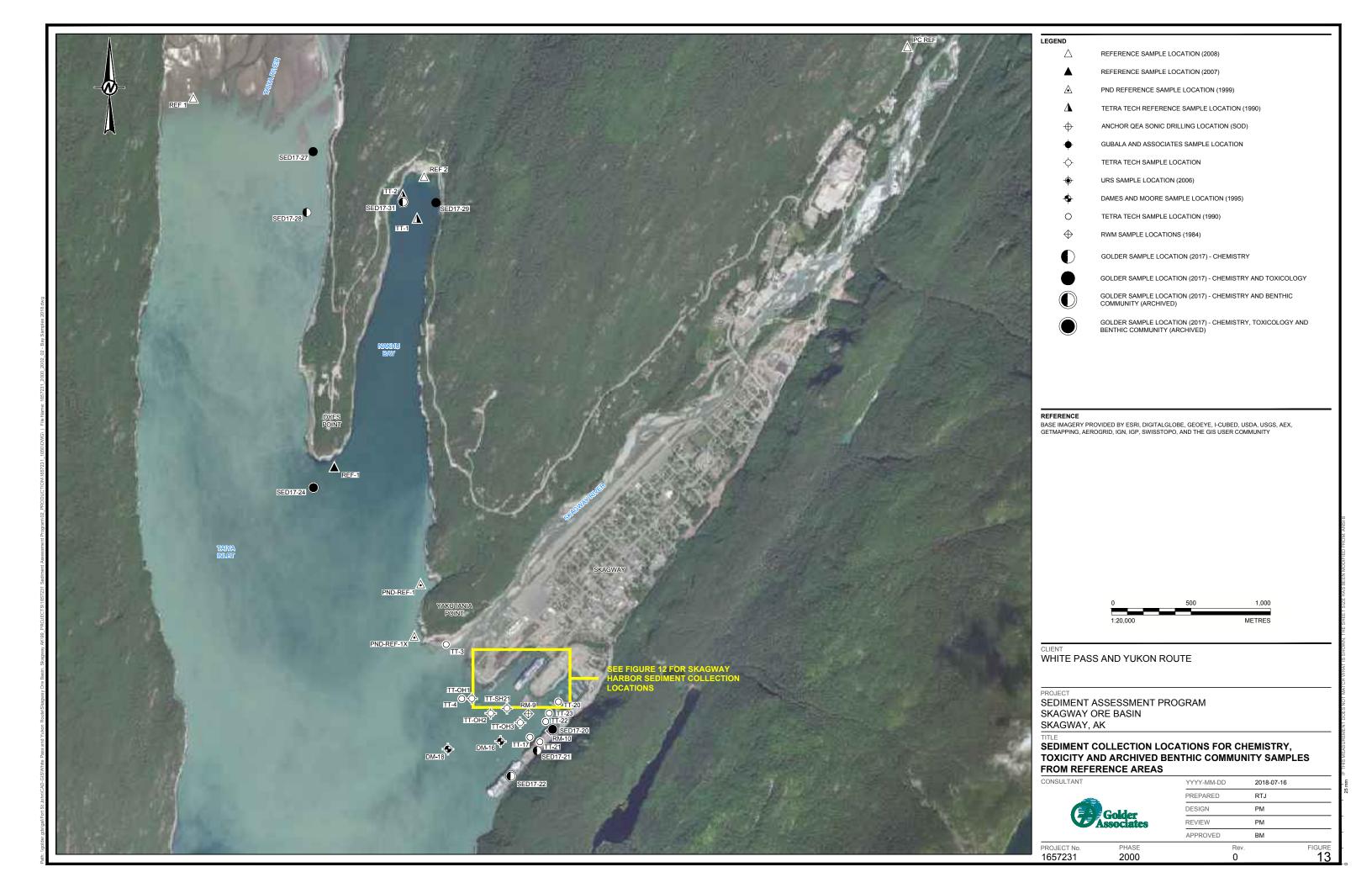


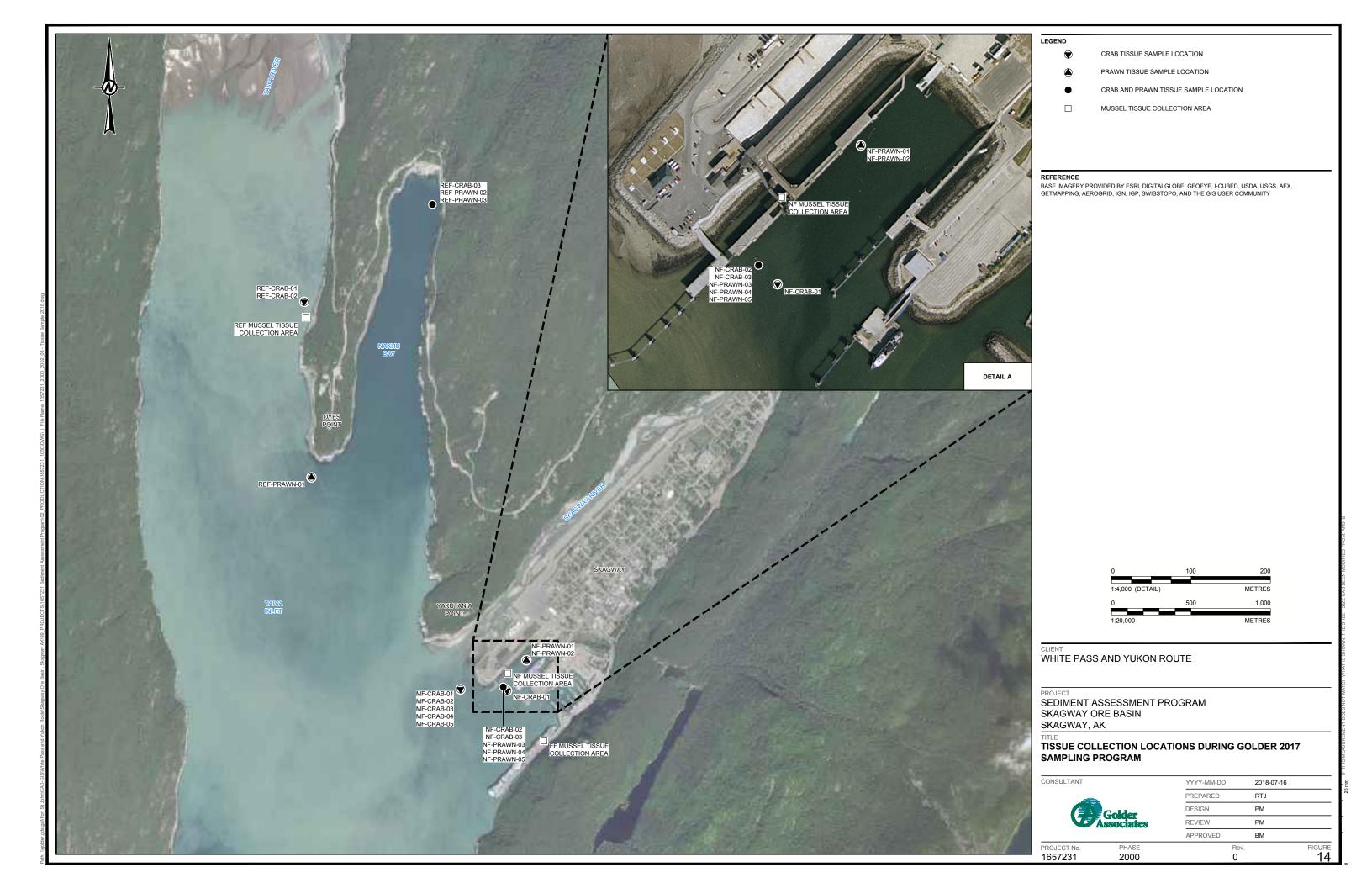
Figure 11: Spatial Distribution of Lead Concentrations along the Ore Dock and into the Ore Basin (view looking east)

Overall, there appears to be a pattern that elevated concentrations of the metals of concern are limited to the shallow and mid-level samples collected primarily near the ore-loader, to a maximum depth of approximately 7.7 feet below mudline.

At least one individual PAH parameter was detected in 13 of the 14 shallow and middle sediment samples submitted for PAH analysis. Most samples had multiple PAHs detected. None of the samples exceeded the total LPAH criteria defined by the WDOE. For total HPAH, there were seven samples that exceeded the SCO guideline. The primary HPAH parameters included Benzo(a)anthracene, benzo(b,j,k)fluoranthrene, fluoranthrene, and pyrene. Previous coring investigations in the Ore basin have measured HPAH concentrations at over 1,200 mg/kg. There are high HPAH concentrations located near the Ore loader and in various locations throughout the Ore Basin. The source of hydrocarbons in the Ore Basin is not known.






Golder also submitted core samples for coprostanol, cholestenol, total and faecal coliforms due to the results of the shallow sediment testing results that indicated that some of the data may have been impacted by the presence of faecal matter. Total coliforms were recorded in 7 of the 13 core samples submitted for analysis. The samples with detected total coliforms were collected from the shallow and medium depths at locations that appear likely to have receiving inputs from the municipal outfall (SED17-32, -33, -37, -38) and from SED17-41.

Cholestanol is a by-product of mammalian gut metabolism similar to coprostanol. Cholestanol was detected in four of the twelve samples submitted for analysis. As noted in the risk assessment report, there are multiple factors that can influence the quantified concentrations of these types of indicators. The purpose of including these indicators in the core sampling was to provide analysis that were not biased by an extended hold time. As with the surficial sampling, the presence of detected concentrations of the substances are simply a qualitative indictor that sewage inputs may be influencing sediment quality.

TA

SKAGWAY ORE BASIN RISK ASSESSMENT

4.0 RISK ASSESSMENT IMPLICATIONS

4.1 Objective and General Approach

The general approach of this section is to discuss how different types of information collected from the site help to inform risk management decisions. This evaluation focuses on the data collected by Golder in 2017, with reference to historical data where appropriate. Each of the different types of data (e.g., sediment chemistry, toxicity, bioaccumulation data) provides a different line of evidence that support an overall conclusion about the magnitude of risk associated with ore-related sediment contamination. The integration of those different lines of evidence uses weight-of-evidence approaches from the literature (Chapman et al. 1997; Chapman and Anderson 2007; USEPA 2016). In practical terms, the different lines of evidence involve consideration of the following questions as part of the risk assessment:

Sediment chemistry

- How much are benthic organisms exposed to ore-related metals in sediment? Do the total metal concentrations in sediment have the potential to cause adverse effects to benthic organisms?
- Are there other substances present in sediment that could also contribute to adverse effects that are not related to the ore concentrates?
- Is it likely that the total metals in sediment are bioavailable to benthic organisms via porewater?
- Are the patterns in the chemistry data consistent with the discussion in the conceptual site model that metals in sediment originate from ore concentrates deposited from historical operation of the ore loading facility? Does the pattern make sense in light of the sediment transport analysis?

Toxicity

- Are there effects to test organisms exposed to field-collected samples using standardized, laboratory-based toxicity tests?
- Is there evidence that effects (if present) are the result of metals in sediment?

Bioaccumulation

- Are ore-related metals accumulating in shellfish at concentrations that are higher than in other parts of Skagway Harbor or reference areas?
- Are there any patterns in tissue concentrations over space or time that indicates that the ore concentrates are the likely source of the elevated metals in tissues?
- Are there other substances that are also present in shellfish tissues?
- Do the observed concentrations indicate that further work needs to be done to evaluate whether or not wildlife or humans are being exposed to hazardous concentrations?

4.2 Sediment Chemistry

Bulk sediment chemistry (e.g., the total concentration of lead, zinc or other substances in sediment) is an important line of evidence in a sediment risk assessment because it provides information about the magnitude of the hazard associated with different substances in sediment (i.e., it can be readily compared to conservative screening values established by regulatory agencies). However, an exceedance of a screening value does not mean that a risk is present.

4.2.1 Selection of Screening Values

Many jurisdictions establish screening values from a statistical analysis of co-located chemistry and effects data. There are multiple methodologies for deriving empirically-based screening values²⁴. The selected screening values for the current assessment were from Washington Department of Ecology (WDOE 2015) who used the apparent effect threshold approach to derive sediment cleanup objectives (SCO) and contaminant screening limit (CSL) values.

In brief, SCOs and CSLs are derived for each individual substance of interest by examining a database of co-located effects and chemistry data (Barrick et al 1988). Barrick et al. (1988) determined the highest concentration that corresponded to a "no effect" level for four different types of data²⁵. The SCO was set to the lowest of the apparent effect thresholds, and the CSL was set to the second-lowest of the apparent effect thresholds (WDOE 2015). For most of the ore-related metals, the lowest apparent effect threshold from Barrick et al. (1998) was based on the benthic abundance data.

Golder understands ADEC is in general agreement that Washington Department of Ecology (WDOE) Sediment Management Standards provide a reasonable basis for showing compliance with Alaska Regulation 18 AAC 75.340(i)(2)(B). WDOE (2015). SCO and CSL values were approved for use in the current assessment by ADEC (Table 2).

 $^{^{25}}$ The Barrick et al. (1988) data set is based on n = 50 for Microtox, n = 50 for oyster larval development, n = 201 for benthic abundance and n = 287 for amphipod survival. The decision point (i.e., is there an effect?) is whether a sample demonstrated a statistically significant difference (p > 0.05) relative to reference.

14 August 2018 Report No. 1657231-006-R-Rev2

²⁴ ADEC (2001) provides an overview of theoretical and empirical (i.e., derived from databases of co-located samples) approaches for deriving sediment guidelines and discusses their applicability to Alaskan sites.

Table 2: Summary Sediment Screening Values Used in the Risk Assessment

	Parameter	WDOE Sediment Cleanup Objective	WDOE Cleanup Screening Level	
	Arsenic	57 mg/kg	93 mg/kg	
	Cadmium	5.1 mg/kg	6.7 mg/kg	
	Copper	390 mg/kg	390 mg/kg	
Metals	Chromium	260 mg/kg	270 mg/kg	
ivietais	Lead	450 mg/kg	530 mg/kg	
	Mercury	0.41 mg/kg	0.59 mg/kg	
	Silver	6.1 mg/kg	6.1 mg/kg	
	Zinc	410 mg/kg	960 mg/kg	
	2-Methylnaphthalene	670 μg/kg	670 μg/kg	
	Acenaphthene	500 μg/kg	500 μg/kg	
	Acenaphthylene	1300 µg/kg	1300 µg/kg	
	Anthracene	960 μg/kg	960 μg/kg	
	Benzo(a)anthracene	1300 μg/kg	1600 μg/kg	
	Benzo(a)pyrene	1600 μg/kg	1600 μg/kg	
Polycyclic	Benzo(g,h,i)perylene	670 μg/kg	720 μg/kg	
Aromatic	Chrysene	1400 μg/kg	2800 μg/kg	
Hydrocarbons	Dibenz(a,h)anthracene	230 μg/kg	230 μg/kg	
	Fluoranthene	1700 μg/kg	2500 μg/kg	
	Fluorene	540 μg/kg	540 μg/kg	
	Indeno(1,2,3-cd)pyrene	600 μg/kg	690 μg/kg	
	Naphthalene	2100 μg/kg	2100 μg/kg	
	Phenanthrene	1500 μg/kg	1500 μg/kg	
	Pyrene	2600 μg/kg	3300 μg/kg	

4.2.2 Physical Characteristics

Grain size and total organic carbon concentrations for surficial samples collected in the current assessment are provided in Table A1 of the field data report (Appendix C). Samples collected from the Site were generally dominated by sands and silt with some gravels and shells. There was a relatively wide range of particle size distributions amongst stations in the same area. For example, percent fines ranged from 11 to 86% among the ore basin stations, from 65 to 72% among the stations elsewhere in Skagway Harbour, and from 35 to 89% among the reference stations. Total organic carbon concentrations ranged from <0.23 to 1.1% among the ore basin stations, from 0.8 to 1.4% among the stations elsewhere in Skagway Harbour, and from <0.25 to 2.41% among the reference stations.

4.2.3 Bulk Chemistry Data

Ore-Related Contaminants of Concern

The primary contaminants related to ore concentrates were lead, zinc and copper. Other metals such as arsenic, cadmium, mercury and silver were also considered likely to be related to ore concentrates based on historical information (see Section 2.2.1). Table A of the field data report (Appendix C) provides a comparison of metal concentrations in surficial sediment collected from the site to the WDOE (2015) SCO and CSL screening values. Figure 15 provides an overview of ore-related metal concentrations²⁶, and shows that:

- Most samples from within the Ore Basin did not have concentrations of ore-related metals that exceeded the SCO screening value. A total of four stations (SED17-08, SED17-09, SED17-12 and SED17-13) contained concentrations of at least one metal that was higher than the SCO. There were no exceedances observed in samples collected from outside the Ore Basin or from reference areas.
- The maximum concentrations of metals in the collected Zone A samples were lower than those observed in the historical data from the same area, which is consistent with the conclusion from the sediment transport analysis that cleaner fine-grained material is being deposited over time.
- There appears to be a visual pattern where lead, zinc and mercury concentrations were highest from sample locations near the ore loading conveyor belt (Zone A) which is consistent with the release mechanism described in Section 2.2.4.

Hydrocarbons

Hydrocarbons were identified as an additional contaminant of concern that could influence sediment quality. All surficial sediment samples were analyzed for polycyclic aromatic hydrocarbons to facilitate evaluation of this contaminant group against SCO and CSL screening values. A subset of samples was also analyzed for diesel range and residual range organics (DRO and RRO) for consistency with state risk assessment practices. DRO and RRO provide complementary information to the measurement of polycyclic aromatic hydrocarbons. DRO and RRO do not have sediment screening values, and are not typically considered to be of toxicological concern (i.e., they do not tend to partition into pore water where they can be accumulated by benthic organisms). Rather, DRO and RRO provide information about how extractable petroleum hydrocarbons could influence the physical structure of sediment. The relative proportions of DRO and RRO also help to identify likely sources of the hydrocarbons. PAH, DRO and RRO data are summarized in Table A1 of the field data report in Appendix C. In brief:

Nearly all stations have detectable concentrations of one or more PAHs, including reference stations at Nakhu Bay. PAH concentrations were less than detection limits at the other reference stations. PAHs are ubiquitous in urbanized harbours and the presence of PAHs in all samples collected from the Ore Basin or other areas of Skagway Harbor is unsurprising.

²⁶ Gold is not routinely measured in total metals analysis. SCO and CSL screening values are not available.

- Although PAHs were present in all samples, they were rarely present at concentrations that exceeded the SCO or CSL screening values. Only two locations exceeded the SCO screening limits for PAHs. Station SED17-13 and SED17-09 exceeded the SCO for total high molecular weight PAHs. Both of these locations are within the Ore Basin near pilings of the ore dock.
- Broadly, there were no exceedances of low molecular weight PAHs such as naphthalene in the sediment. Exceedances were limited to high molecular weight PAHs and the majority of the exceedances of the total high molecular weight hydrocarbon SCO was from benzo(a)anthracene, chrysene, fluoranthene and pyrene. These individual PAHs are often associated with the weathering of creosote from preserved timbers (USDA 2004). Concentrations of DRO and RRO were less than detection limits in most samples collected from the Ore Basin or other parts of Skagway Harbor and were within 3x detection limits for DRO in the two samples with exceedances of the SCO for one or more PAHs. The low concentrations of DRO suggest that diesel fuel is not the primary source of the PAHs. PAH fingerprinting to provide a definitive identification of source beyond this qualitative assessment has not been completed.

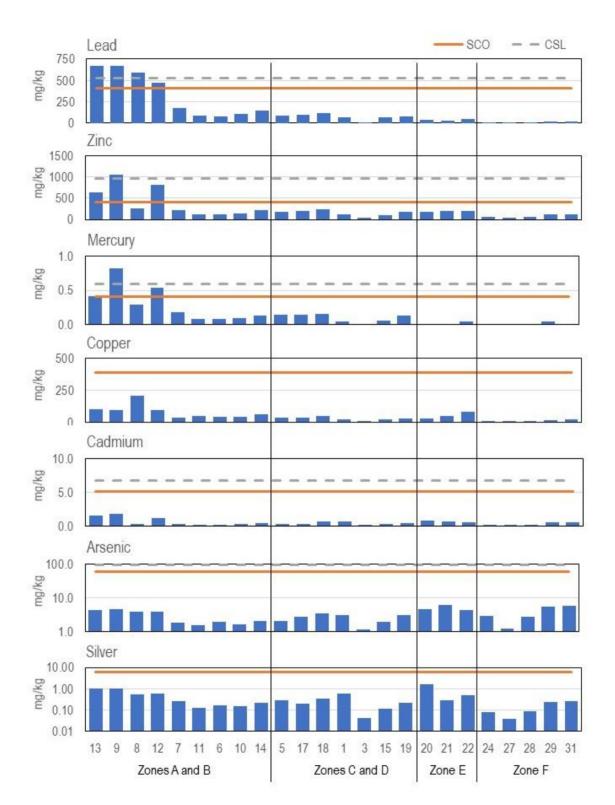


Figure 15: Concentrations of ore-related metals in surficial sediment samples

Wastewater Indicators

Municipal and cruise ship discharges were not originally considered as a potential source of contaminants in the development of the sampling and analysis plan (Appendix B). However, information obtained during the toxicity identification evaluation (Section 4.4) indicated that ammonia was contributing to the observed sediment toxicity. Ammonia is naturally present in fine-grained, organic-rich material and is typically treated as a confounding factor in sediment toxicity testing. However, ammonia is also a regulated substance in wastewater discharges, and several sources of wastewater have been identified (which includes the presence of approved mixing zones within the Skagway Basin).

Golder submitted archive sediment samples from the May 2017 surface grab sampling for coprostanol analysis. Coprostanol is a sterol produced by metabolic activity in the guts of humans, birds and some other higher-level mammals; it is frequently used as a bio-indicator of sewage discharges. Coprostanol is relatively stable under anaerobic (low oxygen conditions), but biodegrades in oxygenated sediment (Pratt et al. 2008). A total of 10 samples were submitted for coprostanol analysis to provide a semi-quantitative indicator of whether sewage inputs could be influencing sediment quality. Samples were collected in early May prior to the arrival of cruise ships. Samples were also submitted more than 90 days after their original collection dates (because ammonia was not identified as a potential issue until after the first round of the toxicity identification evaluation). Both these factors would tend to bias the coprostanol concentrations downwards.

A summary of the coprostanol data is provided in Appendix E-1. Concentrations were less than detection limits in six of the 10 samples. As noted above, the absence of detected coprostanol is not definitive evidence that sewage inputs are not occurring because of the likelihood that the data are biased downward. Coprostanol concentrations ranged from 0.075 to 0.355 mg/kg in the remaining four samples. The sample with the highest coprostanol concentration (SED17-01) was also the sample closest to the municipal outfall. The next two concentrations (SED17-13 and SED17-18) are located in the Ore Basin in areas with the greatest accumulation of fine-grained material, while the fourth sample with a detected concentration (SED17-05) is also closer to the municipal outfall. There are no numerical sediment quality guidelines for coprostanol, but even if there were, it would not be appropriate to make a quantitative comparison because of the limitations associated with the data. However, the data are sufficient to conclude that sewage inputs may be a factor that can influence the toxicity data, based on the pattern in the data distribution noted above.

Golder also submitted core samples for coprostanol, cholestenol, total and fecal coliforms. Data are summarized in Appendix D, but overall, total coliforms were recorded in seven of the 13 core samples submitted for analysis. The samples with detected total coliforms were collected from the shallow and medium depths at locations that appear likely to receive inputs from the municipal outfall (SED17-32, -33, -37, -38) based on their locations. Cholestanol is another byproduct of mammalian gut metabolism similar to coprostanol and was detected in four of the 13 samples submitted for analysis.

The presence of detected concentrations of these substances are simply a qualitative indictor that sewage inputs may be influencing sediment quality but is not intended as a diagnostic evaluation of relative contributions. It is not known whether these substances reflect anthropogenic sources, or are being influenced by other wildlife. No attribution with respect to source can be made from this qualitative information.

4.2.4 Assessment of Potential Bioavailability of Selected Metals

Simultaneously extracted metals (SEM) and acid volatile sulphide (AVS) analyses were conducted in a subset of sediment samples collected in 2017 to support the toxicity testing. Measurements were conducted within the recommended holding time for sediment analysis. AVS-SEM is a calculation used to predict when toxicity is unlikely to occur as result of specific metal ions. AVS binds with the metal ions in porewater (the primary route of exposure for benthic organisms) in a predictable sequence (Hg > Cd > Pb > Cd > Zn > Ni). Metal ions that are bound to sulfides form an insoluble precipitate that has limited bioavailability. An excess of sulphides in a sample means that those metal ions are unlikely to be bioavailable and therefore are unlikely to cause toxicity.

AVS-SEM data are summarized in Table A1 of the field data report (Appendix C), and shown below in graphical form in Figure 16. The concentrations of AVS ranged from <0.037 to 8.39 μ mol/g among the Skagway Harbour stations and from 0.057 to 2.7 μ mol/g among the reference stations. These values are low relative to other urbanized harbour locations evaluated by the authors, especially given the relative high percentages of fines present in the samples. Most of the fine-grained material in the samples was classified as clay which is presumably part of the sediment inputs from the Skagway River. The sum of the SEM concentrations ranged from 0.19 to 3.1 μ mol/g among the Skagway Harbor stations and from 0.094 to 0.56 μ mol/g among the reference stations. Observations based on the available AVS-SEM data

- The majority of extractable metals consisted of lead or zinc. Copper, arsenic, mercury and silver had minimal SEM. This is consistent with how ore concentrate has been released to sediment (i.e., the majority of the mass of metals associated with ore concentrate loadings is expected to be lead, followed by zinc).
- Samples tended to have low AVS concentrations, and those concentrations were often unlikely to sorb all the lead or zinc that has the potential to dissociate from the ore concentrate. However, sufficient AVS was present in the samples with the worst-case total metal concentrations that also had demonstrated adverse effects to amphipods. This observation indicates that metals may not be the cause of the adverse effects in those specific samples.

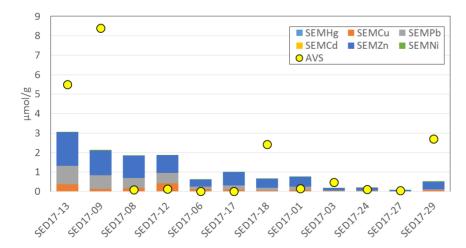


Figure 16: Concentrations of Simultaneously Extracted Metals (SEM) versus the Concentrations of Acid Volatile Sulphide (AVS) in the Sediment Samples Collected for the 2017 Field Investigation.

4.2.5 Principal Components Analyses

Principal component analysis (PCA) was applied to the sediment chemistry to examine the underlying patterns in how different substances are distributed. PCA is a technique that reduces a number of possibly related variables (for example, the concentrations of different ore-related metals) to one or two components. These key components from the original data matrix reduce the multi-dimensional nature of the data while retaining as much of the information from the original variables as possible. PCAs were calculated using Systat™ (Version 13) using log₁0 transformed data for:

- Metals concentrations for the surficial samples.
- Metals concentrations for both the surficial samples and the core sampling.

Log10 transformed data was used because the resulting PC1 and PC2 was able to incorporate more of the underlying variability than using non-transformed data. Environmental chemistry data collected from non-random locations selected to capture the range of concentrations but with increased emphasis on the worst-case areas would generally be expected to have a log normal distribution rather than a normal distribution. Variables were excluded from statistical analyses if they were undetected at more than 50% of all stations (i.e., not 50% of the stations within an individual zone). Concentrations reported as undetected were converted to their detection limit (DL) prior to analysis. Spearman rank correlations (r_s) were then calculated between the principal components and exposure variables, to identify variables that were most (or least) closely associated with the exposure variables. Statistical outputs are provided in Appendix E-2, and observations based on the PCA are summarized below.

For surficial metals:

- The first principal component (MetalsPC1) accounted for 67% of the total variability in the metals chemistry data. There were no statistically significant correlations with the primary metals associated with ore concentrates (lead, zinc, copper; also mercury), and the range of MetalsPC1 values overlapped with the five reference areas (Figure 13). Golder concluded that this principal component likely represents clean sediment inputs from the Skagway River.
- The influence of the ore concentrate can be seen in MetalsPC2. All three of the metals that had exceedances of the SCO screening values (lead, zinc and mercury) had statistically significant correlations to MetalsPC2. Copper also had a statistically significant correlation. MetalsPC2 explains a further 18% of the total variability in the metals chemistry data.
- In terms of the relative influence of the two sources, the "clean inputs" source was dominant for the majority of samples from the Ore Basin. The "ore concentrate" source is apparent in four of the locations (SED17-08, -09, -12 and -13) (Figure 16), and all four of these locations are near the ore conveyor belt.

- For all surface and core samples collected by Golder:
 - The pattern in the chemistry data changed because of the inclusion of a relatively large number of deeper samples that were likely more strongly influenced by the presence of ore concentrates. Instead of two distinct MetalsPCs that could be attributed to different influences, the PCA found that all metals were correlated with the first principal component, which accounted for 62% of the total variance.
 - There are groups of samples that show a distinct difference in the "intensity" of metal contamination (i.e., much higher MetalsPC1 scores). These stations include Station 34, 35, 36 and 37.
- For PAHs, more than 94% of the total variance in chemistry concentrations was captured in the first principal component. This suggests that there is a common source of hydrocarbons (i.e., there was no evidence that some samples were influenced by gasoline sources while other samples were influenced by creosote). The specific nature of the source has not been confirmed, but could be the use of creosote preservatives based on observations about the type of PAHs that were present (Section 4.2.3).

Based on the PCA, Golder concluded that there was evidence of a cleaner source of sediment being deposited onto the Ore Basin. The surface sediment samples (i.e., the biological active layer that was sampled for toxicity testing and would be the habitat occupied by benthic organisms) showed a gradient that can be attributed to ore concentrates that is being gradually masked by the cleaner material. Deeper contamination along the ore dock is different than the surficial material, and shows a distinct area where the PCA fingerprint differs from the patterns observed in the shallow samples.

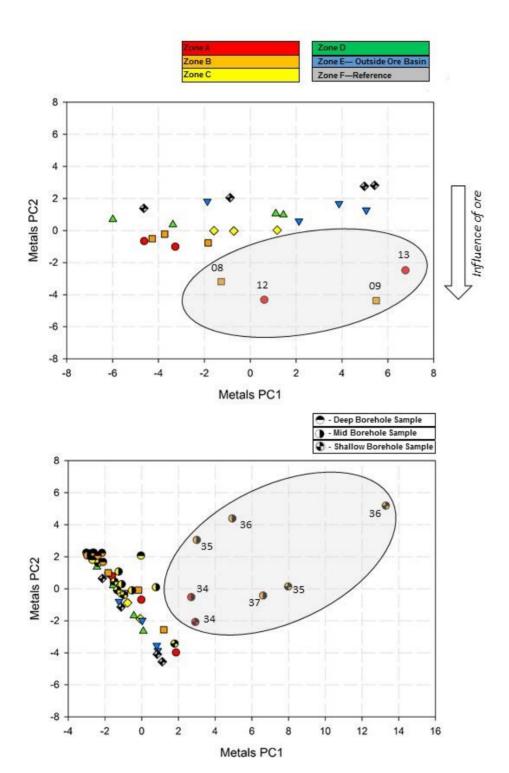


Figure 17: Principal component analysis for metals (surface samples – top; all samples – bottom)

4.3 Sediment Toxicity

Sediment toxicity testing was conducted on a subset of 14 stations selected to be representative of the range of metal and PAHs concentrations found in surface samples. Sediment toxicity testing provides a standardized measure of the potential effects associated with a field-collected sample. The following toxicity tests were selected following WDOE (2015) guidance:

- 96-h sea urchin Strongylocentrotus purpuratus larval survival and development (normal survival).
- 10-d amphipod *Eohaustorius estuarius* survival.
- 20-d marine polycheate Neanthes arenceadentata survival and growth.

These tests measure lethal and sublethal effects of sediment on representative benthic and epibenthic organisms. The different species have a variety of different exposure mechanisms. Sea urchin larvae are exposed through a sediment elutriate (i.e., a mixture of sediment and overlying sea water). Amphipods are exposed though direct contact with sediment and sediment porewater. Polychaetes are exposed through direct contact with sediment porewater and through ingestion of sediment particles.

4.3.1 Decision Framework

Data were evaluated against the decision criteria described by WDOE (2015). WDOE (2015) establishes SCO and CSL benchmarks based on toxicological performance²⁷, as follows:

- Sea urchin normal survival The test fails to meet the SCO benchmark in a sample if the normal survival is reduced by more than 15% relative to the reference sample and that difference is statistically significant. The test fails to meet the CSL benchmark in a sample if the normal survival is reduced by more than 30% relative to the reference sample and that difference is statistically significant.
- Amphipod survival The sample test fails to meet the SCO benchmark in a sample if survival is less than 75% and the result is statistically different than the reference sample. The test fails to meet the CSL benchmark in a sample if survival was reduced by more than 30% relative to the reference and that difference is statistically significant.
- Polychaete growth The sample test fails to meet the SCO benchmark in a sample if growth was reduced by more than 30% relative to the reference and that difference is statistically significant. The test fails to meet the CSL benchmark in a sample if growth was reduced by more than 50% relative to the reference and that difference is statistically significant.

 $^{^{27}}$ The following bullets provide a plain-language summary of the decision criteria. See Table 8-2 of WDOE (2015) for the specific formulae used. Note that statistical significance is based on p > 0.05 for all test except sea urchin normal survival which is based on a p > 0.10.

Overall status – A final decision about the status of the sample is based on consideration of all three test benchmarks. A sample fails to meet the SCO if any of the three tests fail to meet their respective SCO benchmark. A sample fails to meet the CSL if any of the three tests fail to meet their respective CSL benchmark, or if two of the test fail to meet their SCO benchmarks.

Identification of an appropriate reference station is a key aspect of evaluating toxicity data using the WDOE (2015) approach. Three different reference samples were selected for toxicity testing from the five samples collected. One sample was selected from each of the three reference areas, and where multiple samples for a single reference area was available, samples were selected to provide the best match in terms of grain size and organic carbon content relative to the samples from the Ore Basin. The three reference samples assessed in the toxicity testing program were:

- SED17-24 (Dyea Point). This was the only sample collected from this reference area.
- SED17-27 (Taiya River). This sample was selected instead of SED17-28 because it had a lower percentage of fines which was closer to the typical percent fines in the Ore Basin samples. This reference sample also had little to no organic carbon, which was consistent with many samples from the Ore Basin.
- SED17-29 (Nahku Bay). This sample was selected instead of SED17-31 to provide an upper-case bound of the influence of organic carbon and percent fines. This sample had the highest organic carbon of all samples assessed (2.4%) which was higher than the range of organic carbon values observed in the Ore Basin. This sample also had percent fines (86.3%) which was higher than most of the samples collected from the Ore Basin.

All three reference samples were evaluated against the decision criteria established by WDOE (2015) for selection of reference samples²⁸. All reference samples met their test-specific decision criteria with the exception of SED17-29 for sea urchin normal survival and amphipod survival. Samples collected from the Ore Basin were compared to the average performance of the valid reference samples.

4.3.2 Summary of Results

Tabular summaries with the performance of individual samples can be found in Section 3.2 of the field data report (Appendix C). The original report from the subcontractor laboratory is also included in Appendix C. Toxicity data are summarized below in Figure 18 with test-specific and overall classification of each sample.

²⁸ See Table 8-2 of WDOE (2015). Validation of a reference sample involves comparison to the laboratory negative control. A valid reference cannot be reduced by more than the limits established by WDOE (2015).

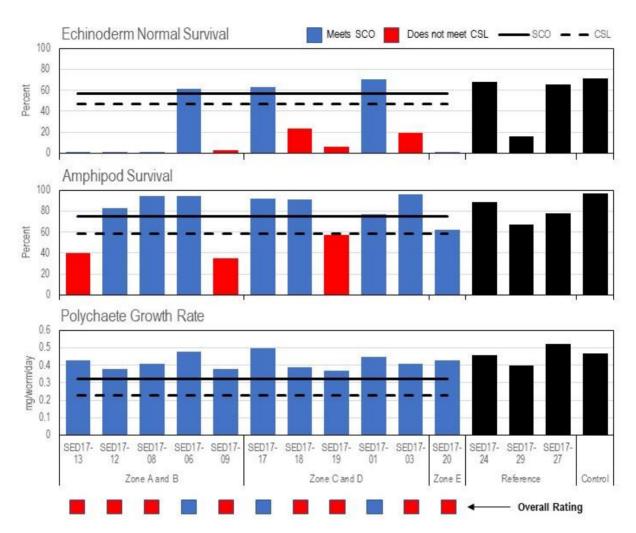


Figure 18: Summary of sediment toxicity test performance

Overall, most samples collected from the Ore Basin failed to meet the WDOE (2015) biological CSL criteria. Only three samples had adequate performance in all three toxicological endpoints to meet the SCO biological criteria. All remaining samples failed to meet the CSL biological criteria in at least one of the three toxicity tests, even though only four of those samples (SED17-08, SED17-09, SED17-12 and SED17-13) had concentrations that exceeded numerical standards for chemistry. This observation indicated that sample toxicity may be influenced by factors other than metals or hydrocarbons. Potential hypotheses that were identified at the completion of the sediment toxicity testing included:

Metals may be exerting an effect in toxicity testing that is substantially larger than what would be expected based on the total metals concentrations. Although the chemistry-based SCO and CSL screening limits are conservative, it is possible that the leaching of metals from ore concentrate is behaving in an unexpected way that leads to much higher concentrations of metals in porewater. Evidence for this hypothesis included the observation that there was limited AVS in many samples (Section 4.2.4).

- There may be natural concentrations of ammonia and sulfides present that are causing the observed toxicity. Ammonia and sulfide concentrations are measured during toxicity tests and the test methods specify ammonia and sulfide threshold limits to help determine when ammonia or sulfides are acting as a confounding factor.
- The physical characteristics of the sediment may create an additional type of confounding factor. Toxicity tests have been validated for the range of sediments that are typically found in urbanized harbours. Extreme deviations from the ranges of organic carbon and grain size distributions can cause anomalous effects in the toxicity test that are independent of effects caused by contaminants.
- There may be an unmeasured contaminant (or group of contaminants) that are present in sediment at concentrations capable of exerting adverse effects in the toxicity test.

SED17-09 and SED17-13 were selected for toxicity identification evaluation to help understand the likely cause of toxicity in the samples, and the available data was reviewed in greater detail to determine if sulfides, ammonia or physical characteristics were acting as a confounding factor in one or more of the samples.

4.3.3 Consideration of Sulfides as a Confounding Factor

Elevated concentrations of sulfide can naturally occur in sediment samples, and can confound the interpretation of toxicity tests by contributing to false positives. Sulfides tend to occur in organic-rich, low-oxygen sediments. Toxicity test methods specify when overlying or porewater samples should be collected during the course of the test, and have established threshold values for the test organisms which are used to determine when sulfides are likely contributing to the observed toxicity tests. Sulfide data were collected during the toxicity tests according to the requirements of the method, and are summarized in the toxicity laboratory certificates of analysis in Appendix C. In brief:

- Sulfide concentrations were measured in the overlying water of the 96-hr sea urchin larval development test at 0 and 96 hr. All concentrations were less than the analytical detection limit of 0.018 mg/L, and therefore, sulfides are not considered likely to be a confounding factor for this test.
- Sulfide concentrations were measured in the interstitial water of the 10-day amphipod survival test on Day 0 and Day 10. All concentrations were less than the analytical detection limit of 0.018 mg/L, except for SED17-08, which had a Day 0 concentration of 37.4 mg/L S. This concentration is substantially higher than the 48-h LC50 value obtained by Knezovich et al. (1996) for the test species. However, there was no reduction in survival for this specific sample, and therefore, sulfides are not expected to be a confounding factor for this test.
- Sulfide concentrations were measured in the interstitial water of the 20-day polychaete survival and growth test on Day 0²⁹ and Day 20. All concentrations were less than the analytical detection limit of 0.018 mg/L, with the exception of SED17-08 (Day 0 concentration of 37.4 mg/L S), and four samples which had Day 20

²⁹ Both tests were initiated on the same day. Only one set of Day 0 interstitial measurements were made, which apply to both tests.

concentrations of between 0.018 and 0.049 mg/L S. The measured sulfide concentration in SED17-08 interstitial porewater exceeded the no-observed effect threshold of 3.4 mg/L reiterated by Kendall and Barton (2004) based on Dillon et al. (1993). There were no reductions in polychaete growth or survival observed for this specific sample, and therefore, sulfides are not considered to be a confounding factor for this test.

4.3.4 Consideration of Ammonia as a Confounding Factor

Ammonia can also be present in marine sediment at concentrations that can act as a confounding factor in how toxicity test data are interpreted. Ammonia is generated from microbial degradation of organic material; it is a natural occurrence (and therefore, a confounding factor) when there is no anthropogenic loading of organic material. Ammonia data were collected during the toxicity tests according to the requirements of the method, and are summarized in the toxicity laboratory certificates of analysis in Appendix C. At the time that samples were tested by the toxicity laboratory, ammonia did not appear to be a confounding factor, based on the following comparison of ammonia data collected during the toxicity test to relevant screening values:

- Ammonia concentrations were measured in the overlying water of the 96-hr sea urchin larval development test at 0 and 96 hr. The total concentrations ranged from 0.07 to 0.33 mg/L total N in the 0 hr measurements, and from <0.01 to 0.31 mg/L total N in the 96 hr measurements. These values were converted to unionized ammonia based on sample-specific pH and temperature values recorded during the test. The unionized concentrations were consistently less than 0.005 mg/L unionized N, which is less than the generic threshold of 0.014 mg/L unionized N proposed by the test method. The measured concentrations were also substantially lower than the species-specific 96-h no-observed effect threshold of 0.06 mg/L unionized N reported by Greenstein et al. (1996). Ammonia is not considered to be a confounding factor in the initial sediment toxicity testing (but becomes an issue in the subsequent TIE testing as described in Section 4.4).
- Ammonia concentrations were measured in Day 0 and Day 10 overlying and interstitial waters for the 10-d amphipod survival test. Overlying water concentrations ranged from 0.12 to 1.48 mg/L total N on Day 0, and ranged from 0.06 to 6.89 mg/L total N on Day 10. Interstitial water concentrations ranged from 0.90 to 9.18 mg/L total N on Day 0, and from 0.84 to 13.1 mg/L total N on Day 10. Kohn et al. (1994) reported a species-specific 96-h LC50 of 125.5 mg/L total N. Barton (2002) concluded that ammonia was not likely to be a confounding factor for the interpretation of *E. estuarius* toxicity test for Washington State regulatory purposes provided that the interstitial concentrations were less than 60 mg/L total N. Therefore, the observed concentrations are not considered likely to be a significant confounding factor. The measured concentrations are substantially lower than the thresholds on a total ammonia basis, and therefore, conversion to unionized ammonia was not considered necessary.
- The Day 0 interstitial and overlying values for amphipods also apply to the 20-d polychaete survival and growth test. Day 20 overlying water concentrations for the polychaete test ranged from 0.57 to 5.4 mg/L total N, and Day 20 interstitial water concentrations ranged from 1.1 to 5.9 mg/L total N. Dillon et al. (1993) found a 21-d no observed effect threshold of 10 mg/L total N which was adopted by Kendall and Barton (2004) as the threshold value for this species when used for Washington State sediment programs. Therefore, the observed concentrations are not considered likely to be a significant confounding factor. The measured concentrations are substantially lower than the thresholds on a total ammonia basis, and therefore, conversion to unionized ammonia was not considered necessary.

4.3.5 Consideration of Grain Size as a Confounding Factor

Physical factors such as grain size or organic carbon content can also become a confounding factor if these variables fall outside the biological tolerances of the test species. The physical factors are not likely to be a confounding effect for the polychaete test because none of the samples demonstrated reductions relative to reference that failed the SCO or CSL biological criteria. Grain size was also considered unlikely to be a factor in the 96-h sea urchin larval development test because the test included a 24-h settling period to allow sediment to settle back out of the water column prior to the addition of the newly-fertilized sea urchin larvae.

However, several samples failed to meet the SCO biological criteria for the amphipod test, and therefore, further consideration was given to the biological tolerances for Eohausatorius estuarius. E. estuarius is a common amphipod used in routine toxicity testing, in part, because it is known to have a wide tolerance for both salinity and grain size. The species is suitable for grain size distributions ranging from 100% sand to >100% silts and clays, but Kendall and McMillan (1999) recommend that the clay content should not exceed 20%, based on anecdotal review that increased mortality of E. estuarius was noted in samples with high clay content. Clay content was 20% in SED17-19 which also demonstrated a marginal reduction below the CSL biological criteria. However, 20% is unlikely to be a biological limit. No specific data are provided by Kendall and McMillian (1999) to support the threshold proposed for Washington State toxicity testing. A literature review found examples where E. estuarius survival was acceptable in samples with high clay content (e.g., Anderson et al. 2004 found 76% survival in a fieldcollected sample with a 25% clay content). Tay et al. (1998) showed that survival of E. estuarius was only marginally reduced as the clay content increased to approximately 70%, and a clay content of 70% was adopted as the biological limit for this species by both Environment Canada (1998) and ASTM (2014). Golder concludes that clay content is unlikely to be a significant confounding factor in the interpretation of the toxicity data, although it is possible that there is a subtle relationship between amphipod survival and clay content at the upper range of the percentages found in site-specific samples in light of the observation from Kendall and McMillan (1999).

4.3.6 Correlation Analysis

Spearman rank correlations (r_s) were calculated to evaluate the relationship between the observed effects in the toxicity test and the underlying chemical variables. This included both individual contaminants of interest, as well as the principal components (which provide an integrated assessment of the underlying gradient of contamination).

Correlation analysis does not provide a definitive statement about cause and effect—it is simply a data exploration technique to look for statistically significant relationships that warrant further evaluation. Data exploration did not involve testing all possible correlations because there is always a small probability that one can find a statistically-significant correlation that is not actually present simply because the correlation analysis examined many possible combinations. Instead, the correlation analysis focused on testing specific combinations that were identified during the course of the investigation (e.g., does an increasing concentration of lead tend to result in increased effects on amphipod survival) that are relevant to site management.

As shown below in Table 3, none of the different toxicity test endpoints showed a statistically significant correlation to individual ore-related contaminants that exceeded the chemistry screening value in one or more samples, nor was there a statistical correlation to the underlying principal component that represented the ore-related gradient of contamination. There was, however, statistically significant correlations noted with respect to polycyclic aromatic

hydrocarbons (for both total PAHs and the PAH principal component) as well as for the metals principal component that was not related to ore contamination. There was also a statistically significant relationship observed between percent fines (which includes clay) and amphipod survival. As noted in Section 4.3.5, this could indicate a subtle relationship at the upper end of the clay measurements, but could also simply be an autocorrelation (i.e., percent fines are correlated to non-ore related metals) rather than indicative of a potential cause and effect relationship.

Table 3: Summary of Spearman Rank Correlations

Parameters	Sea Urchin Normal Survival	Amphipod Survival	Polychaete Survival	Polychaete Growth			
Physical Characteristics							
Percent TOC	-0.484	-0.425	-0.111	-0.473			
Percent Fines	-0.468	<u>-0.847</u>	0.005	-0.253			
Ore-Related Contaminants							
Copper	-0.305	-0.075	0.062	-0.301			
Mercury	-0.380	-0.249	-0.055	-0.398			
Lead	-0.372	-0.244	-0.030	-0.354			
Zinc	-0.429	-0.370	-0.100	-0.477			
Metals PC2	0.143	-0.068	0.074	0.213			
Other Contaminants							
Metals PC1	<u>-0.613</u>	<u>-0.807</u>	-0.121	-0.459			
PAHs PC1	<u>-0.626</u>	-0.519	-0.392	<u>-0.618</u>			
Total PAHs	<u>-0.634</u>	-0.524	-0.406	<u>-0.614</u>			

Note: Significant correlations (p<0.05; n= 14; rs = 0.538) are **bold and underlined**

4.4 Toxicity Identification Evaluation

A toxicity identification evaluation (TIE) was initiated to obtain more information about the likely cause of toxicity observed in the sediment toxicity tests. TIE entails a combination of sample manipulations and toxicity tests to determine which manipulations alter sample toxicity. Each treatment involves physical or chemical manipulations of the sample that targets specific substances, followed by toxicity tests on the treated and untreated samples. A change in toxicity because of the treatment indicates that the substance was contributing to the toxicity in the original sample. Golder noted that many samples demonstrated significant reductions in sea urchin normal survival despite an absence of metals or PAHs at concentrations greater than the numerical SCO criteria (Section 4.3.2). Although there were indicators that ore-related metals were unlikely to be the primary cause of the observed toxicity (see Sections 2.1.3, 4.2.4 and 4.3.6), it was considered appropriate to obtain further confirmation to support site management planning.

4.4.1 Approach and Results

The report from the subcontractor laboratory is provided in Appendix E-3. The design of the TIE was done in collaboration with Golder, and included:

- Review of Initial Baseline Sediment Toxicity Tests TIE methods are most effective when applied to sediments that exhibit clear overt toxicity, as opposed to variable responses or marginal toxicity. The results from the initial 96-hour survival and development tests with *S. purpuratus* and 10-day survival tests with *E. estuarius* was reviewed (Figure 14). Two samples (SED17-09 and SED17-13) were identified for the first round of the TIE toxicity testing. These samples contained concentrations of ore-related metals and PAHs that were greater than the numerical standard, and caused effects to both amphipods and sea urchins. The TIE focused on the sea urchin test because it had the higher observed effect.
- Round One The TIE was based on porewater-only exposures. Porewater was extracted on 26 May 2017 from the bulk archived sediment sample through centrifugation. Samples were not filtered. The following treatments were tested on the same day using 100% porewater:
 - Untreated.
 - C18 solid phase extraction column A subsample was passed through a column to remove non-polar organic molecules such as PAHs.
 - EDTA Subsamples were treated with two concentrations of EDTA (at 20 or 100 mg/L) to chelate different amounts of ore-related metal cations.
- Round Two A second round of TIE was conducted. Porewater was extracted on 7 July 2017 from SED17-09, SED17-13 and a third sample (SED17-22) following the same method described above. The following treatments were tested on the same day on a dilution series of five different porewater concentrations (0, 6.2, 12.5, 25, 50 and 100% volume/volume). The dilution series was created with clean, natural seawater.
 - Untreated.
 - C18 solid phase extraction column.
 - EDTA (100 mg/L).

As part of Round 2, each of the three treatments was also used in a reference toxicant test to establish the toxic threshold for unionized ammonia. For example, clean seawater was spiked with a range of different ammonia (0.7, 1.56, 3.1, 6.2, 12.5 and 25 mg/L N) concentrations and the EC50 was calculated. A separate EC50 was determined for ammonia spiked in seawater that had been treated with the C18 column, or for ammonia spiked into seawater that had 20 mg/L EDTA added. The concentrations of copper, mercury, lead and zinc were also measured in the 100% porewater samples tested in Round 2 so that those concentrations could be compared to species-specific toxicity thresholds for each metal.

The toxicological performance of the various TIE treatments is provided in Tables 4 and 5 for Round 1 and Round 2, respectively.

Table 4: Summary of Round 1 TIE

Sample ID	TIE Treatment	Sea Urchin Larval Survival (%; Mean ± Standard Deviation)	Sea Urchin Normal Survival (%; Mean ± Standard Deviation)
	Untreated	89.0 ± 6.9	71.9 ± 5.3
Laboratory Control (Seawater)	C ₁₈	88.3 ± 4.2	71.4 ± 4.2
	EDTA (20 mg/L)	85.9 ± 6.4	70.1 ± 4.9
	EDTA (100 mg/L)	91.3 ± 2.5	70.7 ± 2.1
SED17-09	Untreated	74.7 ± 3.6	0
	C ₁₈	68.4 ± 4.5	0
	EDTA (20 mg/L)	75.5 ± 2.7	0
	EDTA (100 mg/L)	80.8 ± 4.9	0
SED17-13	Untreated	84.9 ± 2.4	3.0 ± 1.8
	C ₁₈	81.4 ± 2.9	3.6 ± 0.8
	EDTA (20 mg/L)	89.4 ± 2.2	4.5 ± 2.4
	EDTA (100 mg/L)	88.7 ± 1.9	6.2 ± 1.9

Table 5: Summary of Round 2 TIE

Sample ID	Test Concentration	Sea Urchin Survival (%; Mean ± Standard Deviation)			Sea Urchin Normal Survival (%; Mean ± Standard Deviation)		
	(%/v/v porewater)	Untreated	C ₁₈	EDTA (100 mg/L)	Untreated	C ₁₈	EDTA (100 mg/L)
SED17-09	Control (0)	89.7 ± 8.8	87.5 ± 10.3	84.1 ± 7.5	87.9 ± 7.9	85.5 ± 11.2	82.2 ± 6.9
	6.2	79.8 ± 4.4	88.5 ± 2.5	79.6 ± 5	77.5 ± 4.0	86.0 ± 1.5	78.1 ± 5.3
	12.5	84.6 ± 8.4	85.6 ± 4.4	88.2 ± 1.5	83.4 ± 8.2	84.0 ± 3.5	86.3 ± 2.1
	25	89.3 ± 9.5	90.6 ± 2.5	91.5 ± 4.1	87.5 ± 9.8	88.8 ± 2.4	88.7 ± 5.2
	50	86.4 ± 5.5	88.5 ± 3.2	88.8 ± 4.2	34.1 ± 2.7	5.0 ± 1.2	1.8 ± 2.1
	100	68 ± 14.9	46.1 ± 3.1	67.5 ± 4.0	0	0	0
	Control (0)	82.9 ± 3.0	87.5 ± 10.3	84.1 ± 7.5	81.7 ± 2.7	85.5 ± 11.2	82.2 ± 6.9
	6.2	82.8 ± 5.7	83.8 ± 7.3	78.1 ± 3.6	81.9 ± 5.4	82.5 ± 6.8	74.9 ± 4.8
SED17-13	12.5	85.5 ± 3.3	87.8 ± 4.1	84.4 ± 8	83.7 ± 2.1	86.9 ± 3.9	82.0 ± 7.5
SED17-13	25	82.9 ± 2.4	89.3 ± 8.3	90.3 ± 5.5	81.9 ± 2.0	86.7 ± 8.2	87.6 ± 6.7
	50	92.9 ± 9.8	90.5 ± 6.4	84.9 ± 7.5	92.0 ± 9.2	88.5 ± 7.9	82.2 ± 7.8
	100	89.6 ± 11.3	95.8 ± 2.2	81.4 ± 3.5	13.6 ± 4.0	32.5 ± 1.7	13.9 ± 4.1
SED17-22	Control (0)	82.6 ± 3.7	87.5 ± 10.3	84.1 ± 7.5	80.5 ± 3.8	85.5 ± 11.2	82.2 ± 6.9
	6.2	87.5 ± 7.9	88.1 ± 5.4	84.0 ± 1.0	85.6 ± 8.2	85.6 ± 6.0	81.9 ± 2.3
	12.5	86.3 ± 6.6	89.0 ± 5.4	90.5 ± 8.8	63.3 ± 2.0	81.0 ± 4.4	76.7 ± 8.5
	25	46.7 ± 2.7	75.4 ± 5	60.3 ± 7.9	0	0	0
	50	33.7 ± 5.3	58.8 ± 10.3	31.7 ± 4.8	0	0	0
	100	45.3 ± 6.0	61.0 ± 3.5	47.4 ± 3.5	0	0	0

4.4.2 Discussion

Data are summarized for both survival and normal survival of the sea urchin larvae in Tables 4 and 5. The following summary provides the balance of evidence for various hypotheses regarding the identity of the specific substances causing the observed toxicity:

- Influence of physical variables. There is a general pattern in larval development tests where a major reduction in survival (without abnormal development) suggests that entrainment is occurring (i.e., fine-grained or colloidal particles in the porewater samples remain in suspension, and then gradually settle out and smother the sea urchin larvae). In this data set, survival remained high in the test treatments, and the reductions in normal survival are largely attributed to the malformation of the developing sea urchin larvae. Malformation of the developing larvae is typically associated with a chemical effect, not a physical effect. Golder concludes that there is one or more substances present in these samples that are contributing to the observed effect.
- Influence of ore-related metals. The primary objective of the TIE was to determine if ore-related metals were the cause of the observed toxicity. Ore-related metals (i.e., lead, zinc, mercury or copper) are not likely to be the cause of the observed toxicity in the samples tested based on the balance of information. Treatment of the samples with EDTA did not result in any measurable improvement in the Round 1 testing (Table 3) relative to the untreated sample. Treatment with EDTA is a default method in TIE for metals and EDTA is known to bind to positively charged ions in general, and divalent transition metals such as cadmium, copper, nickel, lead and zinc (Burgess et al. 1996). All the primary ore-related metals are bound by EDTA. Arsenic is also potentially related to ore concentrates but was not present in sediment at elevated concentrations. Arsenic is bound by EDTA at a lesser degree than the divalent metal ions noted above but is still part of the suite of metals covered by EDTA chelation (USEPA 1991).

A similar pattern was observed in the Round 2 testing. Concentrations of ore-related metals in porewater concentrations were measured in the 100% porewater treatments from Round 2. Concentrations were consistently less than toxicity threshold values, and in the case of lead and zinc, were not present at detectable concentrations in any of the three samples.

- Copper concentrations ranged from 0.23 to 0.61 μg/L in the untreated aliquots of SED17-09, SED17-13 and SED17-22 relative to a 96h sea urchin normal development EC50 of 28 μg/L. This toxicity threshold was determined based on a spiked seawater reference toxicant test conducted with the same batch of organisms.
- Mercury concentrations ranged from <0.51 to 1.1 μg/L in the untreated aliquots of SED17-09, SED17-13 and SED17-22. The range of EC50 values for five different sea urchin larval development tests with Paracentrotus lividus or Arbacia punctulata has ranged from 8 to 46 μg/L (Novelli et al. 2003; Fernandez and Beiras 2001; His et al. 1999; Carr et al. 1996; Warnau et al. 1996).</p>
- Zinc concentrations were <0.15 µg/L in the untreated aliquots of SED17-09, SED17-13 and SED17-22 relative to a 72-h sea urchin normal development EC50 of 151 µg/L (Nadella et al. 2013). The no observed effect concentration from Nadella et al. (2013) was 109 µg/L.</p>

- Lead concentrations were <0.125 μg/L in the untreated aliquots of SED17-09, SED17-13 and SED17-22 relative to a 72-h sea urchin normal development EC50 of 151 μg/L (Nadella et al. 2013). The no observed effect concentration from Nadella et al. (2013) was 2.7 μg/L.
- Influence of PAHs. Both SED17-09 and SED17-13 had concentrations of several high molecular weight PAHs that exceeded the numerical chemical criteria (Section 4.2.3). There was no improvement noted in the C18 treatment in Round 1, but a marginal improvement was noted where the toxicity was reduced in the 100% v/v treatment of SED17-13 relative to the untreated sample. It is not possible to conclusively state that this is because the SPE column extracted PAHs from the sample (i.e., the column extracts non-polar organics, not just those specific high molecular weight PAHs).

Ultimately, the TIE confirmed that ore-related metals were not causing the observed toxicity in SED17-09 and SED17-13 (and by extension, in other samples). The inclusion of SED17-22 in the Round 2 TIE highlights that toxicity occurs despite the absence of elevated concentrations of metals or PAHs in sediment. This observation suggests a third substance (or group of substances) that have not been evaluated is actually the primary cause of toxicity. This is consistent with the TIE findings from TetraTech (2008) who also confirmed that metals were not likely the cause of toxicity, and that there was a substance that was not volatile that was present in the samples.

Golder reviewed the available data for further insight about the identity of the primary toxicant. This review focused on ammonia and identified that:

- The unionized fraction of ammonia in SED17-13 in the Round 1 TIE testing was 0.05 mg/L which was higher than the generic threshold of 0.014 mg/L unionized N proposed by the test method.
- More importantly, the ammonia concentrations in this sample increased over time while the sample was stored in cold, dark conditions, which indicates that microbial degradation was occurring. A similar pattern of increasing ammonia concentrations over time was noted for SED17-09—concentrations had increased to 11 mg/L total N by July. The unionized ammonia concentration that corresponds to a total ammonia concentration of 11 mg/L is 0.08 mg/L unionized N, which is also greater than the species-specific threshold of 0.06 mg/L unionized N from Greenstein et. al (1996).
- A spiked-water bioassay with ammonia was conducted concurrently with the Round 2 TIE to provide a toxicity threshold for the specific organisms tested (instead of using a threshold value from the literature). An EC50 of 0.08 (95% confidence interval: 0.074 0.084) mg/L unionized ammonia was established, along with an EC20 of 0.065 (95% confidence interval: 0.058 to 0.070) mg/L. These values are slightly lower than Greenstein et al. (1996) who found a no-observed effect concentration of 0.06 mg/L.
- The relationship between unionized ammonia concentrations in different TIE treatments and the ammonia reference toxicant test versus sea urchin normal survival is shown below on Figure 19 and highlights that the concentration-response relationship for ammonia is consistent with the pattern observed in the TIE treatments.

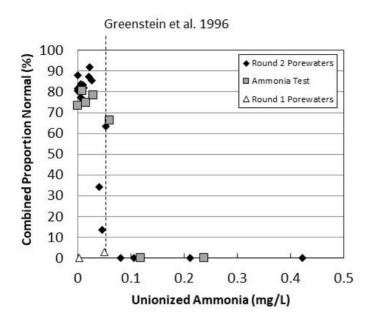


Figure 19: Ammonia concentrations versus sea urchin normal survival (modified from Nautilus TIE report)

4.4.3 Conclusion

The hypothesis that ammonia is the likely cause of the observed toxicity in the TIE needs to be presented in context. Significant reductions in sea urchin normal survival were observed in most baseline samples (Section 4.3.4), even though the water concentrations of ammonia were less than the Greenstein et al. (1996) toxicity threshold, as well as the EC20 values for ammonia determined in the TIE. Some of these samples also exerted significant reductions in amphipod survival, again, despite the observation that ammonia concentrations during testing were not of concern at the time of testing. Ammonia concentrations tended to increase over time and became more of an issue in the TIE than in the baseline sampling.

Golder interprets this as evidence that there are sewage-related substances present in sediment. Over time, sewage-related substances are degraded by micro-organisms and create ammonia. The ammonia concentrations increased over time to the point that they were sufficiently elevated to influence the TIE. In effect, ammonia is an indicator of the overall sewage and wastewater input, but not necessarily a toxicant in all test conditions. Ammonia is monitored as part of the municipal discharge permit as well as in discharges from cruise ships. There are sediment chemistry indicators that sewage inputs may be influencing sediment quality (Section 4.2.4), and a robust body of evidence that ore-related metals are not the primary toxicant. PAHs may have some limited influence, but that influence is not sufficient to explain the magnitude of toxicity observed, especially given that the TIE and the baseline toxicity testing program included samples that do not have elevated PAH concentrations.

Based on the available information, the current working hypothesis is that there are other organic substances (i.e., ammonia and potentially other substances) present in sediment related to sewage inputs. It was outside the scope of this risk assessment to conduct an exhaustive evaluation of the influence of different wastewater sources on sediment quality. At present, wastewater discharges appear to be the only source with a sufficiently large spatial influence to explain the observed toxicity data that has not been evaluated in detail.

4.5 Bioaccumulation

4.5.1 Approach

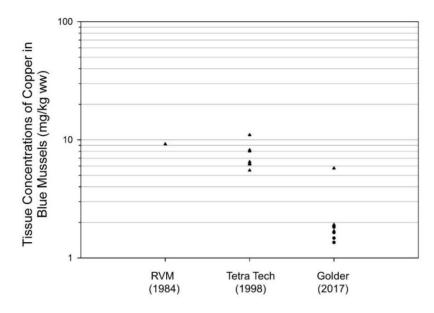
The review of historical data indicated that information about the uptake of ore-related metals and other potential contaminants was relatively limited in terms of sample diversity, chemical analysis and spatial coverage (Section 2.1.5). The most recent historical sampling was reported by Tetra Tech (2008) which may no longer be representative of current bioaccumulation patterns, especially considering the conclusion that deposition of clean material from the Skagway River is occurring (Section 3.1). Additional sampling was proposed to provide updated information to assist in understanding the potential hazards to human and ecological receptors that may consume shellfish from the area. The sampling program (Appendix B) was not intended to provide a comprehensive data set for a quantitative risk analysis. Rather, it was a targeted program intended to provide a screening-level assessment of potential hazards (i.e., it involves a tiered approach). Golder collected shellfish (mussels, crabs, prawn³⁰) from Skagway Harbour in spring 2017 and submitted them for metal and PAH analysis. The sampling locations are shown on Figure 14. There were a limited number of samples collected for each tissue type; therefore, the near-, mid- and far-field data were pooled (where applicable) to create a dataset representative of impacted (i.e., exposed) areas.

Table 6: Number of Shellfish Samples Collected

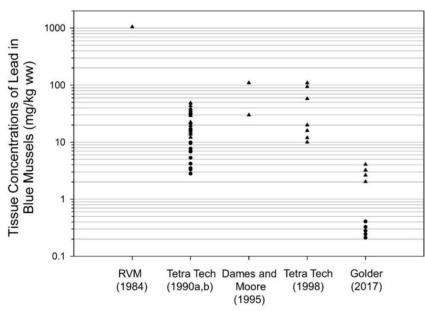
Area	Crab (Dungeness)	Mussel (Blue Mussel)	Prawn (Alaskan pink shrimp, spot prawn, coonstripe shrimp)	
Near-field	3	5	5	
Mid-field	5	No samples available	No samples available	
Far-field	No samples available	5	No samples available	
Exposed	8	10	5	
Reference	3	5	3	

Prawns were added to the sampling program because several local residents were catching shrimp from the harbor when Golder was present on site in May 2017. A commercial fishing vessel was also observed later in the year catching shrimp in Skagway Harbor.

4.5.2 Changes in Tissue Concentrations over Time


A total of four historical investigations involved analysis of one or more ore-related metals in field-collected fish or shellfish samples (Section 2.1.5). Figures 20 through 22 provide the individual sample results for copper, lead and zinc in mussels. Each data point represents an individual tissue measurement. Samples were classified as "near-field" if they were collected in the Ore Basin and "far-field" if they were collected elsewhere in Skagway Harbor. Other shellfish types or other metals are not graphed because they were not analyzed in the historical investigations. Note that the data value from RVM (1984) is the mean concentration as reported by that study. Concentrations in individual replicate samples were not reported by RVM (1984).

³⁰ Includes prawn and shrimp.



Notes: ▲ = Near-field stations; • = Far-field stations; RVM (1984) data represents a mean value, discrete values were not reported

Figure 20: Copper concentrations in mussel samples

Notes: ▲ = Near-field stations; • = Far-field stations; RVM (1984) data represents a mean value, discrete values were not reported

Figure 21: Lead concentrations in mussel samples

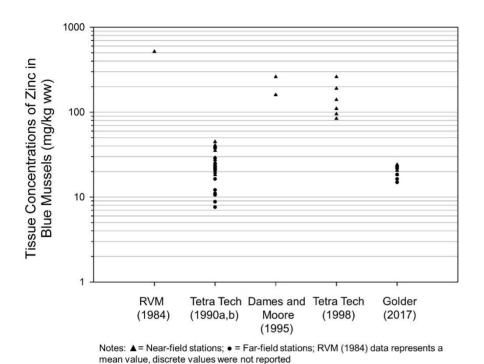


Figure 22: Zinc concentrations in mussel tissue

4.5.3 Potential Hazards for Consumption of Shellfish by People4.5.3.1 Approach

The available shellfish data was screened in terms of its potential hazard vis a vis consumption by human receptor groups. A key consideration is that this screening process does not constitute a quantitative risk analysis. A human health risk assessment, if warranted, would typically require consideration of multiple exposure pathways rather than only consumption of shellfish. Not all pathways for human receptor groups would be related to sediment contamination. The quantitative risk analysis would also require further effort to determine a representative exposure scenario. Reliance on a maximum concentration is appropriate for a screening-level hazard assessment, but would be unnecessarily conservative in a quantitative risk analysis.

The screening process for this screening-level hazard assessment consisted of:

- Identification of substances of interest based on their potential for bioaccumulation.
- Determination of a reasonable worst-case estimate of shellfish consumption rates for the selected receptor groups.
- Calculation of a tissue screening limit based on the "safe" dose specified by regulatory guidance and the estimated shellfish consumption rates.
- Identification of which substances measured in shellfish exceed those tissue screening limits.

Comparison of the concentrations measured in the "exposed" samples relative to reference concentrations to provide further context about whether concentrations in Skagway Harbor are at least partially influenced by natural background.

4.5.3.2 Potential for Bioaccumulation

ADEC (2015) defines an organic substance as bioaccumulative with a bioconcentration factor (BCF) greater than 1000 or a log Kow greater than 3.5. Inorganic substances (i.e., metals) are considered to be bioaccumulative if listed by USEPA (2000). ADEC (2010) list substances that are bioaccumulative based on this definition. The following substances are considered as bioaccumulative based on ADEC (2010) or because it has a BCF greater than 1000.

- Metals: Arsenic, cadmium, copper, lead, mercury, nickel, selenium, silver and zinc.
- PAHs: Benz(a)anthracene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, phenanthrene and pyrene. Benzo(a)pyrene and indeno(1,2,3-c,d)pyrene have BCFs greater than 1000, but were not detected in any of the shellfish samples.

There were no contaminants of potential concern related to the potential sources described in the problem formulation (Section 2.2.1) that could be eliminated from consideration because of a low potential to bioaccumulate in aquatic organisms.

4.5.3.3 Shellfish Consumption Rates

ADEC (2015) recommends using the Community Subsistence Information System (ADFG 2017) to obtain subsistence wild food ingestion rates. However, high-end and median user rates for related shellfish (clams, crabs, Dungeness crab, king crab, tanner crab and shrimp) were not available for the Skagway dataset. Golder reviewed shellfish consumption rates from a variety of reference sources (including those specific to Alaska) to determine a realistic worst-case consumption rate. Merrill and Opheim (2013) conducted a subsistence food consumption survey of Alaska Natives in Seldovia, Port Graham, Nanwalek and Tyonek, who frequently consume traditional foods from Cook Inlet. The study reported a 95th percentile shellfish consumption rate of 36,700 mg/day. Ballew et al. (2004) evaluated the consumption patterns of Alaska Natives in five regions across the state. Skagway falls under the Southeast Alaska Regional Health Consortium. Participants in this region reported consuming shrimp, Dungeness crab, king crab and clams. The maximum consumption rate for these shellfish combined is 68,350 mg/day. These Alaska-specific values are lower than the default consumer-only shellfish ingestion rate of 176,000 mg/day (US EPA 2011). Ingestion rates from USEPA (2011) are intentionally conservative and took into consideration that people of different ages consume different amounts of shellfish. For adults, an ingestion rate of 2.2 g shellfish/kg body weight/day was based on the 95th percentile consumer-only intake of shellfish for the age 20 to 49 cohort. For toddlers, an ingestion rate of 3.5 g shellfish/kg body weight/day was based on the 1 to 2 years age group. These were the worst-case cohorts for adults and toddlers, respectively.

The following equation was used to adjust the shellfish ingestion rates to units of kilograms per day wet weight:

$$IR_{SF} = FIR \times BW$$

Where:

IR_{SF} = shellfish ingestion rate (kg/day ww)
FIR = food ingestion rate (g/kg/day ww)

BW = body weight (kg)

4.5.3.4 Calculation of Shellfish Screening Levels for Consumption

Regulatory limits for tissue concentrations consumed by humans for crab, mussel or prawns are not available from state or national jurisdictions. Therefore, the US EPA Regional Screening Level (RSL) Calculator (US EPA 2017a) was used to back-calculate screening levels for shellfish using risk assessment approaches. The lowest screening value (from adults or toddlers) was adopted as the final screening value. The equations are presented below, and assumed that the bioavailability of metals in consumed tissues would be 100%:

$$Non-Carcinogenic\ Screening\ Level = \frac{THQ\times AT\times ED\times BW}{EF\times ED\times \frac{1}{RfD}\times IR_{SF}\times CF}$$

$$Carcinogenic\ Screening\ Level = \frac{TR \times AT \times LT \times BW}{EF \times ED \times CSF \times IR_{SF} \times CF}$$

Table 7: Equation Inputs for Shellfish Screening Levels

Variable	Unit	Value	Source			
THQ (target hazard quotient)	unitless	0.1	ADEC 2015			
TR (target cancer risk)	unitless	0.000001	ADEC 2015			
AT (averaging time)	days/year	365	Default			
ED (exposure duration)						
Adult	year	26	ADEC 2015			
Child	year	6	ADEC 2015			
EF (exposure frequency)	days/year	365	ADEC 2015			
LT (lifetime)	year	70	ADEC 2015			
BW (body weight)						
Adult	kg	80	ADEC 2015			
Child	kg	15	ADEC 2015			
RfD (oral reference dose)	mg/kg/day	chemical-specific	US EPA 2017a			
CSF (oral cancer slope factor)	(mg/kg/day) ⁻¹	chemical-specific	US EPA 2017a			
IR _{SF} (shellfish consumption rate)						
Adult (see Section 4.5.3.3 for calculation)	mg/day	176,000	US EPA 2011			
Child (see Section 4.5.3.3 for calculation)	mg/day	52,500	US EPA 2011			
CF (conversion factor)	kg/mg	0.000001	-			

Notes: kg = kilogram; mg = milligram

The RSL Calculator selects toxicity values (i.e., RfD and CSFs) using a hierarchy of preferred data sources which is consistent with ADEC (2015) guidance. The toxicity values are provided in Appendix E-4. The following decisions with respect to the selection of the toxicity values are highlighted:

- A toxicity value from the US EPA is not available for total chromium. The chromium screening level was derived using the hexavalent chromium toxicity value. This is conservative because the toxicity value for hexavalent chromium is lower than that for trivalent chromium. Golder submitted crab samples (8 exposed, 3 reference) for hexavalent chromium analysis as a secondary check once chromium was identified as a potential issue. Hexavalent chromium was not detected in any of the samples (method reporting limit ranged from 0.45 to 0.50 mg/kg ww), but the data were flagged because of the length of time between sampling and analysis. Samples were submitted to the lab within proper holding times following proper procedures for tissue preservation (i.e., samples were frozen after collection and stored frozen at the lab), but the laboratory has noted that hexavalent chromium tends to reduce to trivalent chromium in biological tissues over time. The hexavalent chromium data provides qualitative information that the hazard from chromium is likely less than what has been calculated using the total chromium tissue data.
- A toxicity value was not available for elemental mercury. Therefore, the methyl mercury toxicity value was used to derive the mercury screening level. It was conservatively assumed that 100% of the mercury in tissue was methyl mercury.
- A toxicity reference for lead is not available in the RSL Calculator because lead is typically assessed by determining blood lead concentrations from cumulative exposure rather than focusing on the hazard from one exposure pathway in isolation. Golder used the Integrated Exposure Update Biokinetic Model for Lead in Children (IEUBK; USEPA 2010) to back calculate a shellfish screening level for lead, assuming that other sources of lead in the environment would be similar to the model default values. In brief:
 - Default model parameters were used with the exception of a modification to the dietary intake assumptions. The model assumed that 100% of the meat and fish consumption would come from shellfish collected from Skagway Harbour. In reality, shellfish from Skagway Harbour may be a limited portion of a typical diet. For example, a significant fraction of the meat and fish consumption would originate from supermarkets.
 - Exposure to other sources of lead in the environment (e.g., indoor dust inhalation; consumption of vegetables; incidental ingestion of soil) was assumed to be equal to the US average concentrations.
 - The acceptable blood lead concentration was left at 10 micrograms per decilitre (μg/dL) per USEPA guidance (which is accepted by ADEC). This is a topic of ongoing regulatory discussion. The Center for Disease Control has adopted a blood lead reference value of 5 μg/dL (US EPA 2017b), and at least one state agency is recommending a value of 1 μg/dL (California EPA 2007).
- Toxicity values were not available for acenaphthylene, benzo(g,h,i)perylene and phenanthrene. In the absence of toxicity values for acenaphthylene, benzo(g,h,i)perylene and phenanthrene, these PAHs were evaluated using surrogates based on structurally similar compounds. Acenaphthene was used as a surrogate for acenaphthylene, benzo(a)pyrene for benzo(g,h,i)perylene and pyrene for phenanthrene.

4.5.3.5 Results for Ore-Related Metals

A summary of the screen limits, maximum observed concentration and range of reference concentrations for ore-related metals is provided in Table 8. All seven metals have the potential to accumulate in aquatic organisms. A metal was considered to present a hazard to human receptors if the maximum observed concentration exceeded the screening level and was substantially higher than the range of reference concentrations. As noted in Section 4.5.3.1, the presence of a hazard does not necessarily mean that there are risks. The hazard assessment is intentionally conservative in how the screening levels were derived, and was based on the maximum concentrations observed in any sample collected from Skagway Harbour. For individual ore-related metals:

- Arsenic concentrations exceeded the screening limits in both exposed and reference samples. The magnitude of this difference is because the screening limit assumes that 100% of the total arsenic is in the inorganic (i.e., more toxic form). The fraction of inorganic arsenic has not been established in shellfish from Skagway Harbour, but would be expected to be on the order of less than 10% based on consideration of multiple review papers (Borak and Hosgood 2007). From a hazard perspective, the key observation is that most tissue concentrations of crabs and mussels in Skagway Harbour were within the range of the reference concentrations. The maximum concentration of 19.3 mg/kg ww in prawns exceeded the range of reference concentrations.
- Cadmium concentrations exceeded the screening limits in both exposed and reference samples. Crabs and prawns also had a maximum concentration that was greater than the range of the reference concentrations, although the magnitude of that difference was relatively small with respect to crabs.
- Lead concentrations did not exceed the screening limit in reference samples. The maximum concentration in crabs was also less than the screening limit, but the maximum concentrations in mussels and prawns were greater than both the screening limit and the range of reference concentrations.
- Copper concentrations exceeded the screening limits in both exposed and reference samples. The maximum concentrations in mussels and prawns were greater than both the screening limit and the range of reference concentrations.
- Silver concentrations in all samples collected from the harbor were less than the screening limit, with the exception of prawns.
- Zinc concentrations exceeded the screening limits in both exposed and reference samples, but there were no indications that concentration from the harbor were greater than the range of reference samples.

In terms of different shellfish types:

- Prawns collected from exposed areas in the harbour tended to have concentrations of multiple ore-related metals that exceeded the screening limit and the range of concentration in the reference samples. Further consideration of arsenic, cadmium, mercury and silver may be appropriate. Interestingly, the three metals most closely related to the ore concentrates do not appear to share the same pattern. Copper and zinc concentrations from exposed sites do not appear to be substantially higher than the range of reference concentrations, and only one prawn sample had a lead concentration that was greater than the screening limit.
- Mussels from exposed areas had one or more samples with concentrations of copper, lead and mercury that exceeded the screening limit and were higher than the range of reference samples. This observation is more closely consistent with which metals are more likely related to the ore concentrate, unlike the pattern noted for prawns.
- Crabs from exposed areas tended to not have concentrations the exceeded the range of reference concentrations, with the exception of a single sample for cadmium. The overall accumulation of ore-related metals by crabs appears to be substantially less than mussels or prawns, which is consistent with the fact that crabs would likely have a relatively large home range that would limit the time they spend within the Ore Basin.

Table 8: Summary of Shellfish Tissue Screening Results for Ore-Related Metals (mg/kg wet weight)

		Crab		Mu	ssel	Prawn		
	Screening Level	Exposed Concentration (n =8)	Reference Concentration (n = 3)	Exposed Concentration (n =10)	Reference Concentration (n = 5)	Exposed Concentration (n =5)	Reference Concentration (n = 3)	
Arsenic	0.00082	<u>1.83 - 4.35</u>	3.49 - 5.47	<u>2.1 - 2.9</u>	2.09 - 3.03	<u>1.2 - 19.3</u>	4.26 - 5.89	
Cadmium	0.029	<u>0.019 - 0.194</u>	0.043 - 0.107	<u>0.94 - 1.56</u>	0.94 - 1.5	<u>0.08 - 0.487</u>	0.089 - 0.165	
Copper	1.1	<u>3.97 - 11.8</u>	8.36 - 11.2	<u> 1.35 - 5.74</u>	1.5 - 3.02	<u>6.4 - 22.1</u>	7.24 - 69.6	
Lead	1	0.02 - 0.282	0.010 - 0.018	0.21 - <u>4.07</u>	0.079 - 0.115	0.008 - <u>1.05</u>	<0.004 - 0.005	
Mercury	0.0029	<u>0.029 - 0.097</u>	0.063 - 0.122	<u>0.015 - 0.022</u>	0.011 - 0.015	<u>0.023 - 0.046</u>	0.020 - 0.029	
Silver	0.14	0.06 - 0.12	0.183 - 0.255	0.013 - 0.027	0.019 - 0.036	0.087- <u>0.443</u>	0.108 - 0.159	
Zinc	8.6	<u>23.7 - 47.2</u>	32.4 - 48.5	<u> 14.9 - 24.1</u>	16.6 - 21.6	<u>9.8 - 16.7</u>	10.7 - 14.4	

Notes: Metals concentrations are in milligram per kilogram wet weight (mg/kg ww).

An underlined value is greater than the screening limit. A bold underlined value is greater than the screening limit and the range from the reference samples

4.5.3.6 Conclusions and Risk Management Considerations

Golder concludes that there is a potential hazard to human consuming shellfish from the site from ore-related contaminants that warrants further consideration. Identification of a hazard should not be interpreted as evidence that a risk is present, especially considering the conservative approach taken in the hazard assessment. Additional sampling and risk analysis would focus on reducing the conservatism of the current approach by:

- Developing a more realistic measure of concentrations (e.g., use an upper confidence limit of the mean instead of maximum).
- **Evaluating the influence of metal speciation for substances such as mercury and arsenic.**
- Refining the assumptions with respect to consumption rates (e.g., don't assume that people obtain 100% of their shellfish from the immediate area surrounding the Ore Basin).

A decision to proceed to a quantitative risk analysis with respect to ore-related metals also needs to consider factors other than the results of the conservative screening approach described above. In brief:

- The hazard screening also identified other substances. The screening approach considered metals that are not related to the ore concentrate, and PAHs (Appendix E-4). There were mussel and prawn concentrations of PAHs that also exceeded the back-calculated screening levels. Other metals (e.g., selenium, vanadium, iron, cobalt) also had one or more tissue samples that exceeded the conservative screening limits in some tissue samples. A risk analysis that focused exclusively on the ore-related contaminants would not necessarily be able to conclude that shellfish are safe to consume unless there was consideration of these other sources.
- The influence of wastewater discharges on shellfish quality has not been established. Any risk management decision regarding shellfish consumption should also consider the influence of wastewater discharges, especially considering the observation that the existing state discharge permit appears to require a shellfish consumption advisory that would apply to the entire harbor (Section 2.2.2). Golder has not conducted a comprehensive search for information on this topic, but notes that risks with respect to human consumption from ore-related metals would be managed if consumption did not include shellfish collected from the immediate vicinity of these potential sources.
- Golder is aware of two previous risk calculations applicable to the bioaccumulation of ore-related metals via shellfish. The findings from these previous assessments is provided for context. Golder has not conducted a comprehensive review of the specific methods or assumptions used. The two historical investigations are summarized:
 - Quantitative risk calculations were completed by TetraTech (1990b; draft) that used a similar approach as in the current hazard screening. Average tissue chemistry concentrations from TetraTech (1990a) were used to calculate a hazard quotient using similar exposure variables (e.g., body weight; shellfish ingestion rates) and the toxicity thresholds that were applicable at the time. The IEUBK model (version applicable at the time) was used to evaluate incremental risks associated with consumption of shellfish over and above what would be expected from a typical soil background concentration for Skagway.

Risks associated with shellfish did not exceed a hazard quotient of 1 for any of the three individual metals considered (mercury, zinc and lead), and the relative contribution of lead in shellfish to the predicted blood lead concentration was 5% or less based on the average concentrations of mussels or sole collected from the Ore Basin. Golder notes that the average concentrations have decreased since 1990 (see Section 4.5.2), which should further reduce the risks as calculated by TetraTech (1990b).

ADHSS (1989) provide a summary report regarding a blood lead survey conducted in Skagway with 273 residents, in November 1988 and September 1989. This survey was conducted because elevated concentrations of ore-related metals were identified in soils near the ore warehouse and in areas adjacent to rail and roadways where ore concentrate was being hauled. Golder understands that soil remediation was subsequently completed. ADHSS (1989) found that 78% of the residents tested had blood lead concentrations less than 10 µg/dL. 19% of the residents had a concentration between 10 and 20 µg/dL with a small number of measurements that were greater than 20 µg/dL. All children tested had a blood lead concentration of less than 15 µg/dL, and the average concentration was between 8 and 8.7 µg/dL depending on the age cohort. ADHSS (1989) concluded that individuals with elevated blood lead concentrations were limited to workers at the ore terminal, and also concluded that the mean blood lead concentrations were consistent with other Alaskan populations that did not live near an ore concentrate loading facility. Although the specific threshold values used by ADHSS (1989) may have been refined over the last 25 years, the blood lead concentrations for the majority of individuals were less than the modern-day screening limit of 10 μg/dL. Sampling was also conducted prior to the enclosure of the ore conveyor system, and prior to any soil remediation. People who participated in the blood lead survey would have been exposed to lead through multiple pathways which have since been ameliorated to some degree³¹ and which would have included consumption of shellfish from the harbour. This amelioration is evident from subsequent state-led blood lead monitoring data (ADHSS 2017) which showed that the maximum blood lead concentrations in children from the Skagway census area between 2002 and 2012 was less than 3 µg/dL.

4.5.4 Potential Hazards for Consumption by Wildlife 4.5.4.1 Approach

The potential hazards associated with wildlife consuming shellfish was evaluated using a food chain model. The food chain model estimated the total dose that the receptor would ingest by consuming food (and incidentally, consuming sediment) and compared it to a toxicity reference value that is associated with a no-observed adverse effect level from the literature. A hazard quotient less than 1 indicates that hazards to wildlife are unlikely to present.

The parameterization of the food chain model is summarized in Tables 9 through 11 and described in detail below:

Average shellfish concentrations were calculated for the Ore Basin (based only on samples collected within the basin itself), for the remainder of the harbor and for the reference area. Receptors are assumed to be moving around each of these areas, and therefore, the average concentrations are a realistic measure of the exposure that wildlife might receive.

³¹ For example, ingestion of soil and inhalation of outdoor dust is expected to have been at least partially ameliorated through the remedial excavations and improvements in the ore loading facility. The inhalation of indoor dust is expected to have been ameliorated through the discontinuation of the use of lead-based paints.

- Black oystercatcher and sea otter were selected as representative avian and mammalian receptors for the Southeast Alaska Ecoregion per ADEC (1999). Both species consume shellfish. Body weight of the black oystercatcher and the sea otter were taken from reputable sources in the literature.
- The amount of food that the receptor consumes per day was estimated from the body weight using allometric scaling equations for Nagy (1987). Nagy (1987) demonstrated that food consumption rates are proportional to an organism's body weight. The food consumption rates are calculated on a gram / day basis which is then converted to kg of shellfish (wet weight) per day using the average moisture content in the shellfish samples collected by Golder.
- A species-specific sediment ingestion rate was not identified in the literature, and therefore, it was assumed that sediment ingestion would not exceed 2% of the diet. Realistically, wildlife that are consuming crabs, shrimp and mussels would not be expected to have a high proportion of sediment in their diet because the prey is not buried in the sediment, and the act of capturing prey also means that the prey is being rinsed in the water column. Some wildlife receptors would dig for clams, or otherwise ingest large amounts of sediment from intertidal mudflats; however, Skagway Harbour is largely lined by steep riprap walls or port infrastructure, and there are only limited areas where intertidal sediment would be exposed. The assumption that oystercatchers and otters are consuming 2% of their diet as sediment is conservative.
- A no-observed adverse effect level (NOAEL)-based value was adopted from USEPA ecological soil screening level (ECO-SSL; USEPA 2018) guidance wherever possible. If an ECO-SSL NOAEL-based value was not available, a NOAEL-based value from Oak Ridge National Laboratory (ORNL; Sample et al. 1996) was used.

Table 9: Receptor Parameterization

	Е	Bird (Black Oystercatcher)	Mammal (Sea Otter)		
	Value Source		Value	Source	
Body Weight	0.55 kg	Andres and Falxa (1995)	34 kg	Average of male and female body weight ranges provided in USFWS (2012)	
Food Ingestion Rate (dry weight)	0.04 kg dw per day	"Seabird" allometric food ingestion rate predicted by Nagy (1987)	1.25 kg dw per day	"All mammal" allometric food ingestion rate predicted by Nagy (1987)	
Food Ingestion Rate (wet weight)	0.21 kg ww per day	Converted dry weight to wet weight with site-specific average moisture content of 80% in shellfish	6.24 kg ww per day	Converted dry weight to wet weight with site-specific average moisture content of 80% in shellfish	
Sediment Ingestion Rate	0.004 kg per day	Assumed 2% of food ingestion rate. There is limited intertidal sediment in the harbour and prey items would be captured in the water column.	0.13 kg per day	Assumed 2% of food ingestion rate. There is limited intertidal sediment in the harbour and prey items would be captured in the water column.	

Table 10: Average Shellfish Concentrations Used in Food Chain Model

	Ore-Basin (mg/kg ww)	Rest of Harbor (mg/kg ww)	Reference (mg/kg ww)
Arsenic	5.2	2.7	3.7
Cadmium	0.65	0.70	0.60
Chromium	0.42	0.35	0.34
Copper	7.8	4.3	5.3 (Note 1)
Lead	1.3	0.19	0.05
Mercury	0.04	0.04	0.04
Silver	0.11	0.06	0.11
Zinc	23.4	26.2	23.0

Note: Excluded copper concentration of 69 mg/kg from REF-PRAWN-02 which is potentially an anomaly. Average concentration in the reference area with this sample included would be higher.

Table 11: Summary of NOAEL-based Toxicity Reference Values (mg/kg/day)

		Bird (Black Oystercatcher)		Mammal (Sea Otter)
	TRV	Source	TRV	Source
Arsenic	2.24	Lowest NOAEL from ECOSSL (insufficient data points for a geometric mean)	2.47	Geomean of NOAELs from ECO-SSL
Cadmium	1.47	Geomean of NOAELs from ECO-SSL	1.86	Geomean of NOAELs from ECO-SSL
Chromium	2.66	Geomean of NOAELs from ECO-SSL	2.40	Geomean of NOAELs from ECO-SSL
Copper	18.5	Geomean of NOAELs from ECO-SSL	25.0	Geomean of NOAELs from ECO-SSL
Lead	10.9	Geomean of NOAELs from ECO-SSL	40.7	Geomean of NOAELs from ECO-SSL
Mercury	0.45	NOAEL from ORNL	1.0 NOAEL from ORNL	
Silver	2.02	Lowest LOAEL / 10 from ECOSSL	6.02	Lowest LOAEL / 10 from ECOSSL
Zinc	66.1	Geomean of NOAELs from ECO-SSL	75.4	Geomean of NOAELs from ECO-SSL

Note: ECO-SSL = USEPA (2018); ORNL = Sample et al. (1996)

4.5.4.2 Results

The food chain model outputs are provided in Appendix E and the hazard quotients are summarized below in Table 12. All three areas evaluated with a screening-level food chain model had hazard quotients that were less than 1, indicating that hazards to wildlife that consume shellfish are low.

Table 12: Summary of Hazard Quotients for Wildlife Receptors

. a.b.o . = . • a	or rialara quellorito for trinamo recopitoro							
	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Silver	Zinc
Black Oystercatcher								
Ore Basin	0.9	0.2	0.1	0.2	0.2	<0.1	<0.1	0.2
Rest of Harbor	0.5	0.2	0.1	0.1	<0.1	<0.1	<0.1	0.2
Reference	0.6	0.2	0.1	0.1	<0.1	<0.1	<0.1	0.1
Sea Otter								
Ore Basin	0.4	0.1	0.1	0.1	<0.1	<0.1	<0.1	0.1
Rest of Harbor	0.2	0.1	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Reference	0.3	0.1	0.1	<0.1	<0.1	<0.1	<0.1	0.1

4.5.4.3 Conclusions and Risk Management Considerations

Golder concludes that there are low hazards to birds and mammals that could consume shellfish from the site from ore-related contaminants. This conclusion considers the fact that the screening-level food chain model incorporated several conservative assumptions (described in further detail below). Notwithstanding this conclusion, Golder notes that average tissue concentrations were used in the model because there were insufficient tissue samples available from each area to allow for the calculation of a more conservative exposure estimate (e.g., the 95th upper confidence limit of the mean). Further refinement of the food chain model to use different assumptions is not expected to change the overall conclusion, however, this model should be updated with any additional tissue data that might be collected as part of a post-remedial monitoring program to confirm that these conclusions continue to be valid.

Golder notes that the model used conservative, no-observed effect toxicity reference values and assumed that the receptor would obtain 100% of their food from a given area. Realistically, both receptors would consume prey items harvested over a much larger area than the Ore Basin—sea otters, for example, consume up to 25% of the body weight in food each day. The model also assumes that 100% of the tissue concentrations are absorbed by the animal through its gastrointestinal tract when realistically, a large proportion of the ingested dose is passed through the wildlife and is not absorbed by the gastrointestinal tract. Golder concluded that it was reasonable to use the average tissue concentration based on all tissue samples (from a given area) under these circumstances because otters and oystercatchers are expected to consume all three prey types (crabs, mussels and shrimp) from all parts of a given area. Further refinement of the food chain model to evaluate different dietary proportions would not be expected to substantially change the conclusion, and therefore, further consideration of this pathway does not appear to be warranted unless future tissue monitoring identifies a substantial change in concentrations for one or more ore-related contaminants.

5.0 CONCLUSION

5.1 Summary of Findings and Recommendations

The following section provides an overall conclusion, identifies areas of uncertainty in how the conclusion was developed, and makes recommendations for how this sediment assessment can help inform site management planning. Previous investigations had documented the presence of lead, zinc and mercury at concentrations that exceeded numerical guidelines for the protection of benthic organisms. The magnitude of these exceedances was considerable in some samples, and the pattern of contamination indicated that the ore concentrate handling facility was the likely source. The magnitude of the exceedance and pattern of contamination was consistent with historical ore concentrate handling practices. Consequently, some previous investigations have recommended that the Ore Basin should be dredged as a priority to resolve the perceived environmental risks.

What was the objective?

The objective of the assessment was to inform risk-based management. The risk associated with a contaminant source will be influenced by contaminant bioavailability, spatial extent, and other considerations. A decision to dredge based only on total concentrations does not address these underlying risk questions, even if it is practical in some circumstances. There are other options for achieving biological improvement at a contaminated site. For example, monitored natural attenuation is often equally effective in achieving biological improvement because ongoing future inputs of sediment with lower contaminant concentrations act as a natural cap. Risk-based management focuses on managing the risk in the context of current and future site plans—not all options will be equally effective for all development scenarios.

What did we learn about hazards to aquatic organisms?

Golder completed a supplemental sediment investigation to help inform site management decisions regarding the ore-related sediment contamination. A preliminary sediment transport analysis showed that the site is largely depositional and likely receiving inputs of clean sediment from the Skagway River. There are some areas where propeller scouring is likely occurring, but they are limited in spatial extent and do not appear to overlap with the areas with highly-elevated ore concentrations. The sediment chemistry data collected by Golder supports the sediment transport analysis. Concentrations of ore-related metals in the current surface sediment of the Ore Basin are lower than previous investigations, and the difference between current surface and deeper sediment quality along the ore dock was evident in the statistical analysis.

The effects associated with the current surface sediment in the Ore Basin was evaluated with a battery of three different toxicity tests to represent different parts of the benthic community. Samples for toxicity testing represented the range of ore-related metals in the current surface sediment. This gradient also provided spatial coverage for the Ore Basin (instead of focusing exclusively on the area around the ore loading system) and included samples from elsewhere in Skagway Harbor as well as reference areas. Many of the samples showed an unacceptable effect, even though the concentrations of ore-related metals and polycyclic aromatic hydrocarbons did not exceed conservative guidelines for the protection of benthic organisms.

A toxicity identification evaluation was completed on a subset of samples. Ore-related metals such as copper, lead, zinc and mercury were confirmed not be the primary cause of toxicity. This conclusion from the toxicity identification evaluation was supported by statistical analysis which showed there was not a statistically significant relationship between ore-related metals in sediment and the effects observed in the toxicity tests. The conclusion is also consistent with the findings from a toxicity identification evaluation completed by a previous consultant. Golder concluded that sewage inputs (including ammonia) may be exerting a negative effect on sediment quality in the Ore Basin based on the balance of available information. Further consideration of the effect of long-term loading of wastewater discharges from municipal and cruise ship sources may be appropriate.

What did we learn about metal bioaccumulation in shellfish?

Although ore-related metals do not appear to be exerting direct toxicity on benthic organisms, the mass of the contamination present in sediment is still influencing aquatic food chains. Tissue samples were collected for mussels, shrimp and crabs from within the Ore Basin, elsewhere in Skagway Harbor, and at reference areas. There were species-specific differences in how metals are being accumulated, which is expected based on differences in feeding strategy and home range mobility. Overall, concentrations in mussels appear to be decreasing over time.

What did we learn about hazards related to shellfish consumption by people?

All seven of the ore-related metals exceeded conservative screening values for the consumption of shellfish. Exceedances of these screening limits were also observed in samples from the reference area, but overall, concentrations of metals related to ore concentrates were higher in at least one tissue sample collected from the site relative to reference concentrations.

The presence of a maximum concentration that exceeds a conservative screening value does not necessarily mean that there are risks to people consuming shellfish from the harbor. The preliminary sampling also showed that there were a small number of shellfish samples that were also accumulating polycyclic aromatic hydrocarbons, and that metals unrelated to ore concentrates also exceeded the conservative screening values in some samples. Further sampling to determine a defensible average concentration in the specific shellfish types being consumed may be appropriate and would be necessary to provide a more refined evaluation regarding risks to humans.

Further risk evaluation, if conducted, should also consider administrative controls on shellfish consumption. Administrative controls are a common element of risk management plans for contaminated sediment. Golder understands that shellfish harvesting from Skagway Harbor is not permitted because of the presence of the municipal wastewater discharge.

What did we learn about hazards related to shellfish consumption by wildlife?

Golder concludes that there are low hazards to birds and mammals that could consume shellfish from the site from ore-related contaminants. The food chain model used conservative, no-observed effect toxicity reference values and assumed that the receptor would obtain 100% of their food from a given area. Realistically, receptors would consume prey items harvested over a much larger area than the Ore Basin. The model also assumes that 100% of the tissue concentrations are absorbed by the animal through its gastrointestinal tract when in fact, a large proportion of the ingested dose is passed through the wildlife and is not absorbed by the gastrointestinal tract. Golder concluded that it was reasonable to use the average tissue concentration based on all tissue samples (from a given area) under these circumstances because otters and oystercatchers are expected to consume all three prey types (crabs, mussels and shrimp) from all parts of a given area. Further refinement of the food chain model to evaluate different dietary proportions would not be expected to substantially change this conclusion. However, Golder notes that average tissue concentrations were used in the model because there were insufficient tissue samples available from each area to allow for the calculation of a more conservative exposure estimate (e.g., the 95th upper confidence limit of the mean), and therefore, the model should be updated with any additional tissue data that might be collected as part of a post-remedial monitoring program to confirm that these conclusions continue to be valid.

What are the major sources of uncertainty in this conclusion?

Any risk management decision based on this risk evaluation should consider the uncertainty associated with both the underlying data and how it was evaluated. Uncertainty is present in all environmental assessments, and therefore, steps are taken through the assessment process to minimize uncertainty to the extent possible, and then to describe the residual sources of uncertainty clearly so that risk managers and regulatory decision-makers can balance those factors in deciding an appropriate course of action.

Methodological uncertainty in chemistry and toxicity data was minimized by applying accepted procedures for quality assurance and quality control during all stages of data acquisition. No substantive quality issues were identified during the investigation that would limit the utility of the data for making a site management decision. Data that were collected with variance from standardized protocols (such as chemical analysis on archive samples outside the hold-time) are identified in the report and the merits of considering such data discussed. In those instances, data are typically treated as a qualitative indicator. Other sources of uncertainty include study design topics such as the number and spatial coverage of sampling. Tissue sampling, for example, was limited in this respect, but still appropriate for a screening-level risk assessment.

Risk assessment is inherently a tiered process, and therefore, conservative assumptions and guidelines were applied throughout the risk evaluation to avoid erroneously concluding that a risk is present if in fact it is not. In a screening-level risk assessment, the goal is to eliminate issues that do not require further consideration based on a conservative evaluation. Issues that cannot be eliminated at the screening level do not necessarily present an actual risk, and the decision to proceed with a more refined risk evaluation would typically be done in conjunction with a remedial options analysis.

What are the next steps?

Golder concludes that metals are not the major cause of adverse effects observed in the toxicity tests, although ore-related metals are accumulating in the portion of the aquatic food chain that was assessed. This conclusion was based on a robust toxicity testing program in conjunction with a specialized toxicity identification evaluation process. Additional toxicity testing or assessment of the benthic community structure in the Ore Basin are not considered likely to change this conclusion.

Further discussion with the appropriate regulatory agency about the value of conducting a more refined evaluation of human health exposures is recommended. The main uncertainty relates to the fact that the human health calculation was completed on a relatively small number of samples (which is appropriate for a screening-level assessment). The screening-level risk assessment identified several issues that may relate to wastewater discharges that are subject to other state regulatory processes and have approved initial dilution zones that encompass the Ore Basin. Wastewater management practices may already have resulted in administrative controls that would mitigate the human health exposures via the shellfish consumption pathway. Notwithstanding the technical rationale to refine some elements of the risk assessment, Golder acknowledges that that there may be practical or operational considerations regarding the need to dredge some parts of the Ore Basin. Removal of a portion of the mass of metals related to ore concentrates would be expected to further reduce the potential uptake of these metals by shellfish and follow-up sampling of shellfish tissue concentrations as part of post-remedial monitoring is considered appropriate. These data can be used to provide more information about potential hazards to human health and wildlife as described in this report.

In terms of remedial design, Golder notes that the available data are not sufficient to establish a quantitative relationship between mass removed and future tissue concentrations, nor is it likely that such a relationship would be developed in the future. However, the limits of the volume to be dredged should not be established using default sediment guidelines because multiple lines of evidence in the assessment have established that metal bioavailability to benthic organisms is substantially lower than the assumptions that are inherent in the guideline derivation.

5.2 Closure

We trust that this report meets your current needs. If you have any questions, or if we may be of further assistance, please do not hesitate to contact the undersigned.

GOLDER ASSOCIATES LTD.

Victoria Hart, MSc Environmental Scientist Paddy McManus, MSc Environmental Scientist

Reviewed by:

Blair McDonald, MET, RPBio Associate, Senior Environmental Scientist

VH/PM/BGM/TR/syd/lmk

Tamra Reynolds, MSc, PGeo Associate, Senior Hydrogeologist

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

6.0 REFERENCES

- ADEC (Alaska Department of Environmental Conservation). 1999. User's Guide for Selection and Application of Default Assessment Endpoints and Indicator Species in Alaskan Subregions. Ecoregions/ Assessment Endpoint Project. June 1999. Available online: https://dec.alaska.gov/spar/csp/guidance-forms/.
- ADEC. 2001. Sediment quality guideline options for the State of Alaska. Available online: http://dec.alaska.gov/spar/csp/guidance_forms/docs/sediment_guality_options.pdf.
- ADEC. 2008. Alaska water quality criteria manual for toxic and other deleterious organic and inorganic substances. Available online: http://dec.alaska.gov/Water/wqsar/wqs/index.htm.
- ADEC. 2015. Risk assessment procedures manual. Available online: https://dec.alaska.gov/spar/csp/guidance_forms/docs.
- ADEC. 2016. Field sampling guidance. Available online: https://dec.alaska.gov/spar/csp/guidance_forms/docs/Field-Sampling-Guidance-Final-5-13-2016.pdf.
- ADFG (Alaska Department of Fish and Game). 2017. Community Subsistence Information System. Available at: http://www.adfg.alaska.gov/sb/CSIS/. Accessed 2 November 2017.
- ADHSS (Alaska Department of Health and Social Services). 1989. Health hazard and risk assessment from exposure to heavy metals in ore in Skagway, Alaska: final report.
- ADHSS. 2017. Blood Lead Levels for Children <18 years old by Census Area (2002-2012). Available online: http://dhss.alaska.gov/dph/Epi/eph/Documents/lead/BLL Child Region 2002 2012.pdf.
- Andres BA, Falxa GA. 1995. Black Oystercatcher (*Haematopus bachmani*), version 2.0. In The Birds of North America (AF Poole and FB Gill, Editors). Cornell Lab of Ornithology, Ithaca, NY, USA. Available online at: https://doi.org/10.2173/bna.155.
- ASTM (ASTM International). 2014. Standard test method for measuring the toxicity of sediment-associated contaminants with estuarine and marine invertebrates. E1367-03. (Reapproved 2014).
- Anchor (Anchor QEA LLC). 2015. Skagway Ore Dock and Small Boat Harbour dredging: Gateway Intermodal Dock Reconstruction Project and Legacy Harbour Contaminant Mitigation Program. Prepared for the Municipality of Skagway. Anchor Project No. 140159-04.01.
- Anchor. 2016. Laboratory treatability report: Gateway Intermodal Dock, Skagway, Alaska. Prepared for the Municipality of Skagway. Anchor Project No. 140159-04.01.
- Anderson BS, Hunt JW, Phillips BM, Nicely PA, Tjeerdema RS, Martin M. 2004. A comparison of in situ and laboratory toxicity tests with the estuarine amphipod Eohaustorius estuarius. Arch Environ Contam Toxicol 46: 52-60.
- Ballew C, Ross A, Wells RS and Hiatsuka V. 2004. Final Report on the Alaska Traditional Diet Study. March 2004.

- Barrick RC, Becker DS, Brown LB, Beller H, Pastorok, R. 1988. Sediment quality values refinement: 1988 update and evaluation of Puget Sound AET, Volume I, Final Report. Prepared for Tetra Tech, Inc., Bellevue, WA, and the US Environmental Protection Agency, Seattle, WA. Bellevue, WA: PTI Environmental Services.
- Barton J. 2002. DMMP Clarification Paper: Ammonia and amphipod toxicity testing. [Included in Appendix B of WDOE (2015)].
- Borak J, Hosgood HG. 2007. Seafood arsenic: implications for human risk assessment. Reg Toxicol Pharmacol 47: 204-212.
- Burgess RM, Charles JB, Kuhn A, Ho KT, Patton LE, McGovern DG. 1996. Development of a cation-exchange methodology for marine toxicity identification evaluation applications. Environ Toxicol Chem 16: 1203-1211.
- Carr SR, Long ER, Windom HL, Chapman DC, Thursby G, Sloane GM, Wolfe DA. 1996. Sediment quality assessment studies of Tampa Bay, Florida. Environ Toxicol Chem 15:1218–1231.
- California EPA. Development of Health Criteria for School Site Risk Assessment Pursuant to Health and Safety Code Section 901(g): Child-Specific Benchmark Change in Blood Lead Concentration for School Site Risk Assessment. Final Report. April 2007. Integrated Risk Assessment Branch, Office of Health Hazard Assessment.
- Chapman PM. 1990. The Sediment Quality Triad approach to determining pollution-induced degradation. Sci Tot Environ 97-8:815-825.
- Chapman PM, Anderson J. 2005. A decision making framework for sediment contamination. Integ Environ Manage Assess 1: 163-173.
- Chapman PM, McDonald BG, Lawrence GS. 2002. Weight-of-evidence issues and frameworks for sediment quality (and other) assessments. Human Ecol Risk Assess 8: 1489-1515.
- Dames and Moore. 1995. Final Environmental Site Assessment Report for the Skagway Ore Terminal. Report No. 24459-013-160. Prepared for Alaska Industrial Development and Export Authority.
- Dillon TM, Moore DW, Gibson AB. 1993. Development of a chronic sublethal bioassay for evaluating contaminated sediment with the marine polychaete worm *Nereis (Neanthes) arenaceodentata*. Environ Toxicol Chem 12: 589-605.
- Environment Canada. 1998. Biological test method: reference method for determining acute lethality of sediment to marine or estuarine amphipods. EPS1/RM/35. Available online: http://publications.gc.ca/collections/collection_2013/ec/En49-24-1-35-eng.pdf
- Fernandex N, Beiras R. 2001. Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea urchin. Ecotox 10: 263-271.
- Golder (Golder Associates Ltd). 2016. Skagway Preliminary Sediment Transport Assessment. Prepared for White Pass and Yukon Railway. Golder Project No: 1657231

- Government of Yukon. 2013. Faro Mine Remediation project Fact Sheet #3. Available online: http://www.emr.gov.yk.ca/aam/pdf/faro-key-terms-fact-sheet-3-english.pdf.
- Greenstein DJ, Alzadjalia S, Bay SM. 1996. Toxicity of ammonia to purple sea urchins. In: Southern California Coast Research Annual Report (1994-95), pp 72-77. Available online: http://www.sccwrp.org.
- Gubala Consulting. 2007. Skagway Ore Terminal Phase II Environmental Baseline Study Report. Prepared for Access Consulting.
- Gubala. 2011. 2011 Skagway Harbor Environmental Baseline Assessment. Prepared for Municipality of Skagway and Alaska Department of Environmental Conservation.
- Gubala. 2013. Skagway Harbor Gateway Pre-Engineering Assessment Analytical Results from Sediment Coring Program. Prepared for Alaska Department of Environmental Conservation.
- His E, Heyvang I, Geffard O, DeMontaudouin X. 1999. A comparison between oyster (Crassostrea gigas) and sea urchin (Paracentrotus lividus) larval bioassays for toxicological studies. Water Res 33: 1706-1718.
- Kendall D, Barton J. 2004. DMMP Clarification Paper: Ammonia and sulfide guidance relative to Neanthes growth bioassay. [Included in Appendix B of WDOE (2015)].
- Kendall D, McMillan R. 1999. DMMP Clarification Paper: Clarification on the use of the amphipod, Eohaustorius estuarius, relative to grain size and salinity. [Included in Appendix B of WDOE (2015)].
- Knezovich JP, Steichen DJ, Jelinski JA, Anderson SL. 1996. Sulfide tolerance of four marine species used to evaluate sediment and porewater toxicity. Bull Environ Contam Toxicol 57: 450-457.
- Long ER and Chapman PM. 1985. A sediment quality triad: Measures of sediment contamination, toxicity and infaunal community composition in Puget Sound. Mar Pollut Bull 16:405-415.
- Merrill T and Opheim M. 2013. Assessment of Cook Inlet Tribes Subsistence Consumption. September 2013. Prepared for the Seldovia Tribe Council.
- Nadella SR, Tellis M, Diamond R, Smith S, Bianchini A, Wood CW. 2013. Toxicity of lead and zinc to developing mussel and sea urchin embryos: critical tissue residues and effects of dissolved organic matter and salinity. Physiol C Toxicol Pharmacol, 158: 72-83.
- Nagy KA. 1987. Field metabolic rate and food requirement scaling in mammals and birds. Ecol Monogr. 67:111-28.
- Novelli AA, Losso C, Ghetti PF, Ghiradini AV. 2003. Toxicity of heavy metals using sperm cell and embryo toxicity bioassays with Paracentrotus lividus: comparisons with exposure concentrations in the lagoon of Venice, Italy. Environ Toxicol Chem 1295-1301.
- PND. 1999. Sediment Characterization Analysis for Proposed Dredging and Deepwater Disposal at Broadway Dock. Report No. DA R-870590. Prepared for Pacific and Arctic Railway and Navigation Company.
- PND. 2005. Final Report: Dredge Material Characterization and Geotechnical Evaluation, Broadway Dock Expansion, Skagway, Alaska. Report No. PND 034044.01. Prepared for Skagway Terminal Co.

- Pratt C, Warnken J, Leeming R, Arthur MJ, Grice DI. 2008. Degradation and responses of coprostanol and selected sterol biomarkers in sediments to a simulated major sewage pollution event: a microcosm experiment under sub-tropical estuarine conditions. Organic Geochem 39: 353-369.
- PSEP (Puget Sound Estuary Program). 1987. Recommended guidelines for sampling marine sediment, water column and tissue in Puget Sound.
- RWM (Robinson-Wilson and Malinkey). 1984. Trace Metals Contamination at an Ore Loading Facility in Skagway, Alaska. U.S. Fish and Wildlife Services. Unpublished Paper Draft.
- Sample BE, Opresko DM, Suter GW. 1996. Toxicological Benchmarks for Wildlife: 1996 Revision. ES/ER/TM-86-R3. Oak Ridge National Laboratory. Available online: https://rais.ornl.gov/documents/tm86r3.pdf.
- Tay KL, Doe K, Jackman P, MacDonald A. 1998. Assessment and evaluation of the effects of particle size, ammonia and sulfide on the 10-d amphipod sediment acute lethality test. Unpublished data provided in Environment Canada 1998.
- Tetra Tech, Inc. 1988. Technical Review of Water Quality and Biological Conditions in the Vicinity of the Skagway (AK) Municipal Outfall. Report No. TC 4104-05. Prepared for US EPA.
- Tetra Tech, Inc. 1990a. Skagway Harbor Field Investigation. Report No. TC4118-14. Prepared for US Environmental Protection Agency and Alaska Department of Environmental Conservation.
- Tetra Tech, Inc. 1990b. Seafood Risk Assessment for Skagway Harbor. Report No. TC 5155-03. Prepared for US Environmental Protection Agency.
- Tetra Tech, Inc. 2008. Evaluation of Skagway Harbor and Pullen Creek Sediments and Surface Waters. Prepared for Alaska Department of Environmental Conservation.
- Tetra Tech 2009. Evaluation of Metals and Petroleum Derivatives in Skagway Harbor and Pullen Creek Sediments and Surface Waters. Prepared for Alaska Department of Environmental Conservation.
- URS. 2006. Environmental Monitoring Skagway Ore Terminal. Report No. URS 26210771. Prepared for Alaska Industrial Development and Export Authority.
- USDA (United States Department of Agriculture). 2004. Polycyclic aromatic hydrocarbon migration from creosotetreated railways ties in ballast and adjacent wetlands. Prepared by the Forest Service Forest Products Laboratory. Available online: https://clu-in.org/download/contaminantfocus/sediments/fpl_rp617.pdf
- USEPA (United States Environmental Protection Agency). 1991. Methods for aquatic toxicity identification evaluations. Phase I toxicity characterization procedures (Second Edition). Environmental Research Laboratory, Office of Research and Development. EPA/600/6-91/003.
- USEPA. 2000. Appendix to Bioaccumulation Testing and Interpretation for the Purpose of Sediment Quality Assessment, Status and Needs, Chemical Specific Summary Tables. February 2000. Office of Water, Office of Solid Waste. Bioaccumulation Working Group. Washington, DC.
- USEPA. 2002. Fact sheet and supporting documentation for NPDES Permit Number AK-002001. Available online: https://yosemite.epa.gov/r10/water.nsf/NPDES+Permits/CurrentAK822/\$FILE/AK0020010FS.pdf.

- USEPA. 2007. Sediment toxicity identification evaluation (TIE): Phases I, II, and II guidance document. Office of Research and Development. EPA/600/R-07/080.
- USEPA, 2010. IEUBKwin32. Lead Model Version 1.1. Build11.
- USEPA. 2011. Exposure Factors Handbook: 2011 Edition. September 2011. National Center for Environmental Assessment, Office of Research and Development. Washington DC.
- USEPA. 2016. Weight of evidence in ecological assessment. EPA/100/R-16/001. Risk Assessment Forum, USEPA, Washington DC. December 2016.
- USEPA. 2017. Waste and Cleanup Risk Assessment, Screening Tools for Chemical Contaminants. Available at: https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search. Accessed 1 November 2017.
- USEPA. 2018. Interim ecological soil screening level documents. Available online: https://www.epa.gov/chemical-research/interim-ecological-soil-screening-level-documents.
- USFWS (United States Fish and Wildlife Service). 2012. Northern sea otter fact sheet. Available online: https://www.fws.gov/alaska/fisheries/endangered/pdf/Nseaotter_factsheet_v2.pdf.
- WDOE (Washington State Department of Ecology). 2015. Sediment cleanup users manual II (SCUM II). Available online: https://fortress.wa.gov/ecy/publications/SummaryPages/1209057.html.
- Warnau M, Iaccarino M, DeBiase A, Temara A, Jangoux M, Dubois P, Pagano G. 1996. Spermiotoxicity and embryotoxicity of heavy metals in the echinoid Paracentrotus lividus. Environ Toxicol Chem 15: 1931-1936.

APPENDIX A

Sediment Transport Analysis

TECHNICAL MEMORANDUM

DATE 28 February 2017

REFERENCE No. 1657231-001-TM-Rev0

TO Mr. John Finlayson, President, White Pass & Yukon Route Railway - P.O. Box 435, Skagway, AK, 99840

CC Tamra Reynolds, Blair McDonald

FROM Phil Osborne, PhD, PGeo and Greg Curtiss, PE EMAIL Phil_Osborne@golder.com

SKAGWAY PRELIMINARY SEDIMENT TRANSPORT ASSESSMENT

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) was tasked by the White Pass and Yukon Route Railroad (WP&YR) to conduct a desktop review and assessment of sediment transport processes at the Skagway Ore Terminal harbor basin (Figure 1) using existing information to determine the likelihood of erosion and deposition of bed sediments in the basin under natural occurring processes and from vessel propeller wash. The assessment was completed in three tasks:

- Task 1 review existing relevant site specific information including: aerial photographs, bathymetric soundings, sediment sampling and characterization, dredging information, water levels, tidal currents, river flows, wind and wave data, and vessel usage in the harbor;
- Task 2 complete a preliminary assessment of the natural processes occurring in the basin (wind, currents, waves, tides, river flows) and determine their potential to result in erosion or deposition of bed sediment in the ship basin;
- Task 3 complete a preliminary assessment of vessel propeller wash scour velocities in the ship basin and determine if they are sufficient to re-suspend and re-distribute bed sediments.

This technical memorandum summarizes Tasks 1 through 3. This memorandum should be read in conjunction with the "Important Information and Limitations of this Technical Memorandum" as this forms an integral part of this document.

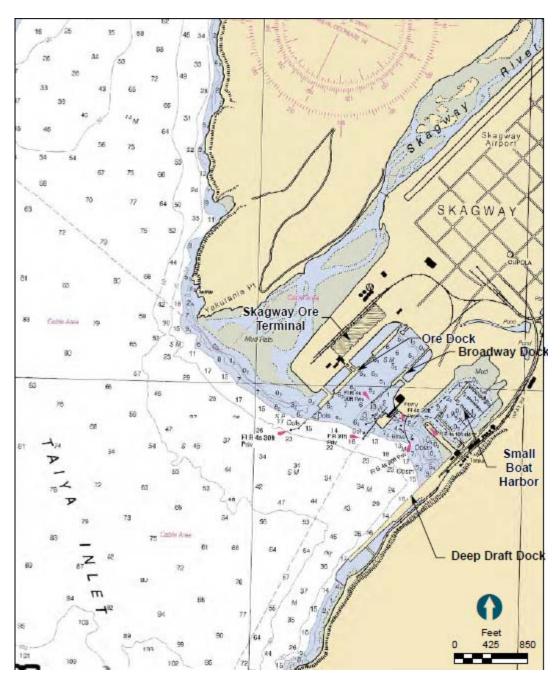


Figure 1: Site Overview Map (adapted from Anchor QEA 2015). NOAA 2015 Chart #17317.

2.0 REVIEW OF EXISTING INFORMATION

2.1 Background and Dredging History

Within a coastal environment the rate of change of sediment is dependent on the amount of sediment brought into the system versus the amount leaving the system. Inputs, outputs and changes in sediment storage comprise the sediment budget for a finite morphological unit which reflects the natural erosion and accretion patterns as well as the artificial removal or addition of sediment due to dredging, disposal, sediment nourishment or marine

construction. A review of the harbor history and dredging and construction activity is necessary not only to account for gains and losses of sediment to the harbour but also to provide context for the relative scale of natural and artificially induced changes in the system.

The Skagway Ore Terminal harbor is located adjacent to the mouth of the Skagway River, where it empties into the Taiya Inlet, which opens into the Lynn Canal, a deep glacial fjord. The harbor was first constructed in the early 1900's and existed in various configurations until mid-century. In the 1960's the Municipality of Skagway constructed a rock groyne over the Skagway tidal flats and river delta and began dredging the harbor between the Skagway River and the State Ferry Dock. A 1959 aerial photograph of river mouth and ore terminal basin is shown in Figure 2, with the outline of the present-day ore terminal traced in yellow. The photo illustrates that the ore terminal basin is constructed in the location of a former delta environment characterised by braided distributary channels and inter-channel bars. In 1969, the Skagway Ore Terminal was constructed and leased to WP&YR to load bulk carriers and berth cruise ships. Ore was loaded onto bulk carriers via open conveyor over the ore dock until 1988. Metal contamination exists within the basin sediments and Taiya Inlet due to the ore loading operations. The following is a timeline of notable recent events in the facility history:

- 1990: The Broadway Dock was built for cruise ships.
- November 3, 1994: An underwater slide destroys the deep draft railway dock and causes wave generated damage about the harbor. Pre and post surveys show an increase from 9 m to 15 m (30 ft to 50 ft) in depth in front of collapsed dock.
- 1995: Dredging of the east basin near the Broadway Dock resulted in a loss of many of the fines in this area (Dames and Moore 1995). The dredging elevation is not specified.
- 1999: Dredging of the east basin near the Broadway Dock to 11.3 m (37 ft) below mean lower low water (MLLW) (PND 1999).
- 2005: Broadway Dock enlarged to accommodate bigger ships (Gartner Lee 2006).
- 2005: Dredging of the eastern portion of the basin to 11 m (36 ft) below MLLW (PND 2005).

Figure 3 shows the present configuration of the Skagway Ore Terminal harbor. The Ore Dock and terminal is located to the left in the photo and the Broadway Dock is located to the right. The harbor basin is approximately 208 m (682 ft) in length and 204 m (669 ft) wide.

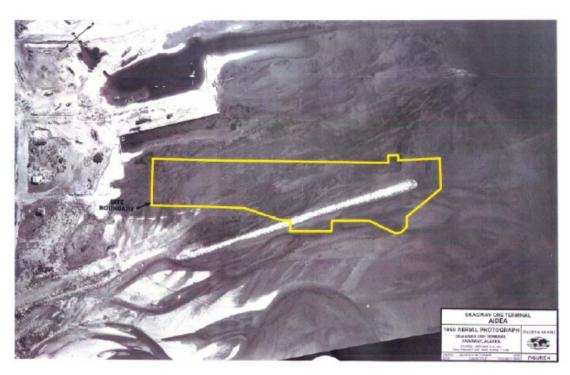


Figure 2: Aerial photo of the Skagway River delta in 1959. An outline of the future ore terminal footprint is traced in yellow (Dames and Moore 1995).

Figure 3: View of the Skagway Ore Terminal harbor. Image source: https://alaskafisheries.noaa.gov/mapping/szflex/

2.2 Sediment Characterization Review

Numerous studies have been completed in and around the harbor to document the metal contamination from ore loading operations. Several of these studies have included assessments of the physical characteristics of the sediment including grain size analysis. In general, sampling and coring of the harbor basin sediment consistently shows the presence of fines and evidence of silt accumulation over time especially near the ore terminal. Relatively high percentages of gravelly sandy sediment are also consistently present. These are interpreted as relict deposits which reflect the historical high-energy fluvial and deltaic environment which pre-dates the construction of the harbour basin. The following is a summary of previous sediment characterization studies:

SRK (1989)

- Stratification within core samples (gravity and vibracore) indicates the contaminated sediment is greater prior to activities being suspended in 1982 than what has accumulated since 1986 when operations resumed.
- Surface sediments "naturally covered by additional natural silt sediment".
- The process of sedimentation is covering the contaminated harbor bottom sediments, it is anticipated that the potential impact of the lead and zinc levels will reduce with time.
- No grain size analysis was completed.

Tetra Tech (1990)

- Grab samples were collected using a 0.1 m² Van Veen sampler.
- Samples collected in the harbor basin ranged in fines content from 22.9% to 61.2%.
- Grain size analysis indicated a general trend of coarser surficial sediment along the east side of the basin and finer sediment near the ore terminal (west side).
- Hypothesizes that coarser material was deposited by Pullen Creek along the east side of the basin.
- Inside the small boat harbor was noted to be a depositional environment.

Dames and Moore (1995)

- Samples were collected with a dart core sampler and a modified 0.1 m² Van Veen sampler.
- Deep, fine-grained silty sand or sandy silt were found closest to Ore Dock.
- Clean, sandy silt were located further from the Ore Dock.
- Poorly sorted gravels and sand, closer to the Broadway Dock, were likely a result of recent dredging which removed many fines in this area.

PND (1999, 2005)

- Sampling near the Broadway Dock found 7.8% to 33% fines and was characterized as sandy with gravel lenses.
- Dredged material was coarse sand with gravel.

Gubala (2007)

- Completed a bathymetry and sub-bottom profiler (SBP) survey of the harbor basin and adjacent river mouth. Sediment cores were collected by divers because gravity coring techniques were unsuccessful due to the consolidated and heterogeneous nature of the sediments.
- The divers reported interspersed cobble and small rock lying atop the sediments throughout the ore terminal basin.
- The presence of cobble and rock at the sediment surface, combined with the lack of flocculent material and a highly packed sediment sequence is reported to be highly indicative of an erosional environment.
- SBP data indicates a hard-packed surface in much of the basin, however sediment layering was interpreted from data at the outer portion of the basin above the slope into Lynn Canal.
- Minimal evidence exists of sedimentation at the river delta in the SBP data, except on the eastern section (nearest the basin).
- Accumulated delta material shunts sediment-laden water directly to the east toward the terminus of the ore terminal.

Tetra Tech (2008)

- Grab samples were collected using a 0.1 m² Van Veen sampler.
- The top 2 to 4 inches of the harbor and outer harbor samples were dominated by fine sand and silt, all samples contained a minimum of ~50% up 90% fines.
- 1 to 2 inches of relatively clean silts were found to be deposited on top of more contaminated sediments near the Ore Dock.
- Anchor QEA (2015) and Hart Crowser (2015)
 - Twenty 15 foot vibracore samples were obtained within the ore terminal basin and nine 100 foot geotechnical borings.
 - The samples were consistent with those expected for a high-energy fluvial and tidal environment. Typically gravelly sand in the upper 4 ft with 29% to 37% gravel content, 55% to 60% sand (fine to coarse) and 6% to 7% fines.
 - In a few samples, near the Ore Dock, a higher percentage of fines (15% to 63%) were present in sediment at 0 to 4 ft below the mudline. In those cases the lithology is more representative of a silty sand with gravels.
 - From 4 to 12 feet below the mudline the lithology is very gravelly sand.
 - Figure 4 shows a generalized cross-section from the geotechnical investigation in the harbor. A small lens of silt sediment is indicated near the Ore Dock.

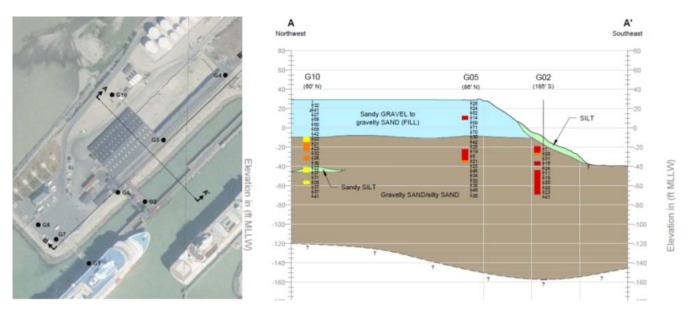


Figure 4: Generalized cross-section from a 2015 geotechnical investigation. The plan map is shown on the left (Hart Crowser 2015).

2.3 Water Levels

Tides in Skagway are mixed semi-diurnal (two highs and two lows per day). Characteristic tidal planes for the Skagway, AK National Ocean Service (NOS) tide station (#9452400) for the tidal epoch from 2007-2011 are reproduced in Table 1. The tide station is located on the Ore Dock at 59° 27.0′ N and 135° 19.6′ W. Elevations are referenced vertically above MLLW in feet and meters.

Table 1: Characteristic Tidal Planes at Skagway, AK (#9452400) (NOAA NOS 2016).

Characteristic Tidal Reference	Elevation (ft, MLLW)	Elevation (m, MLLW)
Highest Observed Water Level ¹	26.47	8.07
Mean Higher High Water (MHHW)	16.73	5.10
Mean High Water (MHW)	15.73	4.79
Mean Sea Level (MSL)	8.81	2.69
Mean Low Water (MLW)	1.62	0.49
Mean Lower Low Water (MLLW)	0.00	0.00
Lowest Observed Water Level ²	-6.45	-1.97

¹observed on 10/22/1945

A sea level trend analysis for 1945 to 2015 at the Skagway tide station indicates a decreasing sea level at a rate of 17.59 mm (0.69 inches) per year (NOAA NOS 2016). Figure 5 shows the mean sea level trend measured at the tide station from 1944 to 2016. The decreasing sea level is typical for southeast Alaska resulting from isostatic glacial rebound from the loss of glacial ice over the last 200 years (USGS 2012).

²observed on 12/14/2008

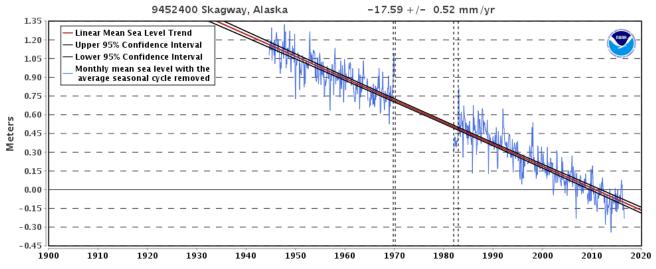


Figure 5: Mean sea level trend with the regular seasonal fluctuations removed. Image source: NOAA NOS (2016).

2.4 Bathymetry

Bathymetric surveys of the ore terminal harbor basin and vicinity were reviewed and used in a bathymetry change analysis to identify potential sedimentation trends within the basin. The following is a list of known hydrographic surveys near the basin:

- NOAA H06945 1943 survey (single beam, only partial coverage –not used in analysis)
- NOAA F00358 1990 survey (single beam)
- NOAA F00416 1995 survey (single beam, post submarine landslide)
- NOAA 1998 H10806 survey (single beam not used in analysis)
- NOAA H10972 2000 survey (multi-beam)
- Gubala Consulting 2007 (single beam data not provided)
- Terrasond October 28, 2014 survey (multi-beam requested raw data)

All of the NOAA hydrographic surveys were provided in meters below MLLW. Raw data from the 1990, 1995, and 2000 surveys were imported into the computer software Surface-water Modeling System (SMS), cleaned, and gridded for comparison to each other. Figure 6 through Figure 9 show the bathymetric surface maps for 1990, 1995, 2000, and 2014. Figure 10 through Figure 12 show bathymetric difference maps between 1995 minus 1990, 2000 minus 1990, and 2000 minus 1995, respectively. Warmer colors in the difference maps indicate accretion, while colder colors indicate erosion. Figure 13 shows four cross-section comparison plots of the 1990, 1995, 2000, and 2014 surveys. Cross-sections from the 2014 survey were manually digitized from the bathymetry surface contour map for the purpose of comparison to the previous surveys because the raw data was not available.

The following observations were made from the bathymetry maps:

- 1990 (Figure 6): The 1990 survey shows a relatively flat seabed in the basin with elevations between 13 m and 13.5 m (42.6 ft and 44.3 ft) below MLLW with the exception of the east basin near the Broadway Dock where the seabed is shallower and approaches 9 m (29.5 ft). Seaward of the basin, the seabed drops off steeply from 15 m (49.2 ft) down to 30 m (98.4 ft) below MLLW into Lynn Canal.
- 1995 (Figure 7): The 1995 survey shows a similarly flat seabed and elevations relatively consistent with the 1990 survey in the west side of the basin. The east basin near the Broadway Dock is deeper with elevations between 11 m and 12 m (36.1 ft and 39.3 ft) below MLLW, likely a result of dredging in 1995. The dredging elevation in 1995 was unspecified the Dames and Moore (1995) report.
- 2000 (Figure 8): The 2000 survey shows a relatively flat seabed across the entire basin between 11 m and 12.5 m (36.1 ft and 41.0 ft) with a few shallower areas near the Broadway Dock. Dredging occurred in 1999 but only at the head of the basin near the Broadway Dock. The dredging elevation was reported to be 11.3 m (37 ft) below MLLW.
- 2014 (Figure 9). The 2014 survey was a high-resolution multi-beam survey and includes the slopes underneath both docks up to approximately 3 m (10 ft) MLLW. This survey shows the basin elevations ranging from approximately 11 m to 12.5 m (36.1 ft to 41.0 ft) below MLLW. A few scour-like depression features exist in the basin floor that are approximately 1 m to 2 m (3.3 ft to 6.6 ft) deep and are up to 50 m (160 ft) long. These depression features may be the result of propeller scour based on their location, size and shape.

The bathymetric difference maps and cross-section plots extracted from each bathymetry map illustrate the trends in bathymetry change between 1995 and 2014. The results show a progressive decrease in depth of 1.0 m and 1.5 m (3.3 ft and 5.0 ft) in the west side of the basin between 1990 and 2014 and 2 m to 3 m (6.6 ft to 10.0 ft) increase in depth on the east side of the basin is observed in the 1995-1990 difference map. The increase in depth on the east side of the basin is consistent with documented dredging. The 1995-1990 difference map also shows what could be a possible scour hole off the southwest end of the Broadway Dock.

The comparisons are used only to identify general trends in the seabed elevation (relative depth). The decrease in depth (shallowing of the basin) observed between bathymetry surveys cannot be completely attributed to deposition of sediment because of errors attributed to the comparison and documented vertical land motion in Skagway as follows:

- Byrnes et al. (2002) estimate that modern horizontal positioning and vertical measurement equipment can minimize error of an individual bathymetric survey to 0.15 to 0.30 m and overall error of the comparison of bathymetric surveys from 0.10 m to 0.40 m (0.4 m is reasonable error for the level and type of survey comparison conducted).
- Positive vertical land motion due to isostatic rebound in the Skagway region accounts for approximately a 0.45 m increase in the seabed elevation over 25 years from 1990 to 2015.

After accounting for these two factors, the deposition of sediment in the west portion of the basin could range from approximately 0.4 m to 0.9 m (1.3 ft to 3.0 ft).

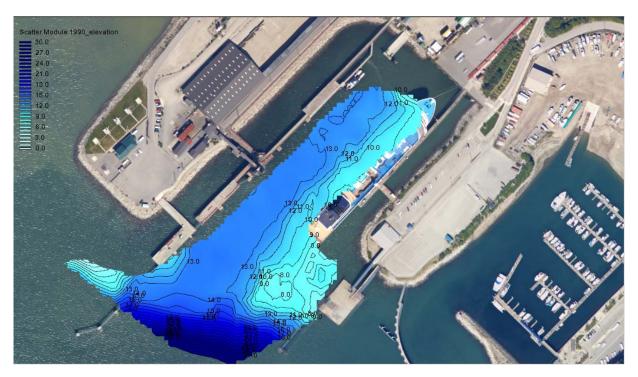


Figure 6: 1990 Bathymetric surface map, seabed elevation in meters below MLLW.

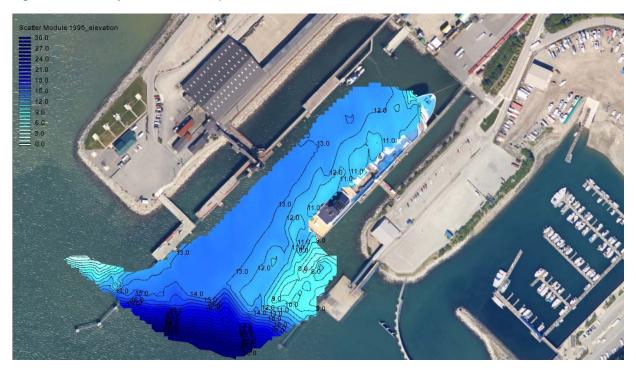


Figure 7: 1995 Bathymetric surface map, seabed elevation in meters below MLLW.

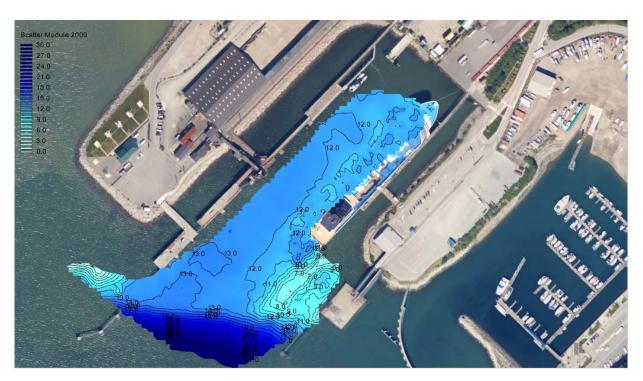


Figure 8: 2000 Bathymetric map surface, seabed elevation in meters below MLLW.

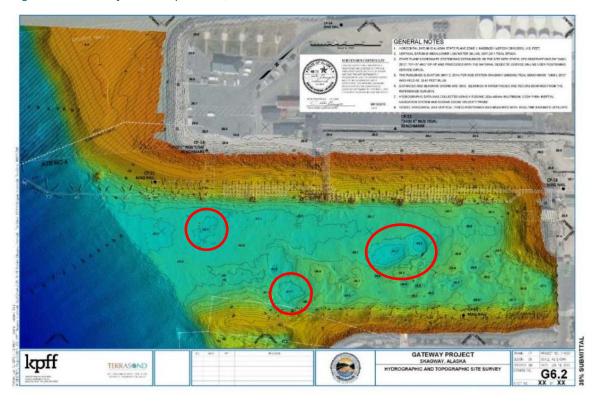


Figure 9: 2014 Bathymetric surface map, seabed elevation in feet below MLLW (KPFF 2015). Scour-like depression features are circled in red.

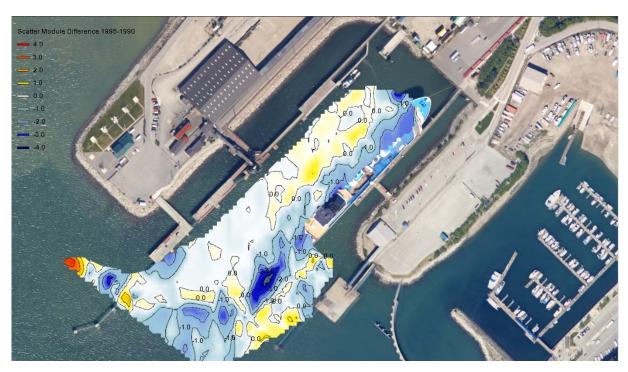


Figure 10: 1995 - 1990 Bathymetric difference map, in meters. Warmer colors indicate accretion, colder indicate erosion.

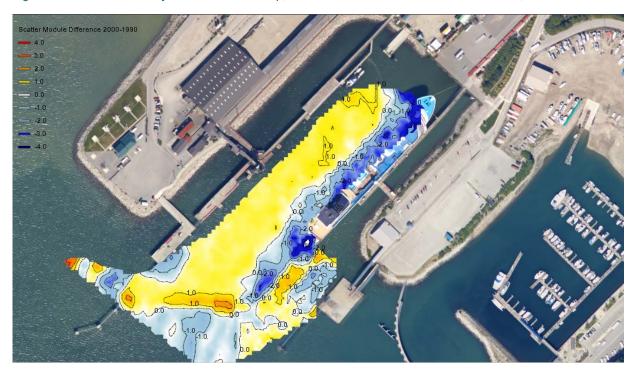


Figure 11: 2000 - 1990 Bathymetric difference map, in meters. Warmer colors indicate accretion, colder indicate erosion.

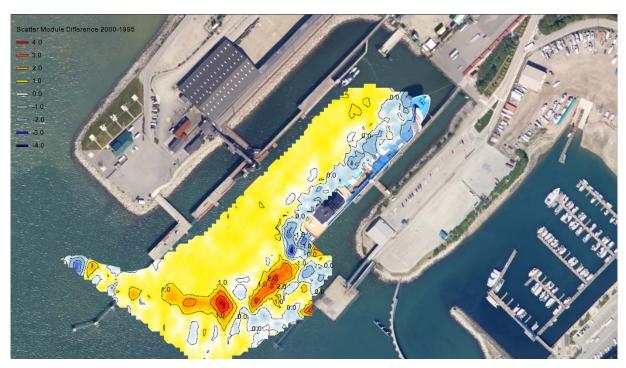


Figure 12: 2000 - 1995 Bathymetric difference map, in meters. Warmer colors indicate accretion, colder indicate erosion.

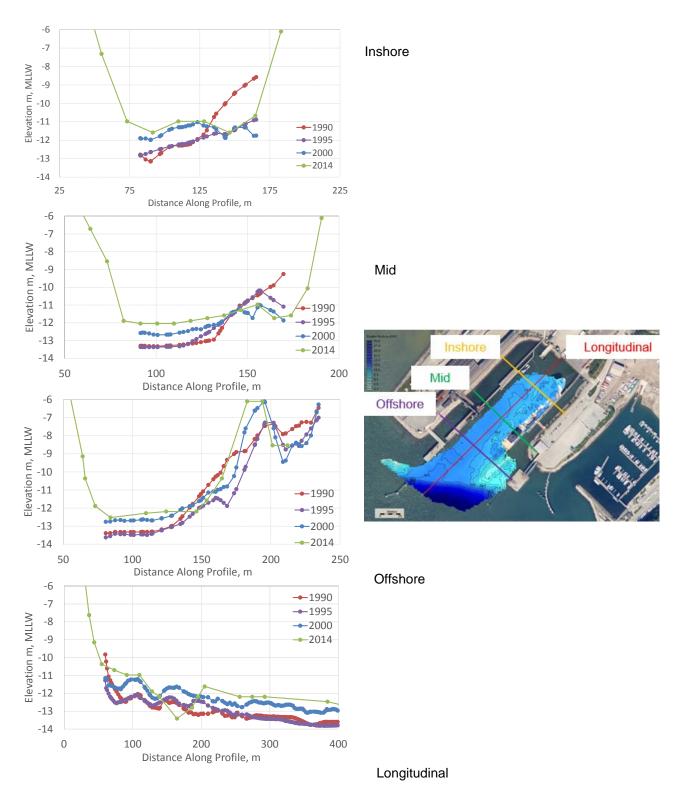


Figure 13: Comparison of four cross-section from each bathymetry surface.

2.5 River Flows

2.5.1 Skagway River

The Skagway River measures 30.4 km (19 miles) from the Warm Pass tributary and flows southwest into Taiya Inlet and Lynn Canal (Buzzell 2004), entering Taiya Inlet adjacent to the ore terminal harbor. The lower 5 miles of the river are characterized by braided channels separated by gravel bars and terraces. Figure 14 shows a photograph of the river mouth in 1929 prior to the modern configuration of the harbor. The braided river delta encompassed most of the land area at the mouth, including what is now the ore terminal harbor. The construction of the terminal basin would have prevented any further migration of braided channels across the basin and therefore permanently cut off the basin to most or all coarse bedload transport from the Skagway River.

Peak discharges on the Skagway River occur from approximately May to November and the 100-year flood event is estimated to be 38,000 cubic feet per second (cfs) (PND 2016). Eight flood events above 13,000 cfs have occurred over the last 120 years, with the most recent event occurring in 1981 (PND 2016). The sediment plume at the mouth of the river is well defined in photographs in Figure 15 and Figure 16, illustrating the large potential source of fine sediment (fine silts and clays) for deposition in and near the ore terminal basin. In the latter photograph, the fresh water plume is trapped by the saltwater wedge on a flooding tide (approaching slack tide), a potential mechanism for sediment deposition in the ore terminal basin.

Figure 14: The Skagway River mouth and town of Skagway, June 22, 1999 (Buzzell 2004).

Figure 15: May 21, 2004 aerial photo of the Skagway River mouth and sediment plume (USACE 2008).

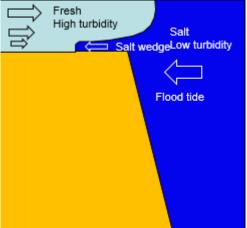


Figure 16: July 13, 2009 aerial photo of the Skagway River mouth and sediment plume. The cartoon illustrates the trapping and deflection of the silty fresh water plume by a flooding tide as can be seen in the photo

2.5.2 Pullen Creek

Pullen Creek is a low-gradient spring-fed creek that is approximately 2.4 km (1.5 miles) long running along the northeastern edge of downtown Skagway and directly into the ore terminal basin (Figure 17). The creek receives additional water from the Alaska power and Telephone (APT) Dewey Lakes Hydroelectric plan (ADEC 2005). Discharge below the APT input ranges from <2.0 cfs to 40 cfs depending on whether APT is discharging into the creek.

The creek streambed cuts through floodplain deposits from the Skagway River and is primarily composed of gravel, cobble, and boulders. A few sections of exposed bank lacking vegetation may be prone to erosion and transporting fines downstream at higher flows (ADEC 2005).

Figure 17: Pullen Creek, highlighted in blue (ADEC 2005).

2.6 Wind and Waves

2.6.1 Wind Climate

Historical hourly wind records were obtained for the Skagway Airport meteorological station, the closest available station to the project, (station ID: WBAN 25335). The Skagway Airport station is located approximately 0.5 km (0.3 miles) northeast of the ore terminal at 59.456° N, 135.324° W at an elevation of 6.1 m (20 ft) above mean sea level (msl). Figure 2 shows a wind rose based on the data collected at Skagway Airport from 1973 through 2016 (44 years). In general, the winds are bi-modal with winds typically arriving from the southwest or from the northeast. The most prevalent winds are from the south-westerly sector. Figure 3 shows wind roses by month for the station. Prevailing winds from April through October are from the southwest, whereas from November through March northeast winds are prevalent but southwest winds are also present. Wind speed statistics were calculated for the station and the results are shown in Table 2. Data were filtered for zero values and missing records. The maximum wind speed recorded at the station over the 44 year period of record was 67.8 knots.



Figure 18: Wind rose for Skagway Airport from 1973 to 2016.

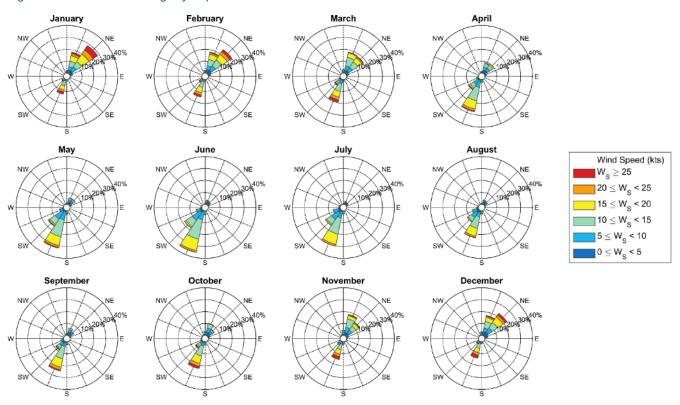


Figure 19: Monthly wind roses from Skagway Airport from 1973 to 2016.

Min	1%	5%	25%	Median	Mean	75%	95%	99%	Max	Std
0.9	2.6	2.6	7.0	12.2	12.2	15.6	24.3	29.5	67.8	6.5

Minimum (Min), Maximum (Max), Standard Deviation (Std), 99% = 99th percentile, No. Valid = number of valid measurements, % Valid = percentage of valid data relative to total dataset

A peaks over threshold (POT) extreme value analysis (EVA) was carried out using wind speeds recorded at Skagway Airport to determine wind speeds for a number of return periods. The POT analysis involved (Goda, 1988; Leenknecht et al., 1992):

- Sorting the time series wind data by the predominant north-easterly and south-westerly directional sectors to isolate data associated with different meteorological conditions (i.e. belonging to different statistical parent distributions).
- Identifying peak wind speeds associated with independent storm events, determined based on exceedance of wind speed thresholds (35 knots) and a minimum inter-event duration of 1 hour. This resulted in the identification of 61 wind events for the south-westerly sectors between 1973 and 2016.
- Fitting a variety of extreme value probability distribution functions (pdfs), including the Fisher Tippett Type 1 (FT-1) and Weibull distributions, to the wind events.
- Based on the best fit extreme value pdf, return value wind speeds were extrapolated for return periods ranging from 1 year to 50 years.

Return value wind speeds based on the POT analysis are summarized in Table 3 for the south-westerly directional sector.

Table 3: Extreme Wind Speeds and Associated Return Interval for South-westerly Winds at Skagway Airport (1973-2016)

Return Interval (years)	Wind Speed (knots)	95% Confid	lence Interval ((knots)
1	35.5	34.3	to	36.8
2	38.0	35.9	to	40.0
5	42.3	38.2	to	46.3
10	46.0	40.0	to	51.9
25	51.4	42.7	to	60.2
50	55.9	44.8	to	67.0

2.6.2 Wind-Generated Waves

No direct measurements of waves and no modelled waves from valid models are available to the study, therefore a wind-wave hindcast was completed using the extreme wind speeds from the wind climate analysis. Wind-waves at the site were estimated using the Automated Coastal Engineering System (ACES) software (Leenknecht et al. 1992) developed by the United States Army Corps of Engineers (USACE) to estimate wind-wave growth over open water and restricted fetches in deep and shallow water. The deep water, restricted fetch condition was used for calculating wind-waves generated over fetches to the southwest of the ore terminal using the wind parameters from Section 2.6.1.

Return value wind speeds for the southwest directional sector at the Skagway Airport (Table 3) were used to evaluate significant wave heights generated along fetches to the southwest of the site (approximately 205 degrees relative to true North). Nearshore wind-generated wave estimates (significant wave height and peak wave period) are provided in Table 4 wind events (with return periods of 1 and 50 years), respectively. Table 4 also provides the maximum bottom orbital velocity for the given wave condition which are useful for assessing the potential for sediment transport.

Table 4: Estimated waves generated by extreme winds blowing over south-westerly fetches.

	Return Interval (years)	Wind Speed (knots)	Significant Wave Height, H _s	Peak Wave Period, T _p (seconds)	Maximum Bottom Orbital Velocity (cm/s)
	1	35.5	0.85 m (2.8 feet)	3.2	1.5
,	50	55.9	1.4 m (4.7 feet)	4.0	10.6

2.6.3 Wind-driven Current

A wind-generated surface currents could occur as a result of winds blowing over the fetch to the southwest of the harbor. A commonly accepted rule of thumb for surface current estimation is 3% of the wind speed for long fetches (Wu 1983). For a 1 year return interval wind speed of 35.5 knots, this would result in a surface current of approximately 0.50 m/s (1.6 ft/s). Estimating the bottom current is complicated by other processes occurring in the harbor basin, including wind setup of the water surface, wind-generated waves, and tidal currents, however the bottom current is predicted to be on the order of 1/10th the surface wind-driven current, or approximately 0.05 m/s (0.16 ft/s) (Reid 1957) based on experiments for a bounded channel.

2.7 Tidal Currents

No direct measurements of tidal currents are available for the harbor basin. Gubala (2007) estimated tidal current speeds for the harbour based on the commercial software Nobeltec Tides and Currents. The latter provides an estimate of tidal currents for Skagway based on constituents applicable to the main arm of Taiya Inlet and not specifically the Skagway Ore Terminal. The tidal currents in the Skagway Ore Terminal harbor are constrained by the tidal prism of the basin and therefore a tidal prism analysis of the harbor basin was completed to estimate the maximum tidal velocity at the entrance to the harbor. The tidal prism, Ω , is the volume of water in an estuary or inlet between mean high tide and mean low tide (Hume and Bell 2003). For the Skagway ore terminal basin the tidal prism can be approximated as shown in Figure 20; the difference between MHHW and MLLW, 5.1 m (16.73 ft), multiplied by the cross-section width (W) and average basin length (L). The approximate tidal prism is 216,000 m³ (7.6 million ft³). An estimate of the sinusoidal maximum flow through the channel cross-section can then be calculated using the equation from Hume and Bell (2003):

$$Q_{max} = \frac{\pi\Omega}{T}$$

Where T is the tidal period (12.42 hours in this case). The maximum cross-section averaged flow velocity is estimated by dividing Q_{max} by the cross-sectional area. The resulting velocity is less than 0.01 m/s. A similar method for calculating the maximum cross-section averaged flow is presented by Whitehouse et al. (2000) using the maximum rate of change of the tide level. Applying this method to the ore terminal harbor also results in an estimated maximum flow velocity of less than 0.01 m/s.

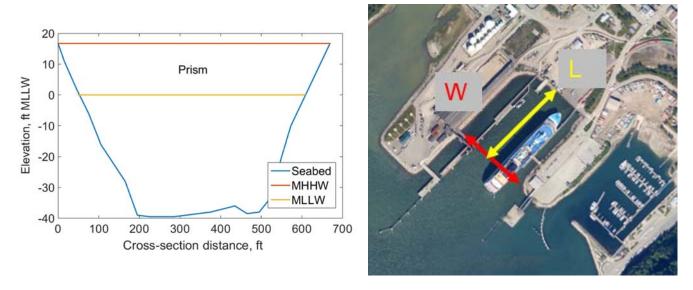


Figure 20: Tidal prism cross-section (left) and plan view (right) for the Skagway Ore Terminal basin.

2.8 Vessel Propeller Wash

No direct measurement of vessel propeller wash is available for the Skagway Ore Terminal, however, Gubala (2007) suggests this might be a mechanism for scouring sediment. The interpretation of the 2014 bathymetry map also suggests that propeller wash could be important in modifying the bathymetry of the basin. Therefore, Golder conducted an analysis of vessel propeller wash to determine their potential to re-suspend and re-distribute bed sediments.

Bulk ore carriers and cruise ships are the primary vessels making ports of call to the Ore Dock and Broadway Dock. The Southeast Alaska Vessel Traffic Study (NUKA 2012) found that in 2011 and 2012 the one week peak-season cruise ship port calls in Skagway was 22 and ore bulk carriers made 6 port calls in 2012.

The ore dock at Skagway can handle Handysize bulk carriers which are typically 35,000 DWT with drafts of 8 m to 9 m and lengths 150 m to 200 m. Typical passenger cruise ships are those in the R-class from Holland America with drafts of approximately 8 m and lengths of 240 m. Ships maneuvering in the harbor is often tugboat-assisted.

A vessel propeller wash analysis was completed using the equation in the CIRIA Rock Manual (2007) for estimating the time-averaged current velocities in propeller jets caused by main propellers. Velocities were estimated for a typical bulk ore carrier / cruise ship operating at 25% power and for a tugboat operating at full power at low tide. The equation uses the vessel draft, propeller dimensions, and power to estimate velocity behind the propeller, $U_{p,}$ as shown in the schematic in Figure 21.

Figure 22 shows a contour map of vessel propeller velocity behind a bulk ore carrier / cruise ship at the seabed. Velocities greater than 1 m/s at the seabed are concentrated in a small area 25 m (82 ft) behind the propeller and 20 m (66 ft) laterally on either side of the propeller. Maximum estimated velocity behind the ore bulk carrier and cruise ship are 1.6 m/s; behind a tugboat maximum estimated velocity is 0.7 m/s.

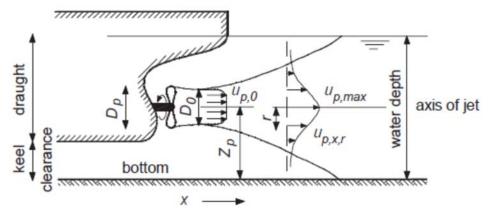


Figure 21: Vessel propeller wash due to a main propeller (CIRIA 2007).

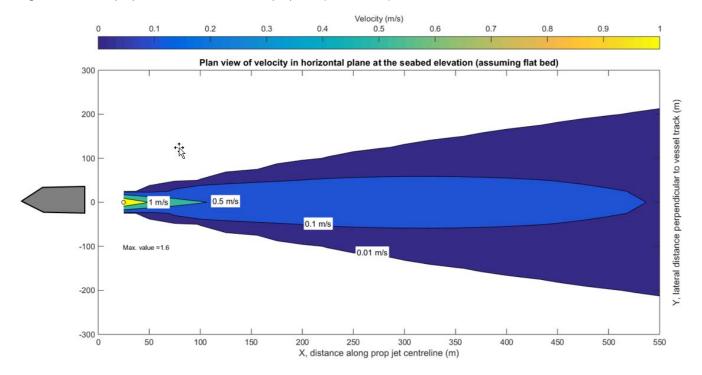


Figure 22: Plan view of vessel propeller wash behind the main propeller for a bulk ore carrier / cruise ship at the seabed elevation.

3.0 PRELIMINARY ASSESSMENT OF COASTAL AND RIVER PROCESSES

The data review identified several natural processes occurring in the Skagway Ore Terminal harbor basin (wind, currents, waves, tides, river flows) which could result in the entrainment, dispersion, and advection of sediment. Additionally, vessel propeller wash scour velocities in the ship basin were identified as a potential mechanism to re-suspend and re-distribute bed sediments. Bed shear stresses for each forcing mechanism were calculated using the methods of Soulsby (1997) and Whitehouse et al. (2000) for prediction of bed sediment entrainment assuming silt and sand sized sediment. A summary of this analysis is provided in Table 5. Figure 23 provides a preliminary conceptual model for sediment processes occurring in the harbor basin. It shows two sources of sediment from the Skagway River and Pullen Creek (likely insignificant) and the natural processes occurring in

the basin, including tidal currents, wave flux and storm surge (wind-driven), and vessel propeller wash. Vessel propeller wash and extreme wind-generate waves are possible mechanisms for re-suspension and transport of sediment; tidal trapping of the Skagway River plume (shown in cross-section view) could also advect sediment into the basin.

- One mechanism for erosion in the harbor basin is vessel propeller wash which could suspend gravelly, sandy, and silty sediments. Vessels enter the harbor frequently during the summer season. Evidence of scour-like depressions present in the 2014 multi-beam survey (Figure 9) support the hypothesis that vessel propeller wash from either large bulk ore carriers, cruise ships, or tugboats could cause scour of the bed sediments in the basin. The scale of the scour-like depressions are consistent with the scale of the high velocity region in Figure 22.
- Bottom orbital velocities from extreme wind-generated waves could also be sufficient to suspend sandy and silty sediment in the harbor basin. These events are infrequent and primarily limited to the winter season.
- Sources of sediment to the basin include advection or forcing of the Skagway River plume during the freshet by the following mechanisms: prevailing wind-driven currents from the southwest and flood tide trapping and deflection of the plume. Sediment in the Skagway River plume is likely restricted to fine silts and clays. Pullen Creek is probably an infrequent source of sediment and unlikely to be significant in quantity.

Table 5: Bed sediment entrainment for various forcing mechanisms in the Skagway Ore Terminal basin.

Forcing mechanism	Condition	Sediment entrainment?
Extreme wind-generated waves and storm surges (50 year return interval)	$H_s = 1.4 \text{ m } (4.7 \text{ feet}); T_p = 4.0 \text{ seconds}$	yes
Typical wind-generated waves (1 year return interval)	$H_s = 0.85 \text{ m}$ (2.8 feet); $T_p = 3.2 \text{ seconds}$	no
Wind-driven current	Max surface current ~ 0.5 m/s (1.6 ft/s) and bottom current in harbor < 0.05 m/s (0.16 ft/s)	no
Tidal currents	V _{max} < 0.01 m/s (0.03 ft/s)	no
Vessel propeller wash, bulk ore carrier / cruise ship	1.6 m/s (5.2 ft/s)	yes
Vessel propeller wash, tugboat	0.7 m/s (2.3 ft/s)	yes

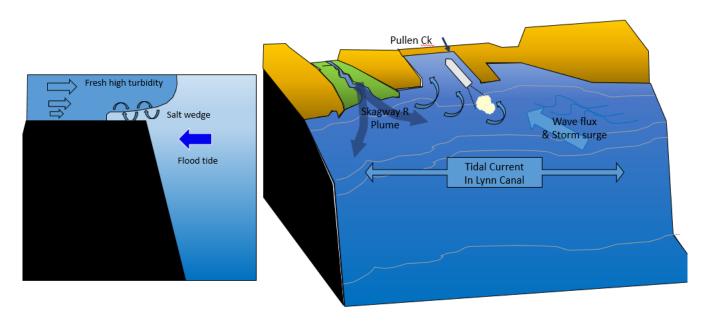


Figure 23: Conceptual model of Skagway Ore Terminal harbor sedimentation.

4.0 SUMMARY AND RECOMMENDATIONS

The characterization of sediments at and beneath the seabed in the Skagway Ore Terminal harbor basin are generally consistent with relict deposits from a coarse clastic braided river and delta distributary and tidal sand flat environment, including evidence of interbedded gravel and sand with some layers of silts (fines) deposited prior to harbor development. The sediment lithology is characteristic of the previously high energy environment where the harbor is now located. However, the current configuration cuts off the harbor from the riverine processes and the resulting environment is typically a low energy and depositional environment.

The bathymetry change analysis, sediment sampling, and sediment coring between 1990 and 2015 are consistent with the pattern and timeline of dredging at the Broadway Dock and progressive accumulation of fine sediment near the Ore Dock. The advection or forcing of the Skagway River plume during the freshet is a mechanism that could explain accumulation of fine sediment near the Ore Dock.

Mechanisms that could result in seabed scour in the ore terminal basin include vessel propeller wash (primarily during summer season) and wave orbital velocities during infrequent extreme storms in the winter season.

Further understanding of the sediment transport in the Skagway Ore Terminal harbor could be improved with the following:

- Direct measurements or calibrated model predictions of sediment transport mechanisms and seabed response including:
 - Vessel propeller wash and related suspended sediment
 - Wave, tide and river currents within and adjacent to the harbor basin
 - Sediment accumulation and scour
- A sediment budget analysis accounting for gains, losses and changes in storage for the Skagway Ore Terminal harbor basin.

5.0 CLOSURE

We trust the information contained in this technical memorandum is sufficient for your present needs. Should you have any additional questions regarding the project, please do not hesitate to contact the undersigned.

GOLDER ASSOCIATES LTD.

Phil Osborne, PhD, PGeo Principal, Coastal Practice Leader

Greg Curtiss, PE
Project Coastal Engineer
non signing contributing author

PO/GC/lih

 $\label{thm:condition} $$ \gal\burnaby\final\2016\3\ proj\1657231\ wpyr_ore\ basin\ sediment_alaska\1657231-001-tm-rev\0-skagway\ sediment\ transport\ assmt\ 28feb_17.docx for the project of the proje$

SKAGWAY ORE BASIN RISK ASSESSMENT

APPENDIX B

Sampling and Analysis Plan for Surficial Sediment Sampling

STUDY DESIGN AND SAMPLING & ANALYSIS PLAN

Skagway Ore Basin Sediment Assessment

Submitted to:

White Pass & Yukon Route Railway PO Box 435 Skagway, AK 99840

Report Number: 1657231-002-R-Rev1

Distribution:

1 copy - White Pass & Yukon Route Railway

1 copy - Golder Associates Ltd.

Table of Contents

1.0	INTRO	DUCTION	1
	1.1	Purpose of this Document	1
	1.2	Site Description	1
	1.3	Summary of Historical Information	1
	1.3.1	Sediment Chemistry, Toxicity and Benthic Community Data	1
	1.3.2	Other Historical Information	2
	1.3.3	Sediment Transport Assessment	3
	1.4	Remaining Data Gaps	4
2.0	STUDY	Y DESIGN	5
	2.1	General Approach	5
	2.2	Sample Locations	6
	2.2.1	Selection of Ore Basin Locations	6
	2.2.2	Selection of Reference Locations	8
	2.2.3	Location and Number of Samples	8
3.0	SAMP	LING AND ANALYTICAL METHODS	g
	3.1	General Field Procedures	ç
	3.2	Sediment Sample Collection	10
	3.3	Sediment Chemistry Analysis	11
	3.4	Benthic Community Sample Collection and Analysis	13
	3.5	Tissue Sample Collection and Analysis	13
	3.6	Sediment Toxicity Testing	15
	3.7	Toxicity Identification Evaluation	16
4.0	RISK A	ASSESSMENT WORK PLAN	1€
	4.1	Human Health Work Plan	16
	4.2	Ecological Risk Assessment Work Plan	18
5.0	REPOI	RTING	19
6.0	CLOSI	URE	20
7.0	REFER	RENCES	21

i

TABLES

Table 1: Types of Data Collected During Historical Investigations in the Vicinity of the Ore Basin	2
Table 2: Proposed Sampling Effort	9
Table 3: Sampling requirements, volume, container and preservative, and holding times	11
Table 4: Sediment chemistry analytical methods	12
Table 5: Tissue chemistry analytical methods	14

FIGURES

- Figure 1: Site Location
- Figure 2: Surface Sediment and Core Sample Locations
- Figure 3: Reference Sediment Sample Locations
- Figure 4A: Distribution of Hazard Quotients for Surface Samples (0 to 6 inch)
- Figure 4B: Distribution of Hazard Quotients for Subsurface Samples (6 to 36 inch)
- Figure 5A: Total Hazard Quotients for Surface Samples Metals
- Figure 5B: Total Hazard Quotients for Near Surface Samples Metals
- Figure 6: Proposed Sample Locations

APPENDICES

APPENDIX A

Chemistry Figures

APPENDIX B

Resumés for Qualified Environmental Professionals and Qualified Samplers

W

ORE BASIN SAMPLING AND ANALYSIS PLAN

1.0 INTRODUCTION

1.1 Purpose of this Document

This document provides a study design and sampling and analysis plan (SAP) to support an ecological and human health risk assessment for the Skagway Ore Terminal (the "Ore Basin"). A brief overview of the historical data is provided to provide context for the proposed study design. The sampling and analysis plan describes the specific data to be collected along with details regarding the proposed sampling methodology and quality assurance / quality control measures.

1.2 Site Description

The Skagway Ore Terminal and other portions of Skagway Harbour are shown on Figure 1. Skagway Harbour lies at the terminus of a deep fjord (Lynn Canal) on the historical alluvial fan of the Skagway River. The harbour consists of a limited near-shore zone with a typical water depth of between 30 and 40 feet (measured from mean low tide) which transitions rapidly to the deeper waters in Lynn Canal (Anchor 2015). The shoreline of Skagway Harbour was established on the historical alluvial fan through a combination of dredging and filling in the early 1900s (Tetra Tech 2008). Substantial changes to the harbour configuration were made during the construction of the Small Boat Harbour (circa 1958), the State Ferry Terminal (circa 1963), and the expansion of the Ore Terminal (circa 1968), all of which involved dredging and use of the dredged material to expand and reconfigure the shoreline (Anchor 2015). A brief summary of historical site activities at the Ore Terminal is provided for further context (Anchor 2015).

- The Ore Terminal portion was leased by White Pass and Yukon Railway (WYPR) from the Municipality of Skagway in the late 1960s and was primarily used for the trans-shipment of ore concentrate from the Faro Mine (Yukon; primarily lead and zinc concentrates) using an open conveyor system between 1967 and 1982.
- Sporadic use of the facility for shipping ore concentrates continued between 1982 and 1997 with a variety of terminal operators, and the conveyor system was enclosed in 1991.
- A concrete dock was added in 2000 to allow the facility to be used by cruise ships, and the historical ore concentrate building was demolished in 2003. A new concentrate building was constructed and has been used for shipment of copper concentrates from the Minto Mine since 2007.
- The terminal is currently operated by Alaska Industrial Development and Export Authority (AIDEA). Infrastructure includes a fuel depot (operated by Petro49) and a container facility (operated by Alaska Marine Lines) in addition to the ore concentrate shipping and cruise ship docking.

1.3 Summary of Historical Information

1.3.1 Sediment Chemistry, Toxicity and Benthic Community Data

A number of investigations have been conducted to obtain information about the environmental quality of surface water and sediment in Skagway Harbour. The locations of historical samples are provided in Figures 2 and 3 and an overview of the types of data collected is provided in Table 1.

Table 1: Types of Data Collected During Historical Investigations in the Vicinity of the Ore Basin

Document		ment Chemistry ce Grabs / Core			nter nistry	Toxicity Testing	AVS	Tissue Chemistry	Benthic Community
	Metals	Hydrocarbons	Grain Size	PW	SW	J 1 1 3		,	,
RWM (1984)	Yes / NA	_	Yes	_	Yes	_	_	Crabs, mussels, sole	Summary statistics only
SRK (1989)	Yes / Yes	_	Yes	_	_	_	_	_	_
TetraTech (1990a, b)	Yes / NA	Yes / —	Yes	_	Yes	_	Yes	Mussels, sole, sculpin	Visual inspection
Dames and Moore (1995)	Pb and Zn only	_	Yes	_	Yes	_	_	Mussels	Collected, but not analyzed
PND (1999)	Yes / —	Yes /—	Yes / —	_	_	_	_	_	_
PND (2005)	Yes / Yes	Yes	Yes	_	_	_	_	_	_
URS (2006)	Cu, Pb and Zn only	_	_	_	_	_	_	_	_
Gubala (2007)	Yes/Yes	_	_	_	_	_	_	_	_
TetraTech (2008)	Yes / Yes	_	Yes	Yes	Yes	Yes	Yes	Mussels	_
TetraTech (2009)	_	Yes / Yes	_	_	_	_	_	_	_
Gubala (2011)	Yes / Yes	Yes / Yes	_	_	_	_	_	_	_
Gubala (2013)	Yes / Yes (no Cu, Zn)	Yes / Yes	_	_	_	_		_	_
Anchor QEA (2015)	Yes / Yes	Yes / Yes	Yes / Yes	_	_	_		_	_

Notes: PW = pore water; SW = surface water; SEM:AVS = simultaneously extracted metals and acid volatile sulphides

1.3.2 Other Historical Information

Other types of data present in these historical documents that are not summarized in the table above include:

- Anchor (2015) conducted testing to investigate different dredge disposal options.
 - A sequential batch leaching test (SBLT) was conducted on four samples. This test is typically used to evaluate the potential for contaminants to leach from dredged material placed into an open-water disposal site (i.e., as the dredged material falls through the water column. The test involved mixing sediment with artificial seawater at a ratio of 1:4, agitating the sample on a shaker table for 24 hours, and then centrifuging the mixture to remove sediment. The process was then repeated three additional times with the original aliquot of sediment to generate four sequentially extracted water samples. Water samples were submitted for chemical analysis (e.g., dissolved metals). Data were compared to the Alaskan ambient water quality guidelines (Alaska Department of Environmental Conservation [ADEC] 2008). Dissolved concentrations of lead exceeded the Criterion Maximum Concentration (CMC) in two of the four samples. Dissolved concentrations of copper exceeded the CMC in all four samples. Anchor (2015) concluded that this information meant that the material would be unlikely to be suitable for open water disposal.

17 April 2017 Report No. 1657231-002-R-Rev1

- A toxicity characteristic leachate procedure (TCLP) test was conducted on four composite sediment samples to determine if the material was suitable for unconfined upland disposal. The leachable concentrations were compared to federal hazardous waste screening limits. Lead concentrations exceeded the screening limit and therefore, Anchor concluded that it would likely be necessary to dispose of the material in a permitted landfill capable of accepting hazardous waste (i.e., a Class C landfill).
- Anchor noted that dredged sediment may be appropriate for beneficial reuse in a marine or upland setting
 if amendments were utilized.
- There has been limited sampling for simultaneously extractable metals and acid-volatile sulphides (SEM:AVS) in the historical data set. SEM:AVS provides a surrogate measurement for the bioavailability of divalent metals such as copper, lead and zinc. Tetra Tech (2008) found that seven of the ten samples with measurable AVS were unlikely to have high bioavailability. This finding reinforces the idea that relying on bulk sediment chemistry as the primary method of evaluating risks may overstate contaminant hazard.
- Tetra Tech (2008) conducted a toxicity identification evaluation (TIE) in conjunction with toxicity tests on whole-sediments collected from the Ore Basin. Porewater was extracted from two sediment samples that demonstrated 100% mortality to mysid shrimp in the whole-sediment toxicity tests. Porewater was also extracted from a reference sediment sample. The porewater samples were treated with an agent that would bind with divalent metals like copper, lead and zinc to reduce their toxicity. The treated samples were re-tested with the same mysid shrimp toxicity test, and no improvement in survival was observed, which suggests that metals were not the causative agent in the initial tests.

1.3.3 Sediment Transport Assessment

The degree to which sediment at the site would likely be erosional or depositional was identified as an initial data gap during the review of the documents summarized above. Sediment stability has the potential to influence the broader management plan for contaminated sediment because a site that is highly erosional suggests that:

a) deeper sediment must be included in the ecological risk assessment because it will be exposed over time; and b) natural attenuation is unlikely to be a successful mitigation strategy because contaminated material may be re-suspended and redistributed. Golder completed a review of the existing reports and used readily-available information to conduct a preliminary sediment transport assessment of the Skagway Ore Basin (Golder 2016). This sediment transport assessment considered six mechanisms for sediment transport:

- extreme wind-generated waves and storm surges
- typical wind-generated waves
- typical wind-driven currents
- tidal currents
- river flows
- vessel propeller scour (tugs and large vessels)

The analysis described the characterization of sediments at and beneath the seabed in the Skagway Ore Terminal harbor basin as generally consistent with relict deposits from a coarse clastic braided river and delta distributary and tidal sand flat environment, including evidence of interbedded gravel and sand with some layers of silts (fines) deposited prior to harbor development. The sediment lithology is characteristic of the previously high energy environment where the harbor is now located. However, the current configuration cuts off the harbor from the riverine processes and the resulting environment is typically a low energy and depositional environment. The bathymetry change analysis, sediment sampling, and sediment coring between 1990 and 2015 are consistent with the pattern and timeline of dredging at the Broadway Dock and progressive accumulation of fine sediment near the Ore Dock. The advection or forcing of the Skagway River plume during the freshet is a mechanism that could explain accumulation of fine sediment near the Ore Dock. Mechanisms that could result in localized seabed scour in the ore terminal basin include vessel propeller wash (primarily during summer season) and wave orbital velocities during infrequent extreme storms in the winter season.

1.4 Remaining Data Gaps

Investigations to date have focused primarily on sediment chemistry, and have not been interpreted within a risk assessment framework in conjunction with other, equally important lines of evidence. A detailed human health and ecological risk assessment does not appear to have been completed. In terms of ecological and human health risks, Golder reviewed the available site information and concluded that:

- Metals (specifically, copper, lead and zinc) are the primary contaminants of concern related to the operation of the ore dock. There was sufficient information about the vertical and horizontal distribution of these metals in sediment based on the totality of samples collected (see Appendix A for the distribution of these three metals). Many historical samples were limited to these primary contaminants of concern and did not quantify other constituents. Notwithstanding this limitation, both lead and zinc were found to exceed the numerical screening limits for the protection of aquatic life at several locations and therefore, further assessment is appropriate.
- There was a moderate number of measurements of concentrations of other contaminants of potential concern (such as polycyclic aromatic hydrocarbons), although the data are inadequate to provide necessary spatial coverage. Multiple historical studies excluded analysis of samples for hydrocarbon concentrations. The available data show that there are exceedances of numerical screening limits for Polycyclic aromatic hydrocarbons (PAHs) in several locations (see Appendix A for the distribution of light and heavy molecular weight PAHs). The source of these hydrocarbons has not been conclusively established.
- The available sediment toxicity data are not sufficient to support an ecological risk assessment. There were no long-term chronic toxicity data available. Historical toxicity data were limited to one study (Tetra Tech 2008) that included:
 - Toxicity testing on six whole-sediment samples (plus one reference sample) were conducted using a 10-d amphipod survival and growth test, as well as a 10-d polychaete survival and growth test. There were no effects observed on amphipod survival and growth, or polychaete survival relative to the reference station. There were reductions in polychaete growth observed in three of the six samples collected from the study area relative to the reference station.
 - Toxicity testing on eight surface water samples (plus one reference sample) with a 96-h mysid shrimp survival test, and a 48-h larval fish survival test. No effects were observed.

- Information on the diversity, abundance and biomass of resident benthic organisms is not sufficient to support an ecological risk assessment. Tetra Tech (1990a) reported that the benthic community near the ore terminal was "obviously stressed" because there were few organisms present in the two stations that had the highest lead and zinc sediment concentrations. However, Tetra Tech (1990a) identified at least three other stations without organisms that were not considered to have highly elevated concentrations of metals. The observation by Tetra Tech (1990a) appears to be based on visual inspection of a limited number of samples (not quantitative analysis by a qualified taxonomist).
- The available data regarding concentration of metals in fish and other aquatic organisms is limited and has not been evaluated in the context of an ecological or human health risk assessment.
 - Several authors commented there was a general spatial pattern with tissue concentrations of lead and zinc higher in mussels collected from the vicinity of the ore dock relative to those collected elsewhere. Mussels were the most frequently sampled organism. The data were not sufficient to evaluate spatial patterns in tissue concentrations relative to sediment concentrations. Fish tissue samples were limited in number and did not consistently exhibit elevated concentrations of metals.
 - Tetra Tech (1990b) conducted a human health risk assessment on a limited seafood sampling data set (i.e., seven mussel samples; four yellowfin sole muscle samples) and concluded that risks associated with seafood consumption were acceptable for mercury and zinc. The evaluation for lead focused on the estimated contribution of seafood consumption to predicted lead concentration in human blood samples, and concluded that seafood consumption would not be a major exposure pathway. Golder understands that a blood lead sampling program was subsequently conducted for Skagway residents and concluded that risks associated with the cumulative lead concentration were acceptable. Golder understands that no further update or re-evaluation of risks associated with the potential consumption of seafood has been completed since 1990, and that at this point, the degree to which the site is used for subsistence or recreational harvesting is unclear.

2.0 STUDY DESIGN

2.1 General Approach

The sampling and analysis program supports a detailed quantitative ecological and human health risk assessment that is intended to determine whether there are unacceptable risks associated with sediment in the Ore Basin. If risks are found to be unacceptable, the risk assessment will focus on identifying specific areas where risk management or remedial actions may be necessary, and to the extent possible, will focus on determining the relative contribution of contaminants associated with ore concentrates (e.g., copper, lead and zinc) versus those contaminants which would be more likely associated with broader harbour operations (e.g., hydrocarbons).

The general study design involves:

Consideration of the likely gradient of contamination based on the historical sediment chemistry data as a basis for collecting synoptic samples for chemistry, toxicity and benthic community. Gradient-based studies are recommended by Washington State Department of Ecology (WDOE) 2015. Additional samples will be collected from reference and background areas for context. Golder intends to collect more samples than will be required for biological analysis, and identify a subset of samples for further detailed analysis based on the concentration of metals. This approach provides confidence that samples selected for the biological analysis will be representative of the actual gradient of contamination at the site.

- Collection of crab and mussel tissue samples. These data will be used to determine whether there are unacceptable human health risks associated with the consumption of organisms from the vicinity of the Ore Dock. The differences in tissue concentrations between the Ore Dock and other areas in the region (e.g., elsewhere in Skagway Harbour; reference areas) also provides information about contaminant bioavailability and bioaccumulation that will be incorporated into the risk assessment.
- A selected subset of sediment samples will be submitted for the remaining chemistry analysis (i.e., PAHs) and laboratory toxicity testing. Toxicity data will be interpreted based on the marine biological criteria (for toxicity tests) established for the sediment cleanup objective (SCO) and cleanup screening levels (CSL)¹ as described by WDOE (2015). These biological criteria provide a basis for determining if an exceedance of the conservative, chemistry-based criteria constitutes an exceedance of the sediment management standards established by the State of Washington. The relationship between sediment chemistry and biological effects data will also be evaluated.
- If exceedances of the WDOE (2015) biological criteria are observed in the toxicity tests, Golder will consider additional lines of evidence:
 - A toxicity identification evaluation (TIE) will be conducted if exceedances of the biological SCOs or CSLs are observed in the toxicity test data. Pore water will be extracted from archived sediment samples and manipulated to selectively remove specific contaminants of interest in different treatments. Changes in toxicity in the manipulated versus unaltered porewater samples, when considered in aggregate, provides information about which specific substances are likely contributing to the observed toxicity.
 - Benthic community samples will be collected from all stations (and archived) as part of the original sampling. A subset of samples may be submitted depending on the results of the toxicity testing and the TIE. For example, benthic community data would be unlikely to change the overall risk conclusion if: a) the majority of sediment samples demonstrated negligible toxicity to all species tested, or b) the majority of sediment samples demonstrated significant and acute toxicity to multiple species that was related to the presence of metals.

2.2 Sample Locations

2.2.1 Selection of Ore Basin Locations

The historical sediment chemistry data were used as the basis for establishing the gradient of contamination in the Ore Basin. The analysis focused on the distribution and magnitude of individual substances of interest, as well as the sum of possible hazard from the mixture of multiple substances of interest using the following:

Appendix A provides figures that illustrate the magnitude of concentration relative to the WDOE (2015) SCO and CSL² for individual contaminants of concern (copper, lead, zinc, light molecular weight PAH [LPAH], high molecular weight PAH [HPAH]).

² The Apparent Effect Threshold (AET)-based numerical criteria were used per WDOE (2015) guidance to use AET-based criteria when samples have a total organic carbon (TOC) content of less than 0.5%. The average TOC in samples collected from the Ore Basin was 0.2%.

¹ The SCO represents the long-term sediment quality goal, while the CSL is the maximum chemical concentration or biological effects level allowed as a sediment cleanup level. They are used in conjunction for sediment risk management and remedial planning. The final sediment clean up level (i.e., the basis of design of remediation) is initially set at the more conservative SCO but can be adjusted upwards towards the CSL based on technical feasibility and net adverse environmental impacts as part of the selection of the remedial option.

W.

ORE BASIN SAMPLING AND ANALYSIS PLAN

- Figure 4 shows the cumulative frequency distribution of the sum of hazard quotients. Hazard quotients were calculated based on the WDOE (2015) sediment cleanup objective. The total hazard quotient for metals is broken down into a stacked bar chart to illustrate the relative contribution of different metals. The hazard quotient for total PAHs (i.e., the sum of the LPAH and HPAH hazard quotients [HQ]) is also provided where hydrocarbon data were available.
 - Figure 4a provides separate cumulative frequency distributions for surface samples (0 6 inches; the biologically active zone)
 - Figure 4b provides the cumulative frequency distribution for subsurface samples (6 36 inches)
- Figure 5 shows the spatial distribution of the sum of hazard quotients for metals in surface samples. The hazard quotient distribution was estimated through interpolation (linear relationship with distance) to highlight the likely extent of the areas of greatest interest.

Observations based on Figure 4 and 5 that were considered in the selection of specific locations for sampling include:

- The majority of the hazard from metals in the surficial sediment is associated with lead and zinc, although there are some samples that also have concentrations of arsenic or mercury that exceed the SCO (i.e., hazard quotients are greater than 1). Copper, chromium and silver do not appear to have wide-spread exceedances of the SCO and are not contributing significantly to the total hazard quotient. This observation suggests that the primary gradient of metals contamination should focus on lead and zinc as the major contributors.
- There was no obvious association between the total metals HQ and the total PAH HQ distributions based on visual inspection of Figure 4. Note that a statistical analysis was not completed, and therefore, the following points are intended only to highlight areas for further consideration as new data becomes available.
 - There may be other sources of petroleum hydrocarbons that have a different spatial distribution.
 - The total PAH HQ was above 10 in several samples which suggests that it may have the potential to cause adverse effects to benthic organisms. All samples submitted for toxicity testing will be analyzed for both PAHs and metals.
 - Deeper sediment layers also tended to have lead and zinc contributing the majority of the hazard, but arsenic was also present.
 - There were fewer subsurface samples relative to the surface, but the majority of the samples at depth included PAH analysis.
 - The hazard in the deeper sediment was lower than in surface (i.e., maximum total metals HQ in deeper sediment was less than 30, but was greater than 50 in the surface samples). This observation suggests that a defensible gradient that includes worst-case concentrations can be established based on surface sampling only.

2.2.2 Selection of Reference Locations

Reference samples are intended to be representative of Ore Basin samples in terms of physical attributes (e.g., grain size, organic carbon content, depth) but without the presence of contamination. Several reference areas have been previously sampled. Golder plans to sample the following three reference areas:

- Dyea Point—This area was previously sampled by Tetra Tech (2008), analyzed for metals, and included in the toxicity testing program. There were no exceedances of the SCO for metals³ in the Tetra Tech (2008) TT-REF1 samples; however, this location appears to have different grain size distributions relative to the majority of samples collected by Tetra Tech (2008) from the Ore Basin. The location is not proximate to a river input (i.e., sediment is potentially less dynamic than the Ore Basin).
- Near the mouth of the Taiya River—This area was selected because it would be expected to have a dynamic sediment transport regime similar to that associated with the mouth of the Skagway River. This location was previously sampled (Tetra Tech 2009; also labelled as TT-REF1) for chemistry and no detectable concentrations of PAHs were found. Samples for metals chemistry have not been collected from this area, but there were no industrial or urban activities in this area that would likely be a point-source for metals.
- Head of Nakhu Bay—This area was sampled by Tetra Tech (2009; TT-REF2) for PAHs and by Tetra Tech (1990; TT-1 and TT-2) for metals. No detectable PAHs were observed, and metals concentrations are lower than the SCO.

Golder intends to collect samples from each of these three areas from a water depth consistent with the Ore Basin (30 – 40 feet). A final determination regarding which area will be used as the reference will be based on a review of the sample-specific chemistry and grain size/total organic carbon data.

2.2.3 Location and Number of Samples

Golder has identified proposed locations in the Ore Basin for sampling based on the historical chemistry data (Figure 6). As discussed above, a subset of those locations for the detailed chemistry, toxicology, and benthic community assessment will be assigned once sample-specific metal concentrations, grain size, and organic carbon content data are available. Table 2 describes the proposed sample collection effort with the expected number of samples to be submitted for toxicity testing.

³ Sample was analyzed for Cd, Cu, Hg, Pb, Ni and Zn

Table 2: Proposed Sampling Effort

Name	Location	Stations for Initial Collection	Number of Samples to be Submitted for Toxicity Testing
Zone A—($\Sigma HQ_M > 10$)	Ore Basin	4	3
Zone B—($\sum HQ_M > 5$)	Ore Basin	5	3
Zone C—($\sum HQ_M > 1$)	Ore Basin	5	3
Zone D—($\sum HQ_M < 1$)	Ore Basin	5	2
Zone E—Far Field	Outside Ore Basin but within Skagway Harbour	3	1
Zone F—Reference	Dyea Point	3	
	Taiya River	3	3
	Nahku Bay	3	
TOTAL		31	Up to 15

Note: HQ_M - sum of the hazard quotients for metals based on WDOE (2015) CSL numerical criteria.

This approach:

- increases the likelihood that samples submitted for biological testing represent the underlying gradient
- provides an opportunity to consider confounding effects if grain size and organic carbon content are substantially different than measured in the historical data
- provides the opportunity to reduce or increase the number of stations for toxicity testing depending on the variability in the actual gradient of contamination found

3.0 SAMPLING AND ANALYTICAL METHODS

3.1 General Field Procedures

All field activities will be conducted in accordance with industry-standard methods as described by ADEC (2016), ASTM (2014), WDOE (2015), and other standard reference materials. ADEC (2016) will be followed in the event of a conflict in guidance. Industry-standard procedures include:

All sampling will be conducted by trained, experienced personnel (i.e., a Qualified Environmental Professional) following a specific work instruction approved by the Golder project manager. Sampling will be conducted by Paddy McManus with assistance by Joe Marquardson. Blair McDonald will oversee the technical aspects of the project. Tamra Reynolds is the Golder Project Manager. The resumés for Paddy McManus, Emily Henkemans (proposed alternate to Joe Marquardson) and Blair McDonald are provided in Appendix B for approval by ADEC as Qualified Environmental Professionals. Tamra Reynolds has previously been approved by ADEC as a Qualified Environmental Professional; however, her resumé is also provided if required. The resumé of Joe Marquardson is provided in Appendix B for approval by ADEC as a Qualified Sampler. This sampling and analysis plan, as well as copies of appropriate technical guidance (ADEC 2016; American Society for Testing and Materials (ASTM) 2014; WDOE 2015) will be available on-site during sampling activities.

- A field log will be maintained (with standard forms where appropriate) to record field observations, time of sampling activities, site sketches, records of observations and discussions, safety briefings, etc. All equipment will be calibrated following manufacturer's specifications and the calibration results recorded.
- All samples will be placed in laboratory-supplied containers, preserved as directed by the analytical laboratories, and maintained at the appropriate temperature (see Appendix D of ADEC 2016). A typical post-collection holding temperature is 4°C which will be achieved using ice fragments placed in double-sealed Ziploc bags. Samples will be packed in coolers for transport to the analytical laboratory to prevent breakage and to keep the weight of each cooler at a safe limit. All samples will be recorded on laboratory-provided chain of custody forms and each cooler will be sealed with a custody seal. The logistics of sample transport will be reviewed to confirm that holding times and holding temperatures mandated by the analytical methods will be met.
- Any deviation from the sampling and analysis program as a result of site-specific conditions will be identified and approved by the Golder project manager in advance. A record of the decision will be maintained, and significant deviations (e.g., unable to collect any samples from a desired zone) will be promptly discussed with ADEC. A copy of the field log and all related forms and photographs will be provided as an appendix in the risk assessment report.

3.2 Sediment Sample Collection

Sediment samples for chemistry and toxicity analysis will be collected following ADEC (2016). In brief:

- The sampling vessel will position itself on the desired coordinates based on GPS readings. The vessel has a Garmin 19X GPS antenna as part of its navigational software with an accuracy of ±10 ft. Other navigational aids include radar and depth sounders. The vessel will also use the same GPS to record the positions of fixed landmarks that are visible on aerial photos (e.g., wharf structures and dolphins) to provide visual confirmation of the final sample locations.
- Bulk sediment samples will be collected using a van Veen grab sampler. The van Veen has a surface area of 1.0 ft² and can achieve a depth of up to 1 ft, resulting in a total sediment volumes of up to 8 gallons per grab (ASTM 2014). The van Veen will be outfitted with additional weights to help it penetrate harder substrates.
- Only those grab samples that meet the following acceptability criteria will be retained:
 - The sampler is fully closed and does not contain large rocks or other debris.
 - There is adequate penetration depth (i.e., at least 0.5 ft to retrieve an undisturbed 0.3 ft upper horizon).
 - The sample is not overfilled or disturbed, and sampler was not deployed on an angle (i.e., sediment surface does not touch the top of the sampler, and is relatively flat).
 - The sampler is not leaking (i.e., there is overlying water present and no visible leaks).
- Upon acceptance, the overlying water in the grab will be removed using a siphon taking care to minimize the loss of fine sediment from the surface of the grab contents. A description of the sediment (colour, particle size, odour, and presence of non-sediment materials such as shells, debris, biota) will be recorded.

- The sediment from the top 0.3 ft of the sample will be removed with a clean metal spoon from the center of the grab (without touching the sides) and placed in a stainless steel bowl. Sediment deeper than 0.3 ft will be discarded. The decision to focus on the top 0.3 ft is based on guidance from WDOE (2015; Section 3.4.1).
- Once sufficient sediment volume has been collected to fill the laboratory supplied containers (see Table 3) the sediment will be homogenized until the color and texture are consistent. Aliquots will then be transferred to the sampling containers. The sediment samples will be stored in a cooler with ice packs and maintained under chain of custody procedures.
- Record observations in the surface sediment collection log regarding the appearance of the sediment (i.e., texture, colour, odour, presence of biota, sheen, or detritus, depth of sediment horizon sampled, grab penetration depth, coordinates). A photograph of the composite sediment sample with the station name clearly legible in the photograph will be taken.
- All sampling equipment will be cleaned between samples by scrubbing them free of visible sediment, washing with laboratory-grade detergent, rinsing with site-water, and then rinsing with distilled or de-ionized (analyte-free) water. Rinse water and any excess collected sediment will be released to the environment (at least 100 feet from a proposed sample location) provided that visible contamination is not observed. If visible contamination (e.g., sheen, petroleum odors) are noted, waste will be containerized for off-site disposal in accordance with the applicable regulations.

Table 3: Sampling requirements, volume, container and preservative, and holding times.

Analysis	Sample Volume	Holding Time
Chemistry		
DRO/RRO + PAH	4 oz (120 ml.) glaca jer	14 days
PAH	4 oz (120 mL) glass jar	14 days
Mercury	4 oz (120 ml.) glaca jer	28 days
Metals	4 oz (120 mL) glass jar	6 months
AVS-SEM	4 oz (120 mL) glass jar	2 weeks for AVS, 6 months for metals
Total organic carbon	4 oz (120 mL) glass jar	28 days
Grain Size Analysis	2 x 8 oz (120 mL) glass jar	6 months
Archive	4 oz (120 mL) glass jar	Not applicable
Toxicity		
Standard tests	1 gallon HDPE pail	2 weeks (up to 8 weeks if samples stored under nitrogen)
Archive for potential TIE	1 gallon HDPE pail	8 weeks

Note: DRO: Diesel range organics; HDPE: High density polyethylene; RRO: Residual range organics; PAH: Polycyclic aromatic hydrocarbons; TIE: Toxicity identification evaluation

3.3 Sediment Chemistry Analysis

Sediment chemistry analyses will be conducted by ALS Environmental in Kelso, Washington. ALS is an ADEC-accredited laboratory (certification number UST-040). Sediment samples will be shipped in coolers with ice packs (Alaska Sea Planes to Juneau, AK; Alaska Airlines to Seattle, WA). The laboratory analyses will include laboratory control samples (LCS), matrix replicates, matrix spikes (MS), surrogate spikes for organic analyses, method blanks, standard reference materials and initial and continuing instrument calibrations.

Table 4: Sediment Chemistry Analytical Methods

	1124-	WDO	E (2015)	Mathed Describle 11 - 1
	Units	sco	CSL	Method Reportable Limit
Grain size analysis (ASTM D422)		_	_	
Total organic carbon (Walkey-Black)	%	_	_	0.2
Metals (EPA 6010C, 6020A, 7471B)		•		•
Aluminum (AI)	mg/kg	_	_	4
Antimony (Sb)	mg/kg	_	_	0.05
Arsenic (As)	mg/kg	57	93	0.5
Barium (Ba)	mg/kg	_	_	0.05
Beryllium	mg/kg	_	_	0.02
Cadmium (Cd)	mg/kg	5.1	6.7	0.02
Cobalt (Co)	mg/kg	_	_	0.02
Copper (Cu)	mg/kg	390	390	0.1
Chromium (Cr)	mg/kg	260	270	0.2
Iron (Fe)	mg/kg	_	_	4
Lead (Pb)	mg/kg	450	530	0.05
Magnesium (Mg)	mg/kg	_	_	2
Manganese (Mn)	mg/kg	_	_	0.05
Mercury (Hg)	mg/kg	0.41	0.59	0.02
Nickel (Ni)	mg/kg	_	_	0.2
Selenium (Se)	mg/kg	_	_	1
Silver (Ag)	mg/kg	6.1	6.1	0.02
Thallium (TI)	mg/kg	_	_	0.02
Vanadium (V)	mg/kg	_	_	0.2
Zinc (Zn)	mg/kg	410	960	2
Hydrocarbons (EPA 6270D)	9,9		000	_
2-methylnapthalene	μg/kg	670	670	5
Acenaphthene	μg/kg	500	500	5
Acenaphthylene	μg/kg	1300	1300	5
Anthracene	μg/kg	960	960	5
Benzo(a)anthracene	μg/kg	1300	1600	5
Benzo(a)pyrene	μg/kg	1600	1600	5
Benzo(b)fluoranthene	μg/kg	_	_	5
Benzo(g,h,i)perylene	μg/kg	670	720	5
Benzo(k)fluoranthene	μg/kg	_	_	5
Chrysene	μg/kg	1400	2800	5
Dibenz(a,h)anthracene	μg/kg	230	230	5
Fluoranthene	μg/kg	1700	2500	5
Fluorene	μg/kg	540	540	5
Indeno(1,2,3-cd)pyrene	μg/kg	600	690	5
Naphthalene	μg/kg	2100	2100	5
Phenanthrene	μg/kg	1500	1500	5
Pyrene	μg/kg	2600	3300	5
Diesel Range Organics (AK102)	mg/kg	_	_	20
Residual Range Organics (AK101)	mg/kg	_	_	20
rasidadi rango Organios (/ iit io i /	9/119	<u> </u>		20

Notes: SCO: Sediment Cleanup Objectives; CSL: Cleanup Screening Levels "—" = no standard

17 April 2017

Report No. 1657231-002-R-Rev1

3.4 Benthic Community Sample Collection and Analysis

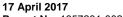
Collection and handling of benthic community samples will be conducted according to Puget Sound Estuary Program (PSEP), 1987 as recommended by WDOE 2015. In brief:

- Benthic samples will be collected using the same van Veen grab sampler and acceptability criteria described above. A benthic sample consists of the entire acceptable sediment volume of the grab sampler (i.e., 0.1 m² × 0.1 m depth = 10 L). Three replicate samples, each consisting of one complete grab, will be collected at each station.
- Benthic infaunal samples will be washed on the boat (or a suitable shore-based location) during field operations. Each successful Van Veen grab sample will be placed in a large plastic container, allowing the sample to be screened in portions, and minimizing the time that fragile organisms are in contact with the screen. The sieved samples will be photographed and described in the field log.
- Field washing will be carried out using a portable stainless steel tray with a 0.04-inch mesh bottoms. The washing system includes a water pump for washing fine sediment from the sample. The wash water intake hose has a filter to prevent planktonic organisms or other debris from entering the sample. Rinse water will be disposed as described above.
- Preservation will be achieved by adding a defined volume (e.g., 100 mL in 1 L) of full-strength buffered formalin (prepared as described in PSEP, 1987) to each sample jar. Calcium carbonate chips will be added to samples in the field to maintain neutral pH in preserved samples. After adding the fixative, the sample container contents are mixed by gentle rolling.
- Samples will be transported to Marine Taxonomic Services Ltd. (San Marcos, CA), where technicians will promptly transfer the contents of the benthic sample to alcohol to prevent sample degradation.
- Ten percent of the samples will be re-sorted to confirm 95% sorting efficiency has been achieved. A sample "passes" if the number of organisms found during the QA/QC check is <5% of the total number of organisms found in the entire sample.

3.5 Tissue Sample Collection and Analysis

Sampling will focus on mussels and crabs as representative examples of aquatic organisms that have the potential to be consumed by recreational or sustenance fishers. Mussels are sessile, and many crab species have relatively small home ranges relative to fish and therefore, their tissue concentrations provide a more reliable evaluation of bioaccumulation from bedded and suspended particulates. Golder is not proposing to collect fish at this time. Sampling will focus on three areas (Figure 6):

- Ore Basin (near-field)
- Outer Ore Basin near the Broadway Dock and entrance to the small craft harbour (far-field)
- Reference (not shown on Figure 6)



Each area will consist of five samples for spatial coverage. Each sample will consist of a minimum of five organisms in order to obtain sufficient mass for the composite sample. Mussels will be collected from intertidal substrates (i.e., the shoreline, wharf infrastructure) at low tide. Crabs that are of the legal size for capture and consumption will be collected using recreational crab traps Records on the size and number of organisms will be made. Organisms will be frozen, placed in laboratory-supplied containers and transported to the analytical laboratory for the removal and analysis of edible tissues. Dissection will not occur in the field because of the potential for cross-contamination from airborne soil or ore concentrate particles (dusts).

Table 5: Tissue chemistry analytical methods

	Units	Method Reportable Limit
Metals (EPA 6010C, 6020A, 7471B)		
Aluminum (AI)	mg/kg	2
Antimony (Sb)	mg/kg	0.05
Arsenic (As)	mg/kg	0.5
Inorganic Arsenic (As)	mg/kg	0.02
Barium (Ba)	mg/kg	0.05
Beryllium	mg/kg	0.02
Cadmium (Cd)	mg/kg	0.02
Cobalt (Co)	mg/kg	0.02
Copper (Cu)	mg/kg	0.1
Chromium (Cr)	mg/kg	0.2
Iron (Fe)	mg/kg	1
Lead (Pb)	mg/kg	0.02
Magnesium (Mg)	mg/kg	0.1
Manganese (Mn)	mg/kg	0.05
Mercury (Hg)	mg/kg	1
Nickel (Ni)	mg/kg	0.2
Selenium (Se)	mg/kg	0.1
Silver (Ag)	mg/kg	0.02
Thallium (TI)	mg/kg	0.02
Vanadium (V)	mg/kg	0.2
Zinc (Zn)	mg/kg	0.5
Hydrocarbons (EPA 6270D)		
2-methylnapthalene	μg/kg	5
Acenaphthene	μg/kg	5
Acenaphthylene	μg/kg	5
Anthracene	μg/kg	5
Benzo(a)anthracene	μg/kg	5
Benzo(a)pyrene	μg/kg	5
Benzo(b)fluoranthene	μg/kg	5
Benzo(g,h,i)perylene	μg/kg	5
Benzo(k)fluoranthene	μg/kg	5
Chrysene	μg/kg	5
Dibenz(a,h)anthracene	μg/kg	5

Report No. 1657231-002-R-Rev1

	Units	Method Reportable Limit
Fluoranthene	μg/kg	5
Fluorene	μg/kg	5
Indeno(1,2,3-cd)pyrene	μg/kg	5
Naphthalene	μg/kg	5
Phenanthrene	μg/kg	5
Pyrene	μg/kg	5

3.6 Sediment Toxicity Testing

Sediment toxicity testing will be completed by Nautilus Environmental (Burnaby, BC). Nautilus is accredited by the Washington State Department of Ecology. In brief:

- Each sediment sample will be tested with three toxicity tests specified by WDOE (2015):
 - 10-d amphipod survival—The most likely species for this test are Rhepoxynius abronius or Eohaustorius estuarius based on the observation that sediment will tend to consist of sand. Interstitial salinity will be confirmed prior to the final test selection. R. abronius prefers a salinity of greater than 25 ppt, whereas E. estuarius can handle a broad salinity range (WDOE 2015).
 - 48-h larval development—The most likely species for this test are oysters (Crassostrea gigas), blue mussels (Mytilus edulis or M. galloprovincialis), or sea urchins (Strongylocentrus purpuratus or S. droebachiensis). Other test species such as sand dollars are also available, but are not preferred because these organisms tend to inhabit fine-grained sediments that are not likely present at the site. The final selection will be based on availability from organism suppliers. Mussels are likely to be available in late spring when testing is being contemplated; species selection will require consideration of the reproductive status of cultures and health quality of candidate organisms at the time of sampling.
 - 20-d polychaete survival and growth—This test is conducted with juveniles of Neanthes arenaceodentata.
- Test acceptability criteria and detailed methodologies have been developed for all three tests by PSEP (1995) and will be followed by the analytical laboratory. Test performance standards (WDOE 2015; Table 5-9) regarding negative controls (i.e., amphipod and polychaete survival ≥90%; polychaete growth >0.72 mg/ind/day; bivalve normal survival ≥90%). Other test acceptability requirements (e.g., maintenance of dissolved oxygen, pH and temperature limits specified by the test, successful reference toxicant tests) must also be achieved in order for the data to be considered acceptable.
- All three tests are routinely used for sediment characterization and dredged material disposal purposes by state regulatory agencies in the Pacific Northwest as well as British Columbia, and there is extensive toxicological literature available with respect to the sensitivity of these test organisms to the specific contaminants of interest, along with information on sensitivity to other factors such as grain size, ammonia, and sulphides.

W

ORE BASIN SAMPLING AND ANALYSIS PLAN

3.7 Toxicity Identification Evaluation

The toxicity identification evaluation will be executed by environmental toxicologists with considerable expertise in the design and implementation of sediment TIEs. In brief:

- Pore water for the TIE will be extracted from the archive sediment sample following ADEC (2016). The archive sample will be gently homogenized to re-incorporate any overlying water. Aliquots will be distributed to the centrifuge containers and spun for 30 minutes. Pore water samples will be generated immediately prior to the TIE, and will not be filtered prior to use.
- The specific test treatments will be based on regulatory guidance (USEPA 2007) and the relevant peerreviewed scientific literature. Naval Facilities Engineering Services Centre (NFESC) 2003 also provides
 practical guidance on the design and execution of sediment TIE for US naval facilities that may be relevant
 in the current investigation. A typical phase I TIE focuses on removing the influence of organic substances
 (such as PAHs) by passing the sample through a C18 extraction column. The influence of specific metals are
 removed through chelation with sodium thiosulphate (STS) or ethylenediaminetetraacetic acid (EDTA) in
 combination with filtration. The influence of ammonia can be evaluated through pH manipulation.
- The specific test organism will be dependent on the results of the whole-sediment toxicity testing. The typical approach is to use a limited number of organisms and to conduct testing with relatively small volumes of pore water. The most likely test organism would therefore be the 48-h larval development test. A 96-h mysid LC₅₀ (used by previous investigations at the site) is also a potential candidate.

4.0 RISK ASSESSMENT WORK PLAN

ADEC (2015) emphasizes the importance of submitting work plans for the proposed risk assessment. In effect, the work plan for the risk assessment contains the majority of the components typically included in the problem formulation, as well as a detailed description of the specific methods to be used in the risk assessment analysis. Many of the topics listed in ADEC (2015, Section 2.2) are outlined in detail in the previous sections. Golder has reviewed the remaining items and can provide the following supplemental information to help frame the intended direction of our investigation. However, specific risk assessment methodologies (especially for the ecological risk assessment) will continue to evolve as sample data becomes available. Ongoing dialogue on these technical items is expected.

4.1 Human Health Work Plan

Supplemental comments to address ADEC (2015, Section 2.2) guidance that is not already addressed in previous sections is as follows:

- The site description, figures and data summaries from previous investigations were used to develop the concentration gradients as described in this work plan. Golder has also provided an in depth review of the historical information as part of our presentation to ADEC (and a brief overview is provided in Section 1.3). A detailed summary of the historical investigations will be included in the risk assessment report.
- Our sampling plan has considered the adequacy of the detection limits in both sediment and tissue samples.

- A detailed discussion of the expected contaminant fate and transport will be incorporated into the risk assessment. Golder has previously highlighted that generic numerical standards do not necessarily reflect the bioavailability of contaminants under site-specific conditions. Site-specific bioavailability appears to be a factor that requires consideration in the current assessment given that TetraTech (2008) found that porewater and whole-sediment toxicity were not necessarily caused by metals, despite the presence of metal concentrations that exceeded generic guidelines. In terms of contaminant fate, the bioavailable fraction of copper, lead and zinc that partitions from the ore concentrate to porewater will be the primary issue to be resolved in the risk assessment.
- A graphical conceptual site model has not yet been prepared. In brief, the human health risk assessment that has been described should be considered screening-level. Golder intends to collect tissue samples (crab, mussel) from targeted areas to determine if tissue concentrations are clearly problematic in terms of human health. At this point, a detailed country foods assessment to determine which species are harvested, at what frequencies has not been completed, nor is it likely to be necessary.
- Toxicity data for the human health risk assessment will be adopted from USEPA sources (i.e., IRIS). Risk screening levels will follow ADEC (2015) guidance for a screening-level RA (ILCR = 1x10-6, HQ = 0.1). Risks will be determined using the default values for human health receptors (e.g., food ingestion rates; portion size, etc.) as described by USEPA. Receptors will focus on recreational fishers. Subsistence and/or tribal fishers are not considered likely given that the site is part of an industrial harbour where fishing activities would likely be limited. These receptors can be added to the risk assessment if needed.
- Other potential exposure pathways related to the historical or current operation of the site (e.g., direct contact with water, dust inhalation; dust migration to upland areas) are not being assessed at this time. Golder concludes that a screening-level risk assessment that focuses on recreational fishing for crabs or mussels should be sufficient to make an informed management decision about whether or not immediate removal of sediment is required. The final decision about how to utilize the screening-level risk estimates for making an informed management decision will be explored in consultation with ADEC depending on the outcome of the risk calculations. Specifically, if HQs or ILCRs are substantially higher than the risk limits, and show a clear pattern where risks escalate with proximity to the source (i.e., the metals related to historical or ongoing site operation), it would be reasonable for risk management to focus on source removal. However, if risk exceedances are marginal, potentially unrelated to historical site activities, or limited to the Ore Dock basin where recreational fishing would not be allowed, it would suggest that further refinement might be needed before making a final risk management decision.
- Golder has previously commented on the adequacy of the historical tissue sampling to guide site management decisions. The initial list of contaminants of potential concern are metals and hydrocarbons. A key point is that the objective of the risk assessment is to determine if the historical operation of the Ore Dock has resulted in unacceptable risks, not to quantify the relative contribution of each and every contaminant that may be present in sediment from all point and non-point sources related to Skagway Harbour.
 - The specific metals that are related to historical operation of the Ore Dock are lead and zinc, and the specific metal related to the current operation is copper. Other metals will be included in the sediment and tissue analysis, but are not necessarily attributable to the industrial activity that would

- Hydrocarbons are being included in the risk assessment based on historical information that suggests that PAHs are both present and potentially contributing to adverse effects. There is no specific evidence that Golder is aware of that suggests that historical site activities created a point source of hydrocarbons. Hydrocarbons are potentially related to non-point sources such as harbour traffic and the use of creosotepreserved timbers.
- Tributyltin has been identified by others as a potential contaminant of concern, but would not be typically
 included in a sediment assessment unless there was historical information suggesting that the site
 (or nearby surroundings) were used for shipbuilding or repairs.

4.2 Ecological Risk Assessment Work Plan

Supplemental comments to address ADEC (2015, Section 2.2) guidance that is not already addressed in previous sections (or in the human health risk assessment work plan comments) is as follows:

- The focus on risk assessment is on the benthic and epibenthic community because these ecosystem components are in direct contact with sediment. The assessment endpoint is to protect these ecosystem components from unacceptable reductions in survival, growth or reproduction. The specific lines of evidence include toxicity testing, benthic community structure and bioaccumulation as described in previous sections. A graphical conceptual model has not been prepared, but as with the human health risk assessment, Golder is conducting a screening-level risk assessment that focuses primarily on the realistic worst-case exposure pathway (i.e., direct contact of organisms to sediment) that is attributed to the historical operation of the Ore Dock. The risk assessment is not intended to quantify the relative contribution of each and every contaminant that may be present in sediment from all point and non-point sources related to Skagway Harbour. As with the human health risk assessment, the contaminants of potential concern will focus on copper, lead and zinc, but other potential contaminants of concern (metals, hydrocarbons) are being considered because they are expected to be present and could potentially be exerting adverse effects as well.
- The ecological scoping evaluation, screening evaluation and data evaluation has been previously described in our presentation and is summarized in previous sections. As with the human health risk assessment, a detailed discussion of the available historical information will be included in the risk assessment report.
- Information from the sediment transport analysis (Golder 2016) will be included into the risk assessment process.
- The analysis approach and methods for determining risk-based concentrations will follow Washington State and USEPA guidance. There is a considerable body of scientific literature with respect to weight of evidence assessment that will be used to supplement and refine the guidance where appropriate.
- No modeling is contemplated at this time.

5.0 REPORTING

Interim deliverables will be provided during the course of this investigation as follows:

- A field work summary report (per ADEC 2016) will be prepared that provides a detailed description of the sampling program along with figures showing the locations of all samples. Site photographs, field records, laboratory certificates of analysis and laboratory review checklists will be included. A table of sediment chemistry results will be provided along with justification for selecting a representative subset of samples for the toxicity testing program. Golder anticipates that this summary report would be provided within two weeks of receiving the final certificates of analyses from the analytical laboratory.
- Updates will be provided with tabular summaries and laboratory certificates of analysis for subsequent stages of the investigation. Golder anticipates that these updates will be provided within two weeks of receiving the final analytical reports from the laboratory.
- A detailed risk assessment report will be prepared. The objective of the report is to provide decision-makers with a science-based analysis of the potential risks to human and ecological receptors as a result of sediment contamination in the Ore Basin. If risks are found to be unacceptable, a high-level review of possible remediation or risk mitigation activities will be provided.
 - Golder has reviewed ADEC (2015) guidance with respect to the required elements for a risk assessment report. No issues in terms of incorporating ADEC guidance with the general approach used for risk-based management of sediment described by WDOE have been identified.
 - Golder acknowledges the importance of providing a clear narrative as part of the risk characterization (ADEC 2015, Section 3.4) that considers both the magnitude and uncertainty of any risk calculations. The requirement for transparency, clarity, consistency and reasonableness is of particular importance in a sediment weight-of-evidence approach. Golder has incorporated the intent of the ERA process in Alaska (ADEC 2015, Section 4.1) in terms of designing a tiered approach that is meant to assist in making an informed management decision regarding whether or not remedial dredging is required as a result of the historical or ongoing operation of the Ore Dock. In this approach, it may not be necessary to proceed down successive tiers if a defensible risk management decision can be made based on an earlier tier or a qualitative evaluation.

The current schedule is that sampling is proposed to be conducted in April 2017, with a final risk assessment report ready by November 2017. The final timeline is dependent on how many tiers of the investigation are ultimately required.

6.0 CLOSURE

We trust the information contained in this document is sufficiently detailed for your review purposes. Should there be any questions please contact the undersigned at 604-297-2013.

Yours very truly,

GOLDER ASSOCIATES LTD.

Blair McDonald, MET, RPBio Associate, Senior Environmental Scientist Tamra Reynolds, MSc, PGeo

Project Manager, Senior Hydrogeologist

Gary Lawrence, MRM, RPBio Associate, Senior Environmental Scientist

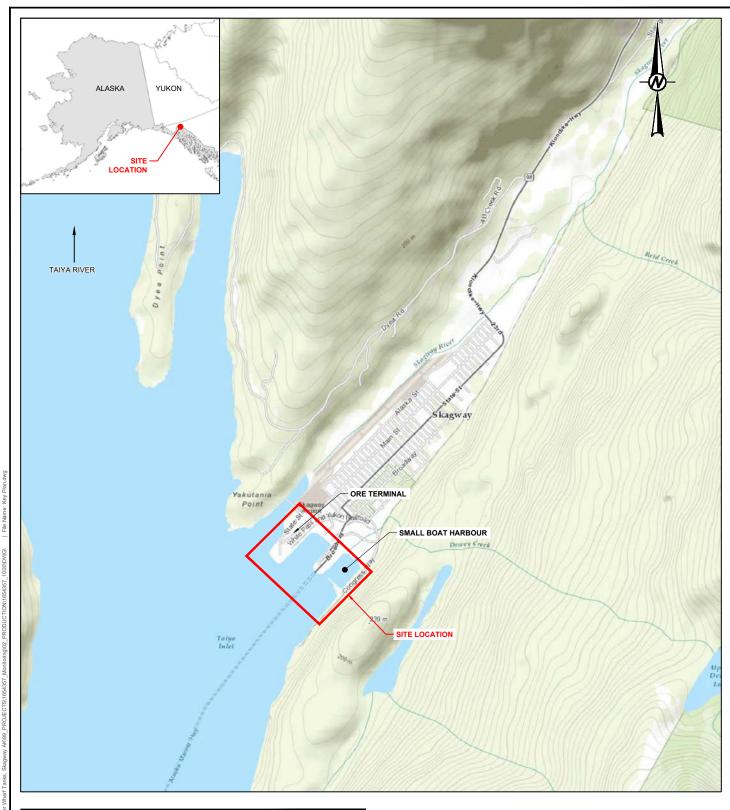
BGM/GSL/lih/lmk

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

o:\final\2016\3 proj\1657231 wpyr_ore basin sediment_alaska\1657231-002-r-rev1\1657231-002-r-rev1-sampling analysis plan-17apr_17.docx

7.0 REFERENCES

- ADEC (Alaska Department of Environmental Conservation). 2016. Field sampling guidance. Available online: https://dec.alaska.gov/spar/csp/guidance_forms/docs/Field-Sampling-Guidance-Final-5-13-2016.pdf
- ADEC (Alaska Department of Environmental Conservation). 2015. Risk assessment procedures manual. Available online:https://dec.alaska.gov/spar/csp/guidance_forms/docs/RAPM%202015%20Final%20October %201%202015.pdf
- ADEC (Alaska Department of Environmental Conservation). 2008. Alaska water quality criteria manual for toxic and other deleterious organic and inorganic substances. Available online: http://dec.alaska.gov/Water/wqsar/wqs/index.htm
- ASTM (ASTM International). 2014. Standard guide for collection, storage, characterization and manipulation of sediments for toxicological testing and for selection of samplers used to collect benthic organisms. E1391-03 (Reapproved 2014).
- Anchor (Anchor QEA LLC). 2015. Skagway Ore Dock and Small Boat Harbour dredging: Gateway Intermodal Dock Reconstruction Project and Legacy Harbour Contaminant Mitigation Program. Prepared for the Municipality of Skagway. Anchor Project No. 140159-04.01.
- Golder (Golder Associates Ltd). 2016. Skagway Preliminary Sediment Transport Assessment. Prepared for White Pass and Yukon Railway. Golder Project No: 1657231
- NFESC (Naval Facilities Engineering Service Center). 2003. Guide for planning and conducting sediment porewater toxicity identification evaluations (TIE) to determine causes of acute toxicity at Navy aquatic sites. UG-2052-ENV.
- PSEP (Puget Sound Estuary Program). 1987. Recommended guidelines for sampling marine sediment, water column and tissue in Puget Sound.
- Tetra Tech. 2008. Evaluation of Skagway Harbour and Pullen Creek sediments and surface waters. Prepared for Alaska Department of Environment Conservation and USEPA Region 10.
- Tetra Tech, Inc. (1990a). Skagway Harbor Field Investigation. Report No. TC4118-14. Prepared for US Environmental Protection Agency and Alaska Department of Environmental Conservation.
- Tetra Tech Inc. (1990b) Seafood Risk Assessment for Skagway Harbor. Report No. TC 5155-03. Prepared for US Environmental Protection Agency.
- USEPA (United States Environmental Protection Agency). 2007. Sediment toxicity identification evaluation (TIE): phases I, II and III guidance document. EPA/600/R-07/080.
- Washington State Department of Ecology (WDOE). 2015. Sediment cleanup user's manual II (SCUM II). Available online: https://fortress.wa.gov/ecy/publications/SummaryPages/1209057.html



APPENDIX A

Chemistry Figures

REFERENCE

BACKGROUND IMAGE SOURCES: ESRI, HERE, DELORME, TOMTOM, INTERMAP, INCREMENT P CORP., GEBCO, USGS, FAO, NPS, NRCAN, GEOBASE, IGN, KADASTER NL, ORDNANCE SURVEY, ESRI JAPAN, METI, ESRI CHINA (HONG KONG), SWISSTOPO, MAPMYINDIA, © OPENSTREETMAP CONTRIBUTORS, AND THE GIS USER COMMUNITY

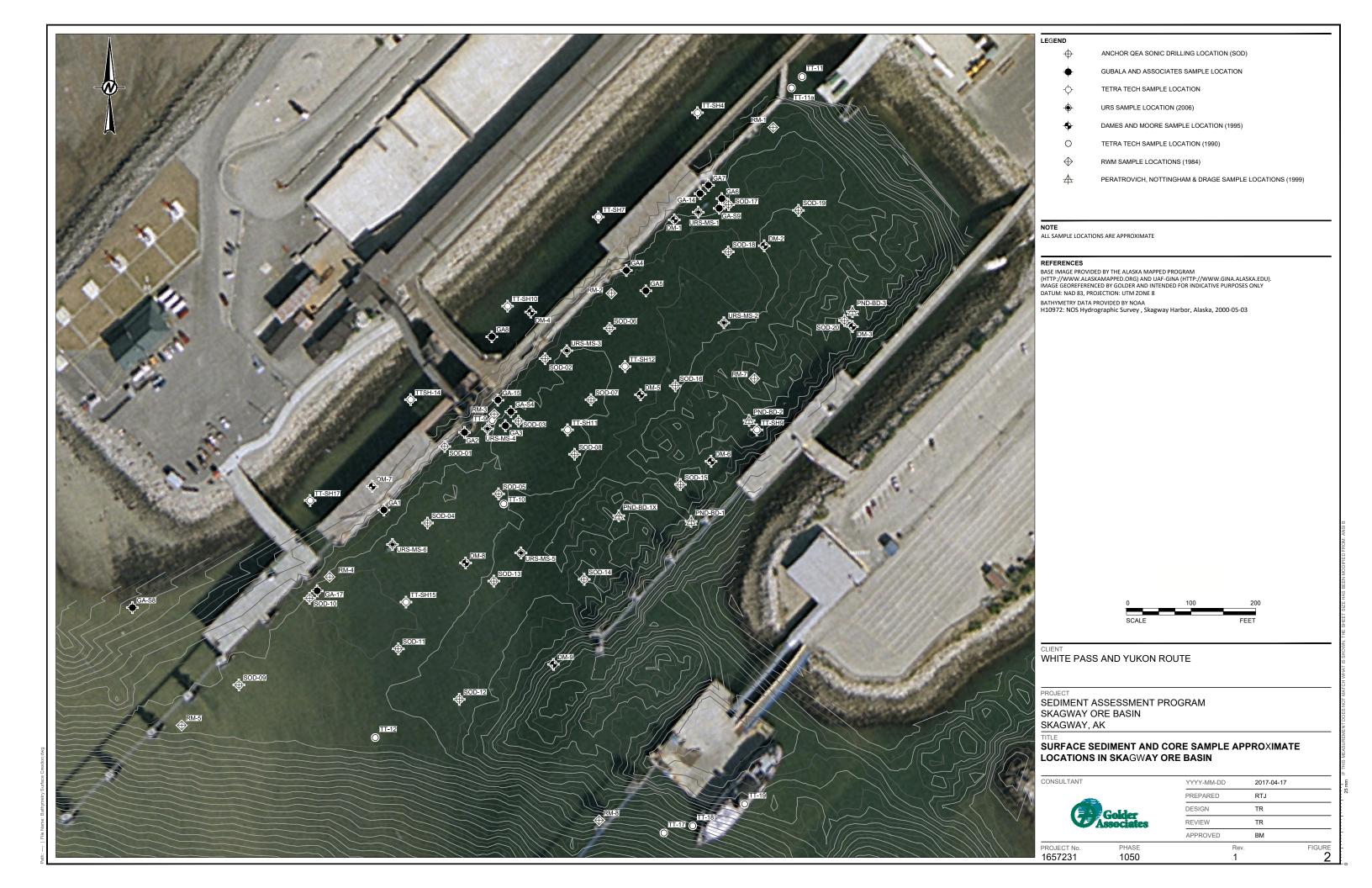
CONSULTANT

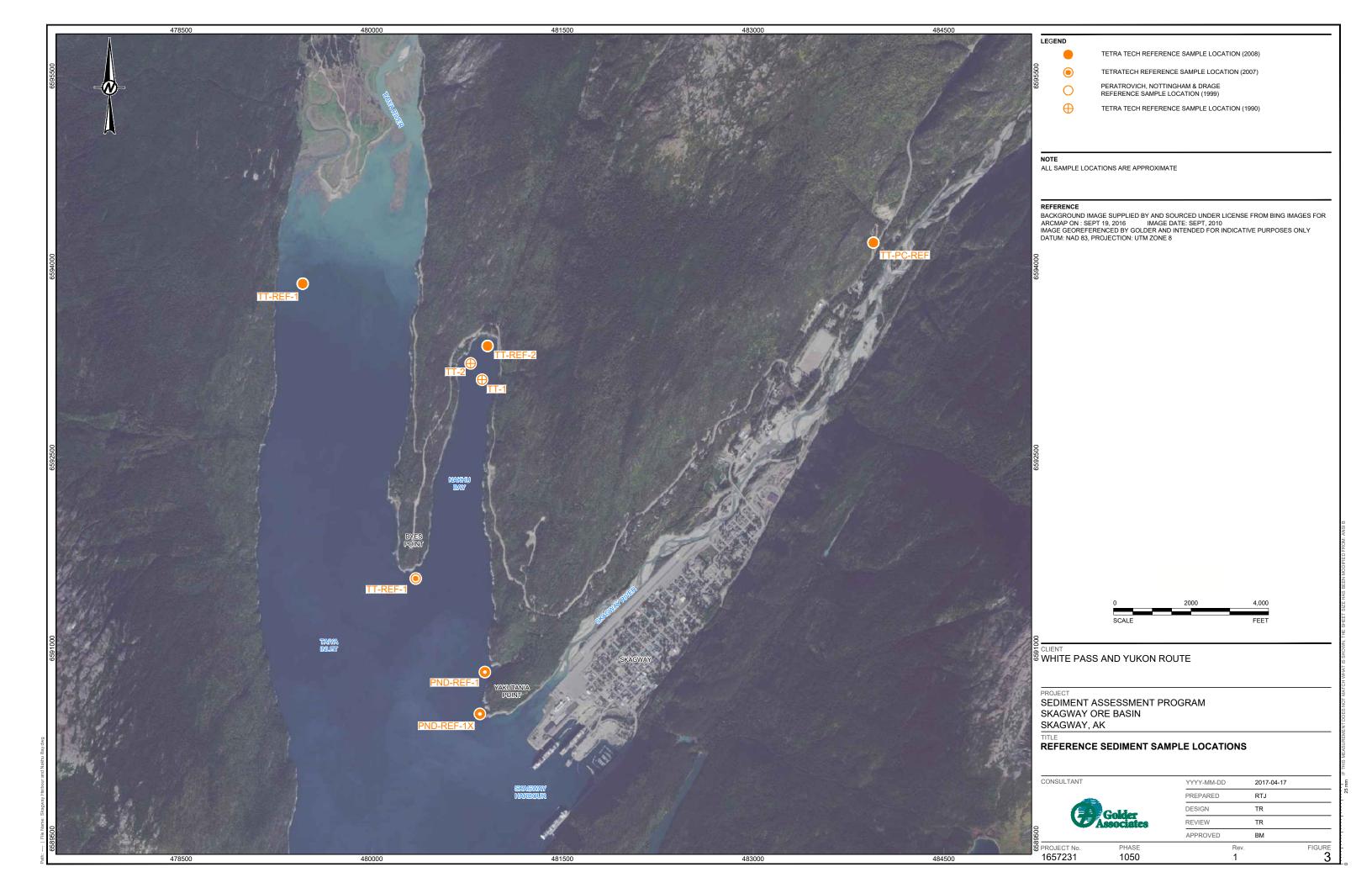
WHITE PASS AND YUKON ROUTE

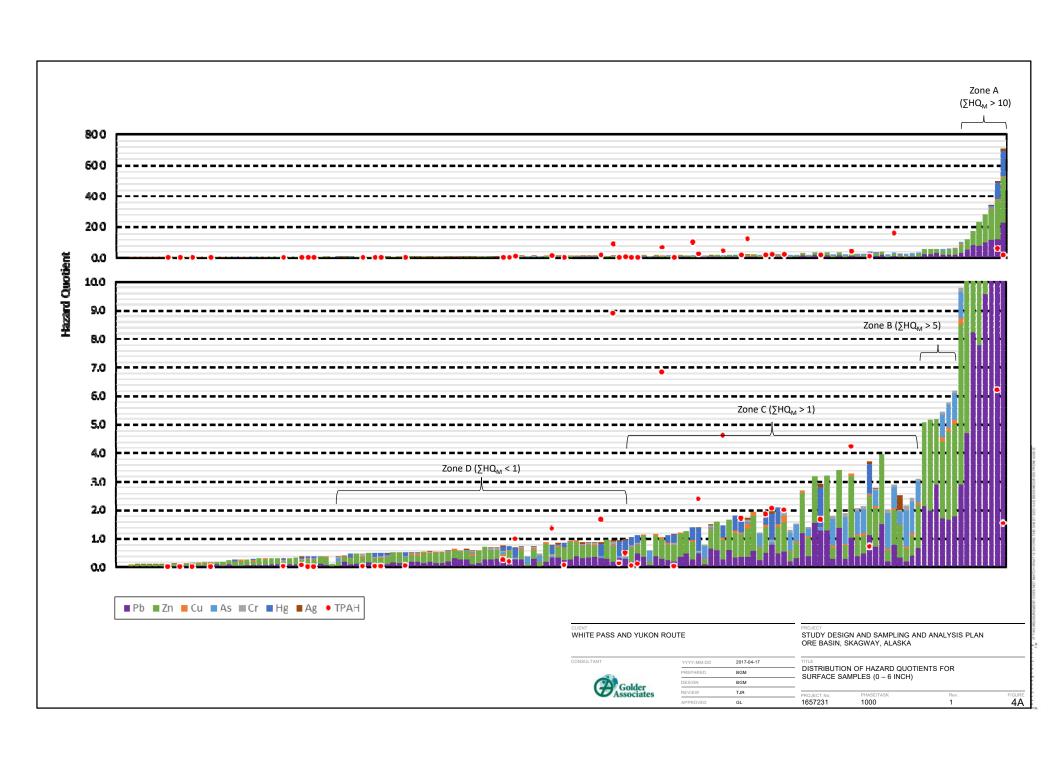
Golder Associates

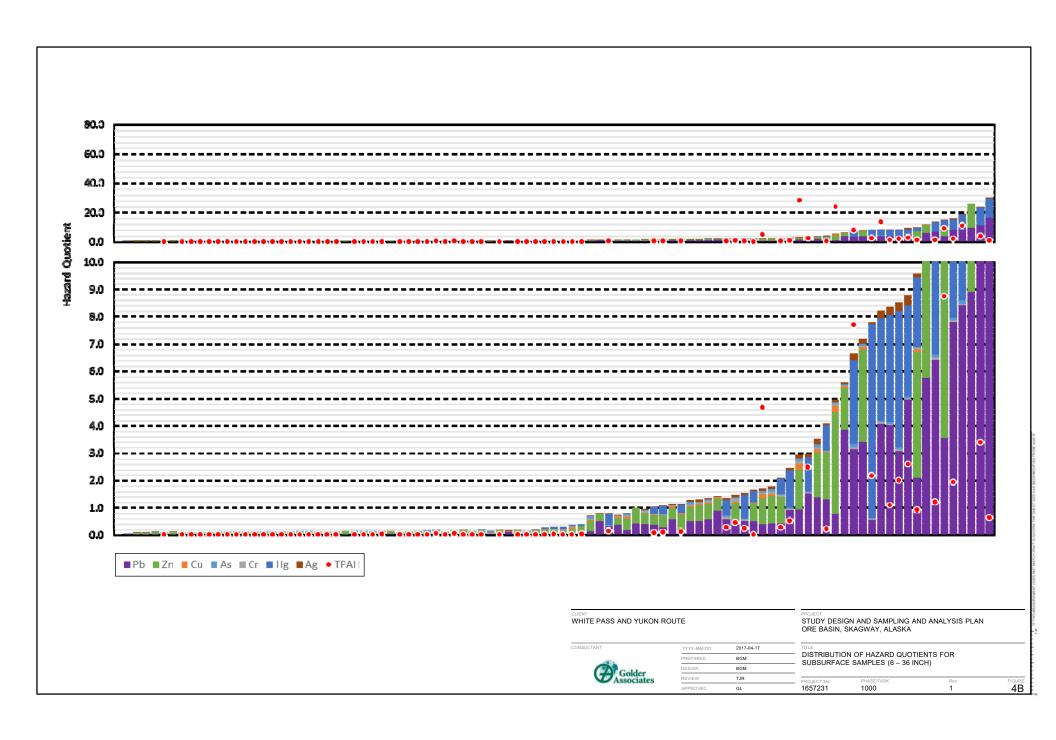
YYYY-MM-DD	2017-04-17
PREPARED	RTJ
DESIGN	LC
REVIEW	TR
APPROVED	GH

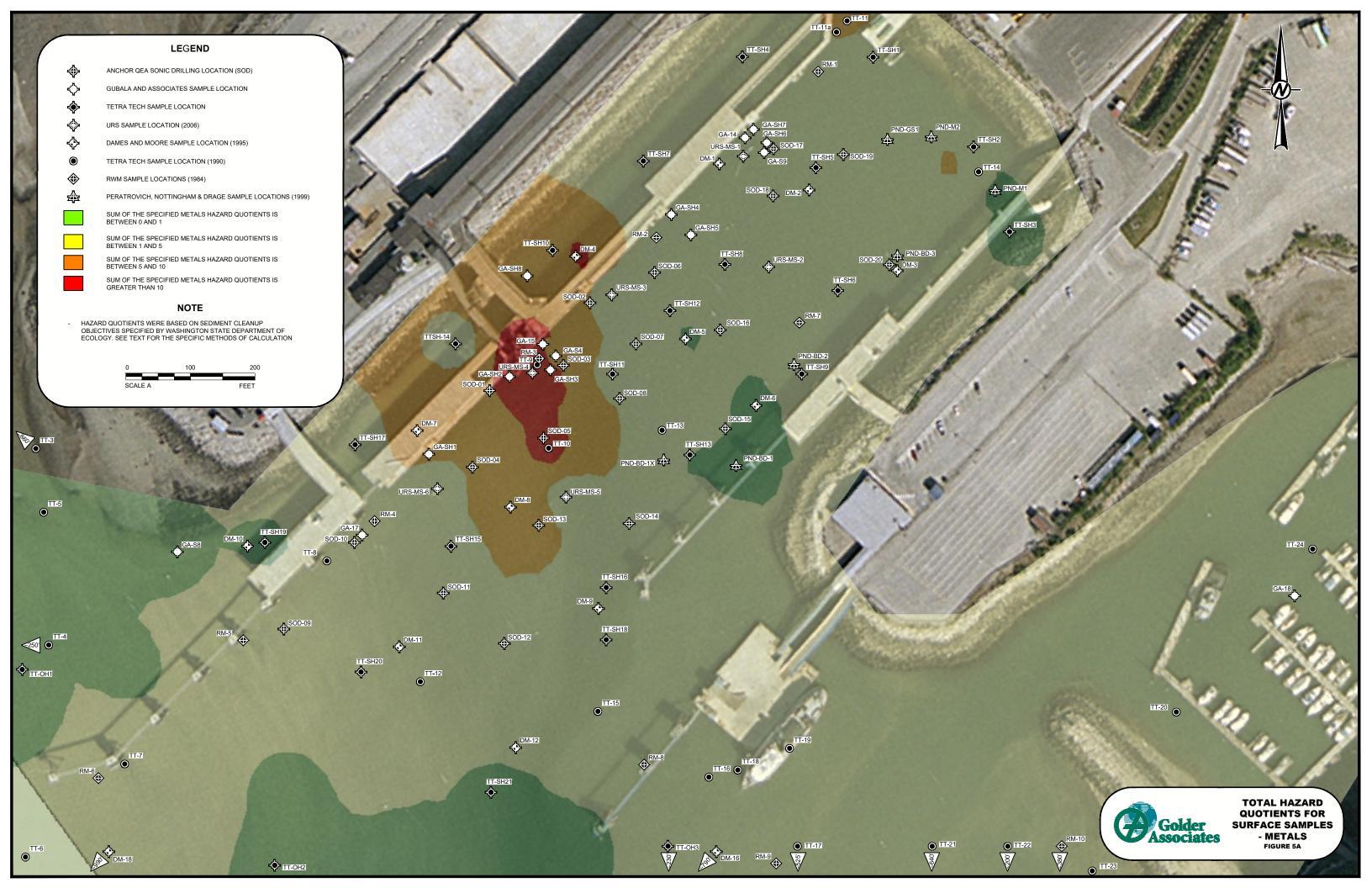
SCALE

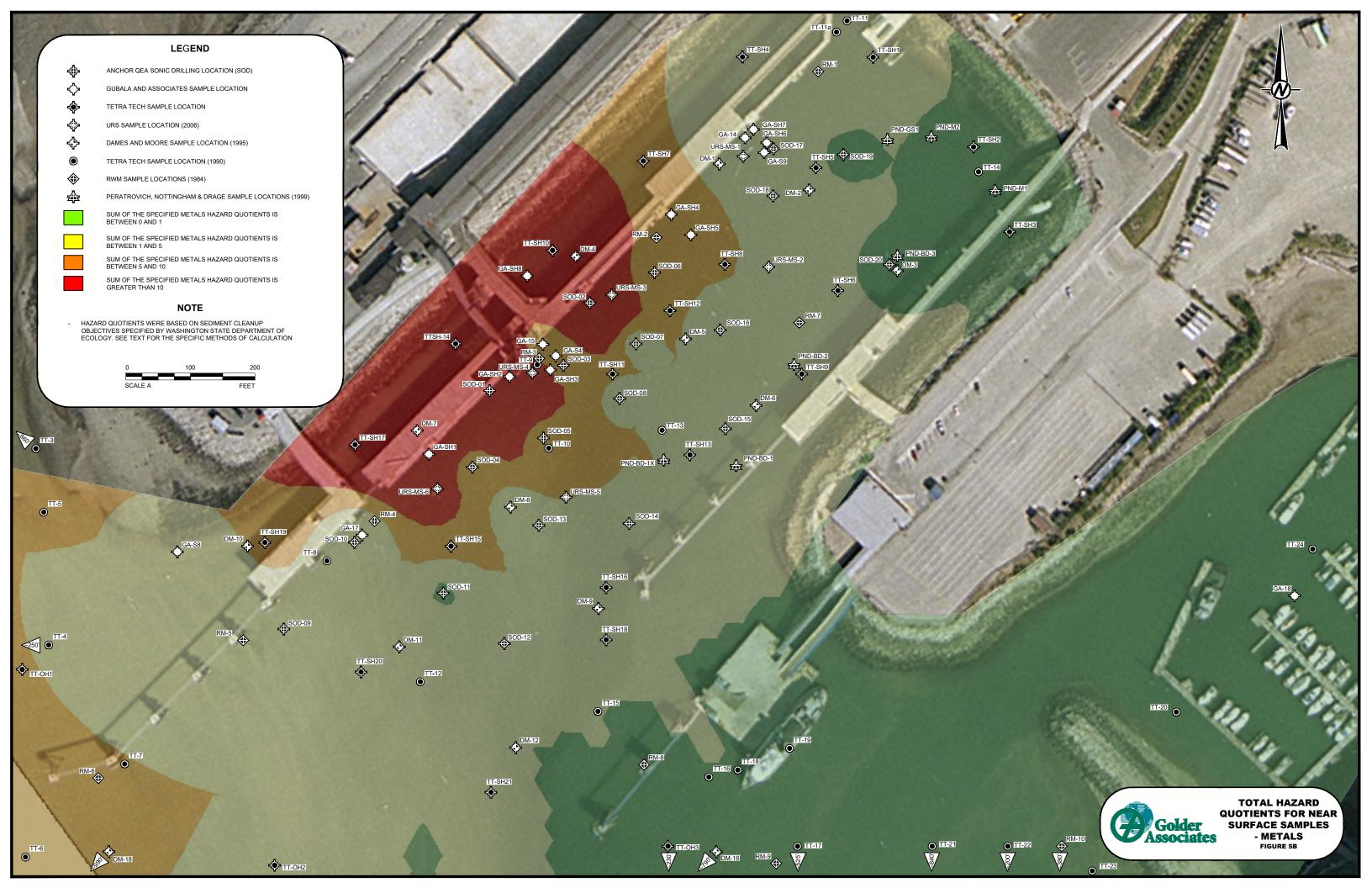

MILES

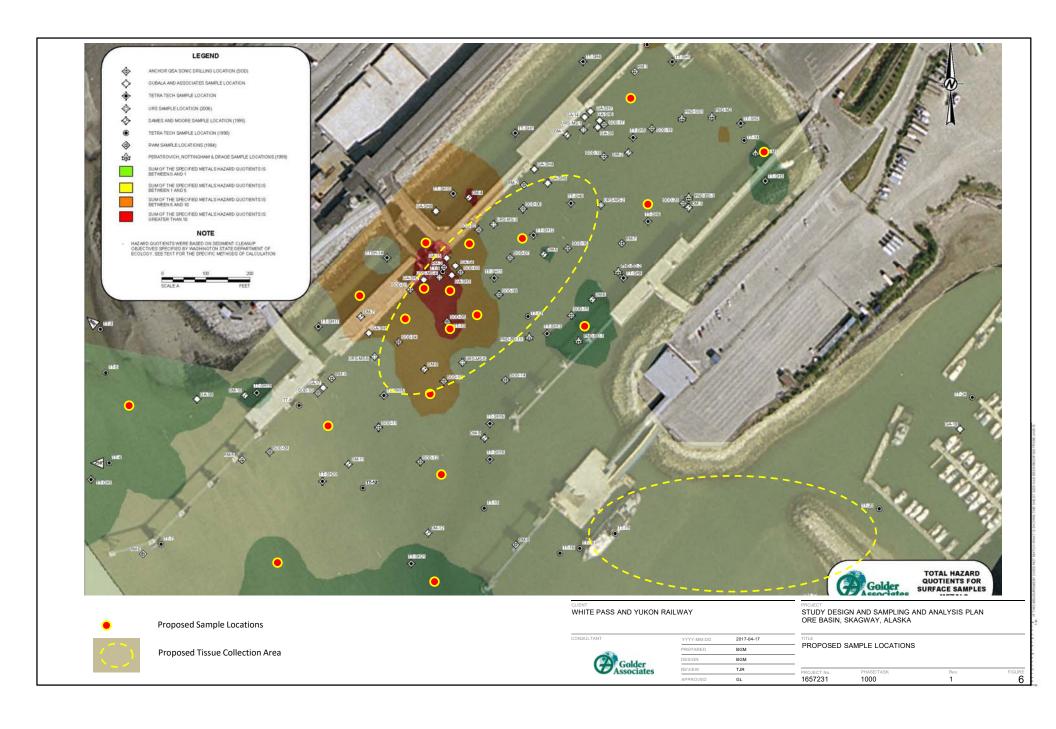

PROJECT


OREBASIN SEDIMENT ASSESSMENT SKAGWAY, ALASKA


TITLE KEY PLAN


PROJECT No.	PHASE	Rev.	FIGURE
1657231	1050	1	1





APPENDIX B

Resumés for Qualified Environmental Professionals and Qualified Samplers

Education

MSc Toxicology, University of Guelph, Guelph, Ontario, 2013

BSc Environmental Toxicology (Major): Business Administration (Minor), University of Guelph, Guelph, Ontario, 2009

Certifications

Vancouver Island University - British Columbia Electrofishing Crew Lead Certification, 2015

Danatec Educational Services - H2S Awareness Certification, 2014

Alberta Construction Safety Association - Pipeline Construction Safety Training (PCST), 2014

Golder Associates - Bear Aware Certification, 2014

University of Guelph -Good Laboratory Practices Certification, 2010

Workplace Hazardous Materials Information System (WHMIS), 2010

St. John's Ambulance CPR-C, 2014

Golder Associates Ltd. - Vancouver

Environmental Scientist

Paddy McManus is an environmental scientist specializing in toxicology with seven years dedicated to the discipline. He has studied environmental fate, residue analysis, community ecology, chronic exposure toxicity monitoring and water chemistry.

Employment History

Golder Associates LTD. - Burnaby, BC

Environmental Scientist (2014 to Present)

Part of various teams conducting risk assessments, environmental monitoring, environmental permitting and environmental impact assessments. Proficient field researcher.

University of Guelph - Guelph, ON

Graduate Student (MSc Research) (2010 to 2013)

Identified questions arising from knowledge gaps in the literature regarding a new mosquito larvicide then designed experiments to address these questions. Worked in an NSERC industrial partnership to make meaningful and practical contributions to both academia and a Canadian startup company, resulting in new pesticide registrations and a new tool to combat malaria and dengue fever. Designed and conducted research on mesocosms at the Guelph Turfgrass Institute, then became proficient at aquatic testing related to research questions; including zooplankton classification, mosquito bioassay and quantification of chitin production. Paddy has extensive experience with trace chemical analysis in water and pond sediment using HPLC and spectroscopy as a result of this research.

University of Guelph - Guelph, ON

Graduate Teaching Assistant (2011 to 2013)

Held numerous teaching assistant placements, each with different demands such as facilitating student discussions, conducting lab sessions, providing constructive feedback, lecturing in class, and grading essays, tests and presentations. Was placed in a unique position to design and administer a course curriculum.

Mahkteshim - AGAN, Tumaini Inc., University of Guelph - Guelph, ON Laboratory Technician and Project Manager (2009 to 2010)

Designed and conducted preliminary pesticide (Novaluron) characterization studies that led to a master's position. Presented data in a variety of mediums to industrial sponsors and senior staff for the duration of employment biweekly. Gained initial experienced in grant application writing, conducting ELISAs, developing chemical specific antibodies and HPLC analysis methods.

Health Canada - Ottawa, Ontario

Healthy Environments and Consumer Safety Branch Intern (2008 to 2008)

Worked in the Chemical Strategies Division to assess, evaluate and summarize literature that were used to make regulatory decisions about specific chemicals (like bisphenol A). Designed chemical regulations search strategy that was distributed and used by the entire division.

Public Health Agency of Canada – Guelph, Ontario

Research Associate (2007 to 2007)

Developed a new model for Campylobacter pathogenicity through the differential killing of the soil nematode C. elegans at the PHAC Laboratory for Foodborne Zoonosis. Maintenance of the lab department, including propagating bacterial cultures and C. elegans nematodes. Coordinated and designed experiments to solve pertinent research objectives which led to fundamental breakthroughs on the project. Presented results in a variety of formats on a regular basis to small groups of superiors with varying levels of knowledge on the project. Became adept at aseptic technique, DNA extraction, PCR, microscopic photography and cloning.

Health Canada - Ottawa, Ontario

Hazardous Materials Information Review Commission Literature Review Agent (2007 to 2007)

Worked in the Hazardous Materials Information Review Commission (HMIRC) to conduct a categorical search of literature available on a given chemical to ascertain toxicological importance. Screened through thousands of scientific journal article abstracts to collect pertinent information for policy decisions.

PROJECT EXPERIENCE – ENVIRONMENTAL MANAGEMENT

Vancouver Airport Fraser River Offshore Drilling Environmental Management Plan British Columbia Created an environmental management plan for future offshore drilling and sediment sampling to mitigate environmental disturbance and negative effects in accordance with applicable environmental regulations.

Various Environmental Monitoring Sites in the Vancouver Area British Columbia Served as site environmental monitor to various sites like building construction areas, land excavation zones, and movies sites in the vicinity of sensitive environments in the Vancouver area. Duties have consisted of thorough knowledge of the regulatory setting of the site, frequent communication with senior Golder staff and clients and careful attention to detail.

Sasamat Dam Geotechnical Investigation Environmental Management Plan British Columbia Created an environmental management plan for future onshore drilling and sediment sampling near water to mitigate environmental effects in accordance with applicable environmental regulations.

PROJECT EXPERIENCE - ENVIRONMENTAL ASSESSMENT

Britannia Mine Pore Water Monitoring British Columbia Pore water sampling and screening against applicable provincial and federal guidelines to assess the level of contamination in the environment surrounding a decommissioned mine.

Tilbury Foreshore Investigation British Columbia

Created and implemented a work plan to evaluate areas of a site at high risk of containing contamination. Data was screened against applicable provincial guidelines to establish existing levels of environmental contamination prior to a lease transfer agreement.

Capital Regional District Environmental Assessment British Columbia

Responsible for the statistical analysis, reporting and discussion of the semiannual benthic macroinvertebrate assessment and sediment quality triad evaluation.

PROJECT EXPERIENCE - BIOLOGICAL SCIENCES

The Pier Development Site Permitting British Columbia

Wrote numerous permits to address environmental impact mitigation, including a request for review to the DFO and Port Metro Vancouver project reviews for a development site in North Vancouver.

Trend Mine Environmental Effects Monitoring (EEM) British Columbia

The environmental effects monitoring of Trend Mine involved several activities which Paddy was involved in:

- water and sediment sampling of effluent from the mine
- fish capture, sexing and assessment
- lentic ecosystem evaluation
- amphibian habitat reconnaissance
- data capture and screening against applicable provincial guidelines
- chlorophyll a quantification and statistical analysis

Kitimat Marine Terminal Barge Ramp Extension Sampling Program

British Columbia

Collected and characterized marine sediment for analysis chemistry and toxicology parameters. Facilitated communication between project managers and subcontractors in the field. Integral part of technical troubleshooting team.

Athabasca Oil Pipeline Construction Amphibian Conservation Alberta

Reconstructed local habitats to mitigate pipeline construction activities. Sampled and collected species of special concern to determine effects of conservation efforts

TRAINING

Site to Story: Technical Writing Workshop Geoenvirologic, 2015

Statistical Methods in Ecotoxicology Using R

SETAC (Short Course), 2014

Canadian Aquatic Biomonitoring Network (CABIN) Field Assistant University of New Brunswick and Canadian Rivers Institute, 2014

PROFESSIONAL AFFILIATIONS

Society of Environmental Chemistry and Toxicology (SETAC) (2005-present)

PUBLICATIONS

Characterization of a Formulation of Novaluron in Extended Field Trials, presented at the American Mosquito Control Association (AMCA) annual meeting, Atlantic City NJ, 2013 (Presentation)

Characterization of a Controlled-Release Formulation of Novaluron, presented at the American Mosquito Control Association (AMCA) annual meeting, Austin TX, 2012 (Presentation)

Novaluron as a Controlled-Release Insecticide, presented at the American Mosquito Control Association (AMCA) annual meeting, Austin TX, 2012 (Poster)

Characterization of a Controlled-Release Formulation of Novaluron, presented at the Society of Environmental Toxicology and Chemistry (SETAC) annual meeting, Boston MA, 2012 (Poster)

Characterization of Three Controlled-Release Formulations of Novaluron, 2010 (Report submitted to EPA and PMRA)

Education

Diploma Fish and Wildlife Technologist, Sir Sandford Fleming College, 2002

Golder Associates Ltd. – Whitehorse

Project Role: Senior Technician

Joe Marquardson is a Senior Technician in Golder's Whitehorse office where he has over 10 years of experience in environmental sampling including fisheries habitat assessment, baseline and construction related environmental monitoring and management, and hydrologic assessments including instream flow needs, water quality sampling. He has been involved in a variety of transportation, infrastructure and development projects.

Employment History

Golder Associates Ltd. - Calgary, AB then Whitehorse, YT

Senior Environmental Monitoring (2006 to Present)

Environmental Monitoring related to water quality, hydrology, water quantity, fisheries and aquatic ecosystem resource inventory. Expertise in leading field programs, equipment operation, remote field work, and field logistics.

Arctic Response - Whitehorse, YT

Instructor (2011 to Present)

Part time training instructor for courses such as Wilderness First Aid, Ice Rescue, Wilderness Survival, Snowmobile Safety and Roadside Emergency Preparedness.

Ontario Ministry of Natural Resources Lake Simcoe Fisheries Assessment Unit – Sutton, ON

Fisheries Technician (2005)

Fisheries technician for winter angler creel survey on large lake (750 km²) receiving heavy sport fishing pressure.

Ontario Ministry of Natural Resources Upper Great Lakes Management Unit – Owen Sound, ON

Fisheries Technician (2005 to 2006)

Crew lead for fisheries assessment surveys. Responsibilities included data collection, equipment operation and maintenance and staff training. Participated in many field projects, such as off-shore index gillnetting, spawning assessments, larval walleye trawling, river flow monitoring, migratory salmonid fish-way monitoring, lake sturgeon sampling, commercial catch sampling, and forage fish surveys. Demonstrated proficiencies with fish bio-sampling including fish dissections and fish tissue sampling for contaminant analysis.

Ontario Ministry of Natural Resources Kawartha Lakes Fisheries Assessment Unit – Lindsay, ON

Fisheries Technician (2002 to 2003)

Assisted with fisheries assessment field surveys, such as gill and trap netting and summer and winter roving angler creel surveys. Responsible for data entry and laboratory duties, such as fish bio-sampling, dissections, collection of tissue for contaminant analysis and age structure preparation.

Laurentian Co-operative Freshwater Ecology Unit – Sudbury, Ontario

Fisheries Technician (2001)

Sampled fish communities of oligotrophic lakes in remote areas using gill and trap nets.

PROJECT EXPERIENCE - GENERAL

Gahcho Kue Environmental Assessment

Northwest Territories June 2010 – August 2014 Water sampling, toxicology sampling, fish health, abundance and distribution assessments, hydrological assessments, deployed / retrieved water quality data logging sondes, assessed fish possibility potential for selected watercourses, benthic macro-invertebrate sampling, plankton sampling, large scale lacustrine fish salvage, collected depth integrated water samples from arctic lakes in winter. Accessed sites via helicopter and snow machine.

Snap Lake Aquatics Effects Monitoring

Northwest Territories January 2009 – September 2016 Collect depth integrated water samples from arctic lakes in winter. Process large suites of water samples and send to multiple labs. Enter data in client database. Prepare safe work plans. Access sites via snowmobile, boat, Haggland. Lake trout mark and recapture study - angled and PIT tagged 250 lake trout for population estimate study. Deployed / retrieved water quality data logging sondes.

AEM Jennings Baseline Monitoring

Rancheria, YT June 2011 – October 2013 Water sampling, fish habitat data collection, stream backpack electrofishing, install and maintain meteorological station and hydrological gauges, measure stream discharge, collect water, benthic macro-invertebrate and plankton samples. Summarized results, prepared reports, and project management.

WPYR Fish Habitat Compensation and Monitoring

Bennett Lake, BC September 2011 – September 2016 Assisted with planning and design of fish habitat enhancement structures for Bennett Lake. Assisted with survey design to assess fish use of enhancements. Collected fish using electrofisher, seine net and minnow traps. Select suitable location for structure installation. Collect lake substrate and water level elevation.

Milk River Instream Flow Needs Study

Milk River, AB July 2010 – October 2010 Used Real Time Kinematic survey equipment to produce detailed maps of bathymetry, riparian topography, fish habitat, and floodplain and stream characteristics for modelling. Measured stream discharge and ice cover.

Shell Canada Ltd. -Muskeg River Mine Expansion

Fort McMurray, AB June 2006 – September 2008 Field crew lead for stream geomorphic study. Used Acoustic Doppler Current Profiler for bathymetry mapping and measuring stream discharge. Used Real Time Kinematic survey equipment to produce detailed maps of fish habitat, floodplain and stream characteristics for modelling. Collected fish and fish habitat data from surrogate streams.

Whitemud River Instream Flow Needs Study

Winnipeg, MB October 2009 Used Real Time Kinematic survey equipment to produce detailed maps of fish habitat, floodplain and stream characteristics for modelling. Used Acoustic Doppler Current Profiler for bathymetry mapping and measuring stream discharge.

Diavik Diamond Mines Inc.

Lac Des Gras, NT August 2008 Fish health study on lake trout comparing levels of mercury in two populations. Captured fish using angling, extracted various tissues for lab analysis and age determination.

Endako Mines Fraser Lake, BC September 2009

Field crew lead for water quality, fish health, and sediment sampling program. Collected various data for comparison of watercourses adjacent to mining operations to control sites not affected by mining. Collected sediment and water quality samples, selected sites, jet boating.

Suncor Energy Inc. Millennium Project Fort McMurray AB

Fort McMurray, AB July 2008-March 2009 Assessed fish habitat potential for tributaries to Steepbank River. Measured water quality and stream velocity during winter. Prepared report on fish utilization of habitat enhancements (groynes) in Steepbank River.

Canadian Natural Resources Ltd. -Horizon Project

Fort McMurray, AB May 2006 – September 2009 Crew lead for installation and monitoring of migratory fish counting fences. Implanted passive integrated transponder (PIT) tags into sportfish and sucker species. Secondary crew lead for Tar River fish salvage. Operated portable totebarge type electrofisher.

Town of Strathmore

Strathmore, AB April 2009 Field crew lead for spring fish spawning assessment on Bow River. Used egg airlift sampler and kick sampling to delineate spawning habitat use of trout and sucker species. Conducted redd survey. Prepared report on results.

Shell Canada Limited (Shell) – Jackpine Mine

Fort McMurray, AB May 2006 – September 2008 Field crew lead for fish and fish habitat monitoring during 2006 and 2007 seasonal field programs. Primary responsibilities included characterizing fish habitat and sampling fish to provide population estimates. Also responsible for supervision of crew of two to four field staff. Sampled fish using backpack and portable boat electofishers. Collected water quality data, sediment samples, benthic macroinvertebrates, sampled aquatic macrophytes, various limnological parameters.

Petro-Canada Fort Hills Athabasca Oil Sands Project (AOSP)

Fort McMurray, AB June 2007 – August 2008 Collected water quality data and was the field crew lead for fish and fish habitat baseline study, construction monitoring, and fish salvage. Responsibilities included characterization of fish habitat and fish sampling to provide population estimates, monitoring of total suspended solids in watercourses subjected to construction activities, fish salvage using traps and electrofishers, and installation of fish barriers.

Syncrude Canada Inc. Aurora Mine

Fort McMurray, AB June 2008 Conducted lake bathymetry and fish habitat mapping, set and fish wire minnow traps, and measured water quality.

TransAlta Utilities Bighorn Dam Nordegg, AB

Nordegg, AB September 2008 Fall salmonid spawning assessment. Used egg-airlifter to delineate mountain whitefish spawning habitat utilization and conducted redd survey throughout a 40-km stretch of North Saskatchewan River. Salvaged fish during a scheduled outage, reported results.

Aguilla Exploration Consultants Limited

Inuvik, NT January 2008 – February 2008 Crew lead for seismic blast monitoring. Measured pressure changes in Beaufort Sea resulting from dynamite blasts during a test program in winter.

Shell Unconventional Resource Extraction

Wabasca, AB June 2007 – October 2010 Crew lead for pipeline and road crossing fish habitat assessments. Characterized fish habitat and sampled fish community using backpack and boat electrofishing and minnow traps. Baseline study of fish and fish habitat conditions prior to development involving electrofishing, water quality, assessment of various stream and waterbody characteristics.

Plains All American Pipeline L.P.

Sundre, AB February 2009 – March 2009 Field crew lead for sediment and construction monitoring during horizontal directional drill under Red Deer River during winter. Monitored water for total suspended solids and turbidity through ice at various locations during drilling activity.

Lake Huron Baitfish Study

Lake Huron, ON June 2004 – July 2004 Crew lead for lake-wide forage fish assessment. Captured small fish using minnow traps, fyke nets, and gill nets. Identified fish using taxonomic keys. Trained staff and volunteers.

Georgian Bay Muskellunge Index Netting

Lake Huron, ON April 2003 – May 2005 Crew lead for health and abundance netting program. Captured spawning muskellunge using nearshore trapnets at known and suspected spawning locations. Collected gametes and tissue for aging, genetics, and disease analysis, assisted with site selection.

Severn Sound Walleye Spawning Assessment

Lake Huron, ON April 2003 – May 2005 Crew lead for walleye health and abundance netting program. Captured spawning walleye using nearshore trapnets near known spawning locations. Collected age structures, biological measurements, and applied Floy tags. Collected fish tissue for contaminant sampling.

Kawartha Lakes Fish Health and Abundance Study

Lindsay ON May 2002 – September 2002 Captured fish with trap and gill nets. Tissue sampling for contaminants, age structure, sex/maturity, various biological measurements, meristics and observations.

Moon River Walleye Spawning Assessment

Lake Huron, ON May 2005 Captured spawning walleye for health and abundance assessment using nearshore trapnets. Measured river velocity, measured water levels using surveying equipment, captured larval fish using tow nets, and quantified use of natural and introduced spawning substrate using spotlights.

Lake Huron Double-Crested Cormorant Impact Study

Lake Huron, ON June 2003 – September 2003 Crew lead for impact assessment of Cormorant predation on nearshore fish communities using trap and gill nets. Trained staff. Collected fish tissue for aging and contaminant sampling.

Lake Huron Commercial Catch Sampling

Lake Huron, ON June 2004 – September 2004 Organized trips with commercial fishermen. Counted and biosampled commercial catch on-board commercial fishing vessels. Trained staff.

Lake Huron Lake Sturgeon Assessment

Lake Huron, ON June 2004 Used gill nets and set lines and dip nets to capture spawning lake sturgeon. Sampled commercially caught sturgeon held in hatchery race-ways.

Owen Sound Bay Lake Trout Spawning Assessment

Owen Sound Bay, ON September 2003 – November 2005 Crew lead. Set short-duration small mesh gill net sets on known and suspected spawning shoals at night.

Algonquin Park Wolf Research

Algonquin Park, ON January 2004 – April 2004 Conducted radio-telemetry study to determine population estimates, pack size and territory, mortality, and migration. Located wolf packs using aerial radio-telemetry, uploaded and interpreted data from global positioning system (GPS) collars, determined health of wolf-killed moose, and determined cause of death for collard wolves. Also participated in aerial white-tailed deer winter habitat delineation and moose hair-loss severity surveys.

Giant Mine Fish Health

July 2012

Captured small bodied fish using backpack electrofisher, minnow traps, sene nets. Performed necropsies on ninespine stickleback, collected tissue samples for toxicology.

TRAINING

All Terrain Vehicle Safety and Operation-Alberta Safety Council

Snowmobile Safety and Operation - Golder

Construction Safety Training System-AB Construction Safety Assoc.

Valid Class 5 Yukon Driver's License

YSI calibration, maintenance and troubleshooting-Hoskin Scientific

Fishes of Ontario Identification-Royal Ontario Museum

Valid Class Two Electrofishing Certificate-Fleming College, Malaspina College

Valid First Aid and CPR-Lifesaving Society; maintained since 1999

Pleasure Craft Operator Card-Lifesaving Society

Working on Ice, Ice Safety, and Rescue-Risk Dynamics

Marine Emergency Duties (MED-A3)-Georgian College

Restricted Aeronautical Radio Operator Certificate-Sir Stanford Fleming College

Bear Safety Awareness-Ontario Ministry of Natural Res. (OMNR) Golder

Workplace Hazardous Materials Information Systems-OMNR, Golder

Transportation of Dangerous Goods-OMNR, Golder

Chainsaw Safety-Landscape Ontario

Firearms Safety-Firearms License

Oil Sands Safety Assoc. (OSSA) Regional Orientation Program

H2S Alive-Encore

Education

Masters of Environmental Toxicology, Simon Fraser University, Burnaby, BC, 2004

Post-Baccalaureate Diploma in Environmental Sciences, Capilano College, North Vancouver, BC, 1997

BSc Ecology, University of British Columbia, Vancouver, BC, 1996

Golder Associates Ltd. - Vancouver

Employment History

Golder Associates Ltd. - Burnaby, BC

Associate, Senior Environmental Scientist (2008 (Associate, 2012) to Present)

Project director and principal investigator for contaminated sites investigations, quantitative ecological risk assessments and specialized environmental toxicology projects. Responsible for designing studies to address project needs, providing oversight to field teams, reviewing study deliverables, and preparing technical reports. Also responsible for client and regulatory liaison as well as project budgeting and financial management.

Simon Fraser University - Burnaby, BC

Sessional Lecturer (2003 to Current)

Responsible for the delivery of 50% of graduate course offered as part of the Masters of Environmental Toxicology program. Course content focuses on study design and interpretation of data for environmental toxicology and risk assessment projects undertaken to provide practical solutions for contaminated site management.

Golder Associates Ltd. / EVS Environment Consultants – North Vancouver. BC

Environmental Scientist (2000 to 2008)

Duties included study design, data analysis, reporting, and project management. Acted as Principal Investigator for projects involving ecological risk assessment and/or environmental toxicology.

EVS Environment Consultants - North Vancouver, BC

Laboratory Biologist (1998 to 2000)

Conducted routine and specialised toxicity testing with broad range of taxonomic groups and environmental media.

PROJECT EXPERIENCE - CONTAMINATED LAND REMEDIATION

Site Investigation and Remedial Services for Imperial Oil British Columbia, AB Acted as group leader and senior project manager for a 20+ person team of scientists and engineers providing site investigation, risk assessment and remediation services for a portfolio of 150+ sites across Western Canada. Projects ranged in size and complexity, but covered service stations, cardlocks, bulk plants and fertilizer storage facilities. Services focused on site closure planning, groundwater and soil sampling, soil vapour sampling, water use determinations, remedial action planning, ex-situ remediation, risk assessment and demolition. Typical project values ranged from \$25,000 - \$250,000 per site per year with an aggregate spend of greater than \$3M per year.

Cardlock, Houston

British Columbia

Project director for site characterization and closure of a former bulk plant and cardlock in Houston, BC. A site investigation strategy was designed to meet the requirements of the Contaminated Sites Regulation, and targeted soil remediation was completed to remove petroleum hydrocarbons in soil. A numerical Certificate of Compliance was obtained.

Former Service Station, Prince George British Columbia Project director and principal risk assessor for site characterization and risk-based closure of a former gas station in Prince George, BC. The primary challenge was that the water table was extremely deep, and contained elevated concentrations of selenium. An approach to obtain a local background release was negotiated with the Ministry and ultimately, a risk-based Certificate of Compliance was obtained.

Former Townsite, Port Moody British Columbia Project director and principal risk assessor for site characterization and risk-based closure of a former townsite (1912 - circa 1950) associated with the former IOCO Refinery in Port Moody BC. The site was previously occupied by residences with oil heating tanks, resulting in hydrocarbon and metal contamination in soil. Regulatory instruments were needed to support the property transfer. Designed a site investigation strategy that focused on contamination on a site-wide basis (i.e., a meta-AEC) instead of as a series of individual point-sources. Negotiated an approach to aggregrate large numbers of individual legal titles into five distinct parcels. Focused on obtaining background releases so that remediation focused on site-specific contaminants related to historical site activity. Executed a soil remedial program in conjunction with a Protocol 13 screening-level risk assessment. Certificates of compliances were obtained.

Former Bulk Plant, Richmond British Columbia Project director and principal risk assessor for site characterization and risk-based closure of a former bulk plant located adjacent to the Fraser River in Richmond, BC. The site was located on a former intertidal zone that was historically occupied by a fish cannery, resulting in anomalous metals (tin, mercury) at depth, as well as petroleum hydrocarbons in soil and groundwater. A site characterization program was executed that delineate the contamination in soil, groundwater and a sediment. A remedial program was initiated to remove petroleum hydrocarbon contamination at depth which required the design and installation of a sheet pile wall to depth of 13 meters. A detailed ecological and human health risk assessment was completed for the residual contamination that could not be removed due to the proximity of the Fraser River. This included a sediment risk assessment to allow the water lots to be returned to the Vancouver Fraser Port Authority. A risk-based Certificate of Compliance was obtained.

Former Bulk Plant, 100 Mile House British Columbia Project director and principal risk assessor for site characterization and risk-based closure of a former bulk plant located adjacent to agricultural land in 100 Mile House, BC. Site investigation found residual hydrocarbons and metals were present in soil; a previous consultant obtained an Approval in Principle that required remediation of significant volumes of soil. A supplemental investigation was executed that confirmed that residual contamination presented minimal risks using Protocol 13. A risk-based Certificate of Compliance was obtained.

Former Bulk Plant, Port Alberni British Columbia Project director and principal risk assessor for site characterization and risk-based closure of a former bulk plant located adjacent to Alberni Inlet. Site investigation identified petroleum hydrocarbons in fractured bedrock. The subsequent risk assessment focused on evaluating risks in seepage water along the shoreline; upland risks from residual soil contamination were evaluated using the typical Health Canada HHRA model and Protocol 13. The property included a sediment water lot, which required a detailed ecological risk assessment. The ERA used toxicity testing and sediment transport analysis to place risks from hydrocarbons in the context of risks associated with neighbouring properties, which included a pulp and paper mill outfall. A risk-based Certificate of Compliance was obtained.

PROJECT EXPERIENCE – RISK

Guidance Manual for Detailed Ecological Risk Assessments British Columbia Project Manager and co-author of a guidance manual for conducting detailed ecological risk assessments in British Columbia. This guidance manual was adopted as Protocol 20 under the Contaminated Sites Regulation and forms the basis for obtaining risk-based Certificates of Compliance. The manual provided a state-of-the-science update and expansion of the existing Tier I framework and emphasised the need to evaluate sites based on their ecological attributes rather than land use alone. Specific guidance was provided on the development of comprehensive and defensible problem formulations. Detailed guidance was also provided on numerous risk assessment tools, including the appropriate use of toxicity testing, improving consideration of bioavailability, developing relevant toxicity reference values, and using weight-of-evidence approaches for risk characterisation.

Sediment and Groundwater Risk Assessment, Former IOCO Refinery British Columbia Project director for a multi-year detailed ecological risk assessment for the shoreline of a former refinery (which is still an active distribution terminal). Historical activities resulted in the presence of LNAPL bodies near the receiving environment, leading to dissolved phase hydrocarbons in groundwater as well as sediment contamination. Developed a tiered strategy that started with a detailed LNAPL mobility assessment and a distributed temperature sensing study to identify and prioritize groundwater seepage areas, followed by groundwater-surface water modelling and deployment of passive samplers to provide a realistic measure of exposure. Exposure data were compared to site-specific toxicity reference values. Sediment was assessed using sediment profile imaging. A detailed risk assessment was developed using all available lines of evidence in a weight-of-evidence framework.

Risk Management and Remediation Planning for the Former IOCO Refinery British Columbia Project director for a multi-year (2009 - current) integrated site characterization, risk assessment and remedial planning for a 200 hectare former refinery site. Responsible for the development of the overall site risk management strategy and leadership of a multi-disciplinary team, including site characterization, hydrogeology, geo-chemistry, environmental toxicology and risk assessment, marine engineering, ecology and stream restoration, remedial options analysis, remedial design, and project management. Responsible for study design and client and regulatory liaison.

Esquimalt, BC

Provided peer-review and technical assistance to the study team contracted by the Department of National Defence to complete a sediment assessment and management program for Esquimalt Harbour. Activities included participation in a Senior Review Panel examining study design and problem formulation documents prepared by a third party; providing technical assistance to the study team during project implementation, and design of a decision-making framework that will be used to integrate the results of a sediment, wildlife and human health risk assessment into an overall risk management strategy for the harbour.

Sediment ERAs for Former Imperial Oil Fuelling Facilities British Columbia Project manager and principal investigator for a major oil & gas client in process of divesting a portfolio of former marine fuelling facilities. A framework for sediment assessment and management decision-making was developed based on weight-of-evidence principles to provide a consistent sampling and interpretation strategy for multiple risk assessments. This framework was applied to seven different locations in British Columbia. Responsible for all aspects of study design, project implementation, interpretation, and regulatory liaison, including the preparation of submissions to obtain Certificates of Compliance.

Lead-Shot Food Chain Modeling New Zealand, Australia Project manager for the development of a mechanistic food chain model to evaluate the risks of lead shot on agricultural lands used by cattle. The food chain model was constructed using probabilistic techniques so that it could be used to evaluate a portfolio of potential sites by local regulators.

Sediment Ecological and Human Health Risk Assessment Uranium City, SK Project manager for a sediment EHHRA conducted for a former public port facility in Lake Athabasca, SK. The uplands portion of the site was remediated and decommissioned; however, historical site activities resulted in elevated hydrocarbon concentrations over a broad portion of the bay. Principal investigator for the ecological component, which included an extensive site characterization, toxicity testing, benthic community structure, elutriate chemistry and toxicity, and sediment transport analysis. The EHHRA formed the basis of a management plan for the site that emphasized non-intrusive techniques instead of wide-scale dredging.

Risk Assessment for Truck Repair Facility Northeast BC

Project manager and principal investigator for a risk assessment for a former truck repair facility near Fort St. John, BC with elevated concentrations of metals and hydrocarbons in soil. A human health risk assessment and a terrestrial risk assessment was completed as part of a due diligence exercise associated with a property transfer. A Certificate of Compliance was issued for the site.

Development of Weight-of-Evidence Framework for Oil-Spill Risk Assessments Wabamun Lake, AB A train derailment resulted in the release of hydrocarbons to Wabamun Lake which required a comprehensive multi-year environment assessment in conjunction with a spill response and remedial program. A weight-of-evidence framework was developed to integrate the findings from 38 different lines-of-evidence into an overall conclusion about the magnitude of effects in different portions of the lake. A transparent framework that considered the representativeness, methodological robustness, clarity of interpretation, permanence of effects, causality, and coherence was an integral part of addressing regulatory concerns for the project.

Groundwater Risk Assessment Vancouver, BC Project manager and principal investigator for a groundwater risk assessment for discharges from an industrial property to Burrard Inlet. Tannins and lignins were identified as a likely toxicant related to historical site operation and infilling. The risk assessment used a combination of environmental toxicity testing, a site-specific ecological survey and consideration of groundwater attenuation models as part of a due diligence exercise by a major industrial client.

Groundwater and Sediment ERA for Former Shipyard Property Confidential Principal environmental toxicologist and risk assessor for an ongoing project (since 2001). A groundwater risk assessment based on a weight-of-evidence evaluation of a battery of toxicity tests was completed in 2002. A tiered sediment risk assessment was completed in 2004 to delineate the potential extent of sediment contamination, as well as any associated biological effects, including toxicity of sediment to marine life, alterations in the benthic community, and accumulation of contaminants in marine food chains. Key elements in the design of the sediment risk assessment included consideration of effects associated with a nearby combined sewer outfall, as well as other adjacent industrial properties and overall harbour background conditions. A battery of sediment toxicity tests (including chronic amphipod toxicity testing), and benthic taxonomy was completed. Ongoing investigations are focused on establishing the cause of toxicity observed in intertidal seepage areas and the development of a cost-effective risk management strategy.

Riparian Area ERA for Former Mining Area Southeast British Columbia

A screening-level ERA was completed for a golf course expansion project proposed for an undeveloped land parcel containing several fish-bearing watercourses that were potentially impacted by historical mining activity. Lines of evidence included comparison of the available sediment and surface water chemistry data to applicable numerical standards, comparison of fish tissue chemistry to relevant toxicity reference values from the literature, statistical analyses of benthic community samples collected from on-site and upstream reference locations, and the construction of a food chain model to evaluate potential impacts to wildlife consuming dietary items and water from the creeks and the surrounding riparian areas.

Weight-of-Evidence Assessment of Selenium Impacts Alberta A weight-of-evidence assessment was conducted for an Albertan watershed potentially impacted by selenium releases from coal mining operations. A systematic compilation and evaluation of available data was conducted. Specific tasks for this project included the development of the weight of evidence framework. Lines of evidence included data from water, sediment, and fish tissue analyses as well as reproductive fish toxicity testing. Each line of evidence was critically evaluated with respect to its ability to support an ecologically relevant assessment—in the majority of instances, the available data were not sufficient to conclude that adverse ecological impacts at the population and watershed levels were in fact occurring. The current approaches described in the literature were critically reviewed with respect to their ecological relevance, and recommendations for improvements were provided.

Resumé

Groundwater and Terrestrial ERA for the Dockside Lands Victoria, BC A groundwater and terrestrial ERA was completed for a large industrial land parcel being redeveloped for residential/commercial uses. The site was historically used for shipyard activities, freight and railway operations, asphalt manufacturing, and metal recycling, which resulted in elevated soil and groundwater concentrations of metals and polycyclic aromatic hydrocarbons (PAHs). Risks to soil invertebrates and plants were evaluated using a hazard quotient approach as well as site-specific earthworm and grass toxicity testing. Risks to small mammals and birds were evaluated using a food chain model and site-specific bioaccumulation factors (BAFs) developed from 28-d earthworm and grass bioaccumulation testing with site soils. A battery of groundwater toxicity tests was applied, using test organisms (giant kelp, bivalve larvae, and larval fish) intended to represent multiple components of the aquatic community present in the nearby marine receiving environment. Sediment-dwelling organisms were not evaluated. A weight-of-evidence assessment of the available groundwater toxicity and chemistry data was completed.

Screening-Level Aquatic ERA for Zinc and Chloride Yellowknife, NT Site-specific zinc and chloride discharge permit values to protect aquatic resources were derived for the EKATI Diamond Mine (located 300 km northeast of Yellowknife) in lieu of using ambient surface water criteria as the basis for mine permitting. Site-specific species sensitivity distributions (SSDs) were created for zinc and chloride, based on a comprehensive review of all available literature data. Species were selected to reflect the unique assemblage of taxonomic groups present in Arctic water bodies (in general) and the study area (in specific). Metal-specific issues were also addressed with respect to zinc, including the use of metal speciation modelling to assess the true bioavailable fraction (instead of total or dissolved concentrations). Toxicity data also reflected the naturally low water hardness values common to Arctic oligotrophic waterbodies. SSDs were used to calculate acute and chronic hazard concentrations intended to protect 95% of the site-specific species assemblages as a result of exposure to zinc and chloride. Overall risks to aquatic life were estimated to be negligible. Data from the available biological monitoring programs at the EKATI Mine were also reviewed, and found to support this conclusion.

Sediment ERA for the Former Versatile Shipyard Property North Vancouver, BC

A supplemental marine sediment sampling program was conducted to reduce the uncertainty regarding potential risks to benthic organisms identified in previous site investigations. A comprehensive sediment toxicity program was completed for targeted portions of the site, including the use of a chronic amphipod bioassay (28-d Leptocheirus survival, growth, and reproduction), in addition to toxicity tests normally applied. Significant relationships between observed toxicity and the majority of contaminants concentrations were not identified; for those combinations that demonstrated a significant relationship, a detailed review of the cause-effect relationships was completed, and the implications for site management discussed. The supplemental sediment investigation also evaluated other issues that contributed to the uncertainty in the previous site investigation. Petrographic analyses were used to evaluate the hypothesis that elevated PAH concentrations were the result of the deposition of coal. The potential effects of TBT were also evaluated with a combination of predictive bioaccumulation models and literature-based toxicity reference values.

Terrestrial and Groundwater ERA for Southeast False Creek Vancouver, BC Multiple industrial activities along the southeast shoreline of False Creek over the past 100 years have led to elevated soil and groundwater concentrations of metals and hydrocarbons. The terrestrial ERA included acute soil toxicity testing (seed germination and root elongation), as well as dual-species (grass and earthworm) bioaccumulation testing. Bioaccumulation data were used to develop site-specific bioaccumulation factors (BAFs) for metals and hydrocarbons, which provided a more ecologically relevant estimate of contaminant uptake than the use of literature-based BAFs. A food chain model was used to estimate risks to birds and small mammals exposed through dietary pathways; the model was also used to evaluate potential risk management strategies, including limited soil remediation and various soil capping depths. The groundwater ERA used a battery of toxicity tests (three-spined stickleback, bivalves, giant kelp germination, and larval fish). Site-specific groundwater standards for PAHs were derived to reflect the low probability of PAH phototoxicity, based on site turbidity and orientation. A weight-of-evidence framework was used to assess the overall risks to marine organisms as a result of groundwater discharges from the site.

Screening-Level ERA for a Former Plant Nursery Washington, DC A large nursery site adjacent to the Anacostia River was designated for parkland redevelopment. The site has been subject to numerous historical impacts, including the deposition of dredged sediment to build up lowland areas near the river, plant nursery operations, and surrounding industrial activities. Risks were estimated using a hazard quotient approach for a broad selection of ecological receptors, including soil invertebrates and plants, aquatic life, benthic invertebrates, amphibians, small mammals and birds, and piscivorous birds. A wide range of potential contaminants consistent with historical site uses were evaluated, including metals, hydrocarbons, pesticides, phthalates, and chlorophenols. This screening-level ERA was intended to provide a desktop-level exercise to prioritize future baseline ERA sampling activities.

Groundwater and Sediment ERA for Canadian Coast Base Victoria, BC A preliminary quantitative ERA was completed to assist the site owner develop a long-term site management plan for the Victoria Coast Guard base. The groundwater ERA involved toxicity testing using giant kelp and bivalves; uncertainty regarding groundwater discharge locations and the influence of tide cycles and seasonal trends on groundwater contaminant concentration was identified for future investigation. The sediment ERA involved toxicity testing using amphipods and bivalves. The potential for TBT bioaccumulation was also qualitatively evaluated using empirical bioaccumulation models based on data obtained from other urban harbour sites. A qualitative exposure pathway analysis suggested risks to terrestrial receptors (soil invertebrates, plants, birds, and small mammals) under the current land use are negligible, with the potential exception of areas not currently covered by an impervious surface.

Historical operation of the Point Atkinson lightstation resulted in elevated soil concentrations of metals (e.g., arsenic, lead, and mercury) in several areas of Lighthouse Park. A problem formulation workshop was completed, which brought together interested stakeholder groups, including regulatory agencies and the City of West Vancouver. The workshop facilitated community input regarding the scope of the project and was an essential component in the development of an ERA strategy for Point Atkinson and Lighthouse Park. An ERA for the entire park was completed, which involved an extensive sampling program for metal concentrations in soil invertebrates, vegetation, surface water, and mussel tissue. Risks to aquatic life were assessed with an exposure pathway analysis, while risks to populations of terrestrial organisms were assessed using a mechanistic food chain model. This food chain model also considered potential risks to rare and endangered species, as well as dogs visiting the site.

Groundwater ERA for a Former Gas Station Cordova Bay, BC Hydrocarbon-contaminated groundwater from a former gas station was discharging to a nearby beach environment. Although active remediation was underway, an ERA was necessary to assess the residual risks potentially present when remediation was completed. Chemistry and toxicity data for both the groundwater as well as intertidal beach sediment within the potential impact zone were collected and interpreted using a weight of evidence approach. A subtidal biophysical inventory was also completed with the assistance of a subconsultant. Adverse effects associated with the presence of elevated iron concentrations in groundwater were identified (which occurred due to increased microbial activity associated with hydrocarbon contamination); however, a review of the speciation of iron suggested any impacts under field conditions would likely be minimal.

Sediment Quality Assessment for a Refinery Discharge Wisconsin Process water from a refinery is currently discharged to a low-gradient stream that also acts as a stormwater drainage channel for a downstream urban area. Contradictory conclusions regarding the potential impacts of refinery operation on the stream and its floodplain (as well as the necessary scope of remedial activities) were obtained in multiple site investigations conducted since 1990. All available chemistry, toxicity, and benthic community data were compiled and critically reviewed in order to identify QA/QC issues that might limit the utility of the data for ERA purposes. A problem formulation was prepared, which identified multiple sources, contaminants, exposure pathways, and receptors not identified in previous assessments. An integrated assessment of potential ecological risks associated with elevated hydrocarbons in stream sediment was completed using a weight-of-evidence framework and all available site data. Data gaps for a human health and ecological risk assessment for the stream's floodplain were also identified, and the limitations of the available data to support environmental management purposes were discussed.

A terrestrial and aquatic ERA was completed as part of a redevelopment plan for a former sawmill site on the North Arm of the Fraser River. Historic sawmill operation resulted in the release of several contaminants, including dioxins, furans, chlorophenols, and hydrocarbons. The objective of the terrestrial ERA was to evaluate the potential risks for the residual chlorophenol soil concentrations anticipated to remain on site, and was based on dual-species (grass and earthworm) bioaccumulation testing, and a mechanistic food chain model used to predict risks to birds and small mammals exposed to chlorophenol through dietary exposure under a future parkland land use scenario. The aquatic ERA involved a battery of toxicity testing using a number of different trophic levels and toxicological endpoints, including algal growth and water flea survival. Sediment exposure pathways were evaluated based on sediment chemistry and toxicity to amphipods and oligochaetes. A weight-of-evidence framework was used to assess the overall risks to aquatic organisms as a result of groundwater discharges or sediment exposure at the site.

Terrestrial ERA for Former Shooting Range Confidential Elevated soil concentrations of lead, PAHs, and other metals were discovered on an undeveloped, mature forest property in the Greater Vancouver area. Elevated soil concentrations resulted from spent shot and clay target fragments from a private shooting range which operated during the 1930s and 1940s. Metal and PAH concentrations in soil and surface water, berries, ferns, and leaves were measured, and an earthworm bioaccumulation test on site soil samples was conducted since soil invertebrates were not available at the time of sampling. Mechanistic food chain models, with increasingly realistic parameters, were constructed in order to estimate the potential risks to a variety of selected receptor species, such as shrew, mice, voles, deer, robins, and chickadees. Additionally, an extensive review of the methods and assumptions used in the derivation of an avian toxicity reference value for lead was completed, which resulted in several modifications to the food chain model to increase its ecological relevance, including adjustments that reflected the bioavailability of lead under field conditions.

Sediment Quality Investigation for the 2000 Olympics Site Sydney, Australia

A review of sediment data collected by previous consultants for locations adjacent to the site of the 2000 Summer Olympic Games was requested by the Olympic Coordination Authority (now the Sydney Olympic Park Authority). Data were compiled and interpreted using a sediment quality triad approach, leading to a report regarding potential impacts of sediment contamination on the benthic community, within in the context of harbour-wide conditions. Recommendations for the design and implementation of future investigations were provided, and the limitations of the previous data collection and analytical methods were discussed.

Risk Assessment Strategy for Staffed Lightstations British Columbia Twenty-seven staffed lightstations operate along the British Columbia coastline, some of which have been operational for over 125 years. Metals and hydrocarbons in soil and groundwater were identified as potential concerns as a result of historical use of metals-based paints, fuel storage, on-site incineration, and on-site waste disposal. EVS (now Golder Associates) was the lead firm (of four firms involved) in the design and implementation of an ERA strategy. Phase II ESAs for each lightstation were compiled and audited. A data matrix was constructed to identify priority contaminants, sources, exposure pathways. Riskbased remediation objectives were developed as an alternative to generic environmental quality guidelines. A strategy document was prepared to guide the risk assessment process, including a comprehensive problem formulation based on the risk issues matrix, conceptual models, a tiered assessment strategy, and quidance for developing a detailed sampling and analysis plan. Appropriate sitespecific remediation targets and risk calculations were also included. Duties for this project involved the creation and maintenance of the data matrix used to prioritise contaminants, sources, exposure pathways, and the selection of specific lightstations for further assessment.

Terrestrial and Groundwater ERA for CPR Railyards Revelstoke and Nelson, BC A problem formulation document was prepared for each railyard to identify site-specific contaminants (typically hydrocarbons and metals) associated with railway operations. Risks to aquatic receptors in adjacent receiving environments were evaluated by comparing modelled COPC concentrations in the aquatic environment to selected toxicity reference values. The available soil chemistry was compared to numerical standards for protection of soil invertebrates and plants, and an on-site qualitative assessment of potential impacts to the plant community was completed. A tiered approach was used for the overall risk assessment, including analyses of exposure pathways, community health and structure, toxicity tests, bioaccumulation studies, and contaminant transport modelling. Tasks for this project involved compilation of data and comparison of the available chemistry data to numerical standards.

PROJECT EXPERIENCE – ENVIRONMENTAL TOXICOLOGY

Toxicity Assessment for Mine Effluent Treatment Process Confidential Provided expert toxicological support for an ongoing evaluation and upgrade for effluent treatment at a gold mine in South America. An evaluation of historical chemistry data identified multiple substances in the discharge that required management actions. A temporary toxicity testing facility using 96-h rainbow trout survival tests was established in conjunction with a pilot-scale treatment plant to provide confirmatory data regarding the success of various process modifications. Data from the pilot-scale testing was evaluated using a toxic units approach to prioritize a small number of substances for further evaluation.

Principal investigator and project manager for a multi-year investigation for developing a tissue residue threshold for Dolly Varden char (Salvelinus malma) at the Kemess Mine. The threshold value was intended for the basis of evaluating the success of proposed risk management actions for the mine instead of relying on generic water or tissue guidelines. Tasks included development of a study design, coordination of the project team, data interpretation and reporting. The resulting EC10-based threshold was considerably higher than those derived for other cold water salmonids and illustrates the value of completing site-specific studies.

Acute Effects of Iron and Molybdenum in Hydrocarbon-Contaminated Groundwater Confidential

Principal investigator and project manager for an ongoing investigation for a former oil refinery that demonstrated sporadic acute toxicity to fish from the release of surface water from the site. Iron and molybdenum were identified as the likely toxicants based on consideration of the available data; this finding was confirmed through the use of bench-scale testing. Ongoing work involves the design of an effective water treatment system within the larger context of the site remediation plan.

Critical Review of Provincial Guidance for Deriving Soil Quality Standards Conducted a critical review of the existing methods and guidance used by the BC Ministry of Environment to set soil quality criteria under the Contaminated Sites Regulation. Oversaw the ecological exposure pathways, such as protection of soil invertebrates and plants, groundwater flow to aquatic life, and livestock ingesting soil and fodder. A comprehensive review of existing guidance in other jurisdictions and the available scientific literature was conducted. Recommendations were made for the improvement and expansion of the existing derivation methods based on a number of technical issues, including the use of species sensitivity distributions, identification of appropriate toxicological data, endpoint selection, and allometric scaling. Review emphasised approaches to increase the utility of the standards though an improved focus on the bioavailability fraction of contaminants in soil.

Groundwater Toxicity
Identification
Evaluation (TIE)
Program
Vancouver, BC

Designed and managed a TIE program to identify specific toxic compounds in a groundwater discharge. The program involved a baseline toxicity investigation using a battery of toxicity tests (20-min sea urchin fertilization; 48-h giant kelp germination and growth; 48-d bivalve larval development), followed by multiple TIE treatments using the 20-min sea urchin fertilization test. Treatments included EDTA chelation, thiosulphate chelation, solid phase extraction, aeration, pH adjustment, and open GC characterisation. The TIE program successfully identified compounds likely causing the observed groundwater toxicity.

Quality Triad

Framework

Canada

Conducted a multi-year research project to evaluate the use of porewater toxicity testing (48-h bivalve larval development) within a sediment quality triad framework. Study design involved side-by-side testing of multiple samples collected from contaminated sites in Burrard Inlet and elsewhere. Specific issues that arose during the investigation included an assessment of the influence of naturally elevated ammonia concentrations in porewater samples. The ecological relevance of porewater sample collection and toxicity testing relative to in situ conditions was also examined in detail. Porewater toxicity testing using bivalves was not recommended for use as a routine component of the triad framework unless its ecological relevance could be demonstrated on a site-by-site basis. Existing regulatory threshold values for evaluating the influence of ammonia on Mytilus toxicity were found to be under-protective, and a revised value was proposed.

Critical Review of PAH Phototoxicity Canada

Polycyclic aromatic hydrocarbons (PAHs) are a common contaminant in many urban areas. Some PAHs have the ability to absorb ultraviolet light (UV) energy; the photoactivated PAH causes damage to cellular membranes that can lead to biological impairment. An extensive literature review examining the ecological relevance of existing phototoxicity data was conducted. UV exposure in laboratory experiments is generally maximised by the use of environmentally unrealistic light sources (e.g., inappropriate photoperiods, wavelength distribution, and intensity); attenuation of light in the water column due to the lack of humic acid, dissolved organic carbon, and total suspended solids that absorb or block UV transmittal. PAH bioaccumulation in laboratory experiments is maximised through the use of water-only or spiked-sediment systems using a single PAH, often in conjunction with an organic solvent. Laboratory exposure systems also prevent test organisms from utilising behavioural adaptations to minimise the internal UV dose, such as the utilisation of refugia; laboratorycultured organisms also lack resistance and/or tolerance mechanisms that may be present in natural populations. Although PAH phototoxicity should be considered, its potential impact should be evaluated as for any other contaminant—by considering source, exposure, pathway, receptor and effect on a site-by-site basis using an integrated approach with multiple lines of evidence. PAH phototoxicity should not be used for environmental management decisions until and unless ecological relevance is established, and then only as part of a weight of evidence determination.

Assessment of the Regulation of TSS under the Metal Mining Effluent Regulation Canada Participated in an investigation that summarised the effects of suspended sediment on fish and proposed an alternative methodology for controlling TSS releases under the Metal Mining Effluent Regulations (MMER). The review focused on evaluating the discrepancies between the Regulatory Impact Statement and the detailed justification for TSS control contained in previous regulatory documents. Revisions to the MMER that could be used to amend the TSS limits to reflect their use back into the context of the protection of fisheries. A simulation exercise based on the Eskay Creek Mine was also conducted: TSS discharge from the mine is in compliance with the TSS limit specified in provincial effluent permits, but would be in frequent non-compliance with the MMER. Despite this non-compliance, monitoring studies in the downstream environment show no evidence of acute or chronic effects in the receiving environment. A modified framework for the regulation of TSS at Canadian mines was developed to enable the retention of national consistency but allow the regulation to reflect regional difference in landscape, ecology, and other factors.

Global Review of Methodologies used to Derive Water Quality Guidelines Canada Authored a report for the Canadian Council of Ministers of the Environment outlining a global review of methodologies used to develop water quality criteria for the protection of aquatic life. This review was to assist CCME prepare an addendum to the existing Canadian water quality guidelines dealing with metal-specific issues such as the effect of naturally elevated background concentrations, synergism and antagonism, the use of total or dissolved concentrations, bioavailability, and the influence of toxicity-modifying factors such as pH and hardness. A global review of protocols currently used by "water quality developing" agencies at all levels (e.g., international, national, state/province) from jurisdictions around the world was conducted. A summary of the approaches from more than 15 jurisdictions was prepared, with emphasis on methodologies that provided an innovative approach to dealing with metal-specific issues.

Environmental Toxicity
Testing and Toxicity
Identification
Evaluation
Canada

Highly experienced in the design, implementation, and interpretation of numerous environmental toxicity tests. Tests include (but are not limited to): 72-h algal reproduction test using Selenastrum capricornutum, acute sediment bioassays using a variety of marine and freshwater amphipods, chronic sediment bioassays using the polychaete Neanthes arenaceodentata and Leptocheirus plumulosus, 96-h acute toxicity tests using juvenile rainbow trout, 7-d chronic tests using early-life stages of rainbow trout, long-term bioaccumulation tests using the clam, Macoma nasuta, as well as soil toxicity testing involving seed germination, root elongation, and earthworm/plant bioaccumulation.

PROFESSIONAL AFFILIATIONS

Approved Professional (Risk), Contaminated Sites Approved Professional Society (CSAP)

Registered Professional Biologist RPBio (British Columbia)

Society of Environmental Toxicology and Chemistry

PUBLICATIONS

B.G. McDonald, A.M.H. deBruyn, J.R.F. Elphick, M. Davies, D. Bustard and P.M. Chapman. 2010. "Development toxicity of selenium to Dolly Varden char (Salvelinus malma)." Environ. Toxicol. Chem. 29: 2800-2805.

B.G McDonald, C.A. McPherson, R. DeWynter, P. Kickham and C. Brown. 2010. "Incorporation of 28-d Leptocheirus plumulosus toxicity data in a sediment weight-of-evidence framework." Ecotox. Environ. Saf. 73: 51-55.

Allard P., A. Fairbrother, B. K. Hope, R. Hull, M. S. Johnson, L. Kapustka, G. Mann, B. G McDonald, and B. Sample. 2010. "Recommendations for the development and application of wildlife toxicity reference values." Integr. Environ. Assess. Manage. 6: 28-37

Chapman, P.M., B.G McDonald, H.M. Ohlendorf and R. Jones. 2009. "A conceptual selenium management plan." Integr. Environ. Assess. Manage. 5: 461-469.

McDonald, B.G and P.M. Chapman. 2009. "The need for adequate quality assurance/quality control measures for selenium larval deformity assessments: implication for tissue residue guidelines." Integr. Environ. Assess. Manage. 5: 470-475.

McDonald, B.G and A.M.H. deBruyn. 2008. "Are rainbow trout the most sensitive species to selenium?" Integr. Environ. Assess. Manage. 4: 261-262. (Learned Discourse).

A.M.H. deBruyn, B.G. Wernick, C. Stefura, B.G. McDonald, B. Rudolph, L. Patterson and P.M. Chapman. 2007. In situ experimental assessment of lake whitefish development following a freshwater oil spill. Environ. Sci. Technol. 41: 6983-6989.

McDonald, B.G. and P.M. Chapman. 2007. "Selenium effects: a weight of evidence approach." Integ. Environ. Assess. Manag. 3: 129-137.

McDonald, B.G, A.M.H. deBruyn, B.G. Wernick, L. Patterson, N. Pellerin and P.M. Chapman. 2007. "Design and application of a transparent and scalable weight-of-evidence framework: an example from Wabamun Lake, Alberta, Canada." Integ. Environ. Assess. Manage. 3: 476-483.

Chapman, P.M., B.G. McDonald, P.E. Kickham, and S. McKinnon. 2006. "Global geographic differences in marine metals toxicity". Mar. Poll. Bull. 52: 1081-1084.

deBruyn, A.D. and B.G. McDonald. 2006. "Empirical analysis of variability and statistical power in sediment toxicity tests." Poster presentation, 27th Annual Meeting of the Society of Environmental Toxicology and Chemistry, Montreal, QC, 5 - 9 November 2006.

McDonald, B.G. 2005. "Comparison of porewater and elutriate bivalve larval development toxicity testing in a sediment quality triad framework." Ecotox. Environ. Saf. 62: 893-890.

Chapman, P.M. and B.G. McDonald. 2004. "Using the Sediment Quality Triad in Ecological Risk Assessment" In: C. Blaise and J-F Férard (eds.), Small-Scale Freshwater Environment Toxicity Test Methods. Kluwer Academic Press, Netherlands.

McDonald, B.G and J. Wilcockson. 2003. "Improving the use of toxicity reference values in wildlife food chain modeling and ecological risk assessment." Human Ecol. Risk Assess. 9: 1585-1594.

McDonald, B.G and P. Chapman. 2002. "PAH phototoxicity – An ecologically irrelevant phenomenon?" Mar. Poll. Bull. 44: 1321-1326.

Chapman, P., B.G McDonald, and G. Lawrence. 2002. "Weight of evidence issues and frameworks for sediment quality (and other) assessments." Human Ecol. Risk Assess. 8: 1489-1515.

McDonald, B.G and P. Haynes. 2000. "The use of silica sand as a negative control in toxicity tests using Neanthes arenaceodentata." Environ. Toxicol. 16: 172-176.

Education

MSc Contaminant Hydrogeology, University of Waterloo, Waterloo, ON, 2002

BSc Honours Earth Sciences (Hydrogeology), University of Waterloo, Waterloo, ON, 1995

Professional Affiliations

Association of Professional Engineers and Geoscientists of BC

Association of Professional Engineers and Geoscientists of NT and NU

Yukon Expert Roster of External Reviewers for Hydrogeological Assessments, Environmental Site Assessments and Remediation

Training

Prediction of Mine Drainage Chemistry, Natural Resources Canada

40 hour Hazwoper OSHA Training

PSMJ Project Management

Transportation of Dangerous Goods

Red Cross Standard First Aid and CPR-C, St. John's Ambulance

Golder Associates Ltd. - Whitehorse

Senior Hydrogeologist (2013 to present)

Ms. Tamra Reynolds is a Senior Hydrogeologist in Golder's Whitehorse office. She has over 20 years of experience in the areas of environmental site assessments, remediation, hydrogeological assessments, mine reclamation, and water supply projects throughout the Yukon, British Columbia, Northwest Territories, Alberta, Ontario, and Alaska. A 13-year resident of Whitehorse, Tamra is a professional geoscientist registered in British Columbia, Northwest Territories and Nunavut, and was appointed by the Yukon Government, Department of Environment to the Yukon Expert Roster of External Reviewers for Hydrogeological Assessments, Site Assessments and Remediation. Ms. Reynolds has 16 years of project management experience and has completed formal management training. She is well-versed with the current Yukon, British Columbia, Alaska and Canadian Federal regulations and has provided project submissions under the YESAB process. She provides effective project management, technical advice, senior review, data analysis, and interpretation. Her priorities when managing a project are health and safety, good communications with the client and project staff, keeping a project on budget, and providing deliverables to the client on time. In addition to providing project management, Tamra is currently Golder's Whitehorse Office Lead. In this role she oversees employee health and safety and training, manages the financial performance of the office, and develops and maintains strong client relationships.

Employment History

EBA, a Tetra Tech Company - Whitehorse, YT

Senior Hydrogeologist (2010 to Dec. 2012)

Provided technical advice, senior review, and mentorship to junior and intermediate staff. Project manager for environmental site investigations, large scale remediation, community water supply and mining assessments.

Franz Environmental - Whitehorse, YT

Senior Hydrogeologist (2008 to 2010)

Managed the Whitehorse office and projects based in the Yukon. Project work included environmental assessments in permafrost conditions at federal and territorial owned sites; complex remediation projects; and submission of remediation plans for YESAB approval.

Gardner Lee Limited – Whitehorse, YT

Senior Hydrogeologist (2004 to 2008)

Golder Associates Ltd. – Burnaby, BC

Intermediate Hydrogeologist (2002 to 2004)

Morrow Environmental Consultants Inc. – Burnaby, BC Intermediate Hydrogeologist (1997 to 2002)

AGRA Earth and Environmental - London, ON

Junior Hydrogeologist (1995 to 1997)

PROJECT EXPERIENCE – ENVIRONMENTAL ASSESSMENT

Railway Yard and Former Wharf Tanks, WPYR Railroad Skagway, AK, USA Project Manager since 2013 providing regular updates to the client and regulator. Provided oversight of the on-going soil and groundwater sampling, additional drilling and test pitting to determine the source of TCE and PCE at the railyard site, and completed annual reporting for 2012 through 2015. At the former wharf tanks site, provided oversight of product recovery methods and annual reporting.

Yukon Environment, Dept. of Water Resources Yukon Territory

Project Manager and report author for the development of groundwater sampling guidelines for contaminated sites in the Yukon. Project Manager and report author for water well construction guidelines for small drinking water wells that will be used in the Yukon.

Palace Grand Theatre, PWGSC, Dawson City, Yukon Territory Project Manager for a Phase II ESA to investigate and delineate contamination originating from a former leaking storage tank including installation of monitoring wells and groundwater sampling in suprapermafrost. Responsible for setting up the field program, overseeing the field crew, reviewing the report, providing volume estimates, landfill options and costs for remediation and providing budget and schedule updates to the client.

Yukon Solid Waste Facilities Yukon Territory Project Manager for a bi-annual groundwater and surface water sampling program at seven solid waste facilities in southwest Yukon. In addition, completed hydrogeological summaries for 10 SWDF in support of Yukon Environment and Socio-economic Assessment Board (YESAB) applications for renewal of each facilities solid waste permit.

Former Garage and Service Station, Whitehorse, YT Project Manager and report reviewer for the project which included the completion of a Phase II ESA, Remedial Options evaluation and Remediation Plan, Remedial Excavation, Off-site delineation drilling program, Post-remedial groundwater sampling and a Qualitative Human Health Ecological Risk Assessment.

Klondike Camp Highways Maintenance Yard

Dempster Highway, YT

Project Manager on various phases of assessment from 2004 to 2010. Drilling investigations were conducted across the site, located in areas characterized by discontinuous permafrost conditions from 2004 to 2006 where hydrocarbon contamination from spills and tank leaks, and salt contamination from storage was present. A revised Plan of Restoration was completed to address groundwater contamination entering the river and an impact and mitigation report was authored as part of the YESAB submission which was subsequently approved.

Beaver Creek RCMP

Detachment

Beaver Creek, YT

Managed and conducted three drilling investigations to delineate a fuel spill in discontinuous permafrost conditions. Drilling was extended to over 30 m to vertically delineate contamination. The report included a remedial action/risk management plan.

Carcross RCMP Detachment Carcross, YT An additional Phase II ESA was completed to delineate a hydrocarbon plume. A final report was written which included a summary of the results, dissolved hydrocarbons in groundwater extents, recommendations for remediation, and a human health and ecological risk evaluation.

Swift River Grader Station

Swift River, YT

Reviewed previous investigations, prepared a work plan and conducted a drilling investigation to determine the groundwater flow direction and to provide additional delineation of hydrocarbon and salt contamination. Site assessment included soil monitoring, soil and groundwater sampling. Report included an assessment of the groundwater flow regime, aquifer properties, the extent of contaminant plumes in groundwater, and recommendations for the next phase of work.

Mount Nansen Mine Carmacks, YT

Served as Project Manager for a project to conduct monitoring and water sampling of all on-site monitoring wells, the downloading of dataloggers, and conducting groundwater response tests at each location. A data report was prepared which included an updated site map of the well locations, a summary of work completed, water level data, tables of analytical data, and analysis of groundwater response tests. The report also included recommendations for conducting future sampling events.

Canadian White Pine Sawmill

Vancouver, BC

Served as project leader for a detailed soil and groundwater investigation and remediation planning at a large former sawmill and wood treatment facility along the Fraser River. Directed three field crews during the three month field program; conducted drilling investigations over water from a barge, and conducted discrete groundwater sampling using the Waterloo Profiler in an area of deep creosote contamination. Compiled previous data and completed a detailed site investigation and remedial plan report. Provided management of the on-site remediation through soil excavation.

PROJECT EXPERIENCE – CONTAMINATED LAND REMEDIATION

Whitehorse Upper **Tank Farm**

Whitehorse, YT

Project Manager/Hydrogeologist for the overall project. Prepared responses to questions arising during the YESAA process, provided design of the Land Treatment Facility, updated the Plan of Restoration for the site, authored and submitted annual reporting as required by the permits and Ministerial Authorization, and provided technical support during soil excavations (which extended to 25 mbgs), groundwater sampling, and drilling. Authored a report in support of the request for a Certificate of Compliance for a portion of the site.

Korbo Apartments Dawson City, YT

Project Manager of a large remediation project of contaminated soil. Involved the writing of tender documents for the excavation contractor, obtaining permits for the transport and treatment of contaminated soil in a land treatment facility and groundwater treatment and disposal approval. Provided technical advice to the on-site staff, reviewed and approved contractor invoices for the client, and provided review of the final report.

Fort Nelson Airport Fort Nelson, BC

Served as Remediation Specialist during an extensive excavation of hydrocarbon contaminated soils. The excavation was conducted along utility corridors and involved the supervision of the excavation during the support, removal and reinstatement of storm, sanitary, gas, and water lines by the excavation contractor. The site was a former US and Canadian military base during the construction of the Alcan Highway. Sites were remediated and reporting completed with the goal to obtain BC Certificates of Compliance at each of the 51 remediation sites within the airport property.

Education

PhD in Hydrogeology / Geochemistry, Earth Sciences, University of Waterloo, 2016

MSc in Hydrogeology / Geochemistry, Earth Sciences, University of Waterloo, 2010

BSc with Specialization Environmental Earth Science with Distinction, University of Alberta, 2006

Golder Associates Ltd. - Whitehorse

Emily is a junior hydrogeologist and geochemist involved in environmental site assessments, remediation and water supply projects. MSc and PhD work has focused on using geochemistry and isotope geochemistry in hydrogeologic applications. She has applied a wide variety of traditional and novel isotopic tracers to regional groundwater systems in Ontario (Oak Ridges Moraine) and Greenland (Kangerlussuaq). The work in Kangerlussuaq, Greenland included groundwater studies in fractured crystalline rock and continuous permafrost, surface water studies and pore water and fracture mineral characterization. Through research Emily has developed extensive field experience in surface and groundwater monitoring, technical report writing, and familiarity with geochemical modeling (PHREEQC and NETPATH).

Employment History

Golder Associates Ltd. - Whitehorse, YT

Geochemist / Hydrogeologist (2016-present), Geoscientist in Training (GIT)

Involved with a contaminated sites projects in the Yukon and Alaska. Experience in planning and carrying out field work in northern Canada. Has authored or assisted with chapters or reports for environmental assessments, baseline water quality reports and government regulatory documents.

Earth Observation Systems Laboratory, University of Alberta Research Assistant (2005)

Analysed and processed satellite imagery.

Hydrogeology Laboratory - University of Alberta

Research Assistant (2006)

Fieldwork at the Syncrude oilsands site and at a protected wetland in Alberta including: slug tests, water level measurements, geophysics, soil moisture content, water sampling. Lab work included data processing and developing use of satellite imagery in the lab.

Nuclear Waste Management Organization, Toronto, ON

NSERC Industrial Partnership (2009 - 2012)

As part of the NSERC Industrial scholarship, 50 days per year must be sent working with the partnering company. Work included attending the annual NWMO Geoscience Seminar to present progress of the Greenland Analogue Project (GAP), writing and editing the geochemistry section of the annual GAP report, field work in Greenland and communication with NWMO and other GAP funding parties.

PROJECT EXPERIENCE – SITE ASSESSMENT AND REMEDIATION

Centre of Hope Remediation Whitehorse, YT May 2016 - present Assisted with conducting groundwater and soil vapour sampling to provide data for a risk assessment. Tabulated and screened all historical data to applicable Yukon standards for risk assessment.

Palace Grand Theatre

Dawson City, YT June 2016 Assisted with report writing for environmental assessment.

Drury Creek Maintenance Yard

Robert Campbell HWY, YT Jun 2016 - Oct 2016 Completed historical document review and updated field work plan. Wrote report on existing septic and drinking water systems and made recommendations for potential new drinking water well locations.

Skagway Ore Terminal Basin

> Skagway, AK Aug 2016 - present

Reviewed and summarized existing reports on metals and hydrocarbon contamination in the Skagway harbour sediments. Tabulated historical marine sediment chemistry. Assisted with developing a sampling and analysis plan for a sediment and benthic sampling program in support of a Remedial Investigation Feasibility Study.

Whitehorse Airport ESA Whitehorse, YT Nov 2016 - present Created site conceptual model. Drilling and installation of 31 monitoring wells, groundwater sampling of new and existing monitoring wells. Wrote the environmental site assessment report and assisted with proposed plan for remediation.

K19 – Alaska Highway Truch Township Feb 2017 - Mar 2017

Compilation and screening of large soil and groundwater dataset. Updated soil and groundwater standards for a wide variety of contaminants to the BC CSR Stage 10 standards.

Dease Lake Phase I ESA Dease Lake, BC

March 2016

Desktop study of site located along Dease Lake in northern B.C. and writing of Phase I ESA report.

PROJECT EXPERIENCE – ENVIRONMENTAL MONITORING

Yukon Landfill Monitoring Yukon Territory May 2016 - present Sampling of groundwater monitoring wells and surface water receptors at seven landfill sites throughout the territory. Drilling and installation of new monitoring wells at three landfill sites. Assisted with data analysis and report writing.

WPYR Shops and Wharf Skagway, AK May 2016 - present Sampling of groundwater monitoring well network for the Whitepass and Yukon Route railway. Wrote annual report summarizing findings of ongoing groundwater monitoring at the maintenance shops site.

Whitehorse WMF Whitehorse, YT May 2016 - present Sampling of groundwater monitoring well network, surface water receptors and surface water flow measurements. Assisted with data analysis and report writing.

Resumé

Diavik Diamond Mine Depressurization Plan Northwest Territories Dec 2016 Monitoring a long term pumping test to determine hydraulic conductivity in an enhanced permeability zone.

PROJECT EXPERIENCE - REGULATORY AND BASELINE

Yukon Groundwater Monitoring Guidance Document

Yukon Territory Sept 2016 - present

Eagle Plains Baseline Water Quality Study Whitehorse, YT Nov 2016 - present Completed an interjurisdictional review of guidance documents and standards for groundwater monitoring, well installation and sampling at contaminated sites.

Assessed baseline groundwater quality and groundwater-surface water interaction for the Eagle Plains region of the Yukon and assisted in writing the baseline water quality report.

PROFESSIONAL AFFILIATIONS

Association of Professional Engineers and Geoscientists of Alberta, Member in Training.

As a global, employee-owned organisation with over 50 years of experience, Golder Associates is driven by our purpose to engineer earth's development while preserving earth's integrity. We deliver solutions that help our clients achieve their sustainable development goals by providing a wide range of independent consulting, design and construction services in our specialist areas of earth, environment and energy.

For more information, visit golder.com

Africa + 27 11 254 4800
Asia + 86 21 6258 5522
Australasia + 61 3 8862 3500
Europe + 44 1628 851851
North America + 1 800 275 3281
South America + 56 2 2616 2000

solutions@golder.com www.golder.com

Golder Associates Ltd. Suite 200 - 2920 Virtual Way Vancouver, BC, V5M 0C4 Canada

T: +1 (604) 296 4200

SKAGWAY ORE BASIN RISK ASSESSMENT

APPENDIX C

Surficial Sediment Field Data Report

FIELD INVESTIGATION SUMMARY REPORT

Skagway Ore Basin Sediment Assessment - Field Investigation

Submitted to:

White Pass & Yukon Route Railway P.O. Box 435 Skagway, AK 99840

Report Number: 1657231-004-R-Rev0

Distribution:

1 e-copy - White Pass & Yukon Route Railway

1 e-copy - Golder Associates Ltd.

Table of Contents

1.0	INTRODUCTION1				
	1.1	Purpose of this Document	1		
	1.2	Site Description	1		
2.0	METHO	DDOLOGY	2		
	2.1	Health, Safety, and Environment Plan	2		
	2.2	Sampling Overview	2		
	2.2.1	Sampling Effort	2		
	2.2.2	Field Observations	2		
	2.2.3	Deviations from Sampling and Analysis Plan	3		
	2.3	Sample Collection Methods	ε		
	2.3.1	Surface Sediment Collection (Chemistry and Toxicology)	6		
	2.3.2	Benthic Community Sample Collection	7		
	2.3.3	Tissue Sample Collection	7		
	2.3.3.1	Blue Mussel (Mytilus edulis) Collection	7		
	2.3.3.2	Dungeness Crab (Metacarcinus magister) Collection	8		
	2.3.3.3	Shrimp/Prawn Collection	8		
	2.3.4	Field Quality Assurance/Quality Control	8		
	2.4	Analytical Parameters and Methods	9		
	2.4.1	Sediment Chemistry and Physical Parameters	g		
	2.4.2	Tissue Chemistry in Aquatic Biota	g		
	2.4.3	Selection of Samples for Toxicity Testing	9		
	2.4.4	Echinoderm Larval Development Test	10		
	2.4.5	Amphipod Test	11		
	2.4.6	Polychaete Test	11		
	2.4.7	Laboratory Quality Assurance/ Quality Control	11		
3.0	RESUL	.TS	12		
	3.1	Sediment Chemistry	12		
	3.1.1	Particle Size and Total Organic Carbon (TOC)	12		

	3.1.2	Metals	12
	3.1.3	Acid Volatile Sulphide (AVS) and Simultaneously Extractable Metals (SEM)	13
	3.1.4	Polycyclic Aromatic Hydrocarbons (PAHs) and Extractable Hydrocarbons	13
	3.1.5	Quality Assurance / Quality Control	14
	3.1.5.1	Field Duplicates	14
	3.1.5.2	Blank Samples	14
	3.1.5.3	Data Quality Checklists	15
	3.2	Sediment Toxicity	15
	3.2.1	Summary of Data	15
	3.2.2	Quality Assurance / Quality Control	17
	3.3	Tissue Chemistry in Aquatic Biota	17
	3.3.1	Quality Assurance / Quality Control	18
4.0	CLOSU	JRE	19
5.0	REFER	ENCES	20
TAB	LES		
Tabl	e 1: Sam	ple Collection Information for Sediment Stations	4
Tabl	e 2: Sam	ple Collection Information for Invertebrate Tissue Stations	5
Tabl	e 3: Res	ults of 96-h Echinoderm (Strongylocentrotus purpuratus) Larval Development Test	16
Tabl	e 4: Res	ults of 10-d Amphipod (Eohaustorius estuarius) Toxicity Tests	16
Tabl	e 5: Res	ults of 20-d Polychaete (Neanthes arenaceodentata) Toxicity Tests	17

FIGURES

- Figure 1: Skagway Harbour Sediment Sample Locations
- Figure 2: Skagway Sediment Sampling Overview with Far-Field and Reference Sample Locations
- Figure 3: Golder 2017 Tissue Sample Locations

APPENDICES

APPENDIX A

Data Screening

APPENDIX B

Site Photographs

APPENDIX C

Field Records

APPENDIX D

Sediment and Tissue Analytical Reports

APPENDIX E

Final Toxicity Reports

APPENDIX F

Quality Assurance/Quality Control Results

APPENDIX G

ADEC Checklist

LIST OF ABBREVIATIONS AND ACRONYMS

ADEC	Alaska Department of Environmental Conservation
AIDEA	Alaska Industrial Development and Export Authority
ALS	ALS Laboratory Group, Environmental Division
ASTM	American Society for Testing and Materials
AVS	Acid Volatile Sulphide
CRM	Certified Reference Material
CSL	Cleanup Screening Levels
DL	Detection Limit
DO	Dissolved Oxygen
DQO	Data Quality Objective
DRO	Diesel Range Organics
GPS	Global Positioning System
HaSEP	
HPAH	High Molecular Weight PAH
LCS	Laboratory Control Standard
LPAH	
PAH	Polycyclic Aromatic Hydrocarbons
PSEP	Puget Sound Estuary Program
QA/QC	Quality Assurance / Quality Control
RPD	Relative Percent Difference
RRO	Residual Range Organics
SAP	Sampling and Analysis Plan
SCO	Sediment Cleanup Objective
SEM	Simultaneously Extractable Metals
TOC	Total Organic Carbon
USEPA	•
wt	
WDOE	Washington State Department of Ecology
WPYR	White Pass & Yukon Route

LIST OF UNITS

cm	centimetre
m	metre
mg	milligram
%	percent

1.0 INTRODUCTION

1.1 Purpose of this Document

This document provides a summary of the field activities conducted by Golder between April 25 and May 5, 2017 in support of an ecological and human health risk assessment for the Skagway Ore Terminal (the "Ore Basin"). A sampling and analysis plan (Golder 2017) was approved by White Pass & Yukon Route (WPYR) and the Alaska Department of Environmental Conservation (ADEC) prior to executing the sampling program. This field data report provides a detailed description of the sampling program along with a figure showing the locations of all samples. Site photographs, field records, laboratory certificates of analysis and laboratory review checklists are included as appendices following the guidance from ADEC (2016).

The sampling program consisted of:

- Collection of surficial sediment samples for chemical analysis. An archive of each sample was retained for toxicity testing. Toxicity testing was conducted on a subset of samples that represented the gradient of metals potentially associated with operation of the ore loading facility.
- Collection of benthic community samples which were archived.
- Collection of marine invertebrates (mussels, crabs, prawns, and shrimp) to provide information about tissue concentrations of metals and hydrocarbons.

1.2 Site Description

The Skagway Ore Terminal and other portions of Skagway Harbour are shown on Figure 1. Skagway Harbour lies at the terminus of a deep fjord (Lynn Canal) on the historical alluvial fan of the Skagway River. The harbour consists of a limited near-shore zone with a typical water depth of between 30 and 40 feet (measured from mean low tide) which transitions rapidly to the deeper waters in Lynn Canal (Anchor 2015). The shoreline of Skagway Harbour was established on the historical alluvial fan through a combination of dredging and filling in the early 1900s (Tetra Tech 2008). Changes to the harbour configuration were made during the construction of the Small Boat Harbour (circa 1958), the State Ferry Terminal (circa 1963), and the expansion of the Ore Terminal (circa 1968), all of which involved dredging and use of the dredged material to expand and reconfigure the shoreline (Anchor 2015).

A brief summary of historical site activities at the Ore Terminal (Anchor 2015) as context for the sampling program:

- The Ore Terminal portion of the harbour was leased by White Pass & Yukon Route (WPYR) from the Municipality of Skagway in the late 1960s and was used for the trans-shipment of lead and zinc ore concentrate from the Faro Mine using an open conveyor system between 1967 and 1982.
- Sporadic use of the facility for shipping ore concentrates continued between 1982 and 1997 with a variety of terminal operators. The conveyor system was enclosed in 1991.
- A concrete dock was added in 2000 to allow the facility to be used by cruise ships, and the historical ore concentrate building was demolished in 2003. A new concentrate building was constructed and has been used for shipment of copper concentrates from the Minto Mine since 2007.
- The terminal is currently operated by Alaska Industrial Development and Export Authority (AIDEA). Infrastructure includes a fuel depot (operated by Petro Marine Services) and a container facility (operated by Alaska Marine Lines) in addition to the ore concentrate shipping and cruise ship docking.

2.0 METHODOLOGY

2.1 Health, Safety, and Environment Plan

Golder prepared a project-specific Health and Safety Environment Plan (HaSEP) that described the proposed stations and scope of sampling, identified the field crew, itemized key vessel safety equipment, provided emergency contact information, described the expected communication process with other vessels and the Harbour Master, and outlined the expected project-specific hazards and the required mitigation. The HaSEP was distributed to the field crew for review in advance of the sampling program and a project kickoff meeting was conducted with the field crew, project manager and project directory. A daily safety briefing was conducted where the field crew reviewed the HaSEP, the associated safe work procedures, environmental conditions such as weather, as well as emergency procedures. No issues with respect to the health and safety of the field crew occurred during the sampling program.

2.2 Sampling Overview

2.2.1 Sampling Effort

Sampling was conducted between April 25 and May 5, 2017. A total of 24 stations were sampled for chemistry and volume was archived for toxicity testing. Benthic community samples were collected from 14 of those locations. Tissue samples (one or more of crabs, shrimp or mussels) were collected from three different areas in Skagway Harbour (e.g., near-field, mid-field and far-field) as well as from reference locations. The locations of all samples collected are provided on Figures 1 through 3. Data tables are provided in Appendix A, and discussed further in subsequent sections of this report.

2.2.2 Field Observations

Photographs of the field activities are provided in Appendix B, and field datasheets are provided in Appendix C with the following information for each sampling station:

- Station name
- Date and time
- Names of sampling crew
- Weather conditions
- Station water depth
- GPS coordinates
- Type of sampling gear used, and number of successful and unsuccessful grabs taken
- Photographs of sediment samples and sampling stations
- A description of the sediment description in terms of texture, colour, organisms, (e.g., shells, worm tubes); anthropogenic debris (e.g., wood chips), sheen and odour, vertical profile and penetration depth

2.2.3 Deviations from Sampling and Analysis Plan

The proposed sampling program described by Golder (2017) was successfully completed with modifications as described below. These modifications were made after consultation with the Golder project management team and further details are provided in the field forms in Appendix C:

- Golder (2017) proposed a total of 31 sediment stations. It was not possible to collect all 31 sediment samples within the available field time because of challenges in getting adequate grab penetration in what was frequently a predominantly cobble substrate. A total of seven stations were ultimately not sampled¹, but Golder concludes that this is not a significant limitation because we were successful in getting adequate spatial coverage within the Ore Basin, with particular emphasis on the area of greatest concern based on the historical chemistry data (i.e., the gradient of metal concentrations as shown in Golder 2017).
- Benthic invertebrate community samples were only collected at 14 of the 24 targeted stations (as part of the prioritization of the available field time in light of the challenge in getting an adequate grab penetration). Sampling effort for the benthic community analysis focused on providing spatial coverage within the Ore Basin as well as reference areas.
- The desired penetration depth for the sampler was a minimum of 0.5 ft in order to collect an undisturbed sample from the upper 0.3 ft. It was ultimately necessary to retain some grab samples for chemical and toxicological analysis that achieved less than this desired penetration depth. Golder took additional action in the field to maximize grab penetration by adding extra weights to the sampling device. We opted to retain the station even if grab penetration was lower than expected. Note that grab volumes were consistent among replicates at each station. Detailed records were made in case it becomes necessary to consider this variable in the analysis.

No further deviations from the sampling and analysis plan (Golder 2017) were identified in the course of the investigation.

¹ All proposed sample locations were assigned a sample ID which was retained irrespective of whether a location was successfully sampled. SED17-02, SED17-04, SED17-16, SED17-23, SED17-25, SED17-26 and SED17-30 were not sampled, and therefore, those IDs do not contain data in this current data report.

10 January 2018 Report No. 1657231-004-R-Rev0

Table 1: Sample Collection Information for Sediment Stations

Sampling	Station ID	Date Sampled	UTM Coordinates (8V)		Chemistry	Bioassay	Benthic
Area			Easting (m)	Northing (m)	Sample	Archive	Archive Sample
	SED17-07	5/4/2017	481458.93	6590209.32	Yes	Yes	No
	SED17-11	4/30/2017	481462.24	6590226.34	Yes	Yes	Yes
	SED17-12	5/4/2017	481441.46	6590230.78	Yes	Yes	No
	SED17-13	4/29/2017	481438.00	6590246.00	Yes	Yes	Yes
	SED17-06	4/26/2017	481438.17	6590150.95	Yes	Yes	Yes
	SED17-08	4/26/2017	481426.37	6590208.25	Yes	Yes	Yes
	SED17-09	4/29/2017	481428.01	6590241.77	Yes	Yes	Yes
Ore Basin	SED17-10	5/5/2017	481509.08	6590250.16	Yes	Yes	No
Ore basin	SED17-14	4/30/2017	481487.27	6590255.17	Yes	Yes	Yes
	SED17-05	4/25/2017	481378.07	6590129.31	Yes	Yes	Yes
	SED17-17	4/30/2017	481589.04	6590274.61	Yes	Yes	Yes
	SED17-18	5/2/2017	481586.52	6590376.17	Yes	Yes	Yes
	SED17-01	5/4/2017	481441.18	6590059.17	Yes	Yes	No
	SED17-03	5/4/2017	481231.14	6590126.25	Yes	Yes	No
	SED17-15	5/5/2017	481497.44	6590155.22	Yes	Yes	No
	SED17-19	5/2/2017	481679.59	6590334.07	Yes	Yes	Yes
0.111.0	SED17-20	5/1/2017	481718.45	6589906.04	Yes	Yes	Yes
Outside Ore Basin	SED17-21	5/1/2017	481622.02	6589771.76	Yes	Yes	No
	SED17-22	5/1/2017	481455.81	6589611.21	Yes	Yes	Yes
Dyea Point	SED17-24	5/2/2017	480212.59	6591424.91	Yes	Yes	Yes
Toise Diver	SED17-27	5/5/2017	480213.13	6593546.11	Yes	Yes	No
Taiya River	SED17-28	5/2/2017	480174.80	6593163.56	Yes	Yes	No
Nobles Boy	SED17-29	5/4/2017	480986.33	6593224.74	Yes	Yes	No
Nahku Bay	SED17-31	4/28/2017	480779.90	6593228.80	Yes	Yes	Yes

Notes: No samples were collected from Stations SED17-02, SED17-04, SED17-16, SED17-23, SED17-25, SED17-26 and SED17-30

Table 2: Sample Collection Information for Invertebrate Tissue Stations

Sampling Area	Sample ID	Date	UTM Coordinates (8V)		Species Collected
Sampling Area	Sample ID		Easting (m)	Northing (m)	Species Collected
E 6 111 e 30:	FF-MUSSEL-01	29-Apr-17	<u> </u>	,	
Far-field location, within Skagway Harbor but	FF-MUSSEL-02				
outside Ore Basin in	FF-MUSSEL-03		481663.77	6589832.03	Blue mussel (<i>Mytilus</i> edulis)
area underneath	FF-MUSSEL-04				edulisj
Railroad Dock	FF-MUSSEL-05				
	MF-CRAB-01		101110 01	0500470.00	
	MF-CRAB-02		481142.21	6590178.93	
Mid-field location at outlet Skagway River	MF-CRAB-03	03-May-17			Dungeness crab (<i>Metacarcinus magister</i>)
Outlet Skagway Kivel	MF-CRAB-04		481170.76	6590150.49	(Wetacarcinus magister)
	MF-CRAB-05				
	NF-MUSSEL-01				
Near-field location	NF-MUSSEL-02	1			
within Ore Basin	NF-MUSSEL-03	29-Apr-17	481438.01	6590257.53	Blue mussel
underneath Ore Dock	NF-MUSSEL-04	1			
	NF-MUSSEL-05	1			
	NF-CRAB-01	01-May-17	481415.59	6590112.75	
	NF-CRAB-02	04-May-17	481347.94	6590102.29	Dungeness crab
	NF-CRAB-03		481393.56	6590165.98	
Near-field location within Ore Basin	NF-PRAWN-01	03-May-17	481537.33	6590322.74	Alaskan pink shrimp (Pandalus borealis), Spot prawn (Pandalus platyceros) and Coonstripe shrimp (Pandalus hypsinotus)
	NF-PRAWN-02				Coonstripe shrimp
	NF-PRAWN-03		481429.07	6590202.11	
	NF-PRAWN-04	04-May-17			Spot prawn
	NF-PRAWN-05				
	REF-MUSSEL-01		480166.71	6592497.78	
Reference location,	REF-MUSSEL-02				
rocks on beach area between Taiya River	REF-MUSSEL-03				Blue mussel
and Dyea Point	REF-MUSSEL-04	29-Apr-17			
	REF-MUSSEL-05				
Deference leastion	REF-CRAB-01		480903.00	6593282.63	
Reference location, within Nahku Bay	REF-CRAB-02		400000.00	0000202.00	Dungeness crab
	REF-CRAB-03	05-May-17	480962.67	6593207.27	
Reference location, within Nahku Bay	REF-PRAWN-01	04-May-17	480872.42	6593296.15	Spot prawn
Reference location by Dyea Point	REF-PRAWN-02	05-May-17	480217.59	6591449.05	Alaskan pink and coonstripe shrimp
Reference location, within Nahku Bay	REF-PRAWN-03	00-iviay-17	480874.65	6593299.81	Spot prawn

2.3 Sample Collection Methods

All samples were collected in accordance with the specific methods described by Golder (2017) which were consistent with ADEC (2016) and other relevant standard reference material (e.g., ASTM 2014, WDOE 2015). Specific methods are described below, but overall:

- All sampling was conducted by trained, experienced personnel (i.e. a Qualified Environmental Professional) following a specific work instruction approved by the Golder project manager.
- Field records were maintained (for every station) to record field observations, time of sampling activities, deviations, records of observations and discussions, safety briefings, etc.
- All samples were placed in laboratory-supplied containers, preserved as directed by the analytical laboratories, and maintained at the appropriate temperature.

Note that measurements made in the field are presented in both metric and Imperial units, while measurements made by the analytical laboratories are generally presented as metric units only. Metric units are generally used in the technical guidance.

2.3.1 Surface Sediment Collection (Chemistry and Toxicology)

Surface sediment samples were collected using a Van Veen (1.0 ft² surface area) grab sampler to obtain sediment from each station. It was necessary to deploy the grab numerous times to collect sufficient sediment volume for the chemistry/toxicity analyses. The number of grabs needed to achieve the necessary sediment volume varied depending on penetration depth. Grab replicates were collected within a few feet of each other at each station (based on GPS coordinates). Each grab that was retrieved was examined to determine its acceptability, based on the following criteria (unacceptable grabs were discarded):

- The sampler was fully closed and was not held open with large rocks or other debris.
- The sample was not overfilled or disturbed, and sampler was not deployed on an angle (sediment surface does not touch the top of the sampler, and is relatively flat).
- The sampler was not leaking (there was overlying water present and no visible leaks).

If the grab was classified as acceptable, overlying water in the grab was removed using a siphon and the sediment was spooned into a stainless steel bowl. A description of the sediment with respect to colour, particle size, odour, and presence of non-sediment materials (e.g., shells, debris, and biota) was recorded. Any obvious debris (e.g., trash) and large rocks were removed and discarded. Equal volumes from each acceptable grab were composited by gently mixing the composite until consistent in texture and colour. Aliquots of this composite sample were transferred to laboratory-supplied, labelled containers. Sample containers were filled to minimize headspace. Samples were kept cold and dark until arrival at the respective analytical laboratory (ALS Environmental, Kelso, WA; Nautilus Environmental, Burnaby BC). Archive samples for chemistry and benthic community analysis were transported via truck to Golder Associates (Whitehorse, YT) and refrigerated where necessary. In total, the following sample containers were filled:

- 1- 8oz jar for grain size and total organic carbon
- 1- 4oz jar for metals, PAH & DRO/RRO
- 1- 4oz jar for AVS-SEM
- 1- 4oz jar for chemistry archive
- 1- 4L (140 oz) high-density polyethylene pail for toxicity testing

All sampling and homogenization equipment (the Van Veen sampler, bowls and spoons) were decontaminated prior to use at each sampling station and upon completion of each day's sampling. Decontamination entailed washing with a scrub-brush and laboratory-grade detergent (Liquinox®) followed by rinsing with site water. Spoons and bowls were also kept covered during sampling and between sampling stations to prevent cross-contamination via dust deposition.

2.3.2 Benthic Community Sample Collection

Samples were collected for the assessment of benthic infaunal community structure at 14 stations (Table 1). Samples collected for benthic community analysis used the same criteria for assessing a successful sample as grabs collected for chemistry and toxicological analysis. No compositing was involved; on collection, the total contents of a single, acceptable Van Veen grab from each station were sieved through a 1-mm mesh screen in the field. All material (benthic organisms and debris) retained on the screen were transferred to a storage container and preserved in buffered formalin to a final concentration of 5-10%. All benthic samples were transported to the Golder Whitehorse office for archiving.

2.3.3 Tissue Sample Collection

All tissue sampling was authorized under a permit issued by Alaska Department of Fish and Game (FRP CF-17-073).

2.3.3.1 Blue Mussel (Mytilus edulis) Collection

Five separate samples were collected from near-field, far-field and reference areas (see Figure 3 for locations). Each sample was comprised of 30 or more grams (i.e., approximately 1 – 2 oz) of tissue which amounted to 10 to 15 individuals per replicate. Each mussel was selected from the same height (below the high tide mark) from intertidal substrates and was between 4 and 8 cm in size (e.g., approximately 2 – 3 inch). The mussels were collected whole and stored on ice until they could be processed indoors away from the Ore Terminal (to reduce the possibility of cross-contamination from dust deposition). Mussels were shucked and the soft tissues rinsed with deionized water to remove shell pieces and other debris. Tissue samples were handled with clean stainless steel instruments (i.e., scalpels and forceps), weighed and aliquoted into foil-lined labeled whirl packs which were then stored in a freezer. The samples were transported on ice (frozen) to ALS Environmental for analysis. All equipment that came in contact with samples were decontaminated with Liquinox® and deionized water between sample stations.

2.3.3.2 Dungeness Crab (Metacarcinus magister) Collection

Baited crab traps were deployed on incoming tides (where practical) or deployed in the late afternoon or evening hours for retrieval the following morning. The traps were allowed to soak for at least eight hours. The target was collect between three and five mature crabs per area. If an adequate number of crabs were not collected in the first deployment, the traps were redeployed in the same area for a second round. Traps were checked every eight to 16 hours until a sufficient number of crab were collected from a sampling area. Crabs were only retained if they were of legal size and gender. Total carapace length, weight and external abnormalities (e.g., deformities, erosions, lesions, tumors, fungus, and parasites) were noted on the processing form (Appendix C). Crabs were sacrificed onboard the vessel (by pithing) but were not processed further. The sacrificed crabs were stored on ice until they could be frozen later the same day. The crabs were shipped to ALS for removal of edible muscle tissue for the chemical analysis.

2.3.3.3 Shrimp/Prawn Collection

Baited prawn traps were co-deployed with the crab traps. A variety of species were captured (Alaskan pink shrimp, Spot prawn and Coonstripe shrimp) in the traps. Collected organisms were stored on ice until they could be processed indoors (see description of methods for mussel processing). The length from uropod to rostrum, species and weight were noted in the field notes. Each tissue sample consisted of one or more individuals composited as needed to achieve 30 g (i.e., 1-2 oz) of tissue. Tissue samples were handled with clean stainless steel instruments (i.e., scalpels and forceps), weighed and aliquoted into foil-lined labeled whirl packs which were then stored in a freezer. The samples were transported on ice (frozen) to ALS Environmental for analysis. All equipment that came in contact with samples were decontaminated with Liquinox® and deionized water between sample stations.

2.3.4 Field Quality Assurance/Quality Control

All samples were collected by experienced individuals and care was taken to minimize the introduction of foreign material into the samples or loss of the material of interest from the samples prior to analysis. Field notes and field forms were maintained to document the field sampling program. Chain-of-custody forms were updated as samples were collected, and were checked to verify the information recorded before samples were submitted. Additional field QA/QC activities sample collection included the following:

- All sampling bowls and spoons were cleaned with a laboratory-grade detergent and rinsed with deionized and site water prior to use at each station.
- Field duplicates were collected for 3 of the 24 sediment samples. Sediment field duplicates were taken as split samples from the same grab.
- A travel, field and equipment blank were submitted for analysis to confirm that sampling and transport methods have not introduced additional contamination of the substances of interest.
- Samples were carefully packaged to prevent breakage and shipped with ample ice to maintain the samples at the appropriate temperature. A temperature blank was included during shipment to ALS to confirm that samples were maintained at temperatures throughout the multiple stage transport process (two flights plus

courier). Samples for toxicity testing were shipped direct from Whitehorse to Vancouver and therefore, a temperature blank was not considered necessary.

■ The relative percent difference (RPD) was calculated to assess variability between field duplicates as follows:

$$RPD = \left(\frac{sample - duplicate}{(sample + duplicate)/2}\right) \times 100$$

2.4 Analytical Parameters and Methods

2.4.1 Sediment Chemistry and Physical Parameters

Details of the specific analytical methods for sediment chemistry are described in the certificates of analysis in Appendix D. In brief, the analytical methods included:

- All sediment samples were analyzed for metals, polycyclic aromatic hydrocarbons (PAHs), grain size, and total organic carbon (TOC). These data were necessary to select a subset of samples for additional chemical analysis or toxicity tests.
- The majority of samples were analyzed for Diesel Range Organics (DRO) and Residual Range Organics (RRO). A small number of samples (i.e., three) were not submitted for this analysis because they had PAH concentrations that were similar to other samples from the same area that were already selected for analysis.
- The majority of sediment samples were also submitted for analysis of simultaneously extractable metals (SEM) and acid-volatile sulphides (AVS). Samples were selected for AVS-SEM analysis based on consideration of the lead, zinc and copper concentrations and to focus on those samples selected for toxicity testing. A small number of samples (i.e., seven) were not submitted for this analysis.

2.4.2 Tissue Chemistry in Aquatic Biota

Details of the specific analytical methods for tissue chemistry are described in the certificates of analysis in Appendix D. All tissue samples were analyzed for total metals, PAHs and percent moisture. Homogenates were retained (frozen) for additional analysis as needed. A subset of the samples were selected for metal speciation analysis (e.g., hexavalent Cr, organic As).

2.4.3 Selection of Samples for Toxicity Testing

A subset of 14 of the 24 sediment samples were submitted to Nautilus Environmental (Burnaby, BC) for toxicity testing. Nautilus is accredited by the Washington State Department of Ecology for specific toxicological tests. Samples for toxicity testing were selected based on a review of the sediment chemistry to capture the gradient of metals concentrations in the samples collected, and to provide spatial coverage of the different zones of interest. The fourteen samples were allocated as follows:

- Ten samples from within the ore basin were selected for analysis, including the worst-case and second worst-case concentrations for both metals and PAHs (i.e., from within Zone A). The remainder of the samples within the ore basin were selected to provide spatial coverage in the three other zones.
- One of the three samples collected from outside the ore basin was selected for testing. There were no substantive differences in sediment chemistry amongst these three samples that warranted selection of additional samples.
- Three of the five samples collected from reference areas were selected for testing. The three samples were selected to have a similar grain size and organic carbon content as the range of samples collected from within the ore basin.

The tests in the current assessment were described in Golder (2017) and included:

- 96-h echinoderm (Strongylocentrus purpuratus) larval development
- 10-d amphipod (Eohaustorius estuaries) survival and
- 20-d polychaete (*Neanthes arenaceodentata*) survival and growth

All three tests are routinely used for sediment characterization and dredged material disposal purposes. There is extensive toxicological literature available with respect to the sensitivity of these test organisms to the specific contaminants of interest, along with information on sensitivity to other factors such as grain size, ammonia, and sulphides. A brief overview of each toxicity testing method is provided below.

2.4.4 Echinoderm Larval Development Test

The 96-h echinoderm larval development toxicity test followed the PSEP (1995) protocols with some modifications. The day before test initiation, each sediment samples was composited and 18 g weighed out into 5 replicates. Each container was then filled with 900 mL of natural seawater and stirred to ensure sediment resuspension. The controls consisted of just 900 mL seawater. These test vessels were then left overnight in the testing room at 15±1°C. PSEP 1995 protocols state that a 4 hour settling time is required prior to the addition of organisms to the test container. For this set of tests the sediment was allowed to settle for 24 hours to ensure that the physical effects of suspended sediments have a minimal effect on the echinoderm eggs. Organisms were scheduled to arrive at the laboratory on the day of test initiation. Spawning of the echinoderms (sea urchins; Strongylocentrotus purpuratus) were induced by injection of 0.5M KCI. Once sufficient gametes were collected, the eggs were fertilized and development monitored. The test containers were seeded at a density of ~25 eggs/mL within 2 hours of fertilization. Water quality measurements were monitored throughout the test (temperature, pH, DO, salinity), and ammonia and sulphides measured at test initiation and termination. A concurrent reference toxicant test using copper was conducted. Each test was terminated around 96-h (dependent on development). The overlying water was decanted and a 10 mL aliquot from each container transferred to a glass vial and preserved with buffered formalin. These vials were enumerated for normality/abnormality, the final endpoints of survival, proportion normal, and combined proportion normal were then reported.

2.4.5 Amphipod Test

This static, acute toxicity test is used to determine the relative toxicity of estuarine and marine sediments using the haustoriid amphipod *Eohaustorius estuarius*. Immature adult amphipods are exposed to test sediments in a static system for 10 days. Test containers are 1-L glass jars containing a 2-cm layer (175 mL) of sediment and 800 mL of clean seawater, adjusted to the appropriate salinity. There are five replicates per treatment, plus an additional replicate for monitoring water quality, each with 20 amphipods. The sediments and seawater (salinity adjusted if necessary) are prepared one day, and allowed to settle overnight. The next day (Day 0), amphipods are counted out and added to the sediments (unless purging is required due to high ammonia concentrations). Water quality and emergence (avoidance) from sediment are recorded daily. On Day 10, water quality is recorded for every replicate, counts are made of live and dead amphipods, and the ability of surviving amphipods to rebury in clean sediment is assessed. The response of amphipods exposed to test sediments is compared with the response of amphipods exposed to control sediment (or appropriate reference sediment). Survival is the primary endpoint; emergence and reburial are secondary endpoints that can indicate aversion to sediment by amphipods.

2.4.6 Polychaete Test

This test uses the juvenile life stage of the polychaete *Neanthes arenaceodentata* to determine the relative toxicity of marine sediments by evaluating both lethal and sublethal effects in a 20-day static-renewal exposure system. The test container is a 1-L glass jar containing a 2-cm layer (175 mL) of sediment and 800 mL of clean seawater (28 ppt salinity). There are six replicates per treatment (five for toxicity, plus one for monitoring water quality), each containing five worms. The sediments and seawater are prepared one day prior to test initiation (Day -1) and allowed to equilibrate overnight. The following day (Day 0), the worms are sorted, counted and distributed to the test containers. Additional subsamples of worms are also dried overnight to determine average initial dry weights. Partial renewal of the overlying water is performed every three days, and organisms are fed every two days. Test conditions are monitored during the 20-d exposure period. On Day 20, worms are sieved from the sediments to determine mean survival. Surviving worms are transferred to pre-weighed foil pans, dried overnight and weighed to determine total dry weight, average individual dry weight, and average individual growth rate. The response of worms exposed to test sediments is compared with the response of worms exposed to control sediment (or appropriate reference sediment) for each endpoint (survival, total dry weight, average individual dry weight, average individual growth rate).

2.4.7 Laboratory Quality Assurance/ Quality Control

Details regarding the laboratory QA/QC activities for the sediment and tissue chemistry are described in Appendix D. The laboratory analyses included laboratory control samples (LCS), matrix replicates, matrix spikes (MS), surrogate spikes for organic analyses, method blanks, standard reference materials and instrument calibrations. The certificates of analysis were reviewed by Golder following the ADEC-mandated laboratory data review checklists to confirm that the laboratory data quality objectives (DQOs) were met and that the appropriate QA/QC information had been reported.

Details regarding the laboratory QA/QC activities for the toxicity samples are described in Appendix E. The toxicity tests included analysis of negative controls (i.e., clean laboratory sediment or dilution water), positive controls (reference toxicant tests), and monitoring of water quality parameters (temperature, dissolved oxygen, pH and salinity) during testing to verify that the test organisms were not subjected to stress unrelated to the test material.

3.0 RESULTS

3.1 Sediment Chemistry

Copies of the ALS laboratory reports for the sediment chemistry analyses performed on the samples are provided in Appendix D, and a sediment chemistry data table is provided in Table A-1. These data were screened against the numerical standards (sediment cleanup objective, SCO; cleanup screening levels, CSL²) as described by WDOE (2015). It was necessary to make the following calculations as part of the data presentation:

- The percentage of fine-grained material, which is used for interpretation of sediment chemistry and toxicity results, was calculated as the sum of the silt and clay particle size fractions.
- For parameters requiring calculation of total concentrations (e.g., total PAHs) the limit of detection was used for values below the method detection limit.
- AVS and SEM were analyzed on a subset of stations to provide a chemical means to assess the potential bioavailability of selected metals such as lead, copper and zinc (DiToro et al. 1990; Ankley et al. 1991; Casas and Crecelius 1994; Chapman 1996). Detected concentrations of individual SEMs were summed to provide a "sum of SEM (ΣSEM)" concentration for each sample. Data were presented as molar differences (AVS-ΣSEM) since this calculation provides a better indication of the magnitude of excess AVS than when presented as ratios (AVS/ΣSEM; Hansen et al. 2009).

A brief summary of the results is provided below. Data will be evaluated in greater detail as part of the risk assessment.

3.1.1 Particle Size and Total Organic Carbon (TOC)

There was a relatively wide range of particle size distributions amongst stations in the same area. Percent fines ranged from 11 to 86% among the ore basin stations, from 65 to 72% among the stations elsewhere in Skagway Harbour, and from 35 to 89% among the reference stations. The total organic carbon (TOC) concentrations ranged from <0.23 to 1.1% among the ore basin stations, from 0.8 to 1.4% among the stations elsewhere in Skagway Harbour, and from <0.25 to 2.41% among the reference stations.

3.1.2 Metals

The concentrations of metals are provided in Table A-1. Observations based on this table include:

Concentrations of lead in sediment collected in the Ore Basin ranged from 8.43 to 666 mg/kg, and only four of the 16 samples collected in this area exceeded the SCO. None of the sediment samples collected outside of the Ore Basin contained concentrations of lead greater than the SCO or CSL.

² The SCO represents the long-term sediment quality goal, while the CSL is the maximum chemical concentration or extent of biological effects allowed as a sediment cleanup level. They are used in conjunction for sediment risk management and remedial planning. The final sediment clean up level (i.e., the basis of design of remediation) is initially set at the more conservative SCO but can be adjusted upwards towards the CSL based on technical feasibility and predicted net adverse environmental impacts as part of the selection of the remedial option.

- Concentrations of mercury in sediment collected in the Ore Basin ranged from <0.021 to 0.821 mg/kg and only 2 out of the 16 samples collected in this area exceeded the SCO. One of those samples also exceeded the CSL.</p>
- Concentrations of zinc in sediment collected in the Ore Basin ranged from 40.9 to 1040 mg/kg and only 2 out of the 16 samples collected in this area exceeded the SCO. One of those samples also exceeded the CSL.
- Concentrations of copper in sediment collected in the Ore Basin ranged from 10.1 to 207 mg/kg but none of the collected samples exceeded the SCO or CSL.

Overall, there appears to a pattern that elevated concentrations of lead, mercury and zinc are limited to the ore basin—there were no exceedances with respect to the standards for the reference samples or in samples collected outside of the Ore Basin. However, the frequency and magnitude of these exceedances was lower than expected. The maximum concentrations of metals in the collected Zone A samples were lower than those observed in the historical data from the same area, which may indicate ongoing deposition of cleaner sediment from the Skagway River.

3.1.3 Acid Volatile Sulphide (AVS) and Simultaneously Extractable Metals (SEM)

The concentrations of AVS ranged from <0.037 to 8.39 μ mol/g among the Skagway Harbour stations and from 0.057 to 2.7 μ mol/g among the reference stations. The Σ SEM concentrations ranged from 0.19 to 3.1 μ mol/g among the Skagway Harbour stations and from 0.094 to 0.56 μ mol/g among the reference stations. Overall, the molar differences (AVS- Σ SEM) were negative in 8 of the 13 of the Skagway Harbour stations (i.e., there was more extractable metals present than AVS, which may indicate that some or all of the bulk metal concentration could be available for uptake by aquatic organisms. This information will be evaluated in greater detail in the risk assessment.

3.1.4 Polycyclic Aromatic Hydrocarbons (PAHs) and Extractable Hydrocarbons

The concentrations of hydrocarbons are provided in Table A-1. Observations based on this table include:

- At least one individual PAH was detected in most sediment samples, with the exception of reference stations SED17-24, SED17-27 and SED17-28 which had no detectable PAHs.
- There was a minor exceedance of the SCO with respect to the total concentration of low molecular weight PAHs in one sample, but no samples exceeded with respect to the CSL. Two samples exceeded the CSL for high molecular weight PAHs. The two samples that had exceedances of the SCO or CSL with respect to these composite PAHs measurements also had exceedances with respect to individual PAHs.

3.1.5 Quality Assurance / Quality Control

3.1.5.1 Field Duplicates

The relative percent differences for the field duplicates are provided in Appendix F. A specific limit for RPDs is not specified by ADEC (2016), but in general, an RPD of greater than 30% can indicate instances where sample homogenization may have been insufficient. This is not a pass/fail criterion because high RPDs can be generated by "nugget effects" (i.e., the presence of coal particles or metallic debris) that can impact RPDs despite all reasonable effort for appropriate sample homogenization. RPDs are also only calculated when both the original and field duplicate concentrations are greater than five times the detection because analytical uncertainty increases near the method detection limit and does not necessarily provide a good measure of variability associated with the collection of field samples. A total of three field duplicates were collected for the sediment sampling program. Golder concluded that the field duplicate RPDs were acceptable and that there was no impact on sediment quality. RPDs were less than 30% for the main metals of interest in all three duplicate pairs. The specific results of the field duplicates and a discussion with respect to data quality are as follows:

- SED17-12 and DUP-3 had RPDs ranging from 0 to 196%. The majority of the RPDs that exceeded 30% were associated with individual PAHs. Four metals (As, Cr, Fe and Ni) also had RPDs greater than 30%. Golder reviewed the field notes for this sample and confirmed that appropriate sample homogenization was conducted. Golder concluded that the high RPDs with respect to PAHs were relevant for site characterization—the original sample had no exceedances with respect to PAHs, but the field duplicate does contain concentrations that exceed the SCO. Golder will use the PAH concentrations from the duplicate to provide a conservative evaluation of this sample. The RPDs for the four metals were not a data quality issue since both the original and field duplicate concentrations were substantially lower than the SCO. The pattern of a high RPD for Fe and Ni suggests that a piece of metallic debris is influencing these RPDs.
- SED17-18 and DUP-2 had RPDs ranging from 0 to 67%. Five RPDs exceeded the 30% trigger. Four were related to individual PAHs, but there was no issues with respect to data quality because all four PAHs had concentrations that were substantially lower than the SCO in both the original and field duplicate samples. The fifth RPD greater than 30% was related to Cr, but the concentrations in both the original and field duplicate samples were also substantially lower than the SCO.
- SED17-31 and DUP-1 and RPDs ranged between 0 and 60%. Only one substances had an RPD greater than 30%, and the concentrations of that individual PAHs in both the original and field duplicate samples were substantially lower than the SCO. 1 of 41 analyzed compounds had an RPD greater than 30%.

3.1.5.2 Blank Samples

Trip, field and equipment blank samples were included in the program and analyzed for total metals to be compliant with ADEC (2016) guidance. The purpose of these blanks is to trace potential sources of artificially introduced contamination (i.e., contamination that does not originate from media of interest that is being analyzed). The presence of artificial sources of contamination, if substantive, would be a source of bias that could change how the data were interpreted (i.e., a sample might be deemed to be exceeding numerical standards when in fact it does not). Golder concluded that the blank samples demonstrated that artificial sources of contamination were not biasing the available data based on:

- The trip blank (i.e., a deionized water sample provided by the laboratory that travelled to and from the site without being opened) had no detectable concentrations of total metals with the exception of manganese (which had a quantifiable concentration that was marginally greater than the reportable detection limit).
- The field blank (i.e., a deionized water sample provided by the laboratory, opened in the field, and poured into a sampling container) had no detectable concentrations except for calcium, magnesium and manganese. All three substances were quantified at a concentration that was less than 5x the reportable detection limits).
- The equipment blank (i.e., a deionized water sample that was opened in the field and poured through the sampling equipment after decontamination was completed) also had detected concentrations of aluminum, calcium, iron, magnesium, magnesium and sodium. Sodium and magnesium was greater than 5x the reportable detection limits. Golder reviewed the data quality in light of this equipment blank and concluded that these metals and metalloids were unsurprising, given that deionized water was being rinsed over equipment that had been decontaminated and then rinsed with seawater (i.e., any residual seawater would contribute the ions detected). Both copper and lead were also detected in the equipment blank, but at extremely low total concentrations.

Golder concludes that the available blank data demonstrated that cross-contamination or the introduction of artificial sources of contamination that could bias the outcome of the data was not present. The minor detected concentrations of copper and lead in the equipment blank are not considered to be a bias in the sediment chemistry data—any particulate of sediment or dust that was ultimately caught in the equipment blank would result in a detected total concentration.

3.1.5.3 Data Quality Checklists

The analytical laboratory provided a case narrative for each certificate of analysis which discussed the internal laboratory control measures. There were no deviations described in the case narratives which were considered by the analytical laboratory to impact overall data quality. The ADEC laboratory review checklist was completed by Golder and is provided in Appendix G. Overall, Golder concludes that the sediment data are reliable and suitable for the risk assessment based on consideration of both the laboratory and field QA/QC components.

3.2 Sediment Toxicity

3.2.1 Summary of Data

The analytical data appendices from the analytical laboratory are provided in Appendix E. A brief summary of the results is provided below in Tables 4 thorough 6. Data will be evaluated in greater detail as part of the risk assessment.

Table 3: Results of 96-h Echinoderm (Strongylocentrotus purpuratus) Larval Development Test

Sample ID	Survival ± SD (%)	Proportion Normal ± SD (%)	Combined Proportion Normal ± SD (%)
Control Sediment	86.5 ± 4.4	82.8 ± 1.5	71.6 ± 3.7
SED17-08	65.4 ± 5.3 *	0.8 ± 0.7 *(a)(b)(c)	0.5 ± 0.4 *(a)(b)(c)
SED17-06	77.6 ± 3.9	79.5 ± 2.3 (c)	61.8 ± 4.3 *
SED17-09	7.3 ± 6.6 *(a)(c)	42.6 ± 39.2 *(a)(c)	2.6 ± 3.2 *(a)(c)
SED17-13	1.7 ± 0.7 *(a)(b)(c)	3.3 ± 7.5 *(a)(b)(c)	0.1 ± 0.2 *(a)(b)(c)
SED17-17	75.3 ± 10.1	83.7 ± 6.2	63.8 ± 7.8
SED17-20	2.4 ± 1.0 *(a)(b)(c)	13.3 ± 29.8 *(a)(c)	0.4 ± 1.0 *(a)(b)(c)
SED17-18	31.0 ± 17.4 *(a)(c)	70.6 ± 16.9 (c)	23.3 ± 16.2 *(a)(c)
SED17-19	14.1 ± 9.9 *(a)(c)	25.8 ± 29.5 * (a)(c)	5.8 ± 8.6 *(a)(c)
SED17-24	81.8 ± 9.9	83.5 ± 2.7	68.3 ± 8.5
SED17-12	56.6 ± 10.5 *(a)	0.1 ± 0.3 *(a)(b)(c)	0.1 ± 0.2 *(a)(b)(c)
SED17-01	84.4 ± 3.5	83.4 ± 6.0	70.6 ± 7.4
SED17-03	24.4 ± 9.1 *(a)(c)	80.6 ± 3.1 (c)	19.6 ± 7.5 *(a)(c)
SED17-29	20.5 ± 18.6 *(a)(c)	67.4 ± 16.8	15.9 ± 17.7 *(a)(c)
SED17-27	74.9 ± 4.2 *	87.9 ± 2.0	65.8 ± 3.9

^{1.} SD = standard deviation; asterisks (*) indicate samples with mean survival significant lower (p < 0.05) than their respective control.

- (a) indicates samples with mean survival significant lower (p < 0.05) than reference sample SED17-24
- (b) indicates samples with mean survival significant lower (p < 0.05) than reference sample SED17-29
- (c) indicates samples with mean survival significant lower (p < 0.05) than reference sample SED17-27

Table 4: Results of 10-d Amphipod (Eohaustorius estuarius) Toxicity Tests

Sample ID	Survival (%) (Mean ± SD) ¹	Reburial (%)
Control Sediment	97.0 ± 4.5	100
SED17-08	94.0 ± 2.2	100
SED17-06	94.0 ± 4.2	100
SED17-09	35.0 ± 7.9* (a)(b)(c)	100
SED17-13	40.0 ± 12.8* (a)(b)(c)	100
SED17-17	92.0 ± 7.6	100
SED17-20	62.0 ± 15.6* (a)	98
SED17-18	91.0 ± 4.2	100
SED17-19	57.0 ± 6.7* (a)(c)	100
SED17-24	89.0 ± 11.4	100
SED17-12	83.0 ± 11.5*	100
SED17-01	77.0 ± 7.6*	90
SED17-03	96.0 ± 4.2	100
SED17-29	67.0 ± 15.2* (a)	100
SED17-27	78.0 ± 13.5*	87

^{1.} SD = standard deviation; asterisks (*) indicate samples with mean survival significant lower (p < 0.05) than their respective control.

⁽a) indicates samples with mean survival significant lower (p < 0.05) than reference sample SED17-24

⁽b) indicates samples with mean survival significant lower (p < 0.05) than reference sample SED17-29

indicates samples with mean survival significant lower (ρ <0.05) than reference sample SED17-27

Table 5: Results of 20-d Polychaete (Neanthes arenaceodentata) Toxicity Tests

Sample ID	Survival (%) (Mean ± SD)	Total Dry Weight (mg) (Mean ± SD) ¹	Individual Dry Weight (mg/worm) (Mean ± SD)¹	Individual Growth Rate (mg/worm/day) (Mean ± SD) ¹
Control Sediment	96.0 ± 8.9	47.0 ± 4.9	9.8 ± 0.9	0.47 ± 0.04
SED17-08	100.0 ± 0.0	44.0 ± 9.1	8.8 ± 1.8	0.41 ± 0.09
SED17-06	96.0 ± 8.9	48.0 ± 5.5	10.1 ± 1.6	0.48 ± 0.08
SED17-09	92.0 ± 11.0	37.8 ± 9.8*(a)(c)	8.1 ± 1.3*(a)(c)	0.38 ± 0.07*(a)(c)
SED17-13	100.0 ± 0.0	45.9 ± 6.2	9.2 ± 1.2	0.43 ± 0.06
SED17-17	96.0 ± 8.9	50.5 ± 11.1	10.4 ± 1.7	0.50 ± 0.08
SED17-20	84.0 ± 16.7	38.8 ± 10.7 (c)	9.1 ± 1.3	0.43 ± 0.07
SED17-18	96.0 ± 8.9	39.0 ± 2.5*(a)(c)	8.2 ± 1.2*(a)(c)	$0.39 \pm 0.06*(a)(c)$
SED17-19	80.0 ± 28.3	32.5 ± 13.7*(a)(c)	8.0 ± 1.5*(a)(c)	$0.37 \pm 0.08*(a)(c)$
SED17-24	100.0 ± 0.0	48.3 ± 5.8	9.7 ± 1.2	0.46 ± 0.06
SED17-12	96.0 ± 8.9	38.9 ± 3.6*(a)(c)	8.2 ± 1.4*(c)	0.38 ± 0.07*(c)
SED17-01	96.0 ± 8.9	45.5 ± 4.6	9.6 ± 1.4	0.45 ± 0.07
SED17-03	96.0 ± 8.9	42.0 ± 7.6	8.8 ± 1.4 (c)	0.41 ± 0.07 (c)
SED17- 29	100.0 ± 0.0	42.3 ± 6.7	8.5 ± 1.3*(c)	0.40 ± 0.07*(c)
SED17-27	96.0 ± 8.9	53.4 ± 13.4	11.0 ± 2.0	0.52 ± 0.10

^{1.} SD = standard deviation; asterisks (*) indicate samples with mean survival significant lower (p < 0.05) than their respective control.

3.2.2 Quality Assurance / Quality Control

There were no issues identified by the laboratory in terms of data quality. A comprehensive report to supplement the raw analytical appendices provided in Appendix E is still in progress.

3.3 Tissue Chemistry in Aquatic Biota

Copies of the ALS laboratory reports for the sediment chemistry analyses performed on the samples are provided in Appendix D, and a tissue chemistry data table is provided in Table A-2. Data have not been compared to specific tissue residue guidelines. The tissue collection program collected the following samples (see Figure 3 for sampling locations)

■ Near-field (NF): prawns (n=5), mussels (n=5) and crabs (n=3)

Mid-field: crabs (n=5)

Far-field: mussels (n=5)

■ Reference: prawns (n=3), mussels (n=5) and crabs (n=3)

⁽a) indicates samples with mean survival significant lower (p < 0.05) than reference sample SED17-24

⁽b) indicates samples with mean survival significant lower (p < 0.05) than reference sample SED17-29

⁽c) indicates samples with mean survival significant lower (p < 0.05) than reference sample SED17-27

Each tissue sample was analyzed for metals and PAHs. These data will be evaluated in greater detail as part of the subsequent risk assessment, but some broad observations based on Table A-2 are as follows:

- Tissue concentrations of mercury and zinc varied between species but appeared to show little differences between sample locations (i.e., the concentrations near the ore basin were similar to those measured in reference locations).
- Tissue concentrations of arsenic and lead also varied between species, and appeared to be higher in the samples collected from the ore basin for two specific tissue/substance combinations"
 - Prawns for arsenic
 - Crabs for lead
- The tissue concentrations of copper tended to be similar in all tissue types from all four sampling areas, with the exception of a prawn sample collected from the reference location which contained nearly 4x the copper of the next highest sample.
- Detectable concentrations of PAHs were not detected in crab or prawn tissue samples at any sample locations except for one prawn tissue sample which contained detectable concentrations of a single PAH. Conversely, mussel samples from both the near and far-field sampling locations tended to have detectable concentrations of PAHs, and tended to be higher in the near-field area than in the far-field area. Mussel tissue concentrations of PAHs at the reference location were less than the detection limit except for one mussel tissue sample which contained detectable concentrations of a single PAH.

Golder cautions that any patterns in the tissue data should be interpreted with caution given that the number of samples in any pairwise comparisons are quite limited. Ultimately, any interpretation of these data with respect to management decisions should be based on the risk assessment.

3.3.1 Quality Assurance / Quality Control

There were no laboratory quality assurance/quality control measures that indicated a data quality issue (Appendix D and Appendix G). Overall, Golder concludes that the tissue data are reliable and suitable for the risk assessment based on consideration of both the laboratory and field QA/QC components.

4.0 CLOSURE

The purpose of this report is to provide a summary of the field activities conducted by Golder to support an ecological and human health risk assessment for the Skagway Ore Terminal. Analytical data (tabular summaries and the original certificates of analysis) has been appended per ADEC requirements. No interpretation of these data has been presented at this time. This data report is considered a draft appendix for the ecological and human health risk assessment technical report which is currently in progress and will be finalized as part of that broader deliverable.

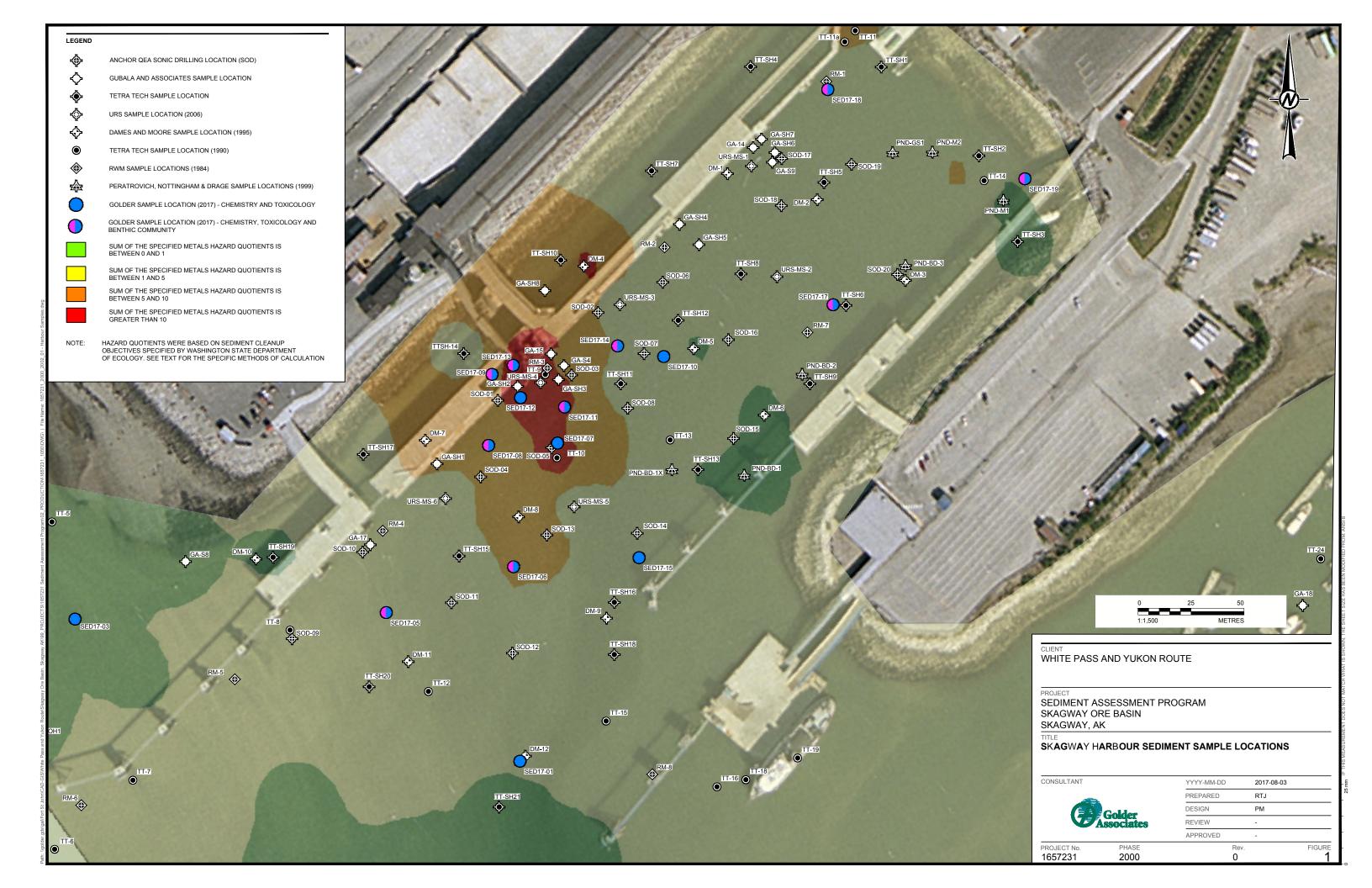
GOLDER ASSOCIATES LTD.

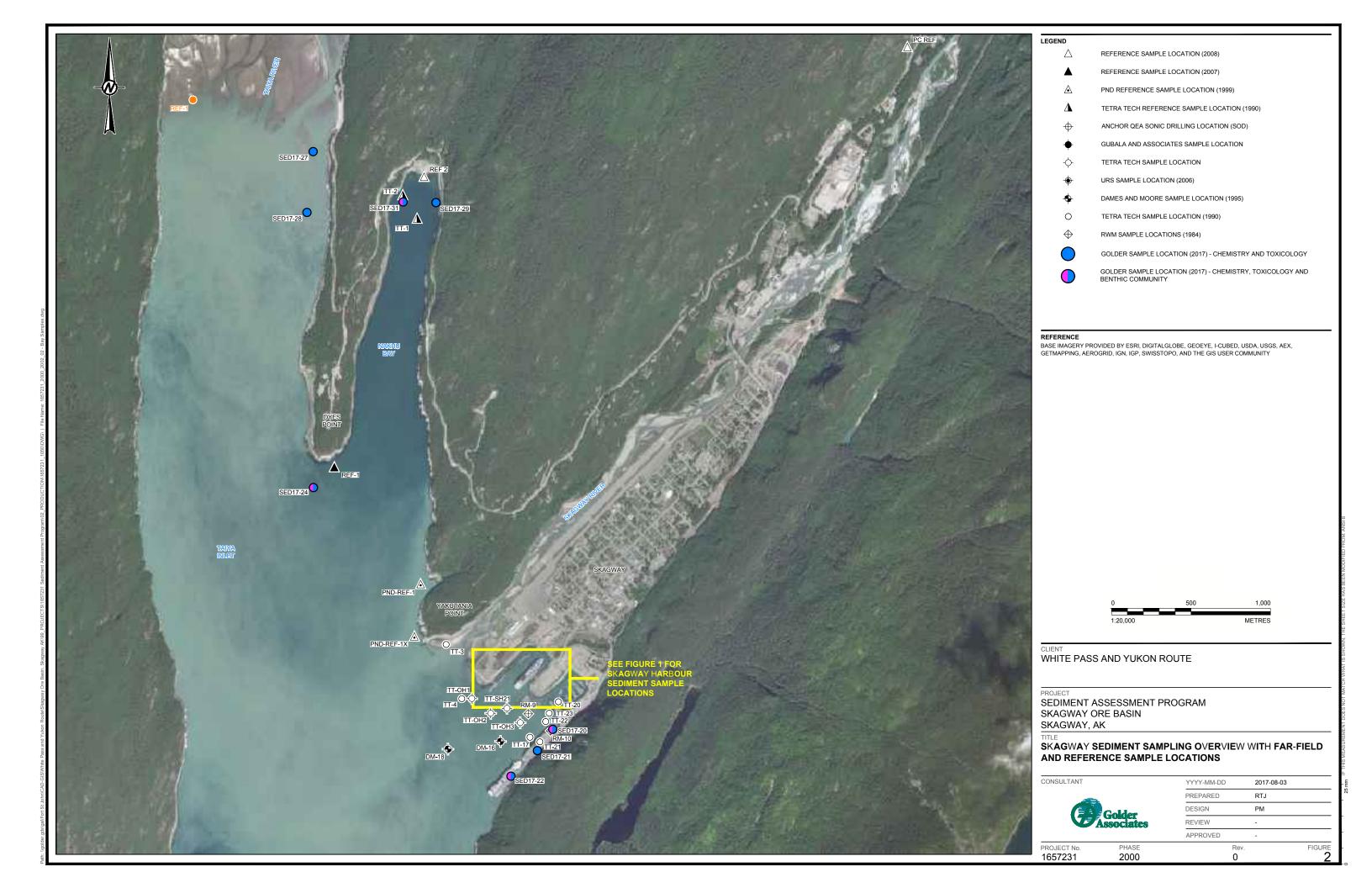
Vance Mercer, BSc, PBiol Environmental Scientist Blair McDonald, MET, RPBio Associate, Senior Environmental Scientist

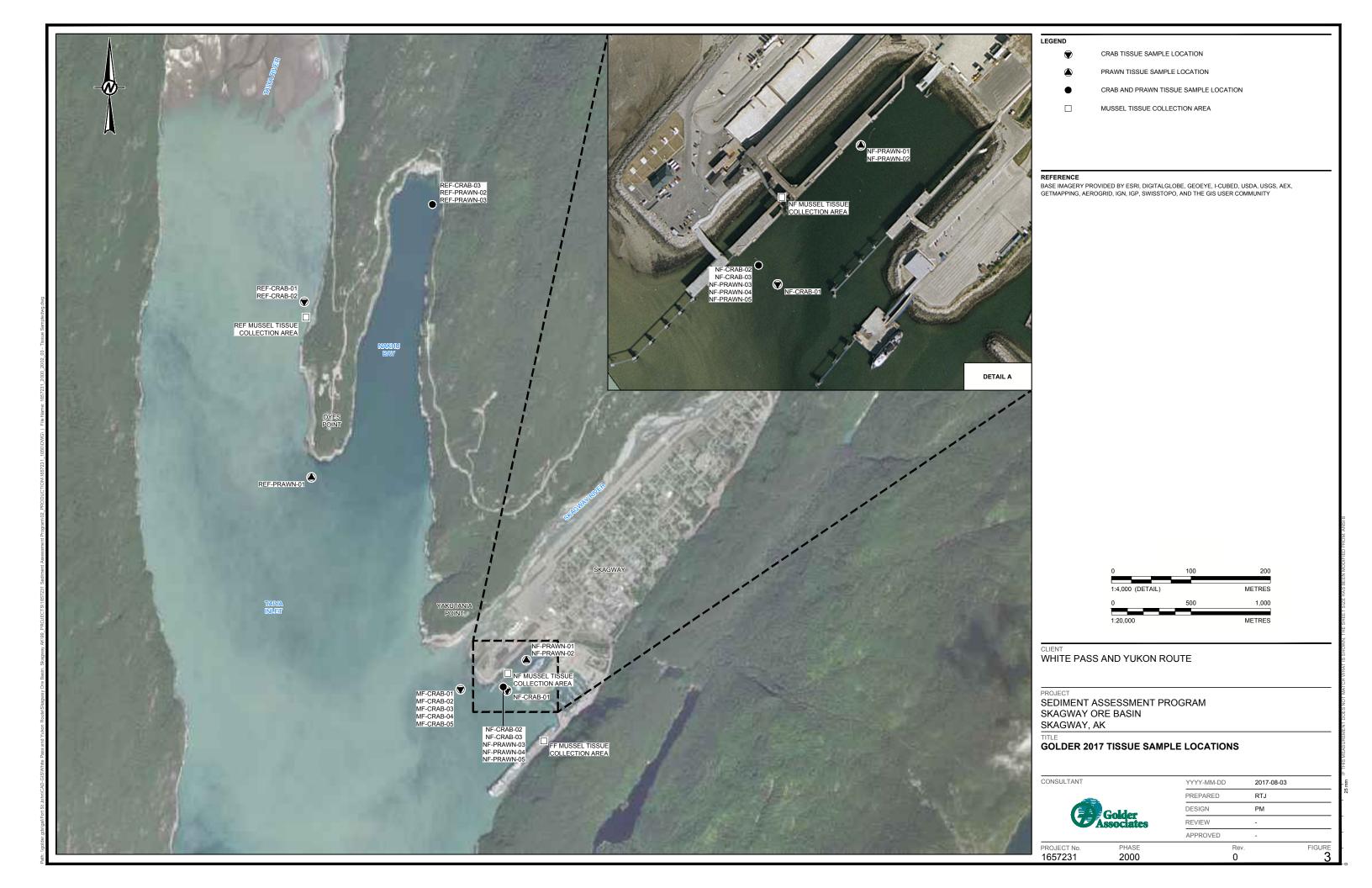
VM/BM/lih

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

o:\final\2016\3 proj\1657231 wpyr_ore basin sediment_alaska\1657231-004-r-rev0\1657231-004-r-rev0-field summary 10jan_18.docx






5.0 REFERENCES

- Alaska Department of Environmental Conservation (ADEC). 2016. Field sampling guidance. Available online: https://dec.alaska.gov/spar/csp/guidance forms/docs/Field-Sampling-Guidance-Final-5-13-2016.pdf
- Ankley GT, Phipps GL, Leonard EN, Benoit DA, Mattson VR, Kosian PA, Cotter AM, Dierkes JR, Hansen DJ and Mahony JD. 1991. Acid-volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments. Environ Toxicol Chem 10:1299-1307.
- Anchor QEA LLC (Anchor). 2015. Skagway Ore Dock and Small Boat Harbour dredging: Gateway Intermodal Dock Reconstruction Project and Legacy Harbour Contaminant Mitigation Program. Prepared for the Municipality of Skagway. Anchor Project No. 140159-04.01.
- ASTM International (ASTM). 2014. Standard guide for collection, storage, characterization and manipulation of sediments for toxicological testing and for selection of samplers used to collect benthic organisms. E1391-03 (Reapproved 2014).
- Casas AM, Crecelius EA. 1994. Relationship between acid volatile sulfide and the toxicity of zinc, lead and copper in marine sediments. Environ Toxicol Chem 13: 529-5.
- Chapman PM. 1996. SEM:AVS does not predict sediment toxicity. SETAC News 16:12-14.
- Golder (Golder Associates Limited). 2017. Study design and sampling and analysis plan: Skagway Ore Basin sediment assessment. Prepared for White Pass and Yukon Route Railway. Golder Document No. 1657321-002-R-Rev1. April 17, 2017.
- Di Toro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR. 1991. Technical basis for establishing sediment quality criteria for non-ionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583.
- Puget Sound Estuary Program (PSEP) 1995. Recommended guidelines for conducting laboratory bioassays on Puget Sound sediments. U.S. Environmental Protection Agency Region 10, Office of Puget Sound, Seattle, WA and Puget Sound Water Quality Authority, Olympia, WA. Water Quality Authority, Olympia, WA.
- Washington State Department of Ecology (WDOE). 2015. Sediment cleanup users manual II (SCUM II). Available online: https://fortress.wa.gov/ecy/publications/SummaryPages/1209057.html

APPENDIX A

Data Screening

1of2

Location											Ore	Basin							
Sampling Zone	Marina Sa	udimont AETs 1			Zo	ne A				Zone B				Zone C			Zo	ne D	
Sample Name	iviarine Se	ediment AETs 1		SED17-07	SED17-11	SED17-12	SED17-13	SED17-06	SED17-08	SED17-09	SED17-10	SED17-14	SED17-05	SED17-17	SED17-18	SED17-01	SED17-03	SED17-15	SED17-19
Sample Date			Units	04/05/2017	30/04/2017	04/05/2017	29/04/2017	26/04/2017	26/04/2017	29/04/2017	05/05/2017	30/04/2017	25-Apr-2017	30/04/2017	02/05/2017	04/05/2017	05/05/2017	05/05/2017	02/05/2017
Laboratory sample ID	sco	CSL		K1704542-001	K1704415-006	K1704542-002	K1704415-004	K1704246-003	K1704246-002	K1704415-003	K1704542-007	K1704415-005	K1704246-001	K1704415-007	K1704471-004	K1704542-004	K1704542-005	K1704542-008	K1704471-006
Physical Parameters (%)																			
Percent Solids	-	-	%	83.7	86.5	75.9	53.8	78.3	73.9	55.3	76.8	75.5	75.3	75.9	65.7	72.3	78.5	76.2	60.6
Organic Carbon (mg/kg)		1		2400	2000	9500	2222	2000	1000		2522	2500		2222	10000		2500	1 2400	10000
Carbon, Total Organic (TOC) Total Organic Carbon ²	-	-	mg/kg %	< 2400 <0.24	< 2300 <0.23	< 2500 <0.25	3200 0.32	3000 0.3	4300 0.43	8100 0.81	3600 0.36	< 2500 <0.25	3800 0.38	3200 0.32	10300 1.03	< 2800 <0.28	< 2500 <0.25	< 2400 <0.24	10600 1.06
Grain Size (%)			/6	\0.24	V0.23	VO.23	0.32	0.3	0.45	0.01	0.30	\0.23	0.36	0.32	1.03	\0.26	NO.23	V0.24	1.00
Clay	-	-	%	5.76	6.50	9.61	18.5	4.20	7.58	15.0	7.45	11.8	10.9	14.4	13.5	15.6	3.28	7.21	19.6
Silt	-	-	%	15.8	13.9	13.2	67.9	11.4	22.3	55.0	11.3	19.9	31.7	28.8	36.7	53.7	7.24	10.4	54.0
Fines (percent clay + silt) Inorganic Parameters (µmol/g)	-	-	%	21.6	20.4	22.8	86.4	15.6	29.8	70.0	18.7	31.6	42.6	43.2	50.1	69.2	10.5	17.6	73.6
Sulfide, Acid-Volatile	-	-	μmol/g	0.09	0.043	0.125	5.5	< 0.039	0.094	8.39	0.121	0.088	< 0.031	< 0.037	2.43	0.148	0.48	0.207	-
Extractable Metals (µmol/g)		•										,						1	
Antimony (Sb)-Extractable	-	-	μmol/g	< 0.006 < 0.011	< 0.006 < 0.010	< 0.006 < 0.011	< 0.010 < 0.017	< 0.007 < 0.012	< 0.006 < 0.010	< 0.009 < 0.015	< 0.007 < 0.012	< 0.008 < 0.013	< 0.008 < 0.013	< 0.007 < 0.011	< 0.008 < 0.013	< 0.007 < 0.011	< 0.006 < 0.009	< 0.006 < 0.011	-
Arsenic (As)-Extractable Cadmium (Cd)-Extractable	-	-	μmol/g μmol/g	< 0.0011	0.0005	0.0009	0.0016	< 0.005	0.001	0.0022	< 0.0005	< 0.005	0.0004	< 0.0011	0.0008	0.0007	< 0.0004	0.0005	-
Chromium (Cr)-Extractable	-	-	μmol/g	0.01	0.014	0.012	0.021	0.008	0.015	0.028	0.009	0.017	0.012	0.014	0.018	0.014	0.007	0.009	-
Copper (Cu)-Extractable	-	-	μmol/g	0.23	0.091	0.407	0.369	0.104	0.172	0.122	0.085	0.113	0.121	0.095	0.041	0.073	0.023	0.058	-
Lead (Pb)-Extractable	-	-	μmol/g	0.324 < 0.0008	0.253 < 0.00008	0.543 < 0.00009	0.94 < 0.00014	0.145 < 0.00010	0.522 < 0.00008	0.706 < 0.00012	0.235 < 0.00009	0.286 < 0.00010	0.226 < 0.00008	0.222 < 0.00009	0.141 < 0.00011	0.177 < 0.00009	0.026 < 0.00008	0.103 < 0.00009	-
Mercury (Hg)-Extractable Nickel (Ni)-Extractable	-	-	μmol/g μmol/g	< 0.00008 0.007	< 0.00008 0.011	0.013	< 0.00014 0.02	0.00010	0.0008	< 0.00012 0.029	< 0.00009 0.006	0.0010	< 0.00008 0.011	0.012	0.00011	0.0009	0.0008	0.0009	-
Silver (Ag)-Extractable	-	-	μmol/g	< 0.002	< 0.002	< 0.002	< 0.003	< 0.002	< 0.002	< 0.003	< 0.002	< 0.003	< 0.003	< 0.002	< 0.003	< 0.002	< 0.002	< 0.002	-
Zinc (Zn)-Extractable	-	-	μmol/g	0.631	0.724	0.907	1.73	0.356	1.15	1.28	0.43	0.575	0.946	0.674	0.469	0.502	0.13	0.297	-
Sum of SEM (ΣSEM)	-	-	μmol/g	1.2	1.1	1.9	3.1	0.62	1.9	2.2	0.77	1.0	1.3	1.0	0.69	0.78	0.19	0.47	-
[SEM]/[AVS] AVS-ΣSEM			umol/g	13 -1.1	25 -1.1	15 -1.8	0.56 2.4	-	20 -1.8	0.26 6.2	6.3 -0.64	11 -0.92	-	-	0.28 1.7	5.3 -0.63	0.4 0.29	2.3 -0.27	-
Metals (mg/kg)	-	-	ціпоі/д	-1.1	-1.1	-1.0	2.4		-1.0	0.2	-0.04	-0.92	-	-	1.7	-0.03	0.23	-0.27	-
Aluminum (Al)	-	-	mg/kg	9090	7210	7880	21100	7660	7950	17400	7580	9690	10800	10800	13300	14200	6020	8220	12600
Antimony (Sb)	-	-	mg/kg	< 0.059	< 0.048	0.213	0.147	<0.057	0.12	0.117	< 0.058	< 0.043	<0.060	< 0.053	0.066	0.096	< 0.056	< 0.048	< 0.063
Arsenic (As) Barium (Ba)	57	93	mg/kg mg/kg	1.82 179	1.48 139	3.76 174	4.29 474	1.85 163	3.69 187	4.47 419	1.56 154	2.06 224	2.03 235	2.75 281	3.37 295	3.08 272	1.12 101	1.94 169	3.02 305
Beryllium (Be)	-	-	mg/kg	0.161	0.153	0.136	0.384	0.177	0.212	0.319	0.144	0.198	0.197	0.208	0.276	0.281	0.137	0.18	0.248
Cadmium (Cd)	5.1	6.7	mg/kg	0.29	0.197	1.21	1.51	0.214	0.325	1.83	0.265	0.394	0.248	0.342	0.613	0.64	0.078	0.254	0.436
Calcium (Ca)	-	-	mg/kg	3410	3210	14300	7670	2920	9760	11400	12800	4410	6240	6120	9640	4370	4240	7200	147000
Chromium (Cr) Cobalt (Co)	260	270	mg/kg mg/kg	9.05 4.4	9.68 4.39	18.9 6.86	23.5 11.4	9.91 5.25	12.9 6.63	18.6 9.18	8.79 4.19	12.3 5.92	11.7 5.66	13.4 6.65	16.9 8	21.1 8.99	7.22 4.12	11.1 5.17	16.7 7.1
Copper (Cu)	390	390	mg/kg	33	48	96.2	100	43.2	207	93.5	40.7	62.3	34.3	37.1	46	24.4	10.1	24.5	28.2
Iron (Fe)	-	-	mg/kg	16800	15700	40600	39600	15500	17700	33600	14300	18700	21500	22900	24700	24500	11900	15100	25200
Lead (Pb)	450	530	mg/kg	172	85	469	666	73.5	594	666	107	144	82.6	98.9	119	66.5	8.43	66	77.1
Magnesium (Mg) Manganese (Mn)	-	-	mg/kg mg/kg	5850 227	4810 221	5570 370	13400 535	5150 209	5480 258	11400 516	4770 180	6290 259	7130 286	7330 316	8390 329	8900 318	4250 166	5350 198	8690 334
Mercury (Hg)	0.41	0.59	mg/kg	0.179	0.077	0.532	0.413	0.071	0.287	0.821	0.091	0.126	0.139	0.143	0.152	0.035	< 0.021	0.048	0.129
Nickel (Ni)	-	-	mg/kg	4.55	4.16	15	12.9	5.26	6.3	10.4	4.51	6.3	6.18	7.2	8.82	11.1	4.26	5.85	9.17
Potassium (K)	-	-	mg/kg	4100	2900	3730	10100	3380	3800	8670	3120	4530	4940	6370	6220	6290	2390	3740	6440
Selenium (Se) Silver (Ag)	6.1	6.1	mg/kg mg/kg	< 1.2 0.258	< 0.96 0.126	< 0.99 0.584	< 1.3 1.05	<1.1 0.164	<1.1 0.521	< 1.1 1.04	< 1.2 0.154	< 0.85 0.209	<1.2 0.287	< 1.1 0.205	< 1.2 0.33	< 1.1 0.588	< 1.6 0.044	< 0.96 0.119	< 1.3 0.227
Sodium (Na)	-	-	mg/kg	3900	2370	4250	11900	3540	3420	11000	3530	4500	4740	3930	7010	5380	3250	4190	8260
Thallium (TI)	-	-	mg/kg	0.179	0.143	0.202	0.542	0.192	0.28	0.432	0.152	0.223	0.247	0.254	0.303	0.337	0.122	0.191	0.279
Vanadium (V)	410	- 060	mg/kg	31	30 135	29.1	78.3 642	35.6	42.7	64 1040	29.7	41.3	38.5	44.6	55.7	64.8	26.2	35.8	50.2
Zinc (Zn) Polycyclic Aromatic Hydrocarbons (µg/kg)		960	mg/kg	214	125	806	042	114	261	1040	143	212	171	192	240	124	40.9	105	174
Low Molecular Weight PAHs																			
Acenaphthene	500	500	μg/kg	< 5.9	< 5.8	< 6.4	17	<6.3	<6.2	55	< 6.4	< 6.4	<6.7	< 6.4	15	< 6.8	< 6.2	< 6.3	< 8.2
Acenaphthylene Anthracene	1300 960	1300 960	μg/kg μg/kg	8.3 22	< 5.8 7.9	21 56	59 250	<6.3 13	<6.2 21	73 260	9.3 36	6.4 28	10 25	< 6.4 20	7.9 70	< 6.8 8.7	< 6.2 < 6.2	7.6 18	13 150
Fluorene	540	540	μg/kg μg/kg	6.3	< 5.8	13	110	<6.3	15	89	16	9.6	<6.7	10	29	< 6.8	< 6.2	8.8	28
Naphthalene	2100	2100	μg/kg	< 5.9	< 5.8	< 6.4	< 9.1	<6.3	<6.2	< 8.8	< 6.4	< 6.4	<6.7	< 6.4	< 7.6	< 6.8	< 6.2	< 6.3	< 8.2
Phenanthrene	1500	1500	μg/kg	35 < 5.9	13 < 5.8	95	470	27 <6.3	77 <6.2	610 9.4	91 < 6.4	49	33 <6.7	51 < 6.4	190 < 7.6	14 < 6.8	< 6.2 < 6.2	75 < 6.3	150 < 8.2
2-methylnaphthalene High Molecular Weight PAHs	670	670	μg/kg	< 5.9	< 5.8	< 6.4	11	<6.3	<6.2	9.4	< 6.4	< 6.4	<b. <="" td=""><td>< 6.4</td><td>< /.6</td><td>< 6.8</td><td>< 6.2</td><td>< 6.3</td><td>< 8.2</td></b.>	< 6.4	< /.6	< 6.8	< 6.2	< 6.3	< 8.2
Benzo(a)anthracene	1300	1600	μg/kg	45	88	220	2200	46	83	2300	120	180	150	140	260	20	8.4	79	450
Benzo(a)pyrene	1600	1600	μg/kg	45	50	130	1100	36	40	960	60	79	73	81	140	27	< 6.2	34	210
Benzo(b)fluoranthene	670	720	μg/kg	84	140	270	2500	72	94	2000	120	180	140	180	330	57	< 6.2	69 9.4	420
Benzo(g,h,i)perylene Benzo(k)fluoranthene	-		μg/kg μg/kg	17 32	15 48	39 97	350 740	12 29	14 37	290 680	17 43	26 78	25 57	27 72	49 120	9.7 19	< 6.2 < 6.2	9.4	73 180
Chrysene	1400	2800	μg/kg	92	54	280	2200	40	150	2100	110	220	150	150	290	36	7.5	61	480
Dibenzo(a,h)anthracene	230	230	μg/kg	< 5.9	< 5.8	12	150	<6.3	<6.2	110	< 6.4	< 6.4	8.8	7.9	16	< 6.8	< 6.2	< 6.3	24
Fluoranthene	1700 600	2500 690	μg/kg	60 21	52 18	370 47	2400 470	73 15	150 17	11000 390	360 23	710	160	180 34	800 62	33	7.6	260	710 95
Indeno(1,2,3-c,d)pyrene Pyrene	2600	3300	μg/kg μg/kg	21 87	18 60	47 330	4/0 5700	15 51	17 100	9000	23 230	34 480	29 160	34 110	62 560	13 72	< 6.2 < 6.2	13 170	95 460
Dibenzofuran	-	-	μg/kg	< 5.9	< 5.8	< 6.4	29	<6.3	<6.2	27	< 6.4	< 6.4	<6.7	< 6.4	13	< 6.8	< 6.2	< 6.3	13
Total benzofluoranthenes	3200	3600	μg/kg	116	188	367	3240	101	131	2680	163	258	197	252	450	76	< 6.2	95	600
Total LPAH	5200	5200	μg/kg	72	21	185	917	40	113	1096	152	93	68	81	312	23	< 6.2	109	341
Total HPAH DRO	12000	17000	μg/kg	483 < 24	525 < 25	1795 < 26	17839 44	374 36	685 < 27	28857 79	1083 < 26	1987 < 27	952.8 < 27	981.9 < 27	2640 38	286.7 < 28	23.5 < 26	721.4 < 26	3115
RRO			μg/kg μg/kg	< 120	< 130	< 130	< 190	< 130	< 140	< 180	< 130	< 140	< 140	< 140	< 140	< 140	< 130	< 130	-
L -		1	F'0/ "b		50								10	10					

Value Detected value is greater than marine sediment SCO
Value Detected value is greater than marine sediment CSL
< Indicates parameter was below laboratory method detection limit.
- Chemical not analyzed or criteria not defined.

Golder Associates Ltd.

^{1.} The SCO represents the long-term sediment quality goal, while the CSL is the maximum chemical concentration or biological effects level allowed as a sediment cleanup level. They are used in conjunction for sediment risk management and remedial planning. The final sediment clean up level (i.e., the basis of design of remediation) is initially set at the more conservative SCO but can be adjusted upwards towards the CSL based on technical feasibility and net adverse environmental impacts as part of the selection of the remedial option.

^{2 -} Percentage TOC

2of2

Location				Zama F. Outsida	Oue Besie host ooithin	Charman Harbana			Zone F—Reference		
Sampling Zone	Marine Sed	iment AETs 1			Ore Basin but within	• ,	Dyea Point	Taiya Ri		Nahku	
Sample Name Sample Date	Warnie Sea	IIIICIIC ALTS	Units	SED17-20 01/05/2017	SED17-21 01/05/2017	SED17-22 05/01/2017	SED17-24 02/05/2017	SED17-27 05/05/2017	SED17-28 02/05/2017	SED17-29 05/05/2017	SED17-31 28/04/2017
Laboratory sample ID	sco	CSL		K1704471-003	K1704471-002	K1704471-001	K1704471-007	K1704542-009	K1704471-008	K1704542-006	K1704415-002
Physical Parameters (%)				50.0	60.7	CO. 77	75.0	30.4		40.5	
Percent Solids Organic Carbon (mg/kg)	-	-	%	53.8	62.7	63.7	75.8	79.1	68.1	49.6	47.7
Carbon, Total Organic (TOC)	-	-	mg/kg	13700	8300	9600	3500	< 2500	6500	24100	21500
Total Organic Carbon ²	-	-	%	1.37	0.83	0.96	0.35	<0.25	0.65	2.41	2.15
Grain Size (%) Clay		_	%	9.74	23.5	22.7	9.38	1.75	4.20	18.2	22.1
Silt	-	-	%	54.9	41.4	49.6	46.8	33.1	49.4	70.6	64.2
Fines (percent clay + silt)	-	-	%	64.6	64.9	72.2	56.2	34.8	53.6	88.7	86.3
Inorganic Parameters (μmol/g) Sulfide, Acid-Volatile	-	_	μmol/g		-	3.58	0.105	0.057	0.198	2.7	-
Extractable Metals (µmol/g)		l	діпоі/ в			3.30	0.103		0.130	2.,	I.
Antimony (Sb)-Extractable	-	-	μmol/g	-	-	< 0.009	< 0.008	< 0.006	< 0.006	< 0.011	-
Arsenic (As)-Extractable Cadmium (Cd)-Extractable	-	-	μmol/g μmol/g	-	-	< 0.014 0.0026	< 0.013 < 0.0005	< 0.011 < 0.0004	< 0.010 < 0.0004	< 0.019 0.0032	-
Chromium (Cr)-Extractable	-	-	μmol/g	-	-	0.046	0.016	0.01	0.018	0.028	-
Copper (Cu)-Extractable	-	-	μmol/g	-	-	0.15	0.025	0.008	0.017	0.062	-
Lead (Pb)-Extractable Mercury (Hg)-Extractable	-		μmol/g μmol/g	-	-	0.318 < 0.00011	0.018 < 0.00010	0.005 < 0.00009	0.008 < 0.00008	0.044 < 0.00015	-
Nickel (Ni)-Extractable	-	-	μmol/g	-	-	0.042	0.014	0.007	0.014	0.036	-
Silver (Ag)-Extractable	-	-	μmol/g	-	-	< 0.003	< 0.003	< 0.00009	< 0.002	< 0.004	-
Zinc (Zn)-Extractable Sum of SEM (ΣSEM)	-	<u>-</u>	μmol/g μmol/g		-	1.31 1.9	0.139 0.21	0.064 0.094	0.108 0.17	0.386 0.56	-
[SEM]/[AVS]	-		µ01/g	-	-	0.52	2.0	1.6	0.83	0.21	-
AVS-ΣSEM	-	-	μmol/g	-	-	1.7	-0.11	-0.037	0.033	2.1	-
Metals (mg/kg) Aluminum (AI)	_	-	mg/kg	17800	14800	14700	10600	11500	16200	20500	20500
Antimony (Sb)	-	-	mg/kg	0.295	0.142	0.096	< 0.063	< 0.049	< 0.064	< 0.080	< 0.068
Arsenic (As)	57	93	mg/kg	4.58 421	6.11	4.34 337	2.77 222	1.18 147	2.61 285	5.2 409	5.65
Barium (Ba) Beryllium (Be)	-	-	mg/kg mg/kg	0.359	339 0.372	0.279	0.201	0.126	0.17	0.374	450 0.415
Cadmium (Cd)	5.1	6.7	mg/kg	0.794	0.623	0.541	0.112	0.072	0.16	0.564	0.564
Calcium (Ca)	-	- 270	mg/kg	22300	63300	30500	16100	5740	8680	31200	12200
Chromium (Cr) Cobalt (Co)	260	270	mg/kg mg/kg	23.1 10.4	24.6 9.53	16.9 7.7	14 6.96	12 4.68	16.9 6.66	23.8 11.2	24.9 11.6
Copper (Cu)	390	390	mg/kg	26.5	45.6	82.5	8.68	5.66	8.15	18.3	19
Iron (Fe)	- 450	530	mg/kg	34800 33.9	31000 29.9	30400 41.6	18700 8.13	13000 3.13	21900 5.06	36100 17	37800 17.2
Lead (Pb) Magnesium (Mg)	430	-	mg/kg mg/kg	11500	9730	9380	6090	4560	7600	13400	13200
Manganese (Mn)	-	-	mg/kg	475	403	398	282	179	270	465	492
Mercury (Hg) Nickel (Ni)	0.41	0.59	mg/kg	< 0.024 13.2	< 0.025 13.5	0.034 9.56	< 0.015 6.97	< 0.018 5.12	< 0.026 8.42	0.043 12.7	< 0.021 13.3
Potassium (K)	-	-	mg/kg mg/kg	8630	7010	6890	4230	2840	4820	9140	9550
Selenium (Se)	-	-	mg/kg	< 1.4	< 1.3	< 1.3	< 1.3	< 0.98	< 1.3	< 1.6	< 1.3
Silver (Ag) Sodium (Na)	6.1	6.1	mg/kg mg/kg	1.63 11000	0.281 8680	0.506 7810	0.077 4490	0.039 3580	0.085 6610	0.247 13700	0.257 14300
Thallium (TI)	-	-	mg/kg	0.43	0.419	0.326	0.216	0.161	0.249	0.486	0.508
Vanadium (V)	-	-	mg/kg	70.4	61.4	52.5	41.6	28.2	39.6	73.6	77.5
Zinc (Zn) Polycyclic Aromatic Hydrocarbons (µg/k	410 g dry wt)	960	mg/kg	173	198	196	52.6	35.9	61.9	115	115
Low Molecular Weight PAHs											
Acenaphthene Acenaphthylene	500 1300	500 1300	μg/kg	26	< 7.7 < 7.7	< 7.6 < 7.6	< 6.6 < 6.6	< 6.2 < 6.2	< 7.3 < 7.3	< 10 < 10	< 11 < 11
Acenaphthylene Anthracene	960	960	μg/kg μg/kg	< 9.1 32	< 7.7 14	< 7.6 11	< 6.6	< 6.2 < 6.2	< 7.3 < 7.3	< 10 < 10	< 11
Fluorene	540	540	μg/kg	26	9.9	< 7.6	< 6.6	< 6.2	< 7.3	< 10	< 11
Naphthalene Phenanthrene	2100 1500	2100 1500	μg/kg	100 66	< 7.7 25	< 7.6 17	< 6.6 < 6.6	< 6.2 < 6.2	< 7.3 < 7.3	< 10 < 10	< 11 < 11
2-methylnaphthalene	670	670	μg/kg μg/kg	62	< 7.7	< 7.6	< 6.6	< 6.2 < 6.2	< 7.3	< 10	< 11
High Molecular Weight PAHs	10										
Benzo(a)anthracene Benzo(a)pyrene	1300 1600	1600 1600	μg/kg μg/kg	86 45	22 9.8	45 37	< 6.6 < 6.6	< 6.2 < 6.2	< 7.3 < 7.3	23 11	20 < 11
Benzo(b)fluoranthene		-	μg/kg μg/kg	110	24	80	< 6.6	< 6.2	< 7.3	25	28
Benzo(g,h,i)perylene	670	720	μg/kg	19	< 7.7	16	< 6.6	< 6.2	< 7.3	< 10	< 11
Benzo(k)fluoranthene Chrysene	1400	2800	μg/kg μg/kg	42 72	13 40	37 67	< 6.6 < 6.6	< 6.2 < 6.2	< 7.3 < 7.3	< 10 12	< 11 < 11
Dibenzo(a,h)anthracene	230	230	μg/kg	< 9.1	< 7.7	< 7.6	< 6.6	< 6.2	< 7.3	< 10	< 11
Fluoranthene	1700	2500	μg/kg	350	38	43	< 6.6	< 6.2	< 7.3	21	49
Indeno(1,2,3-c,d)pyrene Pyrene	600 2600	690 3300	μg/kg μg/kg	23 240	8.3 39	18 63	< 6.6 < 6.6	< 6.2 < 6.2	< 7.3 < 7.3	< 10 22	< 11 60
Dibenzofuran	-	-	μg/kg	35	9.8	< 7.6	< 6.6	< 6.2	< 7.3	< 10	< 11
Total benzofluoranthenes	3200	3600	μg/kg	152	37	117	< 6.6	< 6.2	< 7.3	25	28
Total LPAH Total HPAH	5200 12000	5200 17000	μg/kg μg/kg	312 1022	49 203.9	28 406	< 6.6 < 6.6	< 6.2 < 6.2	< 7.3 < 7.3	< 10 114	< 11 157
DRO			μg/kg	-	-	ND	ND	< 26	ND	< 37	< 42
RRO			μg/kg	-	-	ND	ND	< 130	ND	< 190	< 210
				Notes							

Value
Value initially set at the more conservative SCO but can be adjusted upwards towards the CSL based on technical feasibility and net adverse environmental impacts as part of the selection of the remedial option.

2 - Percentage TOC calculated at 1% = 10,000 ppm or mg/kg

Golder Associates Ltd.

Location Sampling Zone Near-Field			
Sample Name NF-PRAWN-01 NF-PRAWN-02 NF-PRAWN-03 NF-PRAWN-04 NF-PRAWN-05 NF-MUSSEL-01 NF-MUSSEL-02 NF-MUSSEL-03 NF-MUSSEL-04 NF-MUSSEL-05 NF-MUSSEL-0	NF-CRAB-01	NF-CRAB-02	NF-CRAB-03
. Units			
Sample Date 03/05/2017 03/05/2017 04/05/2017 04/05/2017 04/05/2017 29/04/2017 29/04/2017 29/04/2017 29/04/2017 29/04/2017 29/04/2017	01/05/2017	04/05/2017	04/05/2017
Laboratory Sample ID K1704545-001 K1704545-002 K1704545-003 K1704545-004 K1704545-005 K1704545-006 K1704545-007 K1704545-008 K1704545-009 K1704545-010	K1704545-011	K1704545-012	K1704545-013
Physical Parameters Physical Parameters			
Moisture % 74 78 79 83 82 81 79 81 80 79	79	79	80
Total Freeze Dry Solids % 26 22 17 18 18 19 21 19 20 21	21	21	20
Metals			
Aluminum mg/kg wwt 22 24 2.3 1.0 0.74 13 14 12 15 18	7.0	7.1	10
Antimony mg/kg wwt < 0.013 < 0.011 < 0.0085 < 0.0090 < 0.0093 < 0.010 < 0.0095 < 0.0099 < 0.011	< 0.011	< 0.010	< 0.010
Arsenic mg/kg wwt 4.9 1.2 19 8.7 8.0 2.8 2.6 2.8 2.6 2.9	3.6	4.0	3.8
Barium mg/kg wwt 3.9 2.3 0.056 0.046 0.042 0.88 1.2 0.96 1.2 1.3	1.2	0.17	0.26
Beryllium mg/kg wwt < 0.0053 < 0.0042 < 0.0034 < 0.0036 < 0.0037 < 0.0041 < 0.0038 < 0.0040 < 0.0042	< 0.0043	< 0.0042	< 0.0040
Cadmium mg/kg wwt 0.49 0.42 0.083 0.088 0.13 1.2 1.5 1.3 1.4 1.6	0.048	0.11	0.057
Calcium mg/kg wwt 16000 11800 830 740 615 391 2880 3390 851 670	8040	939	1150
Chromium mg/kg wwt 0.44 0.53 0.48 0.43 0.45 1.1 0.34 0.22 0.53 0.39	0.2	0.14	0.27
Cobalt mg/kg wwt 0.063 0.048 0.016 0.0099 0.014 0.1 0.097 0.09 0.1 0.12	0.06	0.077	0.086
Copper mg/kg wwt 22 20 7.1 8.1 6.4 5.7 1.9 1.7 1.9 1.9	4.0	8.3	12
Iron mg/kg wwt 80 104 12 22 7.2 77 58 47 58 65	16	33	37
Lead mg/kg wwt 0.44 1.1 0.026 0.014 0.0081 2.6 3.2 2.0 3.2 4.1	0.25	0.17	0.24
Magnesium mg/kg wwt 883 557 352 318 353 661 686 680 662 630	621	400	426
Manganese mg/kg wwt 3.4 4.3 0.48 0.29 0.31 1.9 2.4 2.5 2.1 2.2	1.3	0.5	0.79
Mercury (ng/g)	97	74	73
Nickel mg/kg wwt 0.36 0.35 0.23 0.2 0.2 0.67 0.32 0.28 0.41 0.41	0.11	0.096	0.15
Potassium mg/kg wwt 2730 2390 2900 2340 2710 2470 2520 2460 2520 2720	3020	3140	2990
Selenium mg/kg wwt 0.47 0.34 0.29 0.19 0.21 1.1 1.2 1.1 1.1 1.7	0.28	0.61	0.66
Silver mg/kg wwt 0.44 0.27 0.12 0.087 0.12 0.013 0.014 0.014 0.015 0.015	0.063	0.12	0.12
Sodium mg/kg wwt 3200 3320 2620 2660 2800 4510 4520 4660 4300 4030	3950	3910	4060
Thallium mg/kg wwt < 0.0053 < 0.0043 < 0.0042 < 0.0034 < 0.0036 < 0.0037 < 0.0041 < 0.0038 < 0.0040 < 0.0042	< 0.0043	< 0.0042	< 0.0040
Vanadium mg/kg wwt 0.14 0.19 < 0.042 < 0.034 < 0.036 0.16 0.2 0.17 0.18 0.25	< 0.043	< 0.042	0.045
Zinc mg/kg wwt 17 15 13 10.0 11 23 21 18 24 24	36	46	47
PAH			
2-Methylnaphthalene ug/kg wwt < 5.1 < 5.0 < 8.4 < 5.0 < 5.0 < 5.5 < 5.0 < 5.0 < 5.5	< 5.0	< 5.0	< 5.0
Acenaphthene ug/kg wwt < 5.1 < 5.0 < 8.4 < 5.0 < 5.5 < 5.0 < 5.0 < 5.5	< 5.0	< 5.0	< 5.0
Acenaphthylene ug/kg wwt < 5.1 < 5.0 < 8.4 < 5.0 < 5.5 < 5.0 < 5.0 < 5.5	< 5.0	< 5.0	< 5.0
Anthracene ug/kg wwt < 5.1 < 5.0 < 8.4 < 5.0 < 5.5 < 5.0 < 5.0 < 5.5	< 5.0	< 5.0	< 5.0
Benz(a)anthracene ug/kg wwt < 5.1 < 5.0 < 8.4 < 5.0 < 5.0 8.5 11 9.1 9.4 13	< 5.0	< 5.0	< 5.0
Benzo(a)pyrene ug/kg wwt < 5.1 < 5.0 < 8.4 < 5.0 < 5.5 < 5.0 < 5.0 < 5.5	< 5.0	< 5.0	< 5.0
Benzo(b)fluoranthene ug/kg wwt < 5.1 < 5.0 < 8.4 < 5.0 11 12 9.7 12 15	< 5.0	< 5.0	< 5.0
Benzo(g,h,i)perylene ug/kg wwt <5.1 22 <8.4 <5.0 <5.5 <5.0 <5.0 <5.5	< 5.0	< 5.0	< 5.0
Benzo(k)fluoranthene ug/kg wwt <5.1 <5.0 <8.4 <5.0 <5.5 <5.0 <5.0 <5.5	< 5.0	< 5.0	< 5.0
Chrysene ug/kg wwt < 5.1 < 5.0 < 8.4 < 5.0 13 16 13 15 20	< 5.0	< 5.0	< 5.0
Dibenz(a,h)anthracene ug/kg wwt <5.1 5.7 <8.4 <5.0 <5.5 <5.0 <5.0 <5.5	< 5.0	< 5.0	< 5.0
Dibenzofuran ug/kg wwt <5.1 <5.0 <8.4 <5.0 <5.5 <5.0 <5.0 <5.5	< 5.0	< 5.0	< 5.0
Fluoranthene ug/kg wwt < 5.1 < 5.0 < 8.4 < 5.0 < 5.0 50 49 51 53 81	< 5.0	< 5.0	< 5.0
Fluorene ug/kg wwt < 5.1 < 5.0 < 8.4 < 5.0 < 5.5 5.3 < 5.0 5.1 6.1	< 5.0	< 5.0	< 5.0
Indeno(1,2,3-cd)pyrene ug/kg wwt < 5.1 < 5.0 < 8.4 < 5.0 < 5.5 < 5.0 < 5.0 < 5.5	< 5.0	< 5.0	< 5.0
Naphthalene ug/kg wwt <5.1 <5.0 <8.4 <5.0 <5.5 <5.0 <5.0 <5.5	< 5.0	< 5.0	< 5.0
Phenanthrene ug/kg wwt < 5.1 < 5.0 < 8.4 < 5.0 < 5.0 33 40 35 38 51	< 5.0	< 5.0	< 5.0
Pyrene ug/kg wwt < 5.1 < 5.0 < 8.4 < 5.0 < 5.0 30 25 31 29 44	< 5.0	< 5.0	< 5.0

Notes

% = percent; mg/kg wwt = milligrams per kilogram wet weight; μ g/kg wwt = micrograms per kilogram wet weight

O:\Final\2016\3 Proj\1657231 WPYR_Ore Basin Sediment_Alaska\1657231-004-R-Rev0\APP\APP A - Screened Results\ Tables A-1 and A-2.xlsx TBL A-2_Tissue Chem

Golder Associates Ltd. 10f3

Location				Mid-Field					Far-Field		
Sampling Zone				Mid-Field					Far-Field		
Sample Name		MF-CRAB-01	MF-CRAB-02	MF-CRAB-03	MF-CRAB-04	MF-CRAB-05	FF-MUSSEL-01	FF-MUSSEL-02	FF-MUSSEL-03	FF-MUSSEL-04	FF-MUSSEL-05
Sample Date	Units				03/05/2017	03/05/2017	29/04/2017	29/04/2017		29/04/2017	
Sample Date		03/05/2017	03/05/2017	03/05/2017	03/03/2017	03/03/2017	29/04/2017	29/04/2017	29/04/2017	29/04/2017	29/04/2017
Laboratory Sample ID		K1704545-014	K1704545-015	K1704545-016	K1704545-017	K1704545-018	K1704545-019	K1704545-020	K1704545-021	K1704545-022	K1704545-023
Physical Parameters											
Moisture	%	79	87	84	79	86	80	68	79	80	75 25
Total Freeze Dry Solids	%	21	14	16	21	14	20	32	21	20	25
Metals											
Aluminum	mg/kg wwt	7.5	5.7	5.9	8.6	2.9	19	16	32	26	17
Antimony	mg/kg wwt	< 0.010	< 0.0067	< 0.0082	< 0.011	< 0.0069	< 0.010	< 0.016	< 0.011	< 0.0099	< 0.012
Arsenic	mg/kg wwt	4.4	1.8	3.1	3.1	1.9	2.7	2.1	2.7	2.6	2.5
Barium	mg/kg wwt	0.25	0.11	0.14	0.38	0.091	3.0	4.8	2.1	1.3	1.9
Beryllium	mg/kg wwt	< 0.0042	< 0.0027	< 0.0033	< 0.0042	< 0.0028	< 0.0041	< 0.0065	< 0.0042	< 0.0040	< 0.0049
Cadmium	mg/kg wwt	0.089	0.12	0.19	0.031	0.019	1.3	0.94	1.6	1.5	1.3
Calcium	mg/kg wwt	1450	1210	1100	2350	1270	1620	62500	7110	634	22400
Chromium	mg/kg wwt	0.087	0.84	0.2	0.32	0.11	0.38	0.48	0.37	0.44	0.29
Cobalt	mg/kg wwt	0.07	0.07	0.072	0.084	0.083	0.11	0.083	0.15	0.11	0.1
Copper	mg/kg wwt	6.0	6.7	7.0	8.4	6.5	1.8	1.4	1.9	1.6	1.5
Iron	mg/kg wwt	17	17	16	22	7.1	51	47	72	66	49
Lead	mg/kg wwt	0.28	0.034	0.045	0.023	0.044	0.24	0.21	0.41	0.33	0.28
Magnesium	mg/kg wwt	426	368	319	431	327	629	630	664	727	715
Manganese	mg/kg wwt	0.68	0.33	0.41	0.76	0.21	4.7	3.8	6.7	2.6	3.8
Mercury (ng/g)	mg/kg wwt	95	30	69	74	32	17	15	19	17	15
Nickel	mg/kg wwt	0.067	0.39	0.13	0.17	0.06	0.4	0.36	0.59	0.36	0.34
Potassium	mg/kg wwt	3320	1980	2770	3170	2080	2620	2160	2500	2660	2550
Selenium	mg/kg wwt	0.7	0.25	0.63	0.58	0.39	1.1	0.94	1.3	0.99	1.1
Silver	mg/kg wwt	0.079	0.12	0.084	0.12	0.11	0.027	0.016	0.027	0.027	0.017
Sodium	mg/kg wwt	4050	6880	5190	4280	6550	4200	4310	4360	4710	4430
Thallium	mg/kg wwt	< 0.0042	< 0.0027	< 0.0033	< 0.0042	< 0.0028	< 0.0041	< 0.0065	< 0.0042	< 0.0040	< 0.0049
Vanadium	mg/kg wwt	< 0.042	< 0.027	0.034	< 0.042	< 0.028	0.17	0.26	0.92	0.31	0.34
Zinc	mg/kg wwt	44	24	31	45	24	23	15	22	18	16
РАН											
2-Methylnaphthalene	ug/kg wwt	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Acenaphthene	ug/kg wwt	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Acenaphthylene	ug/kg wwt	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Anthracene	ug/kg wwt	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Benz(a)anthracene	ug/kg wwt	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Benzo(a)pyrene	ug/kg wwt	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Benzo(b)fluoranthene	ug/kg wwt	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Benzo(g,h,i)perylene	ug/kg wwt	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Benzo(k)fluoranthene	ug/kg wwt	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chrysene	ug/kg wwt	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Dibenz(a,h)anthracene	ug/kg wwt	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Dibenzofuran	ug/kg wwt	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Fluoranthene	ug/kg wwt	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	11	13	12	14	16
Fluorene	ug/kg wwt	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Indeno(1,2,3-cd)pyrene	ug/kg wwt	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Naphthalene	ug/kg wwt	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Phenanthrene	ug/kg wwt	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	11	11	11	12	12
Pyrene	ug/kg wwt	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	5.2	5.4	6.1	6.8
i yiciic	ug/ ng WWl	\ 3.0	\ J.∪	∖ 3.0	\ J. U	\ 3.0	\ J.U	J. L	J. 4	0.1	0.0

Notes

% = percent; mg/kg wwt = milligrams per kilogram wet weight; µg/kg wwt = micrograms per kilogram wet weight

O:\Final\2016\3 Proj\1657231 WPYR_Ore Basin Sediment_Alaska\1657231-004-R-Rev0\APP\APP A - Screened Results\ Tables A-1 and A-2.xlsx TBL A-2_Tissue Chem

Golder Associates Ltd. 2of3

Location							Reference					
Sampling Zone							Reference					
Sample Name	1	REF-MUSSEL-01	REF-MUSSEL-02	REF-MUSSEL-03	REF-MUSSEL-04	REF-MUSSEL-05	REF-PRAWN-01	REF-PRAWN-02	REF-PRAWN-03	REF-CRAB-01	REF-CRAB-02	REF-CRAB-03
Sample Date	Units	29/04/2017	29/04/2017	29/04/2017	29/04/2017	29/04/2017	04/05/2017	05/05/2017	05/05/2017	29/04/2017	29/04/2017	05/05/2017
•												
Laboratory Sample ID		K1704545-024	K1704545-025	K1704545-026	K1704545-027	K1704545-028	K1704545-029	K1704545-030	K1704545-031	K1704545-032	K1704545-033	K1704545-034
Physical Parameters												
Moisture	%	78	76	81	79	83	79	82	79	84	77	84
Total Freeze Dry Solids	%	22	25	19	21	17	21	18	21	16	23	16
Metals												
Aluminum	mg/kg wwt	51	49	32	20	32	1.2	1.4	1.3	7.2	7.5	6.7
Antimony	mg/kg wwt	< 0.011	< 0.012	< 0.0095	< 0.011	< 0.0087	< 0.010	< 0.0089	< 0.011	< 0.0080	< 0.012	< 0.0079
Arsenic	mg/kg wwt	2.6	3.0	2.1	2.3	2.1	5.9	4.3	5.0	3.5	4.9	5.5
Barium	mg/kg wwt	1.8	1.9	1.2	1.2	1.3	0.06	0.084	0.061	0.16	0.3	0.17
Beryllium	mg/kg wwt	< 0.0045	< 0.0049	< 0.0038	< 0.0043	< 0.0035	< 0.0042	< 0.0035	< 0.0042	< 0.0032	< 0.0046	< 0.0032
Cadmium	mg/kg wwt	1.2	1.5	1.1	1.3	0.94	0.17	0.11	0.089	0.11	0.043	0.057
Calcium	mg/kg wwt	2310	2160	635	6700	1330	886	818	873	1380	1220	1120
Chromium	mg/kg wwt	0.21	0.27	0.36	0.24	0.34	0.33	1.0	0.36	0.21	0.25	0.11
Cobalt	mg/kg wwt	0.13	0.14	0.095	0.093	0.1	0.016	0.029	0.013	0.1	0.075	0.094
Copper	mg/kg wwt	1.5	2.0	3.0	1.5	2.1	7.4	70	7.2	8.4	8.4	11
Iron	mg/kg wwt	106	106	75	50	76	7.7	242	14	18	20	15
Lead	mg/kg wwt	0.11	0.12	0.1	0.088	0.079	0.0051	0.0043	< 0.0042	0.017	0.018	0.01
Magnesium	mg/kg wwt	578	609	528	542	450	411	337	410	403	396	414
Manganese	mg/kg wwt	3.6	3.8	2.3	2.4	2.5	0.38	0.53	0.42	0.36	1.3	0.58
Mercury (ng/g)	mg/kg wwt	13	15	12	11	11	20	24	29	63	72	122
Nickel	mg/kg wwt	0.38	0.44	0.43	0.34	0.43	0.15	0.53	0.17	0.12	0.14	0.075
Potassium	mg/kg wwt	2790	2810	2480	2530	1790	3150	2630	3150	2610	3470	2330
Selenium	mg/kg wwt	1.3	1.6	1.3	1.1	1.2	0.28	0.31	0.27	0.5	0.61	0.53
Silver	mg/kg wwt	0.023	0.036	0.026	0.019	0.019	0.15	0.11	0.16	0.18	0.19	0.26
Sodium	mg/kg wwt	-	3420	3010	3110	2450	3250	2580	2720	5470	3850	5130
Thallium	mg/kg wwt	< 0.0045	< 0.0049	< 0.0038	< 0.0043	< 0.0035	< 0.0042	< 0.0035	< 0.0042	< 0.0032	< 0.0046	< 0.0032
Vanadium	mg/kg wwt	0.54	0.57	0.25	0.17	0.35	< 0.042	< 0.035	< 0.042	0.035	< 0.046	0.033
Zinc	mg/kg wwt	19	22	19	18	17	14	11	13	32	49	40
РАН	G. 0	-		-	-				-	-	-	-
2-Methylnaphthalene	ug/kg wwt	< 5.0	< 5.0	< 5.6	< 6.1	< 5.0	< 7.8	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Acenaphthene	ug/kg wwt	< 5.0	< 5.0	< 5.6	< 6.1	< 5.0	< 7.8	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
	ug/kg wwt	< 5.0	< 5.0	< 5.6	< 6.1	< 5.0	< 7.8	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
	ug/kg wwt	< 5.0	< 5.0	< 5.6	< 6.1	< 5.0	< 7.8	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
	ug/kg wwt	< 5.0	< 5.0	< 5.6	< 6.1	< 5.0	< 7.8	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Benzo(a)pyrene	ug/kg wwt	< 5.0	< 5.0	< 5.6	< 6.1	< 5.0	< 7.8	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Benzo(b)fluoranthene	ug/kg wwt	< 5.0	< 5.0	< 5.6	< 6.1	< 5.0	< 7.8	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Benzo(g,h,i)perylene	ug/kg wwt	< 5.0	< 5.0	< 5.6	< 6.1	< 5.0	< 7.8	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Benzo(k)fluoranthene	ug/kg wwt	< 5.0	< 5.0	< 5.6	< 6.1	< 5.0	< 7.8	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chrysene	ug/kg wwt	< 5.0	< 5.0	< 5.6	< 6.1	< 5.0	< 7.8	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Dibenz(a,h)anthracene	ug/kg wwt	< 5.0	< 5.0	< 5.6	< 6.1	< 5.0	< 7.8	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Dibenzofuran	ug/kg wwt	< 5.0	< 5.0	< 5.6	< 6.1	< 5.0	< 7.8	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Fluoranthene	ug/kg wwt	< 5.0	< 5.0	< 5.6	< 6.1	< 5.0	< 7.8	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Fluorene	ug/kg wwt	< 5.0	< 5.0	< 5.6	< 6.1	< 5.0	< 7.8	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
		< 5.0 < 5.0	< 5.0 < 5.0	< 5.6	< 6.1 < 6.1	< 5.0 < 5.0	< 7.8	< 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0	< 5.0
	ug/kg wwt				< 6.1 < 6.1							
	ug/kg wwt	< 5.0	< 5.0	< 5.6		< 5.0	< 7.8	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
	ug/kg wwt	8.0	< 5.0	< 5.6	< 6.1	< 5.0	< 7.8	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Pyrene	ug/kg wwt	< 5.0	< 5.0	< 5.6	< 6.1	< 5.0	< 7.8	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

Notes

% = percent; mg/kg wwt = milligrams per kilogram wet weight; µg/kg wwt = micrograms per kilogram wet weight

O:\Final\2016\3 Proj\1657231 WPYR_Ore Basin Sediment_Alaska\1657231-004-R-Rev0\APP\APP A - Screened Results\ Tables A-1 and A-2.xlsx TBL A-2_Tissue Chem

Golder Associates Ltd. 3of3

FACTUAL DATA REPORT - ORE BASIN SEDIMENT ASSESSMENT , SKAGWAY, AK

APPENDIX B

Site Photographs

Photo 1: The Shoreline of Nahku Bay.

Photo 2: Overview of the Skagway Harbour Area (Ore Dock is Far-Right) .

Photo 3: Ore Dock (Left) and Broadway Dock (Right).

Photo 4: Broadway Dock.

Photo 5: Sheetpile Wall Facing Skagway Small Craft Harbour

Photo 6: Nahku Point.

Photo 7: Depiction of Work Area and Van Veen Sampler in Use

Photo 8: Depiction of Sample Processing.

Photo 9: Transfer of Homogenized Sediment to Sample Containers.

Photo 10: Depiction of Additional Weight Added to Van Veen.

Photo 11: Depiction of Crab Trap Used in Sampling.

Photo 12: Representative Photo of a Collected Dungeness Crab (Top).

Photo 13: Representative Photo of a Male Dungeness Crab (Bottom).

Photo 14: Mussel Tissue Collection at FF Location During Low Tide.

Photo 15: Representative Mussel Sample

Photo 16: Mussel Tissue Collection at NF Location During Low Tide.

Photo 17: Mussel Tissue Collection at REF Location During Low Tide

Photo 18: Shucking Mussel Samples for Submission to ALS.

Photo 19: Representative Photo of Sediment Collected at SED17-01.

Photo 20: Representative Photo of Sediment Collected at SED17-03.

Photo 21: Representative Photo of Sediment Collected at SED17-05.

Photo 22: Representative Photo of Sediment Collected at SED17-06.

Photo 23: Representative Photo of Sediment Collected at SED17-07.

Photo 24: Egg Mass Surrounded by Small Amphipods Collected at SED17-07.

Photo 25: Amphipod Collected at SED17-07.

Photo 26: Representative Photo of Sediment Collected at SED17-08.

Photo 27: Worm Casing Collected at SED17-08.

Photo 28: Representative Photo of Sediment Collected at SED17-09.

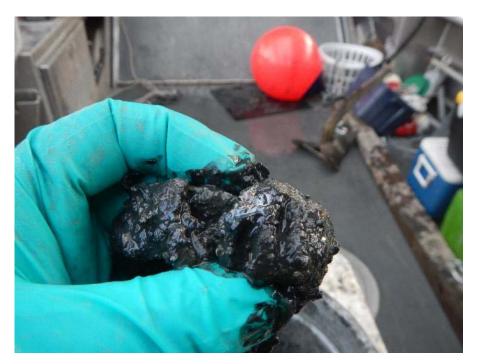


Photo 29: Sheen Observed in Sediment Sample Collected at SED17-09.

Photo 30: Representative Photo of Sediment Collected at SED17-10.

Photo 31: Representative Photo of Sediment Collected at SED17-11.

Photo 32: Ore Dock Viewed from SED17-11.

Photo 33: Representative Photo of Sediment With Sheen Collected at SED17-12.

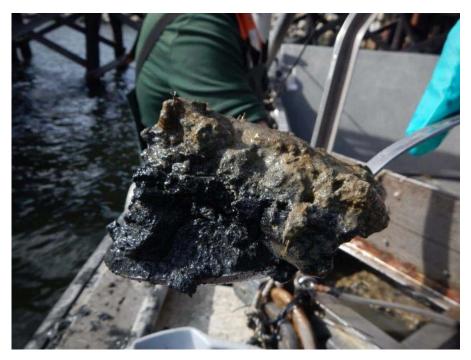


Photo 34: Representative Photo of Sediment Collected at SED17-13.

Photo 35: Representative Photo of Sediment Collected at SED17-14.

Photo 36: Representative Photo of Sediment Collected at SED17-15.

Photo 37: Representative Photo of Sediment Collected at SED17-17.

Photo 38: Ore Dock Viewed from SED17-18.

Photo 39: Representative Photo of Sediment Collected at SED17-19.

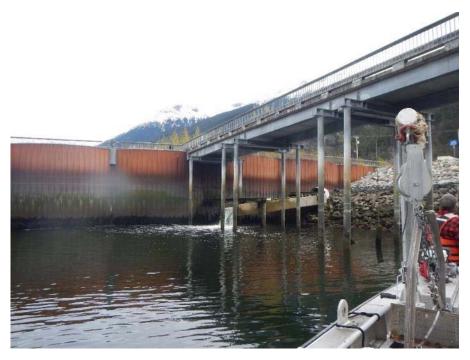


Photo 40: Broadway Dock, Outlet of Pullen Creek and Sample Location SED17-19.

Photo 41: Representative Photo of Sediment Collected at SED17-20.

Photo 42: Representative Photo of Sediment Collected at SED17-21.

Photo 43: Representative Photo of Railway Dock Taken from SED17-21.

Photo 44: Railway Dock.

Photo 45: Representative Photo of Sediment Collected at SED17-22.

Photo 46: Representative Photo of Sediment Collected at SED17-24.

Photo 47: Representative Photo of Sediment Collected at SED17-27.

Photo 48: Representative Photo of Sediment Collected at SED17-28.

Photo 49: Representative Photo of Sediment Collected at SED17-29.

Photo 50: Representative Photo of Sediment Collected at SED17-31.

Photo 51: Representative Photo of Spot Prawn Collected at NF Sample Location.

Photo 52: Representative Photo of Sea Urchins Collected at NF Sample Location.

Photo 53: Representative Photo Tiger Shrimp Collected at NF Sample Location.

Photo 54: Representative Photo of Sculpin Collected at NF Sample Location.

 $o. \\ In all 2016 \\ \ 3 \ proj/1657231 \ wpyr_ore \ basin sediment_alaska \\ \ 1657231-004-r-rev0 \\ \ app \\ \ b-site \ photographs \\ \ app \ app \ b-site \ photographs \\ \ app \ app \ b-site \ photographs \\ \ app \ ap$

FACTUAL DATA REPORT - ORE BASIN SEDIMENT ASSESSMENT , SKAGWAY, AK

APPENDIX C

Field Records

ob No. 1405	529/7.000	165723	1		Station ID: Mic Collection Date/			_
rocessing S		1 PM				~/;·	ay 17	_
	bs collected		5	L IN VIE	Processing Date	/IIme: 9 a	n	_
enus and s	10 1417	pully chal			Collection Meth	ou: Crab 1	Deps.	_
- ALL AND	Day	Carapace	Whole		1			_
Crab Tag		Width	Organism			Commonite	h.	
No.	Time	(mm)	Weight (g)	Sex	Abnormalities	Composite No.	N	
/	9 am	185	7300a	M		NO.	Notes	_
1	1 any	171	7700g	1	of the bookening of gorm	3	From 47432 0	010
		906		-\		1 3 a	Fram 498432	1
1	1	192		-	11.7 1 1.28	Part .	FADEL WP435	1
	1	163	1	100	has been the ougholf t			_
		190		400	-	15	4 1	÷
								_
								_
								_
								_
			1					
								-
			8					_
								_
								_
								_
								_
nple Conta	iners:							-
alyses:	ssea				_			
tes: T	77	In the second	- T					
Com	p 7 is	- wissby	a claw					

ob No. 1310	5529/7000	1667271			Collection Date/	Time: 29 10	ARPI7 & SM1417				
rocessing S	taff: JM	1657271 1 PM			Processing Date/Time: 10:30on. Collection Method: Crab pols of last						
otal # of cr	abs collected	at station: 🕏									
Senus and s	pecies: Day	grupes Crale)			(1)	427				
Crab Tag No.	Time	Carapace Width (mm)	Whole Organism Weight (g)	Sex	Abnormalities	Composite No.	Notes				
1.	10:30	205	7300g	al	noup	Î	Penco God - other				
3	10:20	166	77000	M	noug	2	Do rossel-of Mal				
3	8:55	196	>300/2	M	ndip (2)	3	Proceded - other				
					 						
			-		 						
					 						
				-							
mple Conta	iners:	the boys	w/ 11	- foil	•						
nalyses:	7/950	dog									
otes: A + 1/ps	at their	on Schiy									
0,47											

5 NAY17

Job: Skagwa	y sediment inv	restigation			Station ID: Va	v-1811	
Job No. 140		1657231					R17 & 4MA417
		Pay			Processing Date	/Time:	1.41.11
Total # of cr	abs collected				Collection Meth		
Genus and s	pecies: 🎉		reb				
Crab Tag No.	Time	Carapace Width (mm)	Whole Organism Weight (g)	Sex	Abnormalities	Composite No.	Notes
M	7:30 38 Apr 17	175	\$300a	W-	попр	0 (-)	Charles &
<u> </u>	8:00 14417	191	7300g	Ц	Roley out on	1	processed
	97:30 4141917	-191	7300a	M.	109 1040	2	407442 - processed
-/-	7:30 प्रमान	179	73000	W	12001P	3	01444 - 0000056
	7:30 4 May 17	157	>700gs	F	Mary small pod	/	419445 - released
			3		right 11 leg 15		
					1 h 1864	J. 1	
				- 1			
ample Conta	iners: Plu	undue Bon	e ul A	lewinan	Poil		
analyses:	Tichase	Clipa		Tary rang	104		
lotes:	The state of the s						

lob No. 140	3529/7000	1657 a	3 (Station ID: No	Time: 29	APA 17		
Processing S	- Carlled Comments	1 TW			Processing Date	/Time: 😽	30 APR 17		
	ams collected		46		Collection Meth	od: Be low			
Genus and s	pecies: $B(0)$	he Mucsel		1/1/					
Clam Tag No.	Species	Width (mm)	Whole Organism Weight (g)	Time	Abnormalities	Composite No.	Notes		
1	Blue.	69 72							
	mu450/4	73 53	r	1	1		i		
		64 45		1			1		
		58 Jd							
		58 61				l l			
		62 65				1			
		57 70							
		62 53				000	3		
		63 54							
		63 56							
		62 43				į.			
		54 61					l l		
		52 68							
		53 62							
		61 48)					
		72 63	f .						
		63 64							
		61 78					1		
		58 72					V		
	X	5a 50							
		45							
		49							
		58							
	-	51			\		\		
0		63	2	4		Cores	, all		
Sample Con	tainers:	/							
Analyses:	Tissue (len							
Notes: Mu	ssels dis	sided sold	o 5 reps	el 3	iog ea				

Job: Skagwa	y sediment in	vestigation			Station ID: Rev		
Job No. 1405		16 57231			Collection Date/	Time: aq Ai	2R 17
Processing S		4 4			Processing Date,	/Time: 70 AP	R 17
		at station: 🤌			Collection Metho	od: By land	
Genus and s	pecies: 🏂	L Bluo	Muesol			4	
Clam Tag No.	Species	Width (mm)	Whole Organism Weight (g)	Time	Abnormalities	Composite No.	Notes
	Blue	61 51	tax				
	Mussels	59 56	weldige			4	P. Committee
	1	55 48					
		45 61					
		52 60					
		53 59					
		54 56					
		68 56			- 1		}
		46 44					
		69 52					
		63 58					
		58 46					
		60 48					
		57 57					
		58				1	
		56		ĺ			
		58					
		61					
		55					
		62					
		48					
		65					
		52		1			
		50	do	0			
	Page and an analysis	78			4	*	Patient
Sample Cont	:ainers:	1					
Analyses:	Jissu	e you	ń				
Notes: Mus	sels d!s	idal into	5 reps	of 30	og ea		

Job: Skagway	y sediment in	vestigation				2)	
Job No. 1405	352911690	16 57231			Collection Date/	Time: 29 A	PR17
Processing S	taff: PM	154			Processing Date	/Time: 30 A	PR17/8:45 pm
THE STATE OF THE S	ams collected		42		Collection Meth	od:	/ / /
Genus and s	pecies: 4	& Blue 1	Mussel				
Clam Tag No.	Species	Width (mm)	Whole Organism Weight (g)	Time	Abnormalities	Composite No.	Notes
		65 56	Vine V	Ŧ	, A	j	1
		71 64	1 de la first				1
		74 58	7				
		58 56					
		62 58					
		47 72					
		61 55					4
		SI 54					
1		52 66					
		56 63					
		72 44					1
		66 59					
		67 3948	1				
		61 52	1				
		Ta 54					
		Ma 55					
		54 72					
		Sa					
		70					
		69					
		7(
		963					
		52					
		6a					
2 2		66		400	8	*	W.
Sample Cont	ainers:						
Analyses:	7/954e	dion					
Notes:	Mussols (disclost into	5 reps	el 3	og Ca		

Surface Sediment Collection Log Job: Skagway sediment investigation Station: SED 17-27 Date: 5 MAY 17 Job No: 1405529/7000 165783 Field Staff: GM/PM Sample Method: Van veen Contractor: Golder Associates Ltd Water Height Tide Measurements Sample Acceptability Criteria: Time: / DTM Depth Sounder (pn): 13.3 N @ 1/30am

WP 495 On getting of 59° 28.792 Height:

Notes:

about 50 from 4 love able a high like 1) Overlying water is present 2) Water has low turbidity 3) Sampler is not overfilled 4) Surface is flat 5) Desired penetration depth Comments: jaws close, good Sample Recovery Grab # Time seal, winnowing, overlying Confirmed Coordinates (datum) Accept (Y/N) Depth NAD 83 (N) water, surface intact, etc. NAD 83 (E) (cm) 1350 20. 957 13. 2 At " sw here tolach, 11:30 59028, 793 lley (67495) 50° 28, 799 135° 20, 158 18:8 At > surber volul 11:40 (WP496) 59°88, 794 175°80, 959 126 At -s good soul 11:50 (NP497) MAJOR CONSTITUENT GROUP NAME. Moisture content, density/consistency, color, major constituent (%), Sample Description: minor constituents (%), plasticity. Amount and shape of minor constituents (e.g., wood, shells). Biota. Sheen, odor. Structure descriptions and to coarse saw with Sand run a few allulilly smaller 1000 Vullag organics Sample Depth: Sample Containers: Analyses:

		Surface	Sediment C	ollection	Log	
Job: Ska	agway sedimen	t investigation		Station: 5	017-15	
	1405529/7000			Date: 5 M	1417	
	aff: SM /P			Sample Met		reen
_	tor: Golder Ásso	ociates Ltd				
Water F				Tide Measu	rements	Sample Acceptability Criteria:
DTM De	onth Coundar /	or: 51.6 A € 1	30 an	Time:		Overlying water is present
				Height:		2) Water has low turbidity
1-	171.00	59° 26, 967 135°	14 595	rieigiit.		Sampler is not overfilled Surface is flat
Notes:	N7 480]	31 00, 701 133	11.505			
~ 5-	10m from	pressure	trained off of	toodway .	lock (ba	emper) all For
	a su lux	area are steal				
					4	
Grab #	Time		SOURCE ONLY ONLY AND A STATE OF THE STATE OF	Sample	Recovery	Comments: jaws close, good
Grab #	Time	Confirmed Coo NAD 83 (N)	ndinates (datum) NAD 83 (E)	Accept (Y/N)	Depth	seal, winnowing, overlying water, surface intact, etc
Jr.				Ta	(cm)	CIRCUS COMPRESSOR
1	9'30	59° 26. 968 Nor489)	135'19.586	U	5cm	52.5 ft -7 saring
2	9:45	59026.971	1350 4.579	4	Som	53.014 -> suther total
	34 32	100 C	W 5220 Ph (19410)	f.	51	overlying water, good qub
		(WP490)		- E		a. 1 50g
3	9:55	59°36, 969 (WP491)	17519, 577	7-	Sca	524A - Children grat
1	10:00	59°26, 971	175019, 580	4	10cm	57.3 A -> & swhee wheel,
4	10.40	(UP 400%, 412)	117 117 100	M	herren.	overlyly when, read the
			V-			
		MA IOD CONOTITUES	ODOLID MANES 14	Location and American	Notario de servicio e	
Sample	Description:		asticity. Amount and shap			color, major constituent (%), rood, shells). Biota. Sheen,
grub	1 × musips	pept you soon	7	iscarded 1	rab Q ->	usable
grab		du tour sheen, 10	adour By a som	rasings scur	olosprum)	(small crystaceurs)
Going	broken stells		amount of groups	and cabble		7
- Corst		all man gray	Λ	1	1+, very	Konsp substale
1000		estal) - > ~ can	of brown road		1 0,111	on top of black
Sample		Theolis grat 5 (3)	1 1 1 1 1	ler rough luon	10 10 0	a odour un shoping
in	gal 6		slight shift but	12.		edine is quite a
Sample	Containers: A	Fleren loose Fracus	sit wil soul on		ite auder	The state of the s
Ahályse	dark grey to	mobilis black 9:14	with clay (lanse)	, sellment	imply of	Hy 5 more bes of the
IMMaivse:	5. 10-1100 Ill	a film water with	2011			

AUS

(g

Surface Sediment Collection Log Station: GED17 - 10

Date: 4MAY17 & SOURY 17 Job: Skagway sediment investigation Job No: 1405529/7000-Sample Method: Van veen Field Staff: Contractor: Golder Associates Ltd Water Height **Tide Measurements** Sample Acceptability Criteria: DTM Depth Sounder (ph): 46.91 at 12.40 pm

Amural at SED17-10 SW7469 S9° 27.007 w 135°14.586

Notes: Adjusted after 5 conceculting failed grats > NS9° 27.010 w 135° 19.586

WP465 Adjusted again often dimore grats WP467

Returnal SMAY 17 \ at wp486 for additional comply Time: / 1) Overlying water is present 2) Water has low turbidity 3) Sampler is not overfilled 4) Surface is flat 5) Desired penetration depth Comments: jaws close, good Sample Recovery Grab # Time seal, winnowing, overlying Confirmed Coordinates (datum) Accept (Y/N) Depth water, surface intact, etc. NAD 83 (N) NAD 83 (E) (cm) 57.211 -> good god burkey luked, overlyby 1350 19.570 590 27. 024 8:30 Cocin 57.7 H - good seal soulder 59° 27.022 135° 19.569 7cm 59° 27.019 135° 19.571 6 cm 9:00 WP 487 MAJOR CONSTITUENT GROUP NAME. Moisture content, density/consistency, color, major constituent (%), Sample Description: minor constituents (%), plasticity. Amount and shape of minor constituents (e.g., wood, shells). Biota. Sheen, odor. Structure descriptions colump on esolue Sample Depth: Sample Claritatiners: and dis smill drop lets show forther no about, show constituents as

			Surface	Sediment Co	ollection	Log	
40	Job: Ska	agway sedimeni	t investigation		Station: £	17-29	
		140552917000			Date: 4M		
	Field St	2 1	Pay		Sample Met	hod: Van v	reen
	Water F	tor: Golder Asso	ociates Ltd		Tide Measu	romonto	T 200 500 000 000 000 240 000
	DTM De	epth Sounder (n	th):52.6 at 5 al slabilized at	:05pm [WP480] N 59° a	Time: 8,62, Height:	2930, 148	Sample Acceptability Criteria: 1) Overlying water is present 2) Water has low turbidity 3) Sampler is not overfilled 4) Surface is flat 5) Desired penetration depth
			V				
ъ.	Grab #	Time	Confirmed Coo	ordinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (cm)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc
What	1	5:05 cm	59°28.627	135°20.148	Y	18.5 cm	57.464 sperted grab
Cea	76	5:15 pm	590 28.628	1350 20.146	4	13 . Ocm	57.01 > perfect grade, seal, water, intent
***	3	5:25 EM	59°28.626 (UP 481)	135°20.145	۲	15.8an	536 Al sported open
	-		_				1 ,
				E		í	
					j.		F
	Sample		MAJOR CONSTITUENT minor constituents (%), pl odor. Structure description	asticity. Amount and shape ons	content, density/o	consistency, c uents (e.g., w	color, major constituent (%), cood, shells). Biota. Sheen,
	10		cun of lonso,	moist silt on		ge darl	
	1	14 HS	adour douse	of shredded	organies (leaves tu	proper Mysters)
	Lieno	lane	1 1101 1861	owner sitt on loo	of we	1111	clay-y silt documosing
	odow		ahells grab	3 -> ginilar yo	prob a	1	7 (,,,,,,, .
	Sample	Denth:					
- 3	Jampie	рерш.					
	Sample	Containers:					
ĺ							
	Analyses	S:					

1141+

			Surface	Sediment C	ollection	Log	
- II		agway sedimen			Station: SE		3
		aff: 3m/Pm			Sample Met		yeen .
		tor: Golder Ass			Sample Met	nou. van v	een
1	Water F		Oolates Ltd		Tide Measu	romonte	Complete Constitution
			M				Sample Acceptability Criteria:
	DTM D	anth Soundar /	M pm): <u>9.5 € 3:15</u>		Time:		Overlying water is present
	D I WI DE	shin Sounder ((h). 1.5 C) 1.5		1121262		Water has low turbidity
					Height:		3) Sampler is not overfilled
	NI-V-						4) Surface is flat
	Notes:	11004	(50)	T. F J.	/		5) Desired penetration depth
	avis.	of at LWF	13) -> as 1/05e	as the ran gel	(low 1:00	not deep)	
	lots o	f cobble,	many repeated a	rubs, site don	ega than	i tu ver	tidal oras
	Grab #	Time	Confirmed Coo	rdinates (datum)	Sample Accept (Y/N)	Recovery Depth	Comments: jaws close, good seal, winnowing, overlying
AUS.			NAD 83 (N)	NAD 83 (E)	Thought (1714)	(cm)	water, surface intact, etc
1017	A	3:35	59°26, 959	1350 19. 861	Y	Sem	11H -> aus (0)0, your
	- L		(WP474)	11440	Ĭ,	OZ.	Seel, out it makes
CH	2	3:54	59° 26, 958 (WP475)	135°19,863	7	Dom	10.014 > jour closed completely, good soul, avolyty
4	3	4:00	Same as grab	8.	Y	4cm	10.9 ft -> does grown, loss
					*		
	Sample	Description:	minor constituents (%), pla odor. Structure descriptio	asticity. Amount and shap	content, density/o e of minor constit	consistency, c uents (e.g., w	color, major constituent (%), rood, shells). Biota. Sheen,
	2 80 1	in successful	graby then make	r a cursucessful	arabs the	n oluc	2 sursumess fol males
	5 7 M	Grab (151 51	unersful anal) -> a	A 1 1	aupe Vilamen		
	KAX.	4:1+ gravel	Alsoored stroughou		& silt al	sal are	olive bown . No
	o Do .	no steen	I more unsuma		arad 12.1 1	Cresch 1	mix of course soul
	1-84	silt clay-u	Sit Chlack Te	0 - 101	id surper fol)	Staller in	court of las to deer
	B	1 14 1	alg place y	7 101 7 100 (1	THURST THE S	ZIM IM	CAMPOTIMON 10 ENCO
	Sample		-517				
\sim	2.4.0	E E MILL					
ŀ	Sample	Containers:					
ŀ	Janapio	Containers.					
-	Analysis	c ·					
	Analyse	5.					

			Surface	Sediment Co	ollection	Log	
)	Job: Ska	gway sedimen	t investigation		Station: Sc	D\$ 17-0	21
		14055291700			Date: 4 M		
			PM		Sample Met	hod: Van v	een
		or: Golder Åss	ociates Ltd				
	Water H				Tide Measur	rements	Sample Acceptability Criteria:
	DTM Do	nth Sounder (m):47.9 @ 2 pm		Time:		Overlying water is present
	D I WI De	pui Sourider (m). <u>v = v</u> = 1		Height:		Water has low turbidity Sampler is not overfilled
					rioigiit.		Surface is flat
	Notes:						5) Desired penetration depth
	Sel	Hed at Just	7826, 923 W13.	at and depter d	rops Might	eft 1	lon look
	offee	Das gale 15	9826, 923 W13.	5°19,633			*
			-				
	Grab #	Time	See And The State of Control Control Control	r sunda errogia a trada anazzar er Az	Sample	Recovery	Comments: jaws close, good
	Grab#	Time	NAD 83 (N)	ordinates (datum) NAD 83 (E)	Accept (Y/N)	Depth	seal, winnowing, overlying water, surface intact, etc
	1	2:10	59° 26, 923	135° 14.63 7	4	4cm	The state of the s
AUS	1	0110	WP469)	133 14,077	(10.00	78.3 an Al -> Jaws closely
ž	9	2:20	59026.923	135019:636	4	Scm	1477 14 - 1 low giell but jans closel , assi god sur lave in last
an	.0.	Q NOO	(WP470)	Nin records	6	JC-1	jaus closed, 900) 9 pal
I,	_	0 0 5		175014 6551	+		20.00
CHON	3	9:35	59.06.922	135°19. 634	4	Gem	49.8 -low victo bet
)			(WP470 as well)				in hel and scaled graf
4	4.	D: 35	590 26, 923	135019,633	4	Zem.	49.64 - sertan shel
(how		0. 13	(WP471)				there is ocholing water
	Α	0.00		. 0.0	/2	7	
Chea	5	2:40	59026. 923	135°19. 635	9	Ton	47.4 server intell and seed sent on grat, according
0			(wP472)				sal on grat, overlying
							2
			MAJOR CONSTITUENT	GROUP NAME. Moisture	content, density/o	consistency, c	olor, major constituent (%),
	Sample	Description:	minor constituents (%), pl	lasticity. Amount and shap			ood, shells). Biota. Sheen,
	14	and - rech	odor. Structure description	1 1 1 1	1) .s a fo		is at soull could
	-Philip 0	dien in the	ave of brown	T - F-SU/1-SU PA	MIV of	Car In	THE ME COURSE
	Sand	no shees.	no blown up a	down 3rd grate	^ /	ship 4	6/2/ (4/4)
	shariar	horizen	and romoosition	15 24 5W1 #			Ted surepsylal) - some
	as du	1	-> no visible books	some to confession	/ //	ala 6º 1	(4th suggests) -1 10090
	Sabadio		Cys (rown) ox 12	A 1 4 4	ay we gilt	(4:100 f	playlic) 7th sures
기	Sample	Anna Carried	3 900(50,-81)	Surface I lack -> 510	10 10	ción succest	
	Sample	Containets:	sormy motiful nearly	black pieces of	day 14	4 PH CIA	7 where layer
	Analyse	\$:					

			Surface	Sediment Co	ollection	Log	
1	Job: Ska	gway sediment	investigation		Station: SE	h17-12	
,	Job No:	1405529/7,000	1657831			AYIT	
	Field Sta		<u> </u>		Sample Met	nod: Van v	een
	Contract Water H	or: Golder Asso	ociates Ltd		Tido Magazin	amanta	
	DTM De		n): <u>504</u> @ (0:5	4 an	Tide Measur Time: Height:		Sample Acceptability Criteria: 1) Overlying water is present 2) Water has low turbidity 3) Sampler is not overfilled 4) Surface is flat
	Notes:	UP458	over Van	veen on :	nilal pla	ce ment	5) Desired penetration depth
		U 59°2	7,012 W135°11,	637	<u></u>		
	\	D4P-3	collected				
V	Grab #	Time	Confirmed Coor	rdinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (cm)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc
ynz[[T	11:05	59°27°000 012 WP 459)	135 0 19.634	7	4cm	in last some w/ ocolog
chent	g	11.15	(WP460)	1350 19, 634	4	Son	but salest surall exact but salest sural and
N. D 7	3	1135	59°27.013 (WP461)	135019,633	9	7cm	48ft - 7 In bal grab but minor another all whose, surface appears to
DUP-7	4	11:45	59° 27.014 (VP 462)	135019.634	4	7.Scm	47.5 H -> Interl glade welging water i had
				<u> </u>			
					-		
			minor constituents (%), pla odor. Structure descriptio	asticity. Amount and shapens	0.70	uents (e.g., w	color, major constituent (%), rood, shells). Biota. Sheen,
	Corus !		theen in sample	brown gs/f cal	//	and la	als of coole, mussels
	(Gran)	audi15, 1	NISING THERE	12	lyculs as	arab I	, small amount (O.San
	BC		vitue of tab	61ab 3 > 500	ac & nothing	Gred	4 (3 d suressful) ->
	Sur Lu.	e what	out mix of	cheles of a	an ana	(ally)	roome and
	Ondalla	Disthi (box		7000 / 1 /	palety of	choon	alle scooping
2	Sample	Depth: 🚉 🙉	C A 44.15		silk we ce		
	Sample	Containers:	H	up as well the	ES alle	earsy sa	
	Analyse		48 (20) (A. J. L.	stota, no gleen,	no officer		
i		·					

1			Surface	e Sediment C	ollection	Log		
18	loh: Ska	gway sedimen	t investigation		Station: 5	ED ID-	07	
			1657231		Date: 4M	AVIS	0.	1
	Field Sta	The second second			Sample Meti		een	1
1	NAME OF TAXABLE PARTY OF TAXABLE PARTY.	or: Golder Asso	ociates Ltd		and the second			1
	Water H				Tide Measur	ements	Sample Acceptability Criteria:	1
	DTM De	nth Sounder (i	m): 55.8A @	8:30 an	Time:		Overlying water is present Water has low turbidity	
Ì	D I W DC	pur oddriddi (i			Height:		3) Sampler is not overfilled 4) Surface is flat	
	Notes	NP462]	ather selling	1 Mil one	Jok co	nea	5) Desired penetration depth	
	W.	590 27.00	a W135° 14.	622 readjusted.	No 4 uns	successful	5) Desired penetration depth	
	Mas	al again	10 WP 455	7				
64	Grab #	Time		oordinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (cm)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc	
	2	9:05	590 27.004 (WP454)	1350 19.623	Ų	Clem	55.7 Rt -> closed paws,	
3-1	2	9:30	59 87.004 (WP 965)	15-014, 620	7	Zun	95.2 M -> close jaux, 4000 seal, survey label	
	3	9:35	59° 27.006 (w?456)	138019-620	4	Sean	54.6 ft & good spall Exper play fraction, surled	hơi
	4	9:45	540 87.006	13 50 19. 670	4	Зст	54.3 ft - good seel test mostly robbleved	
L	,5	9:55	59027.005 (4877)	1350 19.621	4	Чещ	5 5.3 H > good scal,	
				_				
	Sample	grab -> rack	minor constituents (%), odor. Structure descrip	plasticity. Amount and sha	pe of minor constit	tuents (e.g., v	color, major constituent (%), wood, shells). Biota. Sheen,	
	yor you	hard oral of oral of oral of oral of oral of oral of oral oral oral oral oral oral oral oral	four and son	e on the off	grey clay - grey c	a ble	(party sail al next grab: rock (6)	
	Sample Analyse	Containers:	The column	Suggestal) Sinhite	on lor ox	chaise beaum)	and a Jew on	1

of the

4		Suriace	Sediment Co			
	gway sedimen			Station: 95		3
	14,05529,7,000				NAY17	
Field Sta				Sample Met	hod: Van v	een
Water H		m)61.54 E	4:70	Tide Measur Time:	/	Sample Acceptability Criteri 1) Overlying water is present 2) Water has low turbidity
Notes:	Moute of	Dyea River	WP428 04	Height:		3) Sampler is not overfilled 4) Surface is flat 5) Desired penetration depth Arac 14
K		² ▼ ²		7,3%	7 1511	()
SEC.		al.				
Grab #	Time	Confirmed Co	ordinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (cm)	Comments: jaws close, goo seal, winnowing, overlying water, surface intact, etc
1	4:00	99° 26. 593	1350 20.994	4	Bem	sailth > good
9	4:40	59° 26,594	1750 2000	4	Bear	60.1 At > your seal that low yield
3	4150	590 28. 594 (WP470)	135 20.915	4	7ст	61.1A
H	5:05	59° 20.595 (WP431)	05° 21.002		11 Scm	60.5A
						::
Sample		minor constituents (%), podor. Structure descripti	ions with area and	e of minor constit		rood, shells). Biota. Sheen,
16	1000	rad (rock misting of all all all all all all all all all al	and maring	465 80		Pare luyer
1 /3	nd 3 -5 1	olive from sa	al small shops	Ided pieces	of c	DM
Sámiple	Debith:	dila't collect	bentiles 7 49h	u voke		
	ARCHITATT.	(XIVA)	DELICATION LOCAL	V 0/10		
Juniping)	*,		the state of the s			

Inh. Cir.	aaway codimo	nt investigation		Station: A	NIZOLI	¥"
	1405529/700			Station: 45	WA417	
		TM		Sample Met		
-	tor: Golder Åss	sociates Ltd				
Votes:	epth Sounder	(m): 72.04 at (dell before d	Tide Measur Time: Height:		Sample Acceptability Criteria 1) Overlying water is present 2) Water has low turbidity 3) Sampler is not overfilled 4) Surface is flat 5) Desired penetration depth
	754	V (21)				nn syrv
Grab #	Time	Confirmed C	oordinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (cm)	Comments: jaws close, goo seal, winnowing, overlying water, surface intact, etc
1	2:00 pm	59° 27, 651 (WP422)	1350 20,940	9	5,5cm	Small sample but into
2	2:05 em	(WP423)	1350 20, 941	4	8-Dem	22,5 m small sough age a
13	2.10 PM	59°27. 649 (UP424)	135°20,950	4	Gen	72.1.5 lives and good be cog and sweet of your house of some of some 72.64 = good seed, good feel, good feel
Н	2:20 pm	(W7425)	1350 20, 945	S ₁	7.5 cm	72.64 = good seal, yell
2	2:40 pen	39027.650	1350 20,935	4	6.5cm	73.3 At -> 9000 seel, an
6	3:15 pm	(WP426)	1350 20, 948	9	Gen	15.6it- good spil, color
7	4:00 pm	59'27.651 (WP427)	050 20, 939	9	6.5cm	77.501 - year soul but
						laco yiell
Grade :	2 7 homit en	minor constituents (%), odor. Structure descrip	plasticity. Amount and sha ptions y follow by and and sha a she is a homego how or games movement	pe of minor constit	tuents (e.g., w	I color, major constituent (%), cood, shells). Biota. Sheen, was left grey clay, self

			Surface	Sediment Co	ollection	Log	
Y	Job: Ska	agway sediment	tinvestigation		Station:	17-16	P
		1405529/7000			Date: 24	12/2/7	
	Field Sta	aff: < M /	PW	w.	Sample Met	nod: Van v	een
		tor: Golder Asso	ociates Ltd		1 2 2		
- 1	Water H		m): 40.9 A e	1) an	Tide Measur Time:	ements	Sample Acceptability Criteria: 1) Overlying water is present
	Notes:				Height:		2) Water has low turbidity 3) Sampler is not overfilled 4) Surface is flat 5) Desired penetration depth
ŀ	38 te	1 ocaved	15 m 4/1	on PULLED CA	Callet	and -	e 10 m floir
	Broad	Juny Sock	, set anchor	and hollow sla	aly of N	59027.0	71 and W135° 19.397
Į	(WP4	[18]	.*:		D)		
	Grab #	Time	Confirmed Coo	ordinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (cm)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc
	1	11:50	590 24.071	135019.402	Y	19cm	393 A = good somple
	8	11:35	59'37. 070	175°19, 403	4	6cm	34.581 - , and seed but feth on relating of gam on the sande lad hald and enough for free forms
	3(m/ss) 4,	11:45	59°27,071 (WP419)	135019.397	4	ldon	375A - good seed, good sample
	3	12:10	54°27, 600 068	1350 19, 403	4	10cm	38,194 sported and
	6	12:45	59°27,068	138 19,395	4	6сщ	185 -s soull girt but In luck - was bother without how so could it give though how
	7	12:59	59027,070	1350 19, 392	9	12.5cm	a pole of rab
			•				
	Sample	Description:		asticity. Amount and shape			color, major constituent (%), rood, shells). Biota. Sheen,
-	6 rul 1	II.	rown gill ist (~ (cm) with small	amount	et ou	The second
ŀ	woldling.	lise mu	/ /	's layer was light		grey cla	4-4 811, 014081
ŀ	melallic Grab 2	-> Swell orub	of mixel carde	and old shrelled	I and brown	1 611	a few acustolis
ŀ		print vitible					holizous as mil I
1	arey	7.5	40 6 0 1/1	god on smill	July 5	us I Gamo	NUCCOUT "5 NEW 1
3	Sample	Depth:				2.	v v
	0		rab 9-7 worms, mus		mp89/lan	3	
1	Sample			cimilar sourcesiden la	7067	7. 4	N 24
	Analyse		rab 7 -> lets of	stells an e	zely sound	o Allar	17-85 on surface
Ľ	maryson	91					

		Surface	e Sediment Co	ollection	Log	Y.
		nt investigation		Station: 9	017-18	3
		0 1657031		Date: 30	44417	
	aff: SM Po			Sample Met	hod: Van v	een
	tor: Golder As	sociates Ltd			La .	1 -20
Notes:	ept <mark>h</mark> Sounder	(m): 46.9 H al ara		Tide Measu Time: Height:	/	Sample Acceptability Crit 1) Overlying water is present 2) Water has low turbidity 3) Sampler is not overfilled 4) Surface is flat 5) Desired penetration depth
1 ~			30 Swaying 19	He fu	he ub	we lou ment
Du	1P-21 (0	lected				
					p	r F
Grab #	Time	Confirmed Co	oordinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (cm)	Comments: jaws close, g seal, winnowing, overlying water, surface intact, etc
1	8'55	59° 27.093 CWP412)	1350 14,409	4	Men	46.8 Pt - good son accident cooler tal looks slightly dish
9	9:09	59°27.093 (UR 413)	135019.487	4	dem	44. Aft , wal s
>	9;25	59°27.091 (WP414)	135019.488	4	9cm	45.7 -> good soul, overlying water
4	a:45	59° \$7,094 (WP415)	1350 19.490	7	(Ocu	42.9 Just bed aser
5	10:05	(WP4(6) :	135019 492	4	en slight and	400 grat
6	10:25	59°37. 011 *	135019.493	9	14ch	41941 - 1900 see
	E II		S. L.			
	Description		T GROUP NAME. Moisture plasticity. Amount and shaptions			
6 rde	1 -3 Kre	Mucsos NEws	D.San Graven	911	in top o	it black wood
Grab	2 -2 00 2		do sugar	05 am 6	A 0 0	10 to the same
chab	nearly	dade alen sil	1 1 77 3	Dy Gen lo	recon Gi	I on hell gray
Comb	3 -> 6:m/a	1 11101	a. \$1815 0 3000	red rotten	wood	- 6
Gent	4 -> braws	7 70 170	1 1 1 1	Sof sed		mplikes (large)
Sample			dery sill vi	clay of	comsp 5	
0.44	Oldher II	lando 5 - game as	4 by al 5)	clis and	140149	, a few y musical
Sample	7	Grab 6 - 1 cm of		9018 Sam	p sud	trale of and
Analyse	6. horales	as other	q 7165			_
rialyso	D.					

centar C.3

	gway sediment			Station: 51		×O.
	140552977000			Date: 1	11111111	ewas toro
Field Sta	aff: SM/P or: Golder Asso			Sample Met	hod: Van v	veen
Nater H	eight	n: 47.5 Ft @	3:50 pm	Tide Measur Time:	1	Sample Acceptability Criteria: 1) Overlying water is present 2) Water has low turbidity
Notes:	WP408 a	l arrival U	59° 26, 827 W	Height:	×	Sampler is not overfilled Surface is flat Desired penetration depth
	10 V118	▼				,
			7		lka.	
Grab #	Time	Confirmed Coo	rdinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (cm)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc
1	4:00		7	9	8.5	jaws closed, year seal explained ful explained of historians
9	4:20			9	16cm	soul jans elosal, good
3	4:30	-	/	Ý-	12cm	50. 184 -> law closed ever tree auter but god ment legals distribut
4.	4-45	¥ .			19	~501
5	C:00			a	13	202
0	5:05				12	× 2044
ample	Description:	minor constituents (%), pla	sticity. Amount and sh	re content, density/c ape of minor constit	onsistency, ou	color, major constituent (%), rood, shells). Biota. Sheen,
Cay	Many man	nussels on	top of pal	- allue a	me tallic	grey loose
de b	wed gellen	The state of the s	rub 3 7 muscols	s as gal	SAME IN	of at worky
ample [Depth:					

Job No: Field Sta Contracte Water H DTM De Notes: Ited Jo Read) Grab #	or: Golder Asso leight pth Sounder (r	m): 60,5 at 1:3	1	Station: St Date: A M Sample Met Tide Measu Time: Height:	hod: Van v	Sample Acceptability Criter 1) Overlying water is present 2) Water has low turbidity
Field Sta Contractor Water H DTM Del Notes: Tiel to Read) Grab #	aff: SM/Por: Golder Assoleight pth Sounder (r	ociates Ltd m): 60,5 at 1:3.	1	Sample Met Tide Measu Time:	hod: Van v	Sample Acceptability Criter 1) Overlying water is present 2) Water has low turbidity
Contractor Water H DTM De Notes: Ted Jo Read) Grab #	or: Golder Asso leight pth Sounder (r	ociates Ltd m): 60,5 at 1:3.	1	Tide Measu Time:	rements	Sample Acceptability Criter 1) Overlying water is present 2) Water has low turbidity
Water H DTM De Notes: (Ied Jo Read) Grab#	eight pth Sounder (r	m): 60,5 at 1:3.	1	Time:	/	Overlying water is present Water has low turbidity
Notes: Tied to Pead) Grab#	pth Sounder (r	little movement	1	Time:	/	Overlying water is present Water has low turbidity
Notes: Thed to Peadl Readl Grab#	piles co	little movement	1		/	2) Water has low turbidity
Read (Grab#	whole for D	W	HUDTAGE 1 11590			Sampler is not overfilled
Grab#	whole for D	W	HUDYAL 11590			Surface is flat Desired genetration depth
Grab#		10000 75- 1	17/ 10/ WOO	26.760 W	135 19,4	73
Grab#	1 10	50° 26.767 W	135019.455 [6]	P905		4
1	at to my as	1 1 200	then lo IUP	407]		
(A	Time	Confirmed Co	ordinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (cm)	Comments: jaws close, go seal, winnowing, overlying water, surface intact, etc
	Dillen	(WP405)		4	Sou-Oca Congle Life,	57.74 - and seel, he related, similar to some
32	9:45 pm					· ·
	a:45 pm	(WP406) - 59° 26.710	135° 19.754	Y	Gen-soum Couple hite)	62.64 -7 god sod ou
3	3:30 pm	(w1407) 59°26,768	135019,450	4	6cm	61.3 ft > good seal low yield
		2				
	Description:	MAJOR CONSTITUENT minor constituents (%), p odor. Structure descripti	lasticity. Amount and shap	content, density/ope of minor constit	consistency, c uents (e.g., w	olor, major constituent (%), ood, shells). Biota. Sheen,
- Grah D	is pigol -1	Snigged before		supply Godd	1 -> 1cu	u brown sel (s: 17
0 01	rey a loose	clay, protein	4/2/15 10 0 80	W 10 660		slipen
(1)		1. 7	77			
	4 CM OF	10 Int grab	Two grats u	ish less h	en 50/0	+1 grab -> miss
Corno J	3 finia lo	e hac				
Salkfore	Theoth:	enanta for	I In Inc	14147	La Caral	10 0
Jugar post	Depth: not	enough to	all lox but	+ 4Mile a	burband	traller as
Sample 6	Containers:	on.				
Campion	Perindipioro.					

Job: Sk	agway sedimer	t investigation		Station: 91	5N7- 0	3		
	1405529/700			Date: 4 4	w 17	^		
Field St				Sample Me		/een		
	tor: Golder Ass	ociates Ltd						
Water F				Tide Measurements Time: Sample Acceptability Criteria: 1) Overlying water is present				
DTM De	enth Sounder (m): 88H on all	Jul 1 19:500.					
	opur ocuraci (01)· <u>-</u>	, cae	Height		Water has low turbidity Sampler is not overfilled		
				3		4) Surface is flat		
Notes:		1000 -	25 NAMES 1920			5) Desired penetration depth		
WPL	tot or h	159 26.659	W135019.648	-5 5/10	168 9	a waster		
L.	220		y Readingtol					
(O(4))	4463 50-	harly gallong	1 Captae in					
				7	15%			
Grab #	Time	Confirmed Co	ordinates (datum)	Sample Accept (Y/N)	Recovery	Comments: jaws close, goo seal, winnowing, overlying		
		NAD 83 (N)	NAD 83 (E)	Accept (1/N)	Depth (cm)	water, surface intact, etc		
土	10:00			4	5 cm	88 Pt - good real built		
2	10:15			4	6 cm	7814 - food seel our		
- 7,	-10:50	(WPLYON)		Ç	9 cm	81 ft -> good feel on		
* £	10.22	WPHOD) - 08.675	w175,19,800		(cm	undigherbal and		
4	11:50	1/		ř	10 cm	78.611 3 god so		
- 0	11:42			F2				
2	11:01		7	4	6cm	80 Al - 1008 See (500		
6	12:10		(. 4	Com	Olf - york sed sed suf		
-	12:25				9.5cm	83.564 and seal,		
1.	10127			T	1, 326	overlyin winter		
						- +		
		and 4 VP403	59°26.675	1 1750 10	150			
			9 (00.01)	, 190 14.	Dord			
	-							
						8		
	32 20 20 E	MAJOR CONSTITUENT	GROUP NAME. Moisture	content, density/o	consistency, o	color, major constituent (%),		
Sample	Description:	minor constituents (%), p	lasticity. Amount and sha	pe of minor constit	uents (e.g., w	ood, shells). Biota. Sheen,		
Grat 1) large Ho	odor. Structure description	le ul	donse a		blader and or		
inder	len se		ilt in som	(10)436 8	w are	blustic and of		
GAARA			obble and speid	clell				
18746 7	- Scholl	abble a shells	ested in red		ur ox	9 1005F OUP 5:1		
Some	(arresti ten		and 5 gill of	1/ 2 2 1 20	6 1	if 4 some along 115		
	Depth:	worms	whelk' and 6	Game 1		5		
0.0.0	L 7 3 7 7 7				- All m.D			
- am whal	Containers:	Grad 6 7 0000	elmilar is inpully	95 / 12 Pla	w - lab	s of shells		

Job No: Field Sta Contract	agway sedimen	t iiivesiidallon		C+-+:- (17-11	
Field Sta Contract		0 1657231		Station: 55	1007	
	aff: SM/F	>W\		Sample Me		/een
Matarl	tor: Golder Ass	ociàtes Ltd				
DTM De		m): 533 FT @ 4	:15pm 59° 27.43 135°	Tide Measu Time: Height:		Sample Acceptability Criteria: 1) Overlying water is present 2) Water has low turbidity 3) Sampler is not overfilled 4) Surface is flat 5) Desired penetration depth
		V				
Grab #	Time	Confirmed Co	oordinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (cm)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc
1	4:20 pm	59° 27.043 (WP391)	135° 19. 471	4	6.5cm	um 18.4N speed sent
2	4.30 pm	59° 37.043 (WP392)	135°19. 471	9	6cm	53.1 At -> good seal on ver user but hill red her flightly cropbed, surface of
3	4:45 pm	59° 27.041 (689393)	135° 19 . 484	Ĭ	9 cm	53.617 - good scal ul overlying water, Inlant
4	5 fm	54° 27, 043 (WP394)	1350 19 491	34	7cm	53.4H > good scal of overly water, in hel
5	525 pg	59027.040 (WP395)	135019.484	P	6cm	54.7 M -> good real of overlying water sale for field
. 6	5:35 pm	590 27.045 CVP 3967	1750 19, 491	7	6cm	54.9 M - good sol some of value on get fine
, 7	\$:50 em	(np3 47) >> moved a 1:1	the bit (11 Ply anchor)	- Waly wor	the Pig	19> incused botors were
	Description:	minor constituents (%), p odor. Structure descript	plasticity. Amount and shar	content, density/ope of minor constit	consistency, c uents (e.g., w	color, major constituent (%), cood, shells). Biota. Sheen,
Grab 1 Grab	3 -3 5/10/10	Graba > 5 miles	to grant ac	on House		51 / w/ clay => 1 place a few
Grab Thron	whole great	cobble-size	ouse on denser si	your odu	141045	choches of my
ample	peer of girl	15 1/100 as greb			as mab	thel, agu. warms,

			Surface	Sediment C	ollection	Log	
Α,	Job: Ska	gway sediment	investigation		Station: 5E	017-14	
		1405529/7000			Date: 30A		
	Field Sta				Sample Met	hod: Van ve	een
		or: Golder Asso	ciàtes Ltd		T. I. M.		,
	Water H		n): 38.9 M @ 9.50		Tide Measur Time: Height:	/,_	Sample Acceptability Criteria: 1) Overlying water is present 2) Water has low turbidity 3) Sampler is not overfilled
	Notes:						4) Surface is flat
	Approx	chin slock	life so some	anovened exto	- anchar	95 dared	5) Desired penetration depth (u. low wind)
	WP3	71 59° a	1.60 so some 7.019 135% 190 afternoon at 10073	169 or initial	Ge!	1	
	Keli	oned by the	afternoon at [w?]	583 59° 27,0	731 1350	19,591	
lat lat	Grab #	Time	Confirmed Coor NAD 83 (N)	rdinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (cm)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc
Tiest the state of	8 -	2:55 pm	[4027.030 (401204) 59027.032	135° 19. 589	4 4	Fein Gen	Saft > U. Small grad, But sorting is interested
[(3.	7:05 pm	(W7386)	1350 19.587	41	one side	52.471 -> where intent to sed good a cople
	4	3:10 pm	St° 27.030 (W7387)	135" 19. 59 [4	7cm	52.811 -s surface in lad
	» de	3:30 pm	(wP388)	135019, 518	9	Gen	53.4A -> furtare intel
	7	3:50 pm	(47389)	135-19, 599	4	6.5	S4.4 Al -> surface folded overlying water grate was squire in the
	8.	4:00 pm	game as grab 7		4		water
10.							1.0
9			minor constituents (%), pla odor. Structure description	asticity. Amount and shap	oe of minor constit	uents (e.g., w	olor, major constituent (%), ood, shells). Biota. Sheen,
	brall.		redich ON Culora		frown all	10050 5:11	All on the course
	Graha	is fine as I	9-10 an condle	of brown (Habi	also CRU	some and	oranos over
	400		Poly (malso sa	7	1 4 4 5 1	00 100	and the second s
	layer	is compact	ad leige Grab	4 s a few ole	1		w church of musiple
	Samo	Yop layer a	s other sound	is a small am	outs of ch	oon in	homogenizal sample
J.	Sample	Depth: grab	500 misting of	all thanks to 8 alon	I comple,	brown 56	al pur top 1
	Sample	Containers:	N.		·**		
*	Sulvipie.	wanter icro.	7 5			-	
	Analyse	s:					

		Surface	e Sediment Co			
Job: Ska	gway sediment	investigation		Station:	017-11	
Job No:	1405529/7000	0 1657231		Date: 30	MPKIT	
Field Sta				Sample Met	nod: Van ve	een
Water H				Tide Measur		Sample Acceptability Criteria: 1) Overlying water is present
OTM De		n): 39,5 Pl @ 1 59° 27,011 135° 19,614 °	1):45 an	glag Height:	ava 7 Station	2) Water has low turbidity 3) Sampler is not overfilled 4) Surface is flat 5) Desired penetration depth
		V				
Grab#	Time	Confirmed Co	pordinates (datum)	Sample Accept (Y/N)	Recovery Depth	Comments: jaws close, good seal, winnowing, overlying
		NAD 83 (N)	NAD 83 (E)	Accept (1/14)	(cm)	water, surface intact, etc
z 28	10'.45 am	59°07.013 (W1374) 190375.012	135019, 619	10 4	Ham	39 off of low yield but local 39,5 ft is low yield but
-5	11:05 an	59027.011	135 99.615	4	Fcm 7cm	34.8ft - day rield but
7	11:30 am	(WP376) ST a7 . 011 (WP377)	1350 19. 614	7	Yem	39.36 - low ripld but
13	12:00 pm	590 27.011	1350 19.614	4	Jan V	is all so told look to
13	12:10 pm	(w/378) 54. 27. 9(1)	175014.611	4	(orgular ent)	happy water and socks halad
14	19:35 bw	59°, 297.014 (wp180)	135019. 612	4	Scm	bul grat was sold
16.	12:55 Pm	590 27,014	135019.614	7	6.5cm	4411 -> gustero was
17	1:35 pm	59° 27.014 (w7381) 59° 27.014	135° 19.611	4	4.5 cm	45 ft -> Inlut los & coops
12]	- i o pan	(WP3 8a)	112			(gar) v rance.
			13.		/2	
	Description:	minor constituents (%), odor. Structure descrip		e of minor constit		ood, shells). Biota. Sheen,
Gubt		1 (1	ab 3 3 socks w qu	ab 3 . 5 500		the angula of
10	Con roll	tool in Studie	50/ 11/6/de	few la	(3-10cm)	rocks
Grad	11	7	inegalo I vel	sell on	hold pa	less sand the hill
lylas	1. (1 6	/	blorg she		now grate 6 - 7 rolling 7
100		7 1		5 grat 8	10.11	-> net grat 9 sq miss
Sample	Depth: 1	700	provide cill en	(Mais No !)	and in	cobble herepored
Sample	Containers:		CONTRACTOR OF THE PARTY OF THE	Charles Co	arab 14	
yout	(6 -> sime .		robble shilly by	yan uron	lookh	bet make what
Analyse	15. 4 reb 17-3 cm	all coller in leel	a ful creating is	V co bish	tible a	spilles, or gliery

grab 18 5 rolling - nocks

under of and approx sand

	agway sedimen			Station: 58	D 17-	3
Field St				Sample Met	hod: Van v	een
	tor: Golder Ass			oupiojilo.	nou, ran r	0011
Water H	<u>leight</u> epth Sounder (m):		Tide Measur Time: Height:		Sample Acceptability Criter 1) Overlying water is present 2) Water has low turbidity 3) Sampler is not overfilled
Notes: Parked	el stipline	at [WP365]				Surface is flat Desired penetration depth
		•				
Grab#	Time	Confirmed Coo	ordinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (cm)	Comments: jaws close, go seal, winnowing, overlying water, surface intact, etc
£	2:25	59° 37.017	135019,640	4	May 14c	30th interferences
3	2:45	(47 3G5)	-	7 1	Ilem	504- Tabel series
4	3:00		7 Tay 7	Y	- /3cm	-got - gos burd - sit school gate sate
5	3:30	-		4	Bon	Tane as dies -
16	3:45	~	· · · · · ·	7	lacm	14 fat grab - well
フ	4:15	_		7	1704	top layer
				3		- Puebocs
8		7, 0			*	
(4:	Art					

		Surface	Sediment C	ollection	Log	
Job: Ska	gwąy sediment i	nvestigation		Station:	D17-09	*
Job No:	1405529/7000	1657231			APIZIT	
Field Sta	off: SMIP	И		Sample Met	hod: Van v	een
Contract	or: Golder Assoc	iates Ltd				
Water H	eight			Tide Measur	ements	Sample Acceptability Criteria:
DTMD		?		Time:	700000	Overlying water is present Water has low turbidity
Ĩ.	07706 675	= 59° 27.021 >	a fled off ago	Height:	10/14	Sampler is not overfilled Surface is flat
Notes: (1 300	75019,650	of fled off age	yps points t	pr	5) Desired penetration depth
500	uder is plan	dia up pil	13 50 NO 10	aday for	depth	
Grab #	Time		ordinates (datum)	Sample Accept (Y/N)	Recovery Depth	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc
		NAD 83 (N)	NAD 83 (E)		(cm)	(a)
47	5:15		T .	2	13cm Down	? Suple - 1. lack grat.
12	D.1114			(<i>I</i> >	
7 .	5:45			9	Dem Ben	? depth - inhact
-5	6:35	-		4	Idem	? Deple · Sulat
- 6	6:822	-	0	٧.,	19 cm	? Jeph - inhact to sall sed sally
					6	sau ser year
		6				
						@
Grab 1 Grab Mussel Sample	Description: - 1/Man of - 1/	minor constituents (%), podor. Structure description of the second of th	lasticity. Amount and sha ons e man of specific consideration of specific consideration of specific constraints of specific characteristics.	L-puple ON Norms P 1 145 College Hyde 1 146 Sheep Hyde	and a horal of leave as	Had metallic soft location of the soft phone sample soft or sample object visible softs
Analyse	e:					
Analyse	S.		* .		-	7

bols ad los of unssels

kagway sedimer o: 1405529/700 Staff: \(\sqrt{M} \) P actor: Golder Ass Height	00 657331		Station: £1 Date: 271 Sample Metl	617-31 Apr 17 les	@ NDD :-	þ
Staff: 5M/P actor: Golder Ass	TIM .			Apr 17 4=	- MA NUD 17	
ctor: Golder Ass			Sample Meti			ļ
	sociates Lto		- SOTUDON STATE	hod: Van v	een	
Troight			Tide Measur	emente	Sample Acceptability Criteria:	
Depth Sounder (,	Time: Height:	ements	1) Overlying water is present 2) Water has low turbidity 3) Sampler is not overfilled 4) Surface is flat 5) Desired penetration depth	
	DUP-1	rolleded &	er chem	onla	not for lox	
	*			9		
,						
# Time	Confirmed Coo	ordinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (cm)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc	
11100	59, 36,600 (w? 352)	135030,355	4	10 cm 65%	-> dish 'I wan surple	
1 9:00	54° 38, 626 (WT 357)	1350 30.761	ATHER ->	returned 15 cm	Trans day large large	
9:30	59° 28.626	735 90.38 55 Sare	4N	17cm -80% mishty	35.6 Al -> sill of stay robot	
11.00	590 38.637	1350 20.356	4	= 17 cm = 20% = 18,5 cm	37.38+ in last grab (fall) 37.961 - shall grab	
10:18	54038.608	1300 20, 354	7	: 19cm	48.21 - Wall treb	1
19:45	59° 28 .627	1750 20 355	4	= 19ca	48.9 A > Inlant god	
			1			
					- · · · · · · · · · · · · · · · · · · ·	
	Time 11 100 19 100 19 100 10 100 10 11 100 10 11 100	Time Confirmed Coo NAD 83 (N) 11 100 54,36,630 (W7352) 19 00 54,36,630 (W7357) 9:30 54,36,636 (W7357) 9:30 54,36,636 13:45 54,38,636 13:45 54,38,637 MAJOR CONSTITUENT minor constituents (%), plandor. Structure description	Time Confirmed Coordinates (datum) NAD 83 (N) NAD 83 (E)	Time	Time Confirmed Coordinates (datum) NAD 83 (N) NAD 83 (E) Recovery Depth (cm) NAD 83 (N) NAD 83 (E) STOOD DOUB DUE TO WE ATTHEK - RESOND STOOD TO STOOD STOO	Height: 3) Sampler is not overfilled 4) Surface is flat 5) Desired penetration depth Was for low NAD 83 (N) NAD 83 (E) 11 100 54 36 600 125 30 355 9 2 55 66 135 30 366 135 30 366 135 30 366 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16

		nt investigation		Station: 55		6
	1405529/700			Date: 26		
	aff: ≤M/P tor: Golder As:			Sample Met	thod: Van v	reen
Nater F		Sociales Liu		Tide Measu	remente	Comple Assessed Bills O do do
	epth Sounder	(m):		Time:		Sample Acceptability Criteria: 1) Overlying water is present 2) Water has low turbidity 3) Sampler is not overfilled 4) Surface is flat 5) Desired penetration depth
WP341	al contra of	SED17-06 → 8:1	ficult site a move	el slightly		
Grab #	Time		oordinates (datum)	Sample Accept (Y/N)	Recovery Depth	Comments: jaws close, good seal, winnowing, overlying
	11.00	NAD 83 (N)	NAD 83 (E)		(cm)	water, surface intact, etc
1	11:22	(47341) 59°26, 472	135019.601	4	17cm	Soft-law yield due to recks
æ	(9:50	(UP392)		4	~9cm	57N - low yield but lo cod
4	19: 22	590 26.975	135019.684	y	~ OScar	18.998 - low yield but to
5	1:05	54° 36 976	135019.635	Y	- 4cm 30	5911 - low right - is as al
,6	1:15	(WF345)	135 019.635	4	n. 4cm	59.51 - low yell - and local
10	1.50	59°36,970 59°36,977 (47346)	\$ 135019, 636	7	~ 4cm - 80% ~ 3cm ~ 15%	59.51 - low year - no rock
H.	2:05	CIP3477 - 16 11 200	135014,632	4	~3~~	60 ft - weeks simply required
12	2:10	(0) 248) S4036, 175	135014.688	4	~15% ~3cm	6014 - kni yill beat intend
13	Bertlie C	59" 86 . 976	135019.636 4 collabol (w)	of the second	~3cme6	60.514 - low rield but
14	Religional	PUPS 164) 977	150 19. E 1944	7 1950D	~ 7.5 cm	B4.788 - low field but
.15	1:30	59°26.477	1350 19.644	4	10%	64 Fl - Low yield best surfaced to lot
	Description:	MAJOR CONSTITUEN	T GROUP NAME. Moisture plasticity. Amount and sha	e content, density/o pe of minor constitu	consistency, c	olor, major constituent (%), ood, shells). Biota. Sheen,
- reb 1 -	only of specialist	lest sounds -> discorbed	1 6 rab 3 - low gip	1 / 1		osite for cher course
sand same	strate 4 - sin.	longe racks out fines	1	sen in colon	- Rem	(appressed on land
trick aniple	Depth: out.	wind on silt wil		ala top 2	Low we	4/19 -2014 grab 11-3

420 05 6

mussel

	Surface Sediment Collection Log										
8	Job: Ska	agway sedimen	t investigation	Station: 98 \$17 - 08							
		1405529/7000			Date:						
	Field Sta	aff: Sul/Pa	\	Sample Method: Van veen							
	Contractor: Golder Associates Ltd										
	Water F		m):39 11 at today allo	Tide Measurements Time: Height:		Sample Acceptability Criteria: 1) Overlying water is present 2) Water has low turbidity 3) Sampler is not overfilled 4) Surface is flat					
	Notes:	1. 1. 1.	16 Grote 6	the (he flow) for I	for her		5) Desired penetration depth				
	consend of low-low like Grot 6 see (bentlines) recently to lower portal life in it										
	Grab #	Time	Confirmed Coo	ordinates (datum) NAD 83 (E)	Sample Accept (Y/N)	Recovery Depth (cm)	Comments: jaws close, good seal, winnowing, overlying water, surface intact, etc				
Cheur	1	8:15	59°26.993	135 * 14.65 8	7	7.500n = 240%	39 th - surface interf Him layer of our intermentally people likely				
	2	8:30	59026. 997	135019.660	7	9cm = 2500					
	3	8:45	59° 26.993 (wp332)	135°19.658	4	9 cm = ~ 50%	4087 - Sex fuce , what, works,				
	5	9:15	590 26.116 (WP333)	1350 19.641	4	= 8 cm = = 45%	entite surent what worms				
Benflins	Е	9.55	659°36, 913 (W7374)	1350 19.6 58	7 (-	= Boun = = 47 %	4511 - serviced interly waves				
	8	10:19	59° 36, 999 (INP 355-rock; 376)	135 19.638	Y	= 9.5 cm	48 CAT 44 m layer at ON				
	R	10:45	59° 26. 989 CUP337-rock G5339	VP340) 1 490 =	7	=7.3 =-40%	48.5 ft -> 50.9 while son certains an amount of our				
	Sample	Description:	MAJOR CONSTITUENT	GROUP NAME. Moisture lasticity. Amount and shap		-	color, major constituent (%), yood, shells). Biota. Sheen,				
	Grate 1	Dage greg-	green is med sand	I will some so	nall broken al	ielly muscol	s ad kelp e tood				
	Grab's - Hard noded coarse soul of with sill area grow no odour no street.										
	for the of types of continent constructed and such that leave will mostly they are mixed										
, j	Sample Depth: We can dock green date are wisely to a greet of 9 - 100k.										
	cast use need 10 - low wield was user a cab 11 - rock was 12										
	Sample	Containers: (rubla > & proper so	of well with small	10.00		eres by clay shelk				
	Automas (moken)										

			Sediment C			~	
		nt investigation					
	1405529/700	100		Apr 17			
Field St		7M		Sample Met	hód: Van v	reen	
	tor: Golder Ass	ociates Ltd		- Kirking den i napoline	e marcana que		
	pth Sounder (59° 26.	957 N		Tide Measur Time: 9 Height:	Sample Acceptability Criteria: 1) Overlying water is present 2) Water has low turbidity 3) Sampler is not overfilled 4) Surface is flat 5) Desired penetration depth		
Secu	-ed with	anchor	Charles and Charle	(v.o.,			
Grab #	Time	Confirmed Co	pordinates (datum)	Sample	Recovery	Comments: jaws close, good seal, winnowing, overlying	
		NAD 83 (N)	NAD 83 (E/W	Accept (Y/N)	Depth (cm)	water, surface intact, etc	
	9:30 an	59, 26, 957 N 135° 17, 706 W	/	N	1	issaes with	
7	10:40 m	542 06.449 PC	175°19.719 135°19.706 7	7	28au	Salt deply segund	
3	11:15	WP 324)	6 590135	4	29cm	54.0ft dock	
W/s	11:55	59 926 , 957	135° 19.714	N	29cm	SGAK -quall and of	
6	1:00	59°26.955 (WP 329)	135-814.701	(2006	60 ht -> 504, missels	
7	2:30	59026.966	1350 19. 690	Y	26cm ~ 40%	59.1 At - by mussels	
8	3:00	59° 26.966	1350 19 0690	Y	~6cm	58.1 At soulis milita	
A ab	Description: a: Ganall un b: Senall un c: Hard locu c: Senall un c: Hard locu c: Senall un	MAJOR CONSTITUENT minor constituents (%), p odor. Structure descript of uscs solid, a	GROUP NAME. Moisture plasticity. Amount and shap ions	e of minor constitution of minor constitutio	uents (e.g., w	color, major constituent (%), rood, shells). Biota. Sheen, The glosse admin of purple out an authority of the constituent (%), rood, shells). Biota. Sheen, Purple out an authority of the constituent (%), rood, shells). Biota. Sheen, Purple out an authority of the constituent (%), rood, shells). Biota. Sheen, Purple out an authority of the constituent (%), rood, shells). Biota. Sheen, Purple out an authority of the constituent (%), rood, shells). Biota. Sheen, Purple out an authority of the constituent (%), rood, shells). Biota. Sheen, Purple out an authority of the constituent (%), rood, shells). Biota. Sheen, Purple out an authority of the constituent (%), rood, shells). Biota. Sheen, Purple out an authority out an authority of the constituent (%), rood, shells). Biota. Sheen, Purple out an authority out and authority out an authority out and autho	

APPENDIX D

Sediment and Tissue Analytical Reports

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T:+1 360 577 7222

F: +1 360 636 1068 www.alsglobal.com

May 05, 2017

Analytical Report for Service Request No: K1704246

Tamra Reynolds Golder Associates Ltd. Suite 201C, 170 Titanium Way Whitehorse, YT Y1A0G1

RE: Skagway-Sediment 2017 / 1657231

Dear Tamra,

Enclosed are the results of the sample(s) submitted to our laboratory April 29, 2017 For your reference, these analyses have been assigned our service request number **K1704246**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsqlobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Howard Holmes Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

Metals

Polynuclear Aromatic Hydrocarbons

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- \boldsymbol{Q} $\;\;$ See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	Not available	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPermitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Maine DHS	Not available	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS ENVIRONMENTAL

Client: Golder Associates Service Request No.: K1704246
Project: Skagway Sediments/1657231 Date Received: 4/29/2017

Sample Matrix: Sediment

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Laboratory Control Sample (LCS).

Sample Receipt

Three sediment samples were received for analysis at ALS Environmental on 4/29/2017. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Total Metals

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) for the replicate analysis of Calcium and Silver in sample SED17-05 was outside the normal ALS control limits. The variability in the results was attributed to the heterogeneous character of the sample. Standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

Matrix Spike Recovery Exceptions:

Antimony recoveries are generally low for soil and sediment samples when digested using EPA Method 3050B. Despite anticipated low recoveries, the method is still generally prescribed because of its versatility for general metals analysis. Antimony results (in conjunction with the matrix spike recovery) from this procedure should only be used as indicators to estimate concentrations. The matrix spike recovery of Antimony for sample SED17-05 was below the ALS control criterion. Since low recoveries resulted from a method defect and were possibly magnified by certain matrix components, no corrective action was appropriate. Alternative procedures that specifically target Antimony are available but were not specified for this project. The associated QA/QC results (e.g. control sample, calibration standards, etc.) indicated the analysis was in control.

No other anomalies associated with the analysis of these samples were observed.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270

Matrix Spike Recovery Exceptions:

The control criteria for matrix spike recovery of multiple analytes for sample Batch QC were not applicable. The analyte concentrations in the sample were significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Approved by Approved by

Lab Control Sample Exceptions:

The recoveries of multiple analytes in LCS/DLCS KWG1703532-3/KWG1703532-4 were outside the control limits listed in the results summary. The limits are default values temporarily in use until sufficient data points are generated to calculate statistical control limits. Based on the method and historic data, the recoveries observed were in the range expected for this procedure. No further corrective action was taken.

No other anomalies associated with the analysis of these samples were observed.

Approved by Award Holen

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here (lab use only).

INITIAL COOLER TEMPERATURES C.

Received by:

K1704246 coc Number: 15 - 594998

FINAL COOLER TEMPERATURES *C

OCTOBER 2015 FROM

FINAL SHIPMENT RECEPTION (lab use only)

Environmental

Canada Toll Free: 1 800 668 9878 www.alsglobal.com Report To Contact and company name below will appear on the final report Report Format / Distribution elect Service Lavel Below - Please confirm all E&P TATs with your AM - surcharges will apply Select Report Format: PDF / EXCEL EDD (DIGITAL) Company: Golden associales LTD Regular [R] Standard TAT if received by 3 pm - business days - no surcharges apply Tamra Reynolds
1-067-6334-4468

Company address below will appear on the final report Quality Control (QC) Report with Report YES NO Contact: 4 day [P4] 1 Business day [E1] Compare Results to Criteria on Report - provide details below if box checked Phone: 3 day [P3] Same Day, Weekend or Statutory MEMAIL MAIL FAX holiday [E0] Select Distribution: 2 day [P2] Email 1 or Fax TJREYNOLDS C golder.com 170-2016T. Ignium Way Whitehorse, Lukon Date and Time Required for all E&P TATs: Email 2 PADDY_MCM ADUS Q golder com For tests that can not be performed according to the service level selected, you will be contacted City/Province: Y1A 061 Email 3 UMERCERQ actor . com Postal Code Analysis Request YES NO Invoice Distribution Same as Report To Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below nvoice To MAIL FAX Copy of Invoice with Report A YES NO Select Invoice Distribution: Same as report Email 1 or Fax Company: Contact: Email 2 Number of Containers Oil and Gas Required Fields (client use) **Project Information** ALS Account # / Quote #: 41037 AFE/Cost Center Job #: 165723 Major/Minor Code Routing Code: PO/AFE Requisitioner: ocation らいといろうと ALS Contact: Told Pay Fair Sampler: PM/SM PAHS ALS Lab Work Order # (lab use only) Sample Identification and/or Coordinates ALS Sample # Sample Type (lab use only) (This description will appear on the report) (dd-mmm-vv) (hh:mm) 25-14-17 17:00 Stellinger) SED17-05 SED 17 -08 26-APR-17 17:00 SEDIY- OF 26-APR-17 17:00 SAMPLE CONDITION AS RECEIVED (lab use only) Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below Drinking Water (DW) Samples1 (client use) SIF Observations Phase archive invosed simples. 5-day turnased on metals and PAHs regular turn around on GS and TOC. Wait for directions for DRO: AUSISEM Are samples taken from a Regulated DW System? Ice Packs YES NO Cooling Initiated

SHIPMENT RELEASE (client use)

Are samples for human drinking water use?

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

Received by

7 600

1. If any water samples are taken from a Regulated Drinking Water (DW). System, please submit using an Authorized DW COC form.

37 - A PR-17

INITIAL SHIPMENT RECEPTION (lab use only)

Samples were received via? USPS Fed Ex UPS DHL PDX Courier Hand Delivered Samples were received in: (circle) Cooler Box Envelope Other NA Were custody seals on coolers? NA N If yes, how many and where? I Front If present, were custody seals intact? N If present, were they signed and dated?	r.
in present, were they signed and dated?	
	⁸ N
Cooler Temp Cooler Temp Blank Temp Blank Factor ID NA Tracking Number	NA File
32 3.2 -0.1 375 027 1941 1092	1
Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves Rox willing to	
Were custody papers properly filled out (ink, signed, etc.)?	N
were samples received in good condition (temperature, unbroken)? Indicate in the table below.	
Were all sample labels complete (i.e analysis, preservation etc.)?	
Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the state of the st	
were appropriate bottles/containers and volumes received for the tests indicated?	
Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below.	N N
were VOA vials received without headspace? Indicate in the table below.	N
Was C12/Res negative?	N
Sample ID on Bottle Sample ID on COC Identified by:	
Sample ID Bottle Count Bottle Type Temp space Broke pH Reagent Volume added Number Initials	Time
	4
	1224
tes, Discrepancies, & Resolutions:	•
	VI - 411

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Analysis Method: 160.3 Modified

Prep Method: None

Service Request: K1704246

Date Collected: 04/25/17 - 04/26/17

Date Received: 04/29/17

Units: Percent

Basis: As Received

Solids, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
SED17-05	K1704246-001	73.5	-	1	05/01/17 17:04	
SED17-08	K1704246-002	79.4	-	1	05/01/17 17:04	
SED17-06	K1704246-003	77.9	-	1	05/01/17 17:04	

QA/QC Report

Client: Golder Associates, Inc.

Project Skagway-Sediment 2017/1657231

Sample Matrix: Solid Fuel

Analysis Method: 160.3 Modified

Prep Method: None

Service Request:K1704246 **Date Collected:**04/25/17

Date Received: 04/29/17

Units:Percent

Basis: As Received

Replicate Sample Summary Inorganic Parameters

			Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	Result	Result	Average	RPD	Limit	Analyzed
Batch QC	K1704164-001DUP	-	52.3	55.5	53.9	6	20	05/01/17
SED17-05	K1704246-001DUP	-	73.5	74.3	73.9	1	20	05/01/17

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/2/2017 11:19:53 AM Superset Reference:17-0000420284 rev 00

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231 **Date Collected:** 04/25/17 17:00

Sample Matrix: Sediment

Date Received: 04/29/17 09:10

Service Request: K1704246

Sample Name: SED17-05 Basis: Dry

Lab Code: K1704246-001

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	10800	mg/Kg	2.4	2	05/03/17 12:03	05/01/17	
Antimony	6020A	ND U	mg/Kg	0.060	5	05/03/17 08:44	05/01/17	
Arsenic	6020A	2.03	mg/Kg	0.60	5	05/03/17 08:44	05/01/17	
Barium	6010C	235	mg/Kg	0.96	2	05/03/17 12:03	05/01/17	
Beryllium	6020A	0.197	mg/Kg	0.024	5	05/03/17 08:44	05/01/17	
Cadmium	6020A	0.248	mg/Kg	0.024	5	05/03/17 08:44	05/01/17	
Calcium	6010C	6240	mg/Kg	4.8	2	05/03/17 12:03	05/01/17	
Chromium	6020A	11.7	mg/Kg	0.24	5	05/03/17 08:44	05/01/17	
Cobalt	6020A	5.66	mg/Kg	0.024	5	05/03/17 08:44	05/01/17	
Copper	6020A	34.3	mg/Kg	0.12	5	05/03/17 08:44	05/01/17	
Iron	6010C	21500	mg/Kg	4.8	2	05/03/17 12:03	05/01/17	
Lead	6020A	82.6	mg/Kg	0.060	5	05/03/17 08:44	05/01/17	
Magnesium	6010C	7130	mg/Kg	2.4	2	05/03/17 12:03	05/01/17	
Manganese	6010C	286	mg/Kg	0.24	2	05/03/17 12:03	05/01/17	
Mercury	7471B	0.139	mg/Kg	0.023	1	05/03/17 11:26	05/02/17	
Nickel	6020A	6.18	mg/Kg	0.24	5	05/03/17 08:44	05/01/17	
Potassium	6010C	4940	mg/Kg	48	2	05/03/17 12:03	05/01/17	
Selenium	6020A	ND U	mg/Kg	1.2	5	05/03/17 08:55	05/01/17	
Silver	6020A	0.287	mg/Kg	0.024	5	05/03/17 08:44	05/01/17	
Sodium	6010C	4740	mg/Kg	48	2	05/03/17 12:03	05/01/17	
Thallium	6020A	0.247	mg/Kg	0.024	5	05/03/17 08:44	05/01/17	
Vanadium	6020A	38.5	mg/Kg	0.24	5	05/03/17 08:44	05/01/17	
Zinc	6010C	171	mg/Kg	1.2	2	05/03/17 12:03	05/01/17	

Printed 5/4/2017 10:39:24 AM Superset Reference:

Analytical Report

Client: Golder Associates, Inc.

Service Request: K1704246 **Date Collected:** 04/26/17 17:00 **Project:** Skagway-Sediment 2017/1657231

Date Received: 04/29/17 09:10 **Sample Matrix:** Sediment

Sample Name: SED17-08 Basis: Dry

Lab Code: K1704246-002

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	7950	mg/Kg	2.3	2	05/03/17 12:14	05/01/17	
Antimony	6020A	0.120	mg/Kg	0.057	5	05/03/17 09:05	05/01/17	
Arsenic	6020A	3.69	mg/Kg	0.57	5	05/03/17 09:05	05/01/17	
Barium	6010C	187	mg/Kg	0.91	2	05/03/17 12:14	05/01/17	
Beryllium	6020A	0.212	mg/Kg	0.023	5	05/03/17 09:05	05/01/17	
Cadmium	6020A	0.325	mg/Kg	0.023	5	05/03/17 09:05	05/01/17	
Calcium	6010C	9760	mg/Kg	4.5	2	05/03/17 12:14	05/01/17	
Chromium	6020A	12.9	mg/Kg	0.23	5	05/03/17 09:05	05/01/17	
Cobalt	6020A	6.63	mg/Kg	0.023	5	05/03/17 09:05	05/01/17	
Copper	6020A	207	mg/Kg	0.11	5	05/03/17 09:05	05/01/17	
Iron	6010C	17700	mg/Kg	4.5	2	05/03/17 12:14	05/01/17	
Lead	6020A	594	mg/Kg	0.057	5	05/03/17 09:05	05/01/17	
Magnesium	6010C	5480	mg/Kg	2.3	2	05/03/17 12:14	05/01/17	
Manganese	6010C	258	mg/Kg	0.23	2	05/03/17 12:14	05/01/17	
Mercury	7471B	0.287	mg/Kg	0.025	1	05/03/17 11:32	05/02/17	
Nickel	6020A	6.30	mg/Kg	0.23	5	05/03/17 09:05	05/01/17	
Potassium	6010C	3800	mg/Kg	45	2	05/03/17 12:14	05/01/17	
Selenium	6020A	ND U	mg/Kg	1.1	5	05/03/17 09:05	05/01/17	
Silver	6020A	0.521	mg/Kg	0.023	5	05/03/17 09:05	05/01/17	
Sodium	6010C	3420	mg/Kg	45	2	05/03/17 12:14	05/01/17	
Thallium	6020A	0.280	mg/Kg	0.023	5	05/03/17 09:05	05/01/17	
Vanadium	6020A	42.7	mg/Kg	0.23	5	05/03/17 09:05	05/01/17	
Zinc	6010C	261	mg/Kg	1.1	2	05/03/17 12:14	05/01/17	

Printed 5/4/2017 10:39:25 AM Superset Reference:

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231 **Date Collected:** 04/26/17 17:00

Sample Matrix: Sediment

Date Received: 04/29/17 09:10

Service Request: K1704246

Sample Name: SED17-06 Basis: Dry

Lab Code: K1704246-003

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	7660	mg/Kg	2.3	2	05/03/17 12:16	05/01/17	
Antimony	6020A	ND U	mg/Kg	0.057	5	05/03/17 09:09	05/01/17	
Arsenic	6020A	1.85	mg/Kg	0.57	5	05/03/17 09:09	05/01/17	
Barium	6010C	163	mg/Kg	0.92	2	05/03/17 12:16	05/01/17	
Beryllium	6020A	0.177	mg/Kg	0.023	5	05/03/17 09:09	05/01/17	
Cadmium	6020A	0.214	mg/Kg	0.023	5	05/03/17 09:09	05/01/17	
Calcium	6010C	2920	mg/Kg	4.6	2	05/03/17 12:16	05/01/17	
Chromium	6020A	9.91	mg/Kg	0.23	5	05/03/17 09:09	05/01/17	
Cobalt	6020A	5.25	mg/Kg	0.023	5	05/03/17 09:09	05/01/17	
Copper	6020A	43.2	mg/Kg	0.11	5	05/03/17 09:09	05/01/17	
Iron	6010C	15500	mg/Kg	4.6	2	05/03/17 12:16	05/01/17	
Lead	6020A	73.5	mg/Kg	0.057	5	05/03/17 09:09	05/01/17	
Magnesium	6010C	5150	mg/Kg	2.3	2	05/03/17 12:16	05/01/17	
Manganese	6010C	209	mg/Kg	0.23	2	05/03/17 12:16	05/01/17	
Mercury	7471B	0.071	mg/Kg	0.020	1	05/03/17 11:34	05/02/17	
Nickel	6020A	5.26	mg/Kg	0.23	5	05/03/17 09:09	05/01/17	
Potassium	6010C	3380	mg/Kg	46	2	05/03/17 12:16	05/01/17	
Selenium	6020A	ND U	mg/Kg	1.1	5	05/03/17 09:09	05/01/17	
Silver	6020A	0.164	mg/Kg	0.023	5	05/03/17 09:09	05/01/17	
Sodium	6010C	3540	mg/Kg	46	2	05/03/17 12:16	05/01/17	
Thallium	6020A	0.192	mg/Kg	0.023	5	05/03/17 09:09	05/01/17	
Vanadium	6020A	35.6	mg/Kg	0.23	5	05/03/17 09:09	05/01/17	
Zinc	6010C	114	mg/Kg	1.1	2	05/03/17 12:16	05/01/17	

Printed 5/4/2017 10:39:25 AM Superset Reference:

Analytical Report

Service Request: K1704246

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231 Date Collected: NA

Sample Matrix: Sediment Date Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ1705236-01

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	ND U	mg/Kg	2	2	05/03/17 11:51	05/01/17	
Antimony	6020A	ND U	mg/Kg	0.05	5	05/03/17 08:37	05/01/17	
Arsenic	6020A	ND U	mg/Kg	0.5	5	05/03/17 08:37	05/01/17	
Barium	6010C	ND U	mg/Kg	0.8	2	05/03/17 11:51	05/01/17	
Beryllium	6020A	ND U	mg/Kg	0.020	5	05/03/17 08:37	05/01/17	
Cadmium	6020A	ND U	mg/Kg	0.020	5	05/03/17 08:37	05/01/17	
Calcium	6010C	ND U	mg/Kg	4	2	05/03/17 11:51	05/01/17	
Chromium	6020A	ND U	mg/Kg	0.20	5	05/03/17 08:37	05/01/17	
Cobalt	6020A	ND U	mg/Kg	0.020	5	05/03/17 08:37	05/01/17	
Copper	6020A	ND U	mg/Kg	0.10	5	05/03/17 08:37	05/01/17	
Iron	6010C	ND U	mg/Kg	4	2	05/03/17 11:51	05/01/17	
Lead	6020A	ND U	mg/Kg	0.05	5	05/03/17 08:37	05/01/17	
Magnesium	6010C	ND U	mg/Kg	2	2	05/03/17 11:51	05/01/17	
Manganese	6010C	ND U	mg/Kg	0.2	2	05/03/17 11:51	05/01/17	
Nickel	6020A	ND U	mg/Kg	0.20	5	05/03/17 08:37	05/01/17	
Potassium	6010C	ND U	mg/Kg	40	2	05/03/17 11:51	05/01/17	
Selenium	6020A	ND U	mg/Kg	1.0	5	05/03/17 08:37	05/01/17	
Silver	6020A	ND U	mg/Kg	0.020	5	05/03/17 08:37	05/01/17	
Sodium	6010C	ND U	mg/Kg	40	2	05/03/17 11:51	05/01/17	
Thallium	6020A	ND U	mg/Kg	0.020	5	05/03/17 08:37	05/01/17	
Vanadium	6020A	ND U	mg/Kg	0.20	5	05/03/17 08:37	05/01/17	
Zinc	6010C	ND U	mg/Kg	1.0	2	05/03/17 11:51	05/01/17	

Printed 5/4/2017 10:39:25 AM Superset Reference:

Analytical Report

Client: Golder Associates, Inc. Service Request: K1704246

Project:Skagway-Sediment 2017/1657231Date Collected:NASample Matrix:SedimentDate Received:NA

Sample Name:Method BlankBasis: DryLab Code:KQ1705270-01

ND U

7471B

Mercury

Total Metals

mg/Kg

0.02

Q

05/02/17

05/03/17 11:03

Analysis
Analyte Name Method Result Units MRL Dil. Date Analyzed Date Extracted

Printed 5/4/2017 10:39:26 AM Superset Reference:

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc.

Project Skagway-Sediment 2017/1657231

Sample Matrix: Sediment **Service Request:** K1704246

Date Collected: 04/25/17 **Date Received:** 04/29/17

Date Analyzed: 05/03/17

Replicate Sample Summary Total Metals

Units: mg/Kg

Sample Name: SED17-05 Lab Code: K1704246-001 Basis: Dry **Duplicate Sample**

	Analysis		Sample	KQ1705236-03			
Analyte Name	Method	MRL	Result	Result	Average	RPD	RPD Limit
Aluminum	6010C	2.4	10800	11000	10900	2	20
Antimony	6020A	0.061	ND U	ND U	ND	-	20
Arsenic	6020A	0.61	2.03	2.47	2.25	19	20
Barium	6010C	0.97	235	247	241	5	20
Beryllium	6020A	0.024	0.197	0.206	0.202	5	20
Cadmium	6020A	0.024	0.248	0.241	0.245	3	20
Calcium	6010C	4.9	6240	4530	5390	32 *	20
Chromium	6020A	0.24	11.7	11.9	11.8	1	20
Cobalt	6020A	0.024	5.66	5.80	5.73	2	20
Copper	6020A	0.12	34.3	34.8	34.6	1	20
Iron	6010C	4.9	21500	22000	21800	2	20
Lead	6020A	0.061	82.6	88.1	85.4	7	20
Magnesium	6010C	2.4	7130	7160	7150	<1	20
Manganese	6010C	0.24	286	296	291	3	20
Nickel	6020A	0.24	6.18	6.21	6.20	<1	20
Potassium	6010C	49	4940	5060	5000	3	20
Selenium	6020A	1.2	ND U	ND U	ND	-	20
Silver	6020A	0.024	0.287	0.180	0.234	46 *	20
Sodium	6010C	49	4740	4760	4750	<1	20
Thallium	6020A	0.024	0.247	0.228	0.238	8	20
Vanadium	6020A	0.24	38.5	40.2	39.4	4	20
Zinc	6010C	1.2	171	164	168	4	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/4/2017 10:39:25 AM Superset Reference:

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc.

Service Request: K1704246

Project Skagway-Sediment 2017/1657231

Date Collected: 04/25/17 **Date Received:** 04/29/17

Sample Matrix: Sediment

Date Analyzed: 05/03/17

Replicate Sample Summary

Total Metals

0.139

Sample Name: SED17-05

Units: mg/Kg

K1704246-001

7471B

MRL

0.025

Basis: Dry

Duplicate Sample

Analyte Name Analyte Method

Lab Code:

Mercury

Sample KQ1705270-10 Result Result

 Result
 Average
 RPD
 RPD Limit

 0.119
 0.129
 16
 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/4/2017 10:39:26 AM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Date Collected: 04/25/17
Date Received: 04/29/17
Date Analyzed: 5/3/17

Service Request:K1704246

Matrix Spike Summary Total Metals

Sample Name: SED17-05 **Lab Code:** K1704246-001

Units:mg/Kg Basis:Dry

Matrix Spike KQ1705236-04

Analyte Name	Method	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	6010C	10800	10900	453	12#	75-125
Antimony	6020A	ND U	32.6	113	29 N	75-125
Arsenic	6020A	2.03	115	113	100	75-125
Barium	6010C	235	456	226	98	75-125
Beryllium	6020A	0.197	11.4	11.3	99	75-125
Cadmium	6020A	0.248	11.9	11.3	103	75-125
Calcium	6010C	6240	6030	1130	-19#	75-125
Chromium	6020A	11.7	55.8	45.3	98	75-125
Cobalt	6020A	5.66	121	113	102	75-125
Copper	6020A	34.3	92.5	56.6	103	75-125
Iron	6010C	21500	21300	226	-60 #	75-125
Lead	6020A	82.6	179	113	85	75-125
Magnesium	6010C	7130	8110	1130	87 #	75-125
Manganese	6010C	286	391	113	93	75-125
Nickel	6020A	6.18	120	113	100	75-125
Potassium	6010C	4940	5890	1130	85 #	75-125
Selenium	6020A	ND U	113	113	100	75-125
Silver	6020A	0.287	11.3	11.3	98	75-125
Sodium	6010C	4740	5810	1130	95 #	75-125
Thallium	6020A	0.247	22.1	22.6	97	75-125
Vanadium	6020A	38.5	151	113	100	75-125
Zinc	6010C	171	265	113	83	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/4/2017 10:39:25 AM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: Date Collected:

K1704246

Date Received:

04/25/17 04/29/17

Date Analyzed:

05/3/17

Date Extracted:

05/2/17

Matrix Spike Summary

Total Metals

Sample Name: SED17-05

Lab Code:

K1704246-001

Analysis Method: Prep Method:

7471B

Method

Units: Basis: mg/Kg Dry

Matrix Spike

KQ1705270-11

Analyte Name Sample Result Spike Amount % Rec % Rec Limits Result Mercury 0.139 0.710 0.592 96 80-120

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/4/2017 10:39:26 AM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Lab Control Sample Summary Total Metals

> Units:mg/Kg Basis:Dry

Service Request: K1704246

Date Analyzed: 05/03/17

Lab Control Sample

KQ1705236-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	6010C	7560	7930	95	39-161
Barium	6010C	332	308	108	74-126
Calcium	6010C	6920	6610	105	74-126
Iron	6010C	12900	14400	89	36-164
Magnesium	6010C	2730	2640	103	64-136
Manganese	6010C	432	410	105	76-124
Potassium	6010C	2620	2550	103	61-139
Sodium	6010C	3350	2480	135	65-173
Zinc	6010C	197	191	103	70-130

Printed 5/4/2017 10:39:25 AM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Lab Control Sample Summary Total Metals

> Units:mg/Kg Basis:Dry

Service Request: K1704246

Date Analyzed: 05/03/17

Lab Control Sample

KQ1705236-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Antimony	6020A	67.3	105	64	20-254
Arsenic	6020A	102	98.5	104	69-145
Beryllium	6020A	74.5	66.0	113	74-126
Cadmium	6020A	175	146	120	73-127
Chromium	6020A	199	182	110	71-130
Cobalt	6020A	190	162	118	74-125
Copper	6020A	115	106	108	75-125
Lead	6020A	137	130	105	72-127
Nickel	6020A	179	149	120	73-127
Selenium	6020A	169	154	110	68-132
Silver	6020A	43.4	40.9	106	66-134
Thallium	6020A	194	175	111	69-131
Vanadium	6020A	107	96.7	111	65-135

Printed 5/4/2017 10:39:25 AM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix:

Sediment

Service Request: K1704246

Date Analyzed: 05/03/17

Lab Control Sample Summary Total Metals

> Units:mg/Kg Basis:Dry

Lab Control Sample

KQ1705270-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Mercury	7471B	7.13	7.10	100	51-149

Printed 5/4/2017 10:39:26 AM Superset Reference:

Polynuclear Aromatic Hydrocarbons

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment Service Request: K1704246 **Date Collected:** 04/25/2017 **Date Received:** 04/29/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-05 Lab Code: K1704246-001 **Extraction Method:** EPA 3546

Analysis Method:

8270D SIM

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
	ND U	6.7	1	05/02/17	05/04/17	KWG1703532	11010
Naphthalene			1				
2-Methylnaphthalene	ND U	6.7	1	05/02/17	05/04/17	KWG1703532	
Acenaphthylene	10	6.7	1	05/02/17	05/04/17	KWG1703532	*
Acenaphthene	ND U	6.7	1	05/02/17	05/04/17	KWG1703532	
Dibenzofuran	ND U	6.7	1	05/02/17	05/04/17	KWG1703532	
Fluorene	ND U	6.7	1	05/02/17	05/04/17	KWG1703532	
Phenanthrene	33	6.7	1	05/02/17	05/04/17	KWG1703532	
Anthracene	25	6.7	1	05/02/17	05/04/17	KWG1703532	
Fluoranthene	160	6.7	1	05/02/17	05/04/17	KWG1703532	
Pyrene	160	6.7	1	05/02/17	05/04/17	KWG1703532	
Benz(a)anthracene	150	6.7	1	05/02/17	05/04/17	KWG1703532	*
Chrysene	150	6.7	1	05/02/17	05/04/17	KWG1703532	
Benzo(b)fluoranthene†	140	6.7	1	05/02/17	05/04/17	KWG1703532	
Benzo(k)fluoranthene	57	6.7	1	05/02/17	05/04/17	KWG1703532	
Benzo(a)pyrene	73	6.7	1	05/02/17	05/04/17	KWG1703532	
Indeno(1,2,3-cd)pyrene	29	6.7	1	05/02/17	05/04/17	KWG1703532	
Dibenz(a,h)anthracene	8.8	6.7	1	05/02/17	05/04/17	KWG1703532	
Benzo(g,h,i)perylene	25	6.7	1	05/02/17	05/04/17	KWG1703532	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	89	38-104	05/04/17	Acceptable
Fluoranthene-d10	100	39-109	05/04/17	Acceptable
Terphenyl-d14	110	38-113	05/04/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/05/2017 Form 1A - Organic Page 1 of 11:06:39 Page 29 of 35

Merged

SuperSet Reference:

RR198007

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment Service Request: K1704246 **Date Collected:** 04/26/2017 **Date Received:** 04/29/2017

Units: ug/Kg

Basis: Dry

Level: Low

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-08 Lab Code: K1704246-002

Analysis Method:

EPA 3546

Extraction Method: 8270D SIM

A 1 / N	D 14 0	MDI	Dilution	Date	Date	Extraction	NT 4
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	6.2	1	05/02/17	05/04/17	KWG1703532	
2-Methylnaphthalene	ND U	6.2	1	05/02/17	05/04/17	KWG1703532	
Acenaphthylene	ND U	6.2	1	05/02/17	05/04/17	KWG1703532	*
Acenaphthene	ND U	6.2	1	05/02/17	05/04/17	KWG1703532	
Dibenzofuran	ND U	6.2	1	05/02/17	05/04/17	KWG1703532	
Fluorene	15	6.2	1	05/02/17	05/04/17	KWG1703532	
Phenanthrene	77	6.2	1	05/02/17	05/04/17	KWG1703532	
Anthracene	21	6.2	1	05/02/17	05/04/17	KWG1703532	
Fluoranthene	150	6.2	1	05/02/17	05/04/17	KWG1703532	
Pyrene	100	6.2	1	05/02/17	05/04/17	KWG1703532	
Benz(a)anthracene	83	6.2	1	05/02/17	05/04/17	KWG1703532	*
Chrysene	150	6.2	1	05/02/17	05/04/17	KWG1703532	
Benzo(b)fluoranthene†	94	6.2	1	05/02/17	05/04/17	KWG1703532	
Benzo(k)fluoranthene	37	6.2	1	05/02/17	05/04/17	KWG1703532	
Benzo(a)pyrene	40	6.2	1	05/02/17	05/04/17	KWG1703532	
Indeno(1,2,3-cd)pyrene	17	6.2	1	05/02/17	05/04/17	KWG1703532	
Dibenz(a,h)anthracene	ND U	6.2	1	05/02/17	05/04/17	KWG1703532	
Benzo(g,h,i)perylene	14	6.2	1	05/02/17	05/04/17	KWG1703532	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	80	38-104	05/04/17	Acceptable
Fluoranthene-d10	88	39-109	05/04/17	Acceptable
Terphenyl-d14	88	38-113	05/04/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/05/2017 Form 1A - Organic Page 1 of 11:06:43

Merged

Page 30 of 35

SuperSet Reference:

RR198007

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment Service Request: K1704246 **Date Collected:** 04/26/2017 **Date Received:** 04/29/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-06 Lab Code: K1704246-003 **Extraction Method:** EPA 3546

Analysis Method:

8270D SIM

Units: ug/Kg Basis: Dry

Level: Low

Anakita Nama	Posult O	MRL	Dilution Factor	Date Extracted	Date	Extraction Lot	Note
Analyte Name	Result Q		ractor	Extracted	Analyzed		Note
Naphthalene	ND U	6.3	1	05/02/17	05/04/17	KWG1703532	
2-Methylnaphthalene	ND U	6.3	1	05/02/17	05/04/17	KWG1703532	
Acenaphthylene	ND U	6.3	1	05/02/17	05/04/17	KWG1703532	*
Acenaphthene	ND U	6.3	1	05/02/17	05/04/17	KWG1703532	
Dibenzofuran	ND U	6.3	1	05/02/17	05/04/17	KWG1703532	
Fluorene	ND U	6.3	1	05/02/17	05/04/17	KWG1703532	
Phenanthrene	27	6.3	1	05/02/17	05/04/17	KWG1703532	
Anthracene	13	6.3	1	05/02/17	05/04/17	KWG1703532	
Fluoranthene	73	6.3	1	05/02/17	05/04/17	KWG1703532	
Pyrene	51	6.3	1	05/02/17	05/04/17	KWG1703532	
Benz(a)anthracene	46	6.3	1	05/02/17	05/04/17	KWG1703532	*
Chrysene	40	6.3	1	05/02/17	05/04/17	KWG1703532	
Benzo(b)fluoranthene†	72	6.3	1	05/02/17	05/04/17	KWG1703532	
Benzo(k)fluoranthene	29	6.3	1	05/02/17	05/04/17	KWG1703532	
Benzo(a)pyrene	36	6.3	1	05/02/17	05/04/17	KWG1703532	
Indeno(1,2,3-cd)pyrene	15	6.3	1	05/02/17	05/04/17	KWG1703532	
Dibenz(a,h)anthracene	ND U	6.3	1	05/02/17	05/04/17	KWG1703532	
Benzo(g,h,i)perylene	12	6.3	1	05/02/17	05/04/17	KWG1703532	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	71	38-104	05/04/17	Acceptable
Fluoranthene-d10	84	39-109	05/04/17	Acceptable
Terphenyl-d14	81	38-113	05/04/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/05/2017 Form 1A - Organic Page 1 of 11:06:47

Merged

Page 31 of 35

SuperSet Reference:

RR198007

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Soil Service Request: K1704246 Date Collected: NA Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name: Method Blank Lab Code: KWG1703532-5

Extraction Method: Analysis Method:

EPA 3546

8270D SIM

Units: ug/Kg Basis: Dry

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	4.9	1	05/02/17	05/04/17	KWG1703532	
2-Methylnaphthalene	ND U	4.9	1	05/02/17	05/04/17	KWG1703532	
Acenaphthylene	ND U	4.9	1	05/02/17	05/04/17	KWG1703532	*
Acenaphthene	ND U	4.9	1	05/02/17	05/04/17	KWG1703532	
Dibenzofuran	ND U	4.9	1	05/02/17	05/04/17	KWG1703532	
Fluorene	ND U	4.9	1	05/02/17	05/04/17	KWG1703532	
Phenanthrene	ND U	4.9	1	05/02/17	05/04/17	KWG1703532	
Anthracene	ND U	4.9	1	05/02/17	05/04/17	KWG1703532	
Fluoranthene	ND U	4.9	1	05/02/17	05/04/17	KWG1703532	
Pyrene	ND U	4.9	1	05/02/17	05/04/17	KWG1703532	
Benz(a)anthracene	ND U	4.9	1	05/02/17	05/04/17	KWG1703532	*
Chrysene	ND U	4.9	1	05/02/17	05/04/17	KWG1703532	
Benzo(b)fluoranthene†	ND U	4.9	1	05/02/17	05/04/17	KWG1703532	
Benzo(k)fluoranthene	ND U	4.9	1	05/02/17	05/04/17	KWG1703532	
Benzo(a)pyrene	ND U	4.9	1	05/02/17	05/04/17	KWG1703532	
Indeno(1,2,3-cd)pyrene	ND U	4.9	1	05/02/17	05/04/17	KWG1703532	
Dibenz(a,h)anthracene	ND U	4.9	1	05/02/17	05/04/17	KWG1703532	
Benzo(g,h,i)perylene	ND U	4.9	1	05/02/17	05/04/17	KWG1703532	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	76	38-104	05/04/17	Acceptable
Fluoranthene-d10	84	39-109	05/04/17	Acceptable
Terphenyl-d14	84	38-113	05/04/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/05/2017 Form 1A - Organic Page 1 of 11:06:51 Merged

Page 32 of 35

SuperSet Reference: RR198007

QA/QC Report

Service Request: K1704246

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Soil

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:EPA 3546Units:PercentAnalysis Method:8270D SIMLevel:Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
Batch QC	K1704128-007	83 D	101 D	48
SED17-05	K1704246-001	89	100	110
SED17-08	K1704246-002	80	88	88
SED17-06	K1704246-003	71	84	81
Method Blank	KWG1703532-5	76	84	84
Batch QCMS	KWG1703532-1	82 D	93 D	58
Batch QCDMS	KWG1703532-2	81 D	92 D	58
Lab Control Sample	KWG1703532-3	70	80	80
Duplicate Lab Control Sample	KWG1703532-4	71	78	77

Surrogate Recovery Control Limits (%)

Sur1	=	Fluorene-d10	38-104
Sur2	=	Fluoranthene-d10	39-109
Sur3	=	Terphenyl-d14	38-113

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

 Printed:
 05/05/2017
 11:06:56
 Form 2A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form2.rpt
 Page 33 of 35
 SuperSet Reference:
 RR198007

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Soil Service Request: K1704246 **Date Extracted:** 05/02/2017 **Date Analyzed:** 05/04/2017 -

05/05/2017

Matrix Spike/Duplicate Matrix Spike Summary Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

Batch QC K1704128-007

Extraction Method: Analysis Method:

EPA 3546

8270D SIM

Units: ug/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1703532

Batch QCMS KWG1703532-1

Batch QCDMS KWG1703532-2

Matrix Spike Duplicate Matrix Spike

Analyte Name	Sample Result	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Naphthalene	690	900	634	33	762	621	12 *	29-88	17	40
2-Methylnaphthalene	2400	1800	634	-96 *	1480	621	-149 *	28-98	19	40
Acenaphthylene	87	575	634	77	615	621	85	32-97	7	40
Acenaphthene	240	659	634	66	660	621	68	30-101	0	40
Dibenzofuran	130	751	634	98	619	621	79	28-105	19	40
Fluorene	580	882	634	47	841	621	41	23-116	5	40
Phenanthrene	950	1130	634	30	1050	621	17	10-128	7	40
Anthracene	160	556	634	63	609	621	72	27-116	9	40
Fluoranthene	ND	654	634	103	708	621	114	10-138	8	40
Pyrene	110	489	634	59	527	621	67	16-134	8	40
Benz(a)anthracene	ND	654	634	103	659	621	106	27-127	1	40
Chrysene	ND	634	634	100	632	621	102	25-132	0	40
Benzo(b)fluoranthene	ND	591	634	93	605	621	97	21-130	2	40
Benzo(k)fluoranthene	ND	592	634	93	597	621	96	22-126	1	40
Benzo(a)pyrene	ND	558	634	88	585	621	94	25-129	5	40
Indeno(1,2,3-cd)pyrene	ND	623	634	98	636	621	102	17-138	2	40
Dibenz(a,h)anthracene	ND	567	634	89	576	621	93	32-116	2	40
Benzo(g,h,i)perylene	ND	558	634	88	571	621	92	17-130	2	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 05/05/2017 Form 3A - Organic Page 1 of 11:07:00 SuperSet Reference: RR198007 Page 34 of 35

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Soil

Service Request: K1704246 **Date Extracted:** 05/02/2017 **Date Analyzed:** 05/04/2017

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3546 **Analysis Method:** 8270D SIM 1 oryndetear Aromatic frydrocarbor

Units: ug/KgBasis: DryLevel: Low

Extraction Lot: KWG1703532

Lab Control Sample KWG1703532-3 Lab Control Spike Duplicate Lab Control Sample KWG1703532-4 Duplicate Lab Control Spike

Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
413	500	83	409	500	82	42-88	1	40
432	500	86	432	500	86	43-92	0	40
474	500	95 *	473	500	95 *	44-93	0	40
441	500	88	439	500	88	44-95	1	40
462	500	92	458	500	92	44-96	1	40
463	500	93	460	500	92	45-98	1	40
447	500	89	448	500	90	41-99	0	40
473	500	95	466	500	93	46-100	1	40
484	500	97	473	500	95	49-102	2	40
486	500	97	470	500	94	48-104	3	40
532	500	106 *	526	500	105	52-105	1	40
497	500	99	494	500	99	51-110	1	40
515	500	103	515	500	103	52-114	0	40
512	500	102	513	500	103	52-112	0	40
505	500	101	507	500	101	52-111	0	40
555	500	111	548	500	110	44-117	1	40
502	500	100	495	500	99	44-110	1	40
492	500	98	494	500	99	45-107	1	40
	413 432 474 441 462 463 447 473 484 486 532 497 515 512 505 555 502	Result Amount 413 500 432 500 474 500 441 500 462 500 463 500 447 500 473 500 484 500 532 500 497 500 515 500 512 500 505 500 555 500 502 500	Result Amount %Rec 413 500 83 432 500 86 474 500 95 * 441 500 88 462 500 92 463 500 93 447 500 89 473 500 95 484 500 97 532 500 106 * 497 500 99 515 500 103 512 500 102 505 500 101 555 500 111 502 500 100	Result Amount %Rec Result 413 500 83 409 432 500 86 432 474 500 95 * 473 441 500 88 439 462 500 92 458 463 500 93 460 447 500 89 448 473 500 95 466 484 500 97 473 486 500 97 470 532 500 106 * 526 497 500 99 494 515 500 103 515 512 500 102 513 505 500 101 507 555 500 111 548 502 500 100 495	Result Amount %Rec Result Amount 413 500 83 409 500 432 500 86 432 500 474 500 95 * 473 500 441 500 88 439 500 462 500 92 458 500 463 500 93 460 500 447 500 89 448 500 473 500 95 466 500 484 500 97 473 500 486 500 97 470 500 532 500 106 * 526 500 497 500 99 494 500 515 500 103 515 500 512 500 102 513 500 505 500 101 507 500 555 500	Result Amount %Rec Result Amount %Rec 413 500 83 409 500 82 432 500 86 432 500 86 474 500 95 * 473 500 95 * 441 500 88 439 500 88 462 500 92 458 500 92 463 500 93 460 500 92 447 500 89 448 500 90 473 500 95 466 500 93 484 500 97 473 500 95 486 500 97 470 500 94 532 500 106 * 526 500 105 497 500 99 494 500 99 515 500 103 515 500 103	Result Amount %Rec Result Amount %Rec Limits 413 500 83 409 500 82 42-88 432 500 86 432 500 86 43-92 474 500 95 * 473 500 95 * 44-93 441 500 88 439 500 88 44-95 462 500 92 458 500 92 45-98 463 500 93 460 500 92 45-98 447 500 89 448 500 90 41-99 473 500 95 466 500 93 46-100 484 500 97 473 500 95 49-102 486 500 97 470 500 94 48-104 532 500 106 * 526 500 105 52-105	Result Amount %Rec Result Amount %Rec Limits RPD 413 500 83 409 500 82 42-88 1 432 500 86 432 500 86 43-92 0 474 500 95 * 473 500 95 * 44-93 0 441 500 88 439 500 88 44-95 1 462 500 92 458 500 92 44-96 1 463 500 93 460 500 92 45-98 1 447 500 89 448 500 90 41-99 0 473 500 95 466 500 93 46-100 1 484 500 97 473 500 95 49-102 2 486 500 97 470 500 94

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Printed:
 05/05/2017
 11:07:04
 Form 3C - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form3DLC.rpt
 Page 35 of 35
 SuperSet Reference:
 RR198007

May 31, 2017

Tamra Reynolds

Golder Associates Ltd.

Whitehorse, YT Y1A0G1

Suite 201C, 170 Titanium Way

ALS Environmental
ALS Group USA, Corp
1317 South 13th Avenue
Kelso, WA 98626

T:+1 360 577 7222

F: +1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K1704247

RE: Skagway-Sediment 2017 / 1657231

Dear Tamra,

Enclosed are the results of the sample(s) submitted to our laboratory April 29, 2017 For your reference, these analyses have been assigned our service request number **K1704247**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsqlobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Howard Holmes Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

General Chemistry

Metals

Diesel and Residual Range Organics

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-	
	data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator	
Oregon – DEQ (NELAP)	yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water	-
Kelso Laboratory Website	www.alsglobal.com	NA
Kelso Laboratory Website	www.aisglobai.com_	N.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS ENVIRONMENTAL

Client:Golder Associates, Inc.Service Request No.:K1704247Project:Skagway-Sediment 2017/1657231Date Received:04/29/17

Sample Matrix: Sediment

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Three sediment samples were received for analysis at ALS Environmental on 04/29/17. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

No other anomalies associated with the analysis of these samples were observed.

Total Metals

No other anomalies associated with the analysis of these samples were observed.

Diesel and Residual Range Organics

Matrix Spike Recovery Exceptions:

The matrix spike recovery of all analyte(s) for sample SED17-05 was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. The matrix spike outlier suggested a potential bias in this matrix. No further corrective action was appropriate.

No other anomalies associated with the analysis of these samples were observed.

Approved by Approved by

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here (lab use only)

K1704247 K1704246cG Number: 15-591998 4/29

Page of

Environmental

www.aisglobai.com

Canada Toll Free: 1 800 668 9878

				1960/00/00	Pathological season of pathological	<u> Paragon</u>				Augige	esta (especial).	A						
Report To	Contact and company name below will appear on the final report		Report Form	at / Distribution		Selec	Service	Level Bel	ow - Plea:	se confirm	all E&P 1	TAT's with	your AM -	surcharg	jes will ap	piy		
Company:	Giver associos LTD	Select Report	Format: PDF	EXCEL	EDD (DIGITAL)			Regula	r [R]	1	Standard	J TAT if	received b	у 3 рт -	business	days - no	surcharg	es apply
Contact:	Tanra Regnelds 1-067-6334-4468	Quality Contro	(QC) Report with Re	port 🖊 YES	NO	PRIORITY Jeiness Days)	1	4 day [P4]	Z		_5	1 E	Jusines	ss day	(E1)		
Phone:	1-967-6334 - 4468	Compare R	Compare Results to Criteria on Report - provide details below if box checked			TISORIT	;	3 day [P3]			RGEN	Same	Day, W	/eeken	d or Sta	tutory	
	Company address below will appear on the final report	Select Distribu	Select Distribution: MAIL FAX			A Sust	2	2 day [P2]			#	i		liday [E		•	
Street:	170-201CT: tanium Way Whitehouse, Tukon	Email 1 or Fax	Email 1 or Fax TJREYNOLDSE goldericom				Date	e and Ti	me Requ	ired for a	#E&PT	ATs:					***************************************	
City/Province:	White horse Paken	Email 2 PAD	DY_MCM ANUS	Q adder .	cm	For tes	its that ca	n not be	performe	d accordi	g to the s	service le	evel selecte	d, you w	II be cont	acted.		
Postal Code:	Y1A 061	Email 3 VM	DY_MCMANUS ERCER@ gold	er . com	3	Τ						Analy	sis Req	uest				
Invoice To	Same as Report To YES NO		Invoice D	istribution		Indicate Fittered (F), Preserved (P) or Fittered and Preserved (F/P) below												
***************************************	Copy of Invoice with Report YES NO	Select Invoice	Distribution:	EMAIL MAIL	FAX	T	T	1	T	1					7	T		
Company:		Email 1 or Fax	Same as	report						1								
Contact:		Email 2				1				ļ					ĺ	1 1		v)
	Project Information		Oil and Gas Require	ed Fields (client ı	ise)	7	İ		(18)			1 1					ı	Ĭ
ALS Account #	Quote #: 4 037	AFE/Cost Center:		PO#		7	(l _	5			l l	ĺ		Į			onta
Job#:	657231	Major/Minor Code:		Routing Code:		1			-\$				Ì		-	1 1		č
O / AFE:		Requisitioner:				٦		3	ا ق			i J						Ā
.SD:		Location:				ㅓ ㅣ ㅣﻥ ,					E			1				Number of Containers
		1 7	edd Payfeir	Sampler:	11.5 14	7	ĺ _	3	\$		2	.						Ž
ALS Lab Wo	rk Order # (lab use only)	ALS Contact:	1.2,	Sampler: V	11 2 41	ريدا	7	اِيِّهُ ا	Š			, }	ĺ			l		
ALS Sample #	LS Sample # Sample Identification and/or Coordinates			Time		Reak	PAHS	न्यः,५५७	Total Organic	DRO	AUS	,)				1	1	
(lab use only)	(This description will appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	12	4	رز	10		Z	Ì			-			
	SED17-05		25-14-17	7:00	Selimen	X	χ		X.									5
	SED17-08	· · · · · · · · · · · · · · · · · · ·	26-NPR-17	17:00		1/2	1	7						1	1-		一十	6
	SEPTY - OF		26-APR-17	17:00	† 1	15		1	1			_	_	+	+	 	一十	1:
	JEP 17 06		OB-MIK-11	11.40	 	1		_						+	+		\dashv	0
				<u> </u>	ļ	ļ						\dashv			 			
			<u> </u>	<u> </u>	<u></u>	1 1						L						
																T.		
		· · · · · · · · · · · · · · · · · · ·											1		1-1			
						├							+		 	-		
			<u> </u>						 +			~ -	+	+-	+			
						1							+	 	 	.		
													\perp				\perp	
							T	T										
	Special Instruction	ns / Specify Criteria to		ing on the drop-do	wn list below	140000			SAM	PLE CO	ONDITI	ON AS	RECE	VED (I	ab use	only)		
	Water (DW) Samples' (client use)	(ele	ctronic COC only)			Frozen					S	ilF Obs	servation	38	Yes		No	
•	from a Regulated DW System?	inused sumples	. 5-dy turnar	and on met	els and	Ice Par			Ice Cu	ibes		Justod)	y seal int	tact	Yes		No	
_	PAH, regular	turn around or	i GS and	TOC. Wait	for	Cooling												
Frozen SIF Observations Festivations Fozen SIF Observations Fozen						ES C												
YES	y 110																	
	SHIPMENT RELEASE (client use)		INITIAL SHIPMEN	T RECEPTION (la						FII	IAL SH	IPMEI	NT REC		N (lab ı	use only		
eleased by C	7 4/ Date: 27 - A PR-17 Time 7:46	Received by:	Cocaus	Date: 4/79/	17	Time: 09/0	/ l'	Receiv	ed by:				Date	e:			Tir	ne:
TER TO BACK DA	CE FOR ALS LOCATIONS AND SAMBLING INSORMATION		NAIGUT.	- I/U//	/ 000 VEU 044	OUT	T COD											

If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

AL	5													oc //	H
	•			Cooler	Rece	ipt an	ıd Pre	serva	tion For	m a	4/29	y	,	(<u>* * </u>	<u> </u>
nt	Gold	ber A.	ssociate			<u> </u>	-		Request	C.L		5	K/	7042	47
eived:	1/29/1		Opened:	4/29/	7	By	y:	G_	Unloa	ided:	4/29	117	By:	CG	
Sample	s were rece	ived via?	USPS	Fed Ex		PS .	DHI	6	DX > ea	utier	γ , Hand	Daliva	rad		
•	s were rece		_	ooler .	Box		Envelo		Other	MILL	x1 anu	Denve	reu	NA .	
Were <u>c</u> ı	ustody seal	s on cooler	s?	NA O	ו ס	١			many and	where?		FON	<u>t </u>		
f prese	nt, were cu	stody seals	intact?	Q) 1	N	I	f prese	nt, were the	ey signe	d and da	ted?	,	Ø	N
er Tamp	Corrected.	Rew	Corrected	Corr. Factor	The	mome ID	ter	Cooler	COC ID	7	Ti	ackin	g Numbe	r	
2	Cooler Temp	Temp Black	3.2	-0.1	3	75	_	· · · · · · · · · · · · · · · · · · ·	- (NA	027	19	41	1097	- 9	NA) Filed
								<u> </u>							
			-	· · · · · · · · ·	-										
Packin	g material:	Inserts	Baggies (Bubble W	rap	GET Pa	cks	Wet Ice	e Dry Ice	Sleev	es Zo	L W/	divis	(218	<u> </u>
			y filled out (1, 100	2000	De De		NA	Q	N
		- •	od condition				n)? <i>Ir</i>	dicate	in the table	e below.			NA	A-	N.
1/	!!1- !-	_	plicable, tis	•				Froze	en Partio	ally Tha	wed	Thawe	-		
		_	lete (i.e anal	•		_		,,				_	NA		N
			s agree with stainers and		-		-		-	n the tal	ole on po	age 2.	NA	_	N
			les (see SMC							cata in t	ha tabla	halow	NA NA	. •	N N
			ithout head					-	c pri: mai	care in i	ne tavie	DEIOW		Y	N
	C12/Res ne			Spare.									S)	. · V Υ	N
	Sample ID	on Bottle			Samp	le ID or	COC				ld	entified	l by:		
							··								
<u> </u>	·			<u> </u>											
															
	Sample	D			Out of Temp	Head- space	Broke	рΗ	Reagen		lume ided		nt Lot nber	Initials	Time
									·						
				·	ļ										
							<u> </u>								<u> </u>
		·· · · · · · · · · · · · · · · · · · ·	+		<u> </u>	 	 								
					<u> </u>	<u> </u>	<u> </u>	1						L	لــــا
tes, D	iscrepanc	ies, & Res	solutions:_						·	·	<u>-</u>				•
															
										-					
							<u></u>						<u></u>	<u> </u>	
7/25/1	16								Marie Action				Page_	of	,

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Analysis Method: 160.3 Modified

Prep Method: None

Service Request: K1704247

Date Collected: 04/25/17 - 04/26/17

Date Received: 04/29/17

Units: Percent

Basis: As Received

Solids, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
SED17-05	K1704247-001	75.3	-	1	05/01/17 17:04	
SED17-08	K1704247-002	73.9	-	1	05/01/17 17:04	
SED17-06	K1704247-003	78.3	-	1	05/01/17 17:04	

QA/QC Report

Client: Golder Associates, Inc.

Project Skagway-Sediment 2017/1657231

Sample Matrix: Solid Fuel

Analysis Method: 160.3 Modified

Prep Method: None

Service Request:K1704247

Date Collected:NA
Date Received:NA

Units:Percent

Basis: As Received

Replicate Sample Summary Inorganic Parameters

			Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	Result	Result	Average	RPD	Limit	Analyzed
Batch QC	K1704164-001DUP	-	52.3	55.5	53.9	6	20	05/01/17
Batch QC	K1704246-001DUP	-	73.5	74.3	73.9	1	20	05/01/17

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/2/2017 11:21:03 AM Superset Reference:17-0000420285 rev 00

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Analysis Method: 821/R-91-100

Prep Method: Method

Service Request: K1704247

Date Collected: 04/25/17 - 04/26/17

Date Received: 04/29/17

Units: uMole/g
Basis: Dry

Sulfide, Acid-Volatile

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
SED17-05	K1704247-001	ND U	0.031	1	05/08/17 21:09	5/8/17	
SED17-08	K1704247-002	0.094	0.032	1	05/08/17 21:09	5/8/17	
SED17-06	K1704247-003	ND U	0.039	1	05/08/17 21:09	5/8/17	
Method Blank	K1704247-MB	ND U	0.016	1	05/08/17 21:09	5/8/17	

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704247

Project Skagway-Sediment 2017/1657231

Date Collected: 04/25/17 **Date Received:** 04/29/17

Sample Matrix: Sediment

Lab Code:

Date Analyzed: 05/08/17

Replicate Sample Summary

General Chemistry Parameters

Sample Name: SED17-05 K1704247-001

Units: uMole/g

Basis: Dry

Duplicate

Sample K1704247-

Sample

001DUP

Analyte Name Analysis Method Result **MRL** Result **RPD Limit** Average Sulfide, Acid-Volatile 821/R-91-100 0.032 ND U 0.041 NC

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/11/2017 11:22:38 AM Superset Reference:17-0000420285 rev 00

QA/QC Report

Client: Golder Associates, Inc.

Skagway-Sediment 2017/1657231

Sample Matrix:

Project:

Sediment

Service Request:

K1704247

Date Collected:

04/25/17

Date Received:

04/29/17

Date Analyzed: Date Extracted: 05/8/17 05/8/17

Duplicate Matrix Spike Summary Sulfide, Acid-Volatile

SED17-05

-05

Result

20.2

Units:

uMole/g

45

Lab Code:

K1704247-001

Basis:

Dry

56-142

Analysis Method:

821/R-91-100

Sample

Result

ND U

Prep Method:

Analyte Name

Sulfide, Acid-Volatile

Sample Name:

Method

Matrix Spike

Duplicate Matrix Spike

K1704247-001DMS

K1704247-001MS

21.9

Spike Spike % Rec RPD
Amount % Rec Result Amount % Rec Limits RPD Limit

21.0

19.7

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/11/2017 11:22:38 AM Superset Reference:17-0000420285 rev 00

QA/QC Report

Client: Golder Associates, Inc. **Service Request:** K1704247

Project: Skagway-Sediment 2017/1657231 **Date Analyzed:** 05/08/17

Sample Matrix: Sediment **Date Extracted:**

05/08/17

Lab Control Sample Summary

Sulfide, Acid-Volatile

Analysis Method: 821/R-91-100 **Units:**

uMole/g

Prep Method: Method **Basis:**

Dry

Analysis Lot:

544873

Spike Lab Code

Amount

% Rec Limits

Sample Name Lab Control Sample

K1704247-LCS

Result 0.211

0.228

% Rec 93

60-115

Printed 5/11/2017 11:22:38 AM

dba ALS Environmental **Analytical Report**

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: Date Collected: 4/25/2017 **Date Received:** 4/29/2017 **Date Analyzed:** 5/2/2017

K1704247

Particle Size Determination ASTM D422M

Sample Name: SED17-05 Lab Code: K1704247-001

> Sand Fraction: Weight (Grams) 25.0545 Sand Fraction: Weight Recovered (Grams) 24.8257 Sand Fraction: Percent Recovery 99.09

Weight as received (Grams)	51.293
Percent Solids	84.0
Weight Oven-Dried (Grams)	43.0861

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	0.2472	0.57
Gravel, Fine	2.00 mm	10	0.6458	1.50
Sand, Very Coarse	0.850 mm	20	1.4149	3.28
Sand, Coarse	0.425 mm	40	3.1564	7.33
Sand, Medium	0.250 mm	60	3.8373	8.91
Sand, Fine	0.106 mm	140	9.1521	21.24
Sand, Very Fine	0.075 mm	200	5.3811	12.49
Silt			13.6600	31.70
Clay			4.6850	10.87
		Total	42.1798	97.89

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Date Collected:
 4/26/2017

 Date Received:
 4/29/2017

 Date Analyzed:
 5/2/2017

K1704247

Service Request:

Particle Size Determination ASTM D422M

Sample Name: SED17-08 Lab Code: K1704247-002

Sand Fraction: Weight (Grams)42.4759Sand Fraction: Weight Recovered (Grams)42.3734Sand Fraction: Percent Recovery99.76

Weight as received (Grams)	72.291
Percent Solids	82.7
Weight Oven-Dried (Grams)	59.7847

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	0.0000	0.00
Gravel, Fine	2.00 mm	10	0.9354	1.56
Sand, Very Coarse	0.850 mm	20	6.2420	10.44
Sand, Coarse	0.425 mm	40	10.1673	17.01
Sand, Medium	0.250 mm	60	7.0896	11.86
Sand, Fine	0.106 mm	140	11.6516	19.49
Sand, Very Fine	0.075 mm	200	4.8867	8.17
Silt			13.3000	22.25
Clay			4.5300	7.58
		Total	58.8026	98.36

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Date Collected:
 4/26/2017

 Date Received:
 4/29/2017

 Date Analyzed:
 5/2/2017

K1704247

Service Request:

Particle Size Determination ASTM D422M

Sample Name: SED17-06 Lab Code: K1704247-003

Sand Fraction: Weight (Grams)54.2228Sand Fraction: Weight Recovered (Grams)54.2572Sand Fraction: Percent Recovery100.06

Weight as received (Grams)	71.737
Percent Solids	89.6
Weight Oven-Dried (Grams)	64.2764

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	11.5326	17.94
Gravel, Fine	2.00 mm	10	2.6676	4.15
Sand, Very Coarse	0.850 mm	20	9.3388	14.53
Sand, Coarse	0.425 mm	40	11.4906	17.88
Sand, Medium	0.250 mm	60	7.2131	11.22
Sand, Fine	0.106 mm	140	8.9554	13.93
Sand, Very Fine	0.075 mm	200	2.6894	4.18
Silt			7.2950	11.35
Clay			2.7000	4.20
		Total	63.8825	99.38

dba ALS Environmental

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Date Collected:
 4/26/2017

 Date Received:
 4/29/2017

 Date Analyzed:
 5/2/2017

K1704247

Service Request:

Particle Size Determination ASTM D422M

Sample Name: SED17-08

Lab Code: K1704247-002DUP

Sand Fraction: Weight (Grams)42.7436Sand Fraction: Weight Recovered (Grams)42.6532Sand Fraction: Percent Recovery99.79

Weight as received (Grams)	72.002
Percent Solids	82.7
Weight Oven-Dried (Grams)	59.5457

	a, a,	a. N. I	Dry Weight	Percent of Total
Description	Sieve Size	Sieve Number	(Grams)	Weight Recovered
Gravel, Medium	4.75 mm	4	0.7106	1.19
Gravel, Fine	2.00 mm	10	2.0352	3.42
Sand, Very Coarse	0.850 mm	20	5.5896	9.39
Sand, Coarse	0.425 mm	40	10.0057	16.80
Sand, Medium	0.250 mm	60	6.9415	11.66
Sand, Fine	0.106 mm	140	11.2195	18.84
Sand, Very Fine	0.075 mm	200	4.7153	7.92
Silt			13.6450	22.92
Clay			4.1800	7.02
	-	Total	59.0424	99.16

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Analysis Method: Walkley-Black

Prep Method: None

Service Request: K1704247

Date Collected: 04/25/17 - 04/26/17

Date Received: 04/29/17

Units: mg/KgBasis: Dry

Carbon, Total Organic

					Date	
Sample Name	Lab Code	Result	MRL	Dil.	Analyzed	Q
GED 17 05	V1504045 001	2000	2700		05/04/15 12 20	
SED17-05	K1704247-001	3800	2700	1	05/04/17 13:30	
SED17-08	K1704247-002	4300	2700	1	05/04/17 13:30	
SED17-06	K1704247-003	3000	2600	1	05/04/17 13:30	
Method Blank	K1704247-MB	ND U	2000	1	05/04/17 13:30	

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc.

Service Request: K1704247

Project Skagway-Sediment 2017/1657231

Date Collected: 04/25/17

Sample Matrix: Sediment

Date Received: 04/29/17 **Date Analyzed:** 05/04/17

Replicate Sample Summary

General Chemistry Parameters

Sample Name: SED17-05

Units: mg/Kg

Lab Code: K1704247-001

Basis: Dry

Duplicate

Sample **K1704247-**

K17042

Sample

001DUP

Analyte NameAnalysis MethodMRLResultResultAverageRPDRPD LimitCarbon, Total OrganicWalkley-Black2700380041003950820

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Superset Reference:17-0000420285 rev 00

QA/QC Report

Client: Golder Associates, Inc. **Service Request:**

K1704247

Project:

Skagway-Sediment 2017/1657231

Date Analyzed:

05/04/17

Sample Matrix:

Sediment

Date Extracted:

NA

Lab Control Sample Summary Carbon, Total Organic

Analysis Method:

Walkley-Black

Units:

mg/Kg

Prep Method:

None

Basis:

Dry

Analysis Lot:

544217

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1704247-LCS	6100	5400	113	85-115

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Simultaneously Extractable Metals -1-INORGANIC ANALYSIS DATA PACKAGE

Client: Golder Associates, Inc. Service Request: K1704247

Project No.: 1657231 **Date Collected:** 4/25/2017

Project Name: Skagway-Sediment 2017 Date Received: 4/29/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-05 **Lab Code:** K1704247-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.006	1.0	05/08/17	05/11/17	0.006	U	
Arsenic	6010C	0.010	1.0	05/08/17	05/11/17	0.010	U	
Cadmium	6010C	0.0004	1.0	05/08/17	05/11/17	0.0004		
Chromium	6010C	0.004	1.0	05/08/17	05/11/17	0.012		
Copper	6010C	0.004	1.0	05/08/17	05/11/17	0.121		
Lead	6010C	0.002	1.0	05/08/17	05/11/17	0.226		
Mercury	7470A	0.00008	4.0	05/08/17	05/15/17	0.00008	U	
Nickel	6010C	0.002	1.0	05/08/17	05/11/17	0.011		
Silver	6010C	0.002	1.0	05/08/17	05/11/17	0.002	U	
Zinc	6010C	0.006	1.0	05/08/17	05/11/17	0.946		

% **Solids:** 75.3

Simultaneously Extractable Metals -1-INORGANIC ANALYSIS DATA PACKAGE

Client: Golder Associates, Inc. Service Request: K1704247

Project No.: 1657231 **Date Collected:** 4/26/2017

Project Name: Skagway-Sediment 2017 Date Received: 4/29/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-08 **Lab Code:** K1704247-002

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.006	1.0	05/08/17	05/11/17	0.006	U	
Arsenic	6010C	0.010	1.0	05/08/17	05/11/17	0.010	U	
Cadmium	6010C	0.0004	1.0	05/08/17	05/11/17	0.0010		
Chromium	6010C	0.004	1.0	05/08/17	05/11/17	0.015		
Copper	6010C	0.004	1.0	05/08/17	05/11/17	0.172		
Lead	6010C	0.002	1.0	05/08/17	05/11/17	0.522		
Mercury	7470A	0.00008	4.0	05/08/17	05/15/17	0.00008	U	
Nickel	6010C	0.002	1.0	05/08/17	05/11/17	0.012		
Silver	6010C	0.002	1.0	05/08/17	05/11/17	0.002	U	
Zinc	6010C	0.006	1.0	05/08/17	05/11/17	1.150		

% Solids: 73.9

Simultaneously Extractable Metals -1-INORGANIC ANALYSIS DATA PACKAGE

Client: Golder Associates, Inc. Service Request: K1704247

Project No.: 1657231 **Date Collected:** 4/26/2017

Project Name: Skagway-Sediment 2017 Date Received: 4/29/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-06 **Lab Code:** K1704247-003

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.007	1.0	05/08/17	05/11/17	0.007	U	
Arsenic	6010C	0.012	1.0	05/08/17	05/11/17	0.012	U	
Cadmium	6010C	0.0005	1.0	05/08/17	05/11/17	0.0005	U	
Chromium	6010C	0.005	1.0	05/08/17	05/11/17	0.008		
Copper	6010C	0.005	1.0	05/08/17	05/11/17	0.104		
Lead	6010C	0.002	1.0	05/08/17	05/11/17	0.145		
Mercury	7470A	0.00010	4.0	05/08/17	05/15/17	0.00010	U	
Nickel	6010C	0.002	1.0	05/08/17	05/11/17	0.007		
Silver	6010C	0.002	1.0	05/08/17	05/11/17	0.002	U	·
Zinc	6010C	0.007	1.0	05/08/17	05/11/17	0.356		·

% Solids: 78.3

Simultaneously Extractable Metals - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Golder Associates, Inc. Service Request: K1704247

Project No.: 1657231 Date Collected:

Project Name: Skagway-Sediment 2017 Date Received:

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: Method Blank Lab Code: K1704247-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.003	1.0	05/08/17	05/11/17	0.003	U	
Arsenic	6010C	0.005	1.0	05/08/17	05/11/17	0.005	U	
Cadmium	6010C	0.0002	1.0	05/08/17	05/11/17	0.0002	U	
Chromium	6010C	0.002	1.0	05/08/17	05/11/17	0.002	U	
Copper	6010C	0.002	1.0	05/08/17	05/11/17	0.002	U	
Lead	6010C	0.001	1.0	05/08/17	05/11/17	0.001	U	
Nickel	6010C	0.001	1.0	05/08/17	05/11/17	0.001	U	
Silver	6010C	0.001	1.0	05/08/17	05/11/17	0.001	U	
Zinc	6010C	0.003	1.0	05/08/17	05/11/17	0.003	U	

% Solids: 100.0

Simultaneously Extractable Metals - 1 -

INORGANIC ANALYSIS DATA PACKAGE

Client: Golder Associates, Inc. Service Request: K1704247

Project No.: 1657231 Date Collected:

Project Name: Skagway-Sediment 2017 Date Received:

Matrix: SEDIMENT Units: umol/g

Basis: DRY

Sample Name: Method Blank Lab Code: KQ1705862-01

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Mercury	7470A	0.00004	4.0	05/08/17	05/15/17	0.00004	U	

% Solids: 100.0

Simultaneously Extractable Metals

- 5A -

SPIKE SAMPLE RECOVERY

Client: Golder Associates, Inc. Service Request: K1704247

Project No.: 1657231 Units: UMOLE/G

Project Name: Skagway-Sediment 2017 Basis: DRY

Matrix: SEDIMENT % Solids: 75.3

Sample Name: SED17-05S Lab Code: K1704247-001S

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	%R	Q	Method
Antimony	75 - 125	0.071	0.006 ប	0.079	90		6010C
Arsenic	75 - 125	0.632	0.010 U	0.641	99		6010C
Cadmium	75 - 125	0.2426	0.0004	0.213	114		6010C
Chromium	75 - 125	0.1890	0.0118	0.184	96		6010C
Copper	75 - 125	0.289	0.121	0.189	89		6010C
Lead	75 - 125	0.474	0.226	0.232	107		6010C
Mercury	75 - 125	0.00185	0.00008 U	0.00191	97		7470A
Nickel	75 - 125	0.467	0.011	0.407	112		6010C
Silver	75 - 125	0.100	0.002 บ	0.111	90		6010C
Zinc	75 - 125	1.362	0.946	0.366	114		6010C

Simultaneously Extractable Metals

- 6 -DUPLICATES

Client: Golder Associates, Inc. Service Request: K1704247

Project No.: 1657231 Units: UMOLE/G

Project Name: Skagway-Sediment 2017 Basis: DRY

Matrix: SEDIMENT % Solids: 75.3

Sample Name: SED17-05D Lab Code: K1704247-001D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Antimony		0.006	U	0.006	Ū			6010C
Arsenic		0.010	U	0.010	U			6010C
Cadmium		0.0004		0.0005		22.2		6010C
Chromium		0.0118		0.0145		20.5		6010C
Copper	30	0.121		0.147		19.4		6010C
Lead	30	0.226		0.255		12.1		6010C
Mercury		0.00008	Ū	0.00008	U			7470A
Nickel	30	0.011		0.013		16.7		6010C
Silver		0.002	U	0.002	Ū			6010C
Zinc	30	0.946		1.177		21.8		6010C

Simultaneously Extractable Metals

- 7 -

LABORATORY CONTROL SAMPLE

Client: Golder Associates, Inc. Service Request: K1704247

Project No.: 1657231

Project Name: Skagway-Sediment 2017

Aqueous LCS Source: ALS MIXED Solid LCS Source:

	Aqueous	(umol/L)		Solid (mg/kg)				
Analyte	True	Found	%R	True	Found	С	Limits	%R
Antimony	4.100	3.864	94					
Arsenic	33.400	33.318	100					İ
Cadmium	11.100	11.284	102				[
Chromium	9.610	9.520	99					
Copper	9.830	9.373	95				[
Lead	12.100	12.004	99				[
Mercury	0.09960	0.09560	96					
Nickel	21.200	21.511	101					
Silver	5.790	5.466	94					
Zinc	19.100	19.896	104					

Diesel and Residual Range Organics

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: K1704247

Date Collected: 04/25/2017

Date Received: 04/29/2017

Diesel and Residual Range Organics

Sample Name: SED17-05 Lab Code: K1704247-001

Extraction Method: EPA 3550B

Analysis Method: AK 102.0/103.0

Units: mg/Kg
Basis: Dry
Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	27	1	05/09/17	05/16/17	KWG1703745	
C25 - C36 RRO	ND U	140	1	05/09/17	05/16/17	KWG1703745	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	110	50-150	05/16/17	Acceptable
n-Triacontane	107	50-150	05/16/17	Acceptable

Comments:

 Printed:
 05/27/2017
 08:42:29
 Form 1A - Organic
 Page
 1 of
 1 usbrealth/Crystal.rpt/FormInNew.rpt
 SuperSet Reference:
 RR198604
 I of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of
 1 of</th

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Date Collected: 04/26/2017 Sediment **Date Received:** 04/29/2017 **Sample Matrix:**

Diesel and Residual Range Organics

Sample Name: SED17-08 Units: mg/Kg Lab Code: K1704247-002 Basis: Dry **Extraction Method:** EPA 3550B Level: Low

Analysis Method: AK 102.0/103.0

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	27	1	05/09/17	05/16/17	KWG1703745	
C25 - C36 RRO	ND U	140	1	05/09/17	05/16/17	KWG1703745	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	125	50-150	05/16/17	Acceptable	
n-Triacontane	122	50-150	05/16/17	Acceptable	

Comments:

Printed: 05/27/2017 Form 1A - Organic Page 1 of 1 08:42:32 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt \\$ Merged Page 37 of 42

Service Request: K1704247

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sediment **Sample Matrix:**

Service Request: K1704247 **Date Collected:** 04/26/2017

Date Received: 04/29/2017

Diesel and Residual Range Organics

Sample Name: SED17-06 Units: mg/Kg Lab Code: K1704247-003 Basis: Dry **Extraction Method:** EPA 3550B Level: Low

Analysis Method: AK 102.0/103.0

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	36 Z	26	1	05/09/17	05/16/17	KWG1703745	
C25 - C36 RRO	ND U	130	1	05/09/17	05/16/17	KWG1703745	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
henyl	127	50-150	05/16/17	Acceptable
n-Triacontane	124	50-150	05/16/17	Acceptable

Comments:

Printed: 05/27/2017 Form 1A - Organic Page 1 of 1 08:42:35 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt \\$ SuperSet Reference:

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sediment **Sample Matrix:**

Service Request: K1704247

Date Collected: NA Date Received: NA

Diesel and Residual Range Organics

Sample Name: Method Blank Units: mg/Kg Lab Code: KWG1703745-5 Basis: Dry **Extraction Method:** EPA 3550B Level: Low

Analysis Method: AK 102.0/103.0

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	20	1	05/09/17	05/10/17	KWG1703745	
C25 - C36 RRO	ND U	99	1	05/09/17	05/10/17	KWG1703745	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
-Terphenyl	74	50-150	05/10/17	Acceptable
n-Triacontane	80	50-150	05/10/17	Acceptable

Comments:

Printed: 05/27/2017 Form 1A - Organic Page 1 of 1 08:42:38 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt \\$ Page 39 of 42

QA/QC Report

Service Request: K1704247

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Surrogate Recovery Summary Diesel and Residual Range Organics

 Extraction Method:
 EPA 3550B
 Units:
 Percent

 Analysis Method:
 AK 102.0/103.0
 Level:
 Low

Sample Name	Lab Code	Sur1	Sur2
SED17-05	K1704247-001	110	107
SED17-08	K1704247-002	125	122
SED17-06	K1704247-003	127	124
Method Blank	KWG1703745-5	74	80
SED17-05MS	KWG1703745-1	138	134
SED17-05DMS	KWG1703745-2	123	118
Lab Control Sample	KWG1703745-3	77	81
Duplicate Lab Control Sample	KWG1703745-4	94	99

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl 50-150 Sur2 = n-Triacontane 50-150

Results flagged with an asterisk $(\mbox{\ensuremath{}^{*}})$ indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

 Printed:
 05/27/2017
 08:42:42
 Form 2A - Organic
 Page
 1
 of
 1

 u:\Stealth\Crystal.rpt\Form2.rpt
 SuperSet Reference:
 RR198604

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: K1704247

Date Extracted: 05/09/2017 **Date Analyzed:** 05/16/2017

Matrix Spike/Duplicate Matrix Spike Summary Diesel and Residual Range Organics

Sample Name: SED17-05 Lab Code: K1704247-001

EPA 3550B

Extraction Method: EPA Analysis Method: AK

AK 102.0/103.0

Units: mg/Kg
Basis: Dry

Level: Low

Extraction Lot: KWG1703745

SED17-05MS KWG1703745-1 Matrix Spike SED17-05DMS KWG1703745-2 Duplicate Matrix Spike

%Rec RPD Sample Spike Spike RPD Limits Limit Result Amount Amount **Analyte Name** Result %Rec Result %Rec C10 - C25 DRO ND 466 353 132 * 412 351 118 75-125 12 20 ND 254 144 * 175 129 * 60-120 20 C25 - C36 RRO 176 226 12

Results flagged with an asterisk $(\mbox{\ensuremath{}^{*}})$ indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Printed:
 05/27/2017
 08:42:46
 Form 3A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form3DMS.rpt
 SuperSet Reference:
 RR198604

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: K1704247

Date Extracted: 05/09/2017 **Date Analyzed:** 05/10/2017

Lab Control Spike/Duplicate Lab Control Spike Summary
Diesel and Residual Range Organics

Extraction Method: EPA 3550B **Analysis Method:** AK 102.0/103.0

Units: mg/KgBasis: DryLevel: Low

Extraction Lot: KWG1703745

Lab Control Sample KWG1703745-3 Lab Control Spike Duplicate Lab Control Sample KWG1703745-4

Duplicate Lab Control Spike

		Spike			Spike		%Rec		RPD
Analyte Name	Result	Amount	%Rec	Result	Amount	%Rec	Limits	RPD	Limit
C10 - C25 DRO	199	267	75	243	267	91	75-125	20	20
C25 - C36 RRO	124	133	93	147	133	110	60-120	16	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Printed:
 05/27/2017
 08:42:49
 Form 3C - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form3DLC.rpt
 SuperSet Reference:
 RR198604

May 22, 2017

Tamra Reynolds

Golder Associates Ltd.

Whitehorse, YT Y1A0G1

Suite 201C, 170 Titanium Way

ALS Environmental
ALS Group USA, Corp
1317 South 13th Avenue
Kelso, WA 98626

T:+1 360 577 7222

F: +1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K1704415

RE: Skagway-Sediment 2017 / 1657231

Dear Tamra,

Enclosed are the results of the sample(s) submitted to our laboratory May 04, 2017 For your reference, these analyses have been assigned our service request number **K1704415**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Howard Holmes Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

Metals

Polynuclear Aromatic Hydrocarbons

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	Not available	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPermitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Maine DHS	Not available	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS ENVIRONMENTAL

Client:Golder Associates, Inc.Service Request No.:K1704415Project:Skagway-Sediment 2017/1657231Date Received:05/04/17

Sample Matrix: Sediment

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Seven sediment samples were received for analysis at ALS Environmental on 05/04/17. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Total Metals

Matrix Spike Recovery Exceptions:

The control criteria for matrix spike recovery of Aluminum, Calcium, Iron, Magnesium, Potassium, and Sodium for sample DUP-1 were not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Antimony recoveries are generally low for soil and sediment samples when digested using EPA Method 3050B. Despite anticipated low recoveries, the method is still generally prescribed because of its versatility for general metals analysis. Antimony results (in conjunction with the matrix spike recovery) from this procedure should only be used as indicators to estimate concentrations. The matrix spike recovery of Antimony for sample DUP-1 was below the ALS control criterion. Since low recoveries resulted from a method defect and were possibly magnified by certain matrix components, no corrective action was appropriate. Alternative procedures that specifically target Antimony are available but were not specified for this project. The associated QA/QC results (e.g. control sample, calibration standards, etc.) indicated the analysis was in control.

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) for the replicate analysis of Cadmium and Calcium in sample DUP-1 was outside the normal ALS control limits. Standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

No other anomalies associated with the analysis of these samples were observed.

Approved by Approved by

Polynuclear Aromatic Hydrocarbons by EPA Method 8270

Surrogate Exceptions:

The control criteria were exceeded for one or more surrogates in the replicate Matrix Spikes (MS/DMS) KWG1703683-1 and KWG1703683-2 of sample DUP1 due to matrix interferences. The presence of non-target background components prevented adequate resolution of the surrogates. Accurate quantitation was not possible. No further corrective action was appropriate.

Matrix Spike Recovery Exceptions:

The Matrix Spike (MS) KWG1703683-1 recovery of Fluoranthene for sample DUP1 was outside control criteria. Recoveries in the replicate Laboratory Control Samples (LCS/DLCS) KWG1703683-3 and KWG1703683-4 were acceptable, which indicated the analytical batch was in control. The matrix spike outlier suggested a potential high bias in this matrix. No further corrective action was appropriate.

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) for Fluoranthene in the replicate Matrix Spikes (MS/DMS) KWG1703683-1 and KWG1703683-2 analyses of DUP1 was outside control criteria. The Relative Percent Difference for the analyte in question in the associated replicate Laboratory Control Samples (LCS/DLCS) KWG1703683-3 and KWG1703683-4 was within acceptance limits, indicating the analytical batch was in control. No further corrective action was appropriate.

No other anomalies associated with the analysis of these samples were observed.

Approved by Aproved by

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here

K1704415 coc Number: 15 - 594999

Page L of L

CTUSECUTE CONTROL CONT

Canada Toll Free: 1 800 668 9878

Report To	Contact and company name below will appear on the final rep	ort	Report Format	/ Distribution		Select Service Level Below - Please confirm all E&P TATs with your AM - surcharges will apply											
Company:	Golder Associates LTD	Select Report			EDD (DIGITAL)	Regular [R] Standard TAT if received by 3 pm - business days - no surcharges apply											
Contact:	Tam or Russells		نعانی ا I (QC) Report with Rep			ŷ.		day [F			*****	<u>}</u>		siness			
Phone:	1-667-374 - 4460		esults to Criteria on Report -			PRIORITY Usiness Days)	1	day [F	_			GENC				or Statuto	
	Tam ra Reynolds 1-867-334 - 4468 Company address below will appear on the final report	Select Distribu		MAIL _		Busine		day [F	_	Ħ		E E	Janre D		day (E		y \square
Street:	170- 2016 Titanium Way	Email 1 or Fax	TITREY NOL	ns e a elle-	i(cw	1001000	Date	and Tim	e Requi	red for al	E&P TA	Ts:	1000			8, 5 s. 5 s	
City/Province:	Whitehorse Yution	Email 2 PAC	NERCER @ 40	Coolder.	(BIM	For tests that can not be performed according to the service level selected, you will be contacted.											
Postal Code:	Y2A 061	Email 3 V	MERCER & ac	lder, com							,	analy:	sis Requ	est			
Invoice To	Same as Report To YES NO		Invoice Di	stribution				Indicate	Filtered (F), Prese	rved (P)	or Filter	ed and Pre	served (F	P) belov	,	
	Copy of Invoice with Report YES NO	Select Invoice	Distribution:	EMAIL MAIL	FAX				_								7
Company:		Email 1 or Fax	sump as	report					ੁੜਾ								7
Contact:		Email 2		1]			balla			l					ی
	Project Information		Oil and Gas Require	d Fields (client u	se)			5	-8								Number of Containers
ALS Account # /	109	AFE/Cost Center:		PO#				· P	افق				İ	1			ont
	657231	Major/Minor Code:		Routing Code:				$ \gamma $	اد								g g
PO / AFE:	_	Requisitioner:	· · · · · · · · · · · · · · · · · · ·]		ા	3		-						je per
LSD:		Location:						N	7	י ל	5						l m
ALS Lab Wor	∕k Order# (lab use only)	ALS Contact:	Told Payfair	Sampler: PM	/5M	Motals	PAH	Grainsize	1 Organic	0	45/SEM						
ALS Sample #	Sample Identification and/or Coord	inates	Date	Time	Sample Type	3	Z	2	Total	URO	¥						
(lab use only)	(This description will appear on the r	eport)	(dd-mmm-yy)	(hh:mm)	1	3	4	9	<u> </u>	\bigcirc	~						
	Dup-1		71-59A-86	18:00	sed mant	×	火	X	χ					$T^{}$			14
	SED 17-31		28-APR-17	18:00	ı	1		1									4
	SED17-09		29-APR-17	14:00			1					\neg					
	SED 17 - 13		29-APR-17		 		+	1	1-					1			
	SED 17 - 14		30-472-17		 		+-		╅╌┼				_				<u> </u>
			30 - APR-17	10.00		H	+		++		-			-			
	SED17 - 1		30 - M K - 11	19.00	 		 			-							
	SED17-17		30 - NPR-17	10.00	-			4	-	\rightarrow	_	\dashv		ļ			مد ا
												\perp					
								İ		İ				İ	İ		
	Special Ins	tructions / Specify Criteria to	add on report by click	ing on the drop-do	own list below				SAM	PLE C	DNDIT	ON A	SRECE	VED (la	b use	only)	
	water (DW) Samples' (client use)	(ele	ectronic COC only)			Frozer	1		U	***************************************	S	F Ob	servation	s	Yes	No	
	from a Regulated DW System? איניאלי פאר	Hive anused saw	redes. 5 day h	urnaround o	melels	ice Pa	cks		Ice Cu	bes		Justod	y seal int	act	Yes	☐ No	
re samples taken from a Regulated DW System? Please archive anused samples. 5 day harnaround on mobils out PANs, regular turn examples for human drinking water use?					èn	Coolin	g Initia										
The like Q. DRO. A LIV / Con.						INIT	TIAL CO	LER TE	MPERAT	URES °C			FINA	LCOOL	ER TEMPER	TURES °C	
Released by:	SHIPMENT RELEASE (client use)	Time: Possive 21	, INITIAL SHIPMEN	TRECEPTION (la	ib use only)	Time		Dec	ad b	FI	VAL SI	IIPME	NT REC		l (lab ι	se only)	Time
(//	Date: 1 - MAY-17	17:00 (15 / 12 / 12 / 12 / 12 / 12 / 12 / 12 /				Time:	\	Receiv	ea by:				Dat	∌ .			Time:
PEER TO BACK P	GE FOR ALS LOCATIONS AND SAMPLING INFORMATION	11111		F - LABORATORY			NIT COL	5V									OCTORES 2016 FRONT

PC HH

	Λ	r	1	Coole	r Re	ceipt :	and P	reser	vation	Form				···········	
Client _	<u> </u>	dorf	ISSC.	·		·	,	_Se r y	ice Reg	uest <i>Ki</i>	700	1415			····
Received	5/4/0	<u>t</u>	Opened:_	5/4/0	7		Ву;		W. A. C. Contract of the Contr	Jnloade	× 1	4/17	By:		separatura.
1. Sampl	les were rec	eived via?	USPS	Fed Ex	:	UPS	D	HL	PDX <	Cour	ier > H	and Delive	red		
2. Sampl	les were rec	eived in: (c	ircle) 🤇	Cooler	B	ox	Enve	elope	Oth	er			A-1	NA	
3. Were	custody sea	<u>ls</u> on cooler	rs?	NA ($\widehat{\mathbf{y}}$	N	If	yes, h	ow many	y and wl	nere?(due,	hou		
lf pres	sent, were ci	ustody seals	s intact?	\mathcal{C}	Y)	N_		If pre	sent, we	re they	signed ar	d dated?		(V)	N
Raw Cooler Temp	Corrected.	Raw Tenno Blank	Corrected Temp Blank	Corr. Factor	TI	nermom ID	eter	Cool	er/COC II	NA.		Tracking	Number	NA	Filed
0.6	0.9	4,7	4.0	-011	13	76		<u> </u>	ilmir ummil isaun		- American - American	and the partition is a fire	raining and a property of the control of the contr		V
3 - (
					-										
			-		+										
4. Packir	ng material:	Inserts	Baggies	Bubble W	rap (Gel P	acks >	Wet I	ce Dry	Ice S	Sleeves				
5. Were	custody pap		-										NA	(F)	N
6. Were	samples rec	_						Indicat	e in the	table be	low.		NA	$\langle \hat{\mathbf{Y}} \rangle$	N
7 Were	all sample la		plicable, tis	-				Fro	zen F	artially	Thawed	Thawed	! NA	\mathcal{O}	N
	sample lab	-						nior dis	crenanc	ios in th	e table o	n nage 2	NA NA	<u> </u>	N
	appropriate	-	-		•			=		163 111 111	c idoic o	n page 2.	NA	(Y)	N
	the pH-pres									Indicate	in the to	ble below	(NA)	Y	N
	VOA vials							-	F				NA	Y	N
	C12/Res neg			•									NA	/ Y	N
	en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de			Politica etc. (2)	ayaa S		92340474		garagaga e			ورانس را دسور واستور			
	Sample ID	on Bottle			Samj	ple ID o	n COC					Identified b	y:		
							·				<u></u>				_
					·										
								1	1						
	Sample II)				Head- space	Broke	На	Rea	gent	Volume added	Reagent Number		tials Ti	me
						<u> </u>			 			-			*
<u> </u>		· · · · · · · · · · · · · · · · · · ·												_	
					····· <u></u>		<u></u>	ļ							-
									555						-
Notes Di	screpancie	e & Pasa	lutions			ł <u>.</u>	L	<u> </u>	<u> </u>						
ivoies, Di	<i>зстеринси</i>	s, a reso	iunons						*					X	
		··	·							**************************************					
										······································		· · · · · · · · · · · · · · · · · · ·			
												<u></u>			
7/25/16	i											P	Page	_of	

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Analysis Method: 160.3 Modified

Prep Method: None

Service Request: K1704415

Date Collected: 04/28/17 - 04/30/17

Date Received: 05/4/17

Units: Percent

Basis: As Received

Solids, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
DUP-1	K1704415-001	49.0	-	1	05/04/17 17:14	
SED17-31	K1704415-002	47.7	-	1	05/04/17 17:14	
SED17-09	K1704415-003	55.3	-	1	05/04/17 17:14	
SED17-13	K1704415-004	53.8	-	1	05/04/17 17:14	
SED17-14	K1704415-005	75.5	-	1	05/04/17 17:14	
SED17-11	K1704415-006	86.5	-	1	05/04/17 17:14	
SED17-17	K1704415-007	75.9	-	1	05/04/17 17:14	

QA/QC Report

Client: Golder Associates, Inc.

Project Skagway-Sediment 2017/1657231

Sample Matrix: Soil

Analysis Method: 160.3 Modified

Prep Method: None

Service Request:K1704415

Date Collected:NA
Date Received:NA

Units:Percent

Basis: As Received

Replicate Sample Summary Inorganic Parameters

			Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	Result	Result	Average	RPD	Limit	Analyzed
Batch QC	K1704400-001DUP	-	67.4	66.5	67.0	1	20	05/04/17
Batch QC	K1704405-001DUP	-	86.5	87.4	87.0	1	20	05/04/17
Batch QC	K1704427-001DUP	-	62.8	67.6	65.2	7	20	05/04/17
Batch QC	K1704427-011DUP	-	89.2	90.1	89.7	1	20	05/04/17
Batch QC	K1704427-021DUP	-	91.6	91.6	91.6	<1	20	05/04/17

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/5/2017 9:20:35 AM Superset Reference:17-0000420679 rev 00

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Date Received: 05/04/17 09:40

Client: Golder Associates, Inc.

Service Request: K1704415 **Date Collected:** 04/28/17 18:00 **Project:** Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Sample Name: DUP-1 Basis: Dry

Lab Code: K1704415-001

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	19900	mg/Kg	2.6	2	05/09/17 12:21	05/04/17	
Antimony	6020A	ND U	mg/Kg	0.065	5	05/11/17 07:17	05/04/17	
Arsenic	6020A	5.81	mg/Kg	0.65	5	05/11/17 07:17	05/04/17	
Barium	6010C	439	mg/Kg	1.0	2	05/09/17 12:21	05/04/17	
Beryllium	6020A	0.356	mg/Kg	0.026	5	05/11/17 07:17	05/04/17	
Cadmium	6020A	0.724	mg/Kg	0.026	5	05/11/17 07:17	05/04/17	
Calcium	6010C	13800	mg/Kg	5.2	2	05/09/17 12:21	05/04/17	
Chromium	6020A	22.3	mg/Kg	0.26	5	05/11/17 07:17	05/04/17	
Cobalt	6020A	10.5	mg/Kg	0.026	5	05/11/17 07:17	05/04/17	
Copper	6020A	17.6	mg/Kg	0.13	5	05/11/17 07:17	05/04/17	
Iron	6010C	37500	mg/Kg	5.2	2	05/09/17 12:21	05/04/17	
Lead	6020A	16.4	mg/Kg	0.065	5	05/11/17 07:17	05/04/17	
Magnesium	6010C	13200	mg/Kg	2.6	2	05/09/17 12:21	05/04/17	
Manganese	6010C	478	mg/Kg	0.26	2	05/09/17 12:21	05/04/17	
Mercury	7471B	ND U	mg/Kg	0.021	1	05/09/17 12:28	05/08/17	
Nickel	6020A	12.2	mg/Kg	0.26	5	05/11/17 07:17	05/04/17	
Potassium	6010C	9370	mg/Kg	52	2	05/09/17 12:21	05/04/17	
Selenium	6020A	ND U	mg/Kg	1.3	5	05/11/17 07:17	05/04/17	
Silver	6020A	0.226	mg/Kg	0.026	5	05/11/17 07:17	05/04/17	
Sodium	6010C	14100	mg/Kg	52	2	05/09/17 12:21	05/04/17	
Thallium	6020A	0.511	mg/Kg	0.026	5	05/11/17 07:17	05/04/17	
Vanadium	6020A	70.1	mg/Kg	0.26	5	05/11/17 07:17	05/04/17	
Zinc	6010C	114	mg/Kg	1.3	2	05/09/17 12:21	05/04/17	

Printed 05/11/17 3:55:38 PM Superset Reference:

Analytical Report

Client: Golder Associates, Inc.

Service Request: K1704415 **Date Collected:** 04/28/17 18:00 **Project:** Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Date Received: 05/04/17 09:40

Sample Name: SED17-31 Basis: Dry

Lab Code: K1704415-002

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	20500	mg/Kg	2.7	2	05/09/17 12:40	05/04/17	
Antimony	6020A	ND U	mg/Kg	0.068	5	05/11/17 07:35	05/04/17	
Arsenic	6020A	5.65	mg/Kg	0.68	5	05/11/17 07:35	05/04/17	
Barium	6010C	450	mg/Kg	1.1	2	05/09/17 12:40	05/04/17	
Beryllium	6020A	0.415	mg/Kg	0.027	5	05/11/17 07:35	05/04/17	
Cadmium	6020A	0.564	mg/Kg	0.027	5	05/11/17 07:35	05/04/17	
Calcium	6010C	12200	mg/Kg	5.4	2	05/09/17 12:40	05/04/17	
Chromium	6020A	24.9	mg/Kg	0.27	5	05/11/17 07:35	05/04/17	
Cobalt	6020A	11.6	mg/Kg	0.027	5	05/11/17 07:35	05/04/17	
Copper	6020A	19.0	mg/Kg	0.14	5	05/11/17 07:35	05/04/17	
Iron	6010C	37800	mg/Kg	5.4	2	05/09/17 12:40	05/04/17	
Lead	6020A	17.2	mg/Kg	0.068	5	05/11/17 07:35	05/04/17	
Magnesium	6010C	13200	mg/Kg	2.7	2	05/09/17 12:40	05/04/17	
Manganese	6010C	492	mg/Kg	0.27	2	05/09/17 12:40	05/04/17	
Mercury	7471B	ND U	mg/Kg	0.021	1	05/09/17 12:38	05/08/17	
Nickel	6020A	13.3	mg/Kg	0.27	5	05/11/17 07:35	05/04/17	
Potassium	6010C	9550	mg/Kg	54	2	05/09/17 12:40	05/04/17	
Selenium	6020A	ND U	mg/Kg	1.4	5	05/11/17 07:35	05/04/17	
Silver	6020A	0.257	mg/Kg	0.027	5	05/11/17 07:35	05/04/17	
Sodium	6010C	14300	mg/Kg	54	2	05/09/17 12:40	05/04/17	
Thallium	6020A	0.508	mg/Kg	0.027	5	05/11/17 07:35	05/04/17	
Vanadium	6020A	<i>77.</i> 5	mg/Kg	0.27	5	05/11/17 07:35	05/04/17	
Zinc	6010C	115	mg/Kg	1.4	2	05/09/17 12:40	05/04/17	

Printed 05/11/17 3:55:38 PM Superset Reference:

Analytical Report

Client: Golder Associates, Inc.

Service Request: K1704415 **Date Collected:** 04/29/17 19:00 **Project:** Skagway-Sediment 2017/1657231

Sample Matrix: Sediment **Date Received:** 05/04/17 09:40

Sample Name: SED17-09 Basis: Dry

Lab Code: K1704415-003

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	17400	mg/Kg	2.2	2	05/09/17 12:43	05/04/17	
Antimony	6020A	0.117	mg/Kg	0.055	5	05/11/17 07:38	05/04/17	
Arsenic	6020A	4.47	mg/Kg	0.55	5	05/11/17 07:38	05/04/17	
Barium	6010C	419	mg/Kg	0.88	2	05/09/17 12:43	05/04/17	
Beryllium	6020A	0.319	mg/Kg	0.022	5	05/11/17 07:38	05/04/17	
Cadmium	6020A	1.83	mg/Kg	0.022	5	05/11/17 07:38	05/04/17	
Calcium	6010C	11400	mg/Kg	4.4	2	05/09/17 12:43	05/04/17	
Chromium	6020A	18.6	mg/Kg	0.22	5	05/11/17 07:38	05/04/17	
Cobalt	6020A	9.18	mg/Kg	0.022	5	05/11/17 07:38	05/04/17	
Copper	6020A	93.5	mg/Kg	0.11	5	05/11/17 07:38	05/04/17	
Iron	6010C	33600	mg/Kg	4.4	2	05/09/17 12:43	05/04/17	
Lead	6020A	666	mg/Kg	0.055	5	05/11/17 07:38	05/04/17	
Magnesium	6010C	11400	mg/Kg	2.2	2	05/09/17 12:43	05/04/17	
Manganese	6010C	516	mg/Kg	0.22	2	05/09/17 12:43	05/04/17	
Mercury	7471B	0.821	mg/Kg	0.017	1	05/09/17 12:40	05/08/17	
Nickel	6020A	10.4	mg/Kg	0.22	5	05/11/17 07:38	05/04/17	
Potassium	6010C	8670	mg/Kg	44	2	05/09/17 12:43	05/04/17	
Selenium	6020A	ND U	mg/Kg	1.1	5	05/11/17 07:38	05/04/17	
Silver	6020A	1.04	mg/Kg	0.022	5	05/11/17 07:38	05/04/17	
Sodium	6010C	11000	mg/Kg	44	2	05/09/17 12:43	05/04/17	
Thallium	6020A	0.432	mg/Kg	0.022	5	05/11/17 07:38	05/04/17	
Vanadium	6020A	64.0	mg/Kg	0.22	5	05/11/17 07:38	05/04/17	
Zinc	6010C	1040	mg/Kg	1.1	2	05/09/17 12:43	05/04/17	

Printed 05/11/17 3:55:38 PM Superset Reference:

Analytical Report

Client: Golder Associates, Inc.

Service Request: K1704415 **Date Collected:** 04/29/17 16:00 **Project:** Skagway-Sediment 2017/1657231

Sample Matrix: Sediment **Date Received:** 05/04/17 09:40

Sample Name: SED17-13 Basis: Dry

Lab Code: K1704415-004

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	21100	mg/Kg	2.6	2	05/09/17 12:46	05/04/17	
Antimony	6020A	0.147	mg/Kg	0.066	5	05/11/17 07:42	05/04/17	
Arsenic	6020A	4.29	mg/Kg	0.66	5	05/11/17 07:42	05/04/17	
Barium	6010C	474	mg/Kg	1.1	2	05/09/17 12:46	05/04/17	
Beryllium	6020A	0.384	mg/Kg	0.026	5	05/11/17 07:42	05/04/17	
Cadmium	6020A	1.51	mg/Kg	0.026	5	05/11/17 07:42	05/04/17	
Calcium	6010C	7670	mg/Kg	5.3	2	05/09/17 12:46	05/04/17	
Chromium	6020A	23.5	mg/Kg	0.26	5	05/11/17 07:42	05/04/17	
Cobalt	6020A	11.4	mg/Kg	0.026	5	05/11/17 07:42	05/04/17	
Copper	6020A	100	mg/Kg	0.13	5	05/11/17 07:42	05/04/17	
Iron	6010C	39600	mg/Kg	5.3	2	05/09/17 12:46	05/04/17	
Lead	6020A	666	mg/Kg	0.066	5	05/11/17 07:42	05/04/17	
Magnesium	6010C	13400	mg/Kg	2.6	2	05/09/17 12:46	05/04/17	
Manganese	6010C	535	mg/Kg	0.26	2	05/09/17 12:46	05/04/17	
Mercury	7471B	0.413	mg/Kg	0.022	1	05/09/17 12:41	05/08/17	
Nickel	6020A	12.9	mg/Kg	0.26	5	05/11/17 07:42	05/04/17	
Potassium	6010C	10100	mg/Kg	53	2	05/09/17 12:46	05/04/17	
Selenium	6020A	ND U	mg/Kg	1.3	5	05/11/17 07:42	05/04/17	
Silver	6020A	1.05	mg/Kg	0.026	5	05/11/17 07:42	05/04/17	
Sodium	6010C	11900	mg/Kg	53	2	05/09/17 12:46	05/04/17	
Thallium	6020A	0.542	mg/Kg	0.026	5	05/11/17 07:42	05/04/17	
Vanadium	6020A	78.3	mg/Kg	0.26	5	05/11/17 07:42	05/04/17	
Zinc	6010C	642	mg/Kg	1.3	2	05/09/17 12:46	05/04/17	

Printed 05/11/17 3:55:39 PM Superset Reference:

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231 **Date Collected:** 04/30/17 16:00

Sample Matrix: Sediment

Date Received: 05/04/17 09:40

Service Request: K1704415

Sample Name: SED17-14 Basis: Dry

Lab Code: K1704415-005

Total Metals

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	9690	mg/Kg	1.7	2	05/09/17 12:48	05/04/17	
Antimony	6020A	ND U	mg/Kg	0.043	5	05/11/17 07:53	05/04/17	
Arsenic	6020A	2.06	mg/Kg	0.43	5	05/11/17 07:53	05/04/17	
Barium	6010C	224	mg/Kg	0.68	2	05/09/17 12:48	05/04/17	
Beryllium	6020A	0.198	mg/Kg	0.017	5	05/11/17 07:53	05/04/17	
Cadmium	6020A	0.394	mg/Kg	0.017	5	05/11/17 07:53	05/04/17	
Calcium	6010C	4410	mg/Kg	3.4	2	05/09/17 12:48	05/04/17	
Chromium	6020A	12.3	mg/Kg	0.17	5	05/11/17 07:53	05/04/17	
Cobalt	6020A	5.92	mg/Kg	0.017	5	05/11/17 07:53	05/04/17	
Copper	6020A	62.3	mg/Kg	0.085	5	05/11/17 07:53	05/04/17	
Iron	6010C	18700	mg/Kg	3.4	2	05/09/17 12:48	05/04/17	
Lead	6020A	144	mg/Kg	0.043	5	05/11/17 07:53	05/04/17	
Magnesium	6010C	6290	mg/Kg	1.7	2	05/09/17 12:48	05/04/17	
Manganese	6010C	259	mg/Kg	0.17	2	05/09/17 12:48	05/04/17	
Mercury	7471B	0.126	mg/Kg	0.015	1	05/09/17 12:43	05/08/17	
Nickel	6020A	6.30	mg/Kg	0.17	5	05/11/17 07:53	05/04/17	
Potassium	6010C	4530	mg/Kg	34	2	05/09/17 12:48	05/04/17	
Selenium	6020A	ND U	mg/Kg	0.85	5	05/11/17 07:53	05/04/17	
Silver	6020A	0.209	mg/Kg	0.017	5	05/11/17 07:53	05/04/17	
Sodium	6010C	4500	mg/Kg	34	2	05/09/17 12:48	05/04/17	
Thallium	6020A	0.223	mg/Kg	0.017	5	05/11/17 07:53	05/04/17	
Vanadium	6020A	41.3	mg/Kg	0.17	5	05/11/17 07:53	05/04/17	
Zinc	6010C	212	mg/Kg	0.85	2	05/09/17 12:48	05/04/17	

Printed 05/11/17 3:55:39 PM Superset Reference:

Analytical Report

Client: Golder Associates, Inc.

Service Request: K1704415 **Date Collected:** 04/30/17 14:00 **Project:** Skagway-Sediment 2017/1657231

Sample Matrix: Sediment **Date Received:** 05/04/17 09:40

Sample Name: SED17-11 Basis: Dry

Lab Code: K1704415-006

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	7210	mg/Kg	1.9	2	05/09/17 12:51	05/04/17	
Antimony	6020A	ND U	mg/Kg	0.048	5	05/11/17 07:56	05/04/17	
Arsenic	6020A	1.48	mg/Kg	0.48	5	05/11/17 07:56	05/04/17	
Barium	6010C	139	mg/Kg	0.77	2	05/09/17 12:51	05/04/17	
Beryllium	6020A	0.153	mg/Kg	0.019	5	05/11/17 07:56	05/04/17	
Cadmium	6020A	0.197	mg/Kg	0.019	5	05/11/17 07:56	05/04/17	
Calcium	6010C	3210	mg/Kg	3.8	2	05/09/17 12:51	05/04/17	
Chromium	6020A	9.68	mg/Kg	0.19	5	05/11/17 07:56	05/04/17	
Cobalt	6020A	4.39	mg/Kg	0.019	5	05/11/17 07:56	05/04/17	
Copper	6020A	48.0	mg/Kg	0.096	5	05/11/17 07:56	05/04/17	
Iron	6010C	15700	mg/Kg	3.8	2	05/09/17 12:51	05/04/17	
Lead	6020A	85.0	mg/Kg	0.048	5	05/11/17 07:56	05/04/17	
Magnesium	6010C	4810	mg/Kg	1.9	2	05/09/17 12:51	05/04/17	
Manganese	6010C	221	mg/Kg	0.19	2	05/09/17 12:51	05/04/17	
Mercury	7471B	0.077	mg/Kg	0.020	1	05/09/17 12:45	05/08/17	
Nickel	6020A	4.16	mg/Kg	0.19	5	05/11/17 07:56	05/04/17	
Potassium	6010C	2900	mg/Kg	38	2	05/09/17 12:51	05/04/17	
Selenium	6020A	ND U	mg/Kg	0.96	5	05/11/17 07:56	05/04/17	
Silver	6020A	0.126	mg/Kg	0.019	5	05/11/17 07:56	05/04/17	
Sodium	6010C	2370	mg/Kg	38	2	05/09/17 12:51	05/04/17	
Thallium	6020A	0.143	mg/Kg	0.019	5	05/11/17 07:56	05/04/17	
Vanadium	6020A	30.0	mg/Kg	0.19	5	05/11/17 07:56	05/04/17	
Zinc	6010C	125	mg/Kg	0.96	2	05/09/17 12:51	05/04/17	

Printed 05/11/17 3:55:39 PM Superset Reference:

Analytical Report

Client: Golder Associates, Inc.

Service Request: K1704415 **Date Collected:** 04/30/17 18:00 **Project:** Skagway-Sediment 2017/1657231

Sample Matrix: Sediment **Date Received:** 05/04/17 09:40

Sample Name: SED17-17 Basis: Dry

Lab Code: K1704415-007

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	10800	mg/Kg	2.1	2	05/09/17 12:53	05/04/17	
Antimony	6020A	ND U	mg/Kg	0.053	5	05/11/17 08:00	05/04/17	
Arsenic	6020A	2.75	mg/Kg	0.53	5	05/11/17 08:00	05/04/17	
Barium	6010C	281	mg/Kg	0.84	2	05/09/17 12:53	05/04/17	
Beryllium	6020A	0.208	mg/Kg	0.021	5	05/11/17 08:00	05/04/17	
Cadmium	6020A	0.342	mg/Kg	0.021	5	05/11/17 08:00	05/04/17	
Calcium	6010C	6120	mg/Kg	4.2	2	05/09/17 12:53	05/04/17	
Chromium	6020A	13.4	mg/Kg	0.21	5	05/11/17 08:00	05/04/17	
Cobalt	6020A	6.65	mg/Kg	0.021	5	05/11/17 08:00	05/04/17	
Copper	6020A	37.1	mg/Kg	0.11	5	05/11/17 08:00	05/04/17	
Iron	6010C	22900	mg/Kg	4.2	2	05/09/17 12:53	05/04/17	
Lead	6020A	98.9	mg/Kg	0.053	5	05/11/17 08:00	05/04/17	
Magnesium	6010C	7330	mg/Kg	2.1	2	05/09/17 12:53	05/04/17	
Manganese	6010C	316	mg/Kg	0.21	2	05/09/17 12:53	05/04/17	
Mercury	7471B	0.143	mg/Kg	0.022	1	05/09/17 12:46	05/08/17	
Nickel	6020A	7.20	mg/Kg	0.21	5	05/11/17 08:00	05/04/17	
Potassium	6010C	6370	mg/Kg	42	2	05/09/17 12:53	05/04/17	
Selenium	6020A	ND U	mg/Kg	1.1	5	05/11/17 08:00	05/04/17	
Silver	6020A	0.205	mg/Kg	0.021	5	05/11/17 08:00	05/04/17	
Sodium	6010C	3930	mg/Kg	42	2	05/09/17 12:53	05/04/17	
Thallium	6020A	0.254	mg/Kg	0.021	5	05/11/17 08:00	05/04/17	
Vanadium	6020A	44.6	mg/Kg	0.21	5	05/11/17 08:00	05/04/17	
Zinc	6010C	192	mg/Kg	1.1	2	05/09/17 12:53	05/04/17	

Printed 05/11/17 3:55:39 PM Superset Reference:

Analytical Report

Client: Golder Associates, Inc. Service Request: K1704415

Project: Skagway-Sediment 2017/1657231 Date Collected: NA

Sample Matrix: Sediment Date Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ1705465-03

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	ND U	mg/Kg	2	2	05/09/17 12:17	05/04/17	
Antimony	6020A	ND U	mg/Kg	0.05	5	05/11/17 07:08	05/04/17	
Arsenic	6020A	ND U	mg/Kg	0.5	5	05/11/17 07:08	05/04/17	
Barium	6010C	ND U	mg/Kg	0.8	2	05/09/17 12:17	05/04/17	
Beryllium	6020A	ND U	mg/Kg	0.020	5	05/11/17 07:08	05/04/17	
Cadmium	6020A	ND U	mg/Kg	0.020	5	05/11/17 07:08	05/04/17	
Calcium	6010C	5.2	mg/Kg	4	2	05/09/17 12:17	05/04/17	
Chromium	6020A	ND U	mg/Kg	0.20	5	05/11/17 07:08	05/04/17	
Cobalt	6020A	ND U	mg/Kg	0.020	5	05/11/17 07:08	05/04/17	
Copper	6020A	ND U	mg/Kg	0.10	5	05/11/17 07:08	05/04/17	
Iron	6010C	7.8	mg/Kg	4	2	05/09/17 12:17	05/04/17	
Lead	6020A	ND U	mg/Kg	0.05	5	05/11/17 07:08	05/04/17	
Magnesium	6010C	ND U	mg/Kg	2	2	05/09/17 12:17	05/04/17	
Manganese	6010C	ND U	mg/Kg	0.2	2	05/09/17 12:17	05/04/17	
Nickel	6020A	ND U	mg/Kg	0.20	5	05/11/17 07:08	05/04/17	
Potassium	6010C	ND U	mg/Kg	40	2	05/09/17 12:17	05/04/17	
Selenium	6020A	ND U	mg/Kg	1.0	5	05/11/17 07:08	05/04/17	
Silver	6020A	ND U	mg/Kg	0.020	5	05/11/17 07:08	05/04/17	
Sodium	6010C	ND U	mg/Kg	40	2	05/09/17 12:17	05/04/17	
Thallium	6020A	ND U	mg/Kg	0.020	5	05/11/17 07:08	05/04/17	
Vanadium	6020A	ND U	mg/Kg	0.20	5	05/11/17 07:08	05/04/17	
Zinc	6010C	ND U	mg/Kg	1.0	2	05/09/17 12:17	05/04/17	

Printed 05/11/17 3:55:40 PM Superset Reference:

Analytical Report

Client: Golder Associates, Inc. Service Request: K1704415

Project: Skagway-Sediment 2017/1657231 Date Collected: NA

Sample Matrix: Sediment Date Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ1705542-01

Total Metals

Analysis Analyte Name Method Result Units MRL Dil. **Date Analyzed Date Extracted** Q 7471B Mercury ND U mg/Kg 0.02 05/09/17 12:25 05/08/17

Printed 05/11/17 3:55:41 PM Superset Reference:

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc.

Project Skagway-Sediment 2017/1657231

DUP-1

Sample Matrix: Sediment

Sample Name:

Service Request: K1704415

Date Collected: 04/28/17 **Date Received:** 05/04/17

Date Analyzed: 05/09/17 - 05/11/17

Replicate Sample Summary

Total Metals

Lab Code: K1704415-001

Units: mg/Kg

Basis: Dry

	Analysis		Sample	Duplicate Sample KQ1705465-01			
Analyte Name	Method	MRL	Result	Result	Average	RPD	RPD Limit
Aluminum	6010C	2.7	19900	21400	20700	7	20
Antimony	6020A	0.068	ND U	ND U	ND	-	20
Arsenic	6020A	0.68	5.81	5.49	5.65	6	20
Barium	6010C	1.1	439	469	454	6	20
Beryllium	6020A	0.027	0.356	0.383	0.370	7	20
Cadmium	6020A	0.027	0.724	0.561	0.643	25 *	20
Calcium	6010C	5.4	13800	11300	12600	21 *	20
Chromium	6020A	0.27	22.3	23.1	22.7	4	20
Cobalt	6020A	0.027	10.5	10.9	10.7	3	20
Copper	6020A	0.14	17.6	18.4	18.0	4	20
Iron	6010C	5.4	37500	39100	38300	4	20
Lead	6020A	0.068	16.4	16.8	16.6	2	20
Magnesium	6010C	2.7	13200	13700	13500	4	20
Manganese	6010C	0.27	478	503	491	5	20
Nickel	6020A	0.27	12.2	12.4	12.3	1	20
Potassium	6010C	54	9370	9880	9630	5	20
Selenium	6020A	1.4	ND U	ND U	ND	-	20
Silver	6020A	0.027	0.226	0.216	0.221	4	20
Sodium	6010C	54	14100	14200	14200	<1	20
Thallium	6020A	0.027	0.511	0.479	0.495	6	20
Vanadium	6020A	0.27	70.1	72.8	71.5	4	20
Zinc	6010C	1.4	114	119	117	4	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 05/11/17 3:55:40 PM Superset Reference:

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc.

Service Request: K1704415

Project Skagway-Sediment 2017/1657231

Date Collected: 04/28/17 **Date Received:** 05/04/17

Sample Matrix: Sediment

Date Analyzed: 05/09/17

Replicate Sample Summary

Total Metals

Sample Name: DUP-1

Units: mg/Kg

Lab Code: K1704415-001

Basis: Dry

Duplicate Sample

Analysis Mathad

Sample KQ1705542-03

Analyte NameMethodMRLResultResultAverageRPDRPD LimitMercury7471B0.021ND UND UND-20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 05/11/17 3:55:41 PM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request:K1704415

Date Collected:04/28/17

Date Received:05/04/17

Date Analyzed:05/09/17 - 05/11/17

Matrix Spike Summary Total Metals

Sample Name: DUP-1

Lab Code: K1704415-001

Units:mg/Kg
Basis:Dry

Matrix Spike KQ1705465-02

Analyte Name	Method	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	6010C	19900	21000	557	206#	75-125
Antimony	6020A	ND U	31.1	139	22 N	75-125
Arsenic	6020A	5.81	144	139	99	75-125
Barium	6010C	439	733	278	106	75-125
Beryllium	6020A	0.356	13.5	13.9	95	75-125
Cadmium	6020A	0.724	15.1	13.9	103	75-125
Calcium	6010C	13800	16200	1390	170 #	75-125
Chromium	6020A	22.3	77.9	55.7	100	75-125
Cobalt	6020A	10.5	148	139	99	75-125
Copper	6020A	17.6	83.7	69.6	95	75-125
Iron	6010C	37500	37400	278	-11#	75-125
Lead	6020A	16.4	149	139	95	75-125
Magnesium	6010C	13200	14700	1390	109 #	75-125
Manganese	6010C	478	612	139	96	75-125
Nickel	6020A	12.2	148	139	98	75-125
Potassium	6010C	9370	11000	1390	117 #	75-125
Selenium	6020A	ND U	137	139	99	75-125
Silver	6020A	0.226	14.2	13.9	101	75-125
Sodium	6010C	14100	16100	1390	145 #	75-125
Thallium	6020A	0.511	28.0	27.8	99	75-125
Vanadium	6020A	70.1	214	139	103	75-125
Zinc	6010C	114	241	139	91	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 05/11/17 3:55:40 PM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix:

Sediment

Service Request:

K1704415

Date Collected:

04/28/17 05/04/17

Date Received: Date Analyzed:

05/9/17

Date Extracted:

05/8/17

Matrix Spike Summary

Total Metals

Sample Name: DUP-1

Lab Code: K1704415-001

Analysis Method: Prep Method:

7471B

Method

Units: Basis: mg/Kg

Dry

Matrix Spike

KQ1705542-04

Analyte Name Sample Result Spike Amount % Rec % Rec Limits Result Mercury ND U 0.590 0.549 108 80-120

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 05/11/17 3:55:41 PM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231 Date Analyzed: 05/09/17

Sample Matrix: Sediment

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Dry

Service Request: K1704415

Lab Control Sample

KQ1705465-04

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	6010C	7130	7930	90	39-161
Barium	6010C	331	308	107	74-126
Calcium	6010C	6730	6610	102	74-126
Iron	6010C	12700	14400	88	36-164
Magnesium	6010C	2680	2640	102	64-136
Manganese	6010C	422	410	103	76-124
Potassium	6010C	2560	2550	100	61-139
Sodium	6010C	3100	2480	125	65-173
Zinc	6010C	193	191	101	70-130

Printed 05/11/17 3:55:40 PM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Lab Control Sample Summary Total Metals

Units:mg/Kg Basis:Dry

Service Request: K1704415

Date Analyzed: 05/11/17

Lab Control Sample

KQ1705465-04

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Antimony	6020A	69.6	105	66	20-254
Arsenic	6020A	104	98.5	105	69-145
Beryllium	6020A	70.9	66.0	107	74-126
Cadmium	6020A	172	146	118	73-127
Chromium	6020A	198	182	109	71-130
Cobalt	6020A	187	162	116	74-125
Copper	6020A	116	106	109	75-125
Lead	6020A	139	130	107	72-127
Nickel	6020A	175	149	117	73-127
Selenium	6020A	170	154	110	68-132
Silver	6020A	45.1	40.9	110	66-134
Thallium	6020A	209	175	120	69-131
Vanadium	6020A	105	96.7	109	65-135

Printed 05/11/17 3:55:41 PM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix:

Sediment

Service Request: K1704415

Date Analyzed: 05/09/17

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Dry

Lab Control Sample

KQ1705542-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Mercury	7471B	0.498	0.500	100	51-148

Printed 05/11/17 3:55:41 PM Superset Reference:

Polynuclear Aromatic Hydrocarbons

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment Service Request: K1704415 **Date Collected:** 04/28/2017 **Date Received:** 05/04/2017

Units: ug/Kg

Basis: Dry

Level: Low

Polynuclear Aromatic Hydrocarbons

Sample Name:

DUP-1

Lab Code:

K1704415-001

Extraction Method:

EPA 3546

Analysis Method:

8270D SIM

Analyte Name	Result (Q M	RL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	U 9	.9	1	05/08/17	05/10/17	KWG1703683	
2-Methylnaphthalene	ND U	U 9	.9	1	05/08/17	05/10/17	KWG1703683	
Acenaphthylene	ND U	U 9	.9	1	05/08/17	05/10/17	KWG1703683	
Acenaphthene	ND U	U 9	.9	1	05/08/17	05/10/17	KWG1703683	
Dibenzofuran	ND U	U 9	.9	1	05/08/17	05/10/17	KWG1703683	
Fluorene	ND U	U 9	.9	1	05/08/17	05/10/17	KWG1703683	
Phenanthrene	12	Ç	.9	1	05/08/17	05/10/17	KWG1703683	
Anthracene	11	9	.9	1	05/08/17	05/10/17	KWG1703683	
Fluoranthene	58	9	.9	1	05/08/17	05/10/17	KWG1703683	
Pyrene	78	Ç	.9	1	05/08/17	05/10/17	KWG1703683	
Benz(a)anthracene	37	9	.9	1	05/08/17	05/10/17	KWG1703683	
Chrysene	37	ç	.9	1	05/08/17	05/10/17	KWG1703683	
Benzo(b)fluoranthene†	37	Ç	.9	1	05/08/17	05/10/17	KWG1703683	
Benzo(k)fluoranthene	16	9	.9	1	05/08/17	05/10/17	KWG1703683	
Benzo(a)pyrene	23	ç	.9	1	05/08/17	05/10/17	KWG1703683	
Indeno(1,2,3-cd)pyrene	ND U	U 9	.9	1	05/08/17	05/10/17	KWG1703683	
Dibenz(a,h)anthracene	ND U	U 9	.9	1	05/08/17	05/10/17	KWG1703683	
Benzo(g,h,i)perylene	14	9	.9	1	05/08/17	05/10/17	KWG1703683	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	87	38-104	05/10/17	Acceptable
Fluoranthene-d10	109	39-109	05/10/17	Acceptable
Terphenyl-d14	106	38-113	05/10/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/11/2017 Form 1A - Organic Page 1 of 13:51:06 Page 33 of 43

Merged

SuperSet Reference:

Analytical Results

Client: Golder Associates, Inc.

Skagway-Sediment 2017/1657231 **Project:**

Sample Matrix: Sediment Service Request: K1704415 **Date Collected:** 04/28/2017 **Date Received:** 05/04/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-31 Lab Code: K1704415-002 **Extraction Method:**

Analysis Method:

EPA 3546 8270D SIM Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	11	1	05/08/17	05/10/17	KWG1703683	
2-Methylnaphthalene	ND U	11	1	05/08/17	05/10/17	KWG1703683	
Acenaphthylene	ND U	11	1	05/08/17	05/10/17	KWG1703683	
Acenaphthene	ND U	11	1	05/08/17	05/10/17	KWG1703683	
Dibenzofuran	ND U	11	1	05/08/17	05/10/17	KWG1703683	
Fluorene	ND U	11	1	05/08/17	05/10/17	KWG1703683	
Phenanthrene	ND U	11	1	05/08/17	05/10/17	KWG1703683	
Anthracene	ND U	11	1	05/08/17	05/10/17	KWG1703683	
Fluoranthene	49	11	1	05/08/17	05/10/17	KWG1703683	
Pyrene	60	11	1	05/08/17	05/10/17	KWG1703683	
Benz(a)anthracene	20	11	1	05/08/17	05/10/17	KWG1703683	
Chrysene	ND U	11	1	05/08/17	05/10/17	KWG1703683	
Benzo(b)fluoranthene†	28	11	1	05/08/17	05/10/17	KWG1703683	
Benzo(k)fluoranthene	ND U	11	1	05/08/17	05/10/17	KWG1703683	
Benzo(a)pyrene	ND U	11	1	05/08/17	05/10/17	KWG1703683	
Indeno(1,2,3-cd)pyrene	ND U	11	1	05/08/17	05/10/17	KWG1703683	
Dibenz(a,h)anthracene	ND U	11	1	05/08/17	05/10/17	KWG1703683	
Benzo(g,h,i)perylene	ND U	11	1	05/08/17	05/10/17	KWG1703683	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	80	38-104	05/10/17	Acceptable
Fluoranthene-d10	103	39-109	05/10/17	Acceptable
Terphenyl-d14	100	38-113	05/10/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/11/2017 Form 1A - Organic Page 1 of 13:51:10 1 Merged

Page 34 of 43

SuperSet Reference: RR198164

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment Service Request: K1704415 **Date Collected:** 04/29/2017 **Date Received:** 05/04/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-09 Lab Code: K1704415-003

Extraction Method: Analysis Method:

8270D SIM

EPA 3546

Units: ug/Kg Basis: Dry Level: Low

Analyte Name	Result (Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND 1	U	8.8	1	05/08/17	05/10/17	KWG1703683	
2-Methylnaphthalene	9.4		8.8	1	05/08/17	05/10/17	KWG1703683	
Acenaphthylene	73		8.8	1	05/08/17	05/10/17	KWG1703683	
Acenaphthene	55		8.8	1	05/08/17	05/10/17	KWG1703683	
Dibenzofuran	27		8.8	1	05/08/17	05/10/17	KWG1703683	
Fluorene	89		8.8	1	05/08/17	05/10/17	KWG1703683	
Phenanthrene	610		8.8	1	05/08/17	05/10/17	KWG1703683	
Anthracene	260		8.8	1	05/08/17	05/10/17	KWG1703683	
Fluoranthene	11000	D	88	10	05/08/17	05/10/17	KWG1703683	
Pyrene	9000	D	88	10	05/08/17	05/10/17	KWG1703683	
Benz(a)anthracene	2300		8.8	1	05/08/17	05/10/17	KWG1703683	
Chrysene	2100		8.8	1	05/08/17	05/10/17	KWG1703683	
Benzo(b)fluoranthene†	2000		8.8	1	05/08/17	05/10/17	KWG1703683	
Benzo(k)fluoranthene	680		8.8	1	05/08/17	05/10/17	KWG1703683	
Benzo(a)pyrene	960		8.8	1	05/08/17	05/10/17	KWG1703683	
Indeno(1,2,3-cd)pyrene	390		8.8	1	05/08/17	05/10/17	KWG1703683	
Dibenz(a,h)anthracene	110		8.8	1	05/08/17	05/10/17	KWG1703683	
Benzo(g,h,i)perylene	290		8.8	1	05/08/17	05/10/17	KWG1703683	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	84	38-104	05/10/17	Acceptable
Fluoranthene-d10	91	39-109	05/10/17	Acceptable
Terphenyl-d14	107	38-113	05/10/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/11/2017 Form 1A - Organic Page 1 of 13:51:14 1

Merged

Page 35 of 43

SuperSet Reference: RR198164

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: K1704415 Date Collected: 04/29/2017 Date Received: 05/04/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 SED17-13

 Lab Code:
 K1704415-004

Extraction Method: Analysis Method:

EPA 3546 8270D SIM Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	9.1	1	05/08/17	05/10/17	KWG1703683	
2-Methylnaphthalene	11	9.1	1	05/08/17	05/10/17	KWG1703683	
Acenaphthylene	59	9.1	1	05/08/17	05/10/17	KWG1703683	
Acenaphthene	17	9.1	1	05/08/17	05/10/17	KWG1703683	
Dibenzofuran	29	9.1	1	05/08/17	05/10/17	KWG1703683	
Fluorene	110	9.1	1	05/08/17	05/10/17	KWG1703683	
Phenanthrene	470	9.1	1	05/08/17	05/10/17	KWG1703683	
Anthracene	250	9.1	1	05/08/17	05/10/17	KWG1703683	
Fluoranthene	2400 D	91	10	05/08/17	05/10/17	KWG1703683	
Pyrene	5700 D	91	10	05/08/17	05/10/17	KWG1703683	
Benz(a)anthracene	2200	9.1	1	05/08/17	05/10/17	KWG1703683	
Chrysene	2200	9.1	1	05/08/17	05/10/17	KWG1703683	
Benzo(b)fluoranthene†	2500	9.1	1	05/08/17	05/10/17	KWG1703683	
Benzo(k)fluoranthene	740	9.1	1	05/08/17	05/10/17	KWG1703683	
Benzo(a)pyrene	1100	9.1	1	05/08/17	05/10/17	KWG1703683	
Indeno(1,2,3-cd)pyrene	470	9.1	1	05/08/17	05/10/17	KWG1703683	
Dibenz(a,h)anthracene	150	9.1	1	05/08/17	05/10/17	KWG1703683	
Benzo(g,h,i)perylene	350	9.1	1	05/08/17	05/10/17	KWG1703683	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	75	38-104	05/10/17	Acceptable
Fluoranthene-d10	85	39-109	05/10/17	Acceptable
Terphenyl-d14	93	38-113	05/10/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/11/2017 13:51:18 Form 1A - Organic Page 1 of 1

 $u: \label{lem:linear_state} u: \label{lem:linear_state} u: \label{lem:linear_state} I m \label{lem:linear_state} u: \label{lem:linear_state} \\ u: \label{lem:linear_state} V = \label{lem:linear_state} \\ u: \label{lem$

Merged

Page 36 of 43

SuperSet Reference:

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: K1704415 Date Collected: 04/30/2017 Date Received: 05/04/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-14 Lab Code: K1704415-005 Extraction Method: EPA 3546

Analysis Method:

Units: ug/Kg Basis: Dry

nod: EPA 3546 d: 8270D SIM

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	6.4	1	05/08/17	05/10/17	KWG1703683	
2-Methylnaphthalene	ND U	6.4	1	05/08/17	05/10/17	KWG1703683	
Acenaphthylene	6.4	6.4	1	05/08/17	05/10/17	KWG1703683	
Acenaphthene	ND U	6.4	1	05/08/17	05/10/17	KWG1703683	
Dibenzofuran	ND U	6.4	1	05/08/17	05/10/17	KWG1703683	
Fluorene	9.6	6.4	1	05/08/17	05/10/17	KWG1703683	
Phenanthrene	49	6.4	1	05/08/17	05/10/17	KWG1703683	
Anthracene	28	6.4	1	05/08/17	05/10/17	KWG1703683	
Fluoranthene	710	6.4	1	05/08/17	05/10/17	KWG1703683	
Pyrene	480	6.4	1	05/08/17	05/10/17	KWG1703683	
Benz(a)anthracene	180	6.4	1	05/08/17	05/10/17	KWG1703683	
Chrysene	220	6.4	1	05/08/17	05/10/17	KWG1703683	
Benzo(b)fluoranthene†	180	6.4	1	05/08/17	05/10/17	KWG1703683	
Benzo(k)fluoranthene	78	6.4	1	05/08/17	05/10/17	KWG1703683	
Benzo(a)pyrene	79	6.4	1	05/08/17	05/10/17	KWG1703683	
Indeno(1,2,3-cd)pyrene	34	6.4	1	05/08/17	05/10/17	KWG1703683	
Dibenz(a,h)anthracene	ND U	6.4	1	05/08/17	05/10/17	KWG1703683	
Benzo(g,h,i)perylene	26	6.4	1	05/08/17	05/10/17	KWG1703683	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	75	38-104	05/10/17	Acceptable
Fluoranthene-d10	82	39-109	05/10/17	Acceptable
Terphenyl-d14	85	38-113	05/10/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/11/2017 13:51:22 Form 1A - Organic Page 1 of 1

 $u: \label{lem:linear_state} u: \label{lem:linear_state} u: \label{lem:linear_state} I m \label{lem:linear_state} u: \label{lem:linear_state} \\ u: \label{lem:linear_state} V = \label{lem:linear_state} \\ u: \label{lem$

Merged

Page 37 of 43

SuperSet Reference:

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sediment Sample Matrix:

Service Request: K1704415 **Date Collected:** 04/30/2017 **Date Received:** 05/04/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-11 Lab Code: K1704415-006

Extraction Method: EPA 3546 **Analysis Method:** 8270D SIM Units: ug/Kg Basis: Dry

Level: Low

Dilution Date Date **Extraction Analyte Name** Result O MRL **Factor** Extracted Analyzed Lot Note KWG1703683 05/10/17 Naphthalene ND U 5.8 05/08/17 KWG1703683 2-Methylnaphthalene 5.8 1 05/08/17 05/10/17 ND U Acenaphthylene ND U 5.8 1 05/08/17 05/10/17 KWG1703683 KWG1703683 Acenaphthene ND U 5.8 1 05/08/17 05/10/17 Dibenzofuran ND U 5.8 1 05/08/17 05/10/17 KWG1703683 Fluorene ND U 5.8 1 05/08/17 05/10/17 KWG1703683 1 KWG1703683 Phenanthrene 13 5.8 05/08/17 05/10/17 Anthracene 7.9 5.8 1 05/08/17 05/10/17 KWG1703683 Fluoranthene 52 5.8 1 05/08/17 05/10/17 KWG1703683 KWG1703683 Pvrene 60 5.8 1 05/08/17 05/10/17 Benz(a)anthracene 88 5.8 1 05/08/17 05/10/17 KWG1703683 Chrysene 54 5.8 1 05/08/17 05/10/17 KWG1703683 Benzo(b)fluoranthene† 140 5.8 1 05/08/17 05/10/17 KWG1703683 Benzo(k)fluoranthene 48 5.8 1 05/08/17 05/10/17 KWG1703683 50 05/08/17 05/10/17 KWG1703683 Benzo(a)pyrene 5.8 1 Indeno(1,2,3-cd)pyrene 18 5.8 1 05/08/17 KWG1703683 05/10/17 ND U KWG1703683 Dibenz(a,h)anthracene 5.8 1 05/08/17 05/10/17 KWG1703683 Benzo(g,h,i)perylene 15 5.8 1 05/08/17 05/10/17

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	70	38-104	05/10/17	Acceptable
Fluoranthene-d10	79	39-109	05/10/17	Acceptable
Terphenyl-d14	86	38-113	05/10/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Form 1A - Organic Page Printed: 1 of 05/11/2017 13:51:26 $u:\Stealth\Crystal.rpt\Form1mNew.rpt$ Page 38 of 43

Merged

SuperSet Reference:

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment Service Request: K1704415 **Date Collected:** 04/30/2017 **Date Received:** 05/04/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-17 Lab Code: K1704415-007 **Extraction Method:** EPA 3546

Analysis Method:

8270D SIM

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	6.4	1	05/08/17	05/10/17	KWG1703683	
2-Methylnaphthalene	ND U	6.4	1	05/08/17	05/10/17	KWG1703683	
Acenaphthylene	ND U	6.4	1	05/08/17	05/10/17	KWG1703683	
Acenaphthene	ND U	6.4	1	05/08/17	05/10/17	KWG1703683	
Dibenzofuran	ND U	6.4	1	05/08/17	05/10/17	KWG1703683	
Fluorene	10	6.4	1	05/08/17	05/10/17	KWG1703683	
Phenanthrene	51	6.4	1	05/08/17	05/10/17	KWG1703683	
Anthracene	20	6.4	1	05/08/17	05/10/17	KWG1703683	
Fluoranthene	180	6.4	1	05/08/17	05/10/17	KWG1703683	
Pyrene	110	6.4	1	05/08/17	05/10/17	KWG1703683	
Benz(a)anthracene	140	6.4	1	05/08/17	05/10/17	KWG1703683	
Chrysene	150	6.4	1	05/08/17	05/10/17	KWG1703683	
Benzo(b)fluoranthene†	180	6.4	1	05/08/17	05/10/17	KWG1703683	
Benzo(k)fluoranthene	72	6.4	1	05/08/17	05/10/17	KWG1703683	
Benzo(a)pyrene	81	6.4	1	05/08/17	05/10/17	KWG1703683	
Indeno(1,2,3-cd)pyrene	34	6.4	1	05/08/17	05/10/17	KWG1703683	
Dibenz(a,h)anthracene	7.9	6.4	1	05/08/17	05/10/17	KWG1703683	
Benzo(g,h,i)perylene	27	6.4	1	05/08/17	05/10/17	KWG1703683	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	79	38-104	05/10/17	Acceptable
Fluoranthene-d10	88	39-109	05/10/17	Acceptable
Terphenyl-d14	93	38-113	05/10/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/11/2017 Form 1A - Organic Page 1 of 13:51:30 1 Merged

Page 39 of 43

SuperSet Reference:

RR198164

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Soil Service Request: K1704415 Date Collected: NA Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name: Method Blank Lab Code: KWG1703683-5

Extraction Method: EPA 3546 **Analysis Method:** 8270D SIM Units: ug/Kg Basis: Dry

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
2-Methylnaphthalene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Acenaphthylene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Acenaphthene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Dibenzofuran	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Fluorene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Phenanthrene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Anthracene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Fluoranthene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Pyrene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Benz(a)anthracene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Chrysene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Benzo(b)fluoranthene†	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Benzo(k)fluoranthene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Benzo(a)pyrene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Indeno(1,2,3-cd)pyrene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Dibenz(a,h)anthracene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Benzo(g,h,i)perylene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	72	38-104	05/10/17	Acceptable
Fluoranthene-d10	77	39-109	05/10/17	Acceptable
Terphenyl-d14	87	38-113	05/10/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/11/2017 Form 1A - Organic Page 1 of 13:51:34 1 Page 40 of 43

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704415

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:EPA 3546Units:PercentAnalysis Method:8270D SIMLevel:Low

Sample Name	<u>Lab Code</u>	Sur1	Sur2		Sur3	
DUP-1	K1704415-001	87	109		106	
SED17-31	K1704415-002	80	103		100	
SED17-09	K1704415-003	84	91 D		107	
SED17-13	K1704415-004	75	85 D		93	
SED17-14	K1704415-005	75	82		85	
SED17-11	K1704415-006	70	79		86	
SED17-17	K1704415-007	79	88		93	
Method Blank	KWG1703683-5	72	77		87	
DUP-1MS	KWG1703683-1	86	113	*	107	
DUP-1DMS	KWG1703683-2	90	118	*	114	*
Lab Control Sample	KWG1703683-3	76	87		89	
Duplicate Lab Control Sample	KWG1703683-4	75	84		86	

Surrogate Recovery Control Limits (%)

Sur1	=	Fluorene-d10	38-104
Sur2	=	Fluoranthene-d10	39-109
Sur3	=	Terphenyl-d14	38-113

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

 Printed:
 05/11/2017
 13:51:40
 Form 2A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form2.rpt
 Page 41 of 43
 SuperSet Reference:
 RR198164

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment Service Request: K1704415 **Date Extracted:** 05/08/2017 **Date Analyzed:** 05/10/2017

Matrix Spike/Duplicate Matrix Spike Summary Polynuclear Aromatic Hydrocarbons

Sample Name:

DUP-1

Lab Code:

K1704415-001

Extraction Method: Analysis Method:

EPA 3546 8270D SIM

Units: ug/Kg

Basis: Dry

Level: Low

Extraction Lot: KWG1703683

DUP-1MS KWG1703683-1 **Matrix Spike**

DUP-1DMS KWG1703683-2 **Duplicate Matrix Spike**

Analyte Name	Sample Result	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Naphthalene	ND	751	1000	75	772	1010	77	29-88	3	40
2-Methylnaphthalene	ND	751	1000	75	785	1010	78	28-98	4	40
Acenaphthylene	ND	762	1000	76	793	1010	79	32-97	4	40
Acenaphthene	ND	791	1000	79	814	1010	81	30-101	3	40
Dibenzofuran	ND	811	1000	81	834	1010	83	28-105	3	40
Fluorene	ND	819	1000	82	864	1010	86	23-116	5	40
Phenanthrene	12	1150	1000	114	947	1010	93	10-128	19	40
Anthracene	11	853	1000	84	1030	1010	101	27-116	19	40
Fluoranthene	58	1790	1000	174 *	1110	1010	105	10-138	47 *	40
Pyrene	78	1380	1000	130	1050	1010	97	16-134	27	40
Benz(a)anthracene	37	948	1000	91	1000	1010	96	27-127	6	40
Chrysene	37	988	1000	95	1080	1010	103	25-132	9	40
Benzo(b)fluoranthene	37	1010	1000	97	1060	1010	102	21-130	5	40
Benzo(k)fluoranthene	16	967	1000	95	1010	1010	99	22-126	5	40
Benzo(a)pyrene	23	872	1000	85	955	1010	93	25-129	9	40
Indeno(1,2,3-cd)pyrene	ND	932	1000	93	987	1010	98	17-138	6	40
Dibenz(a,h)anthracene	ND	961	1000	96	1020	1010	102	32-116	6	40
Benzo(g,h,i)perylene	14	1010	1000	100	1050	1010	103	17-130	4	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 05/11/2017 Form 3A - Organic Page 1 of 13:51:45 SuperSet Reference: RR198164 Page 42 of 43

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Soil

Date Extracted: 05/08/2017 **Date Analyzed:** 05/10/2017

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:
Analysis Method:

EPA 3546 8270D SIM

Units: ug/Kg
Basis: Dry

Level: Low

Extraction Lot: KWG1703683

Lab Control Sample KWG1703683-3 Lab Control Spike Duplicate Lab Control Sample KWG1703683-4 Duplicate Lab Control Spike

Analyte Name	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Naphthalene	356	500	71	373	500	75	42-88	5	40
2-Methylnaphthalene	358	500	72	373	500	75	43-92	4	40
Acenaphthylene	359	500	72	382	500	76	44-93	6	40
Acenaphthene	361	500	72	385	500	77	44-95	6	40
Dibenzofuran	366	500	73	388	500	78	44-96	6	40
Fluorene	364	500	73	386	500	77	45-98	6	40
Phenanthrene	371	500	74	389	500	78	41-99	5	40
Anthracene	376	500	75	394	500	79	46-100	5	40
Fluoranthene	399	500	80	412	500	82	49-102	3	40
Pyrene	392	500	78	406	500	81	48-104	4	40
Benz(a)anthracene	395	500	79	407	500	81	52-105	3	40
Chrysene	414	500	83	428	500	86	51-110	3	40
Benzo(b)fluoranthene	422	500	84	433	500	87	52-114	3	40
Benzo(k)fluoranthene	431	500	86	445	500	89	52-112	3	40
Benzo(a)pyrene	400	500	80	409	500	82	52-111	2	40
Indeno(1,2,3-cd)pyrene	379	500	76	382	500	76	44-117	1	40
Dibenz(a,h)anthracene	379	500	76	391	500	78	44-110	3	40
Benzo(g,h,i)perylene	417	500	83	426	500	85	45-107	2	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Printed:
 05/11/2017
 13:51:49
 Form 3C - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form3DLC.rpt
 Page 43 of 43
 SuperSet Reference:
 RR198164

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T:+1 360 577 7222

F: +1 360 636 1068 www.alsglobal.com

June 01, 2017

Analytical Report for Service Request No: K1704419

Tamra Reynolds Golder Associates Ltd. Suite 201C, 170 Titanium Way Whitehorse, YT Y1A0G1

RE: Skagway-Sediment 2017 / 1657231

Dear Tamra,

Enclosed are the results of the sample(s) submitted to our laboratory May 04, 2017 For your reference, these analyses have been assigned our service request number **K1704419**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsqlobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Howard Holmes Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

General Chemistry

Metals

Diesel and Residual Range Organics

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-	
	data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator	
Oregon – DEQ (NELAP)	yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS ENVIRONMENTAL

Client:Golder Associates, Inc.Service Request No.:K1704419Project:Skagway - Sediment 2017/ 1657231Date Received:05/04/17

Sample Matrix: Sediment

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Seven sediment samples were received for analysis at ALS Environmental on 05/04/17. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

Acid-Volatile Sulfide by EPA Method 821/R-91-100:

The matrix spike recoveries for sample SED17-09 were outside control criteria because of suspected matrix interference. As a result of the interference, the results for this analyte contained a potential high bias. No further corrective action was taken.

No other anomalies associated with the analysis of these samples were observed.

Total Metals

No anomalies associated with the analysis of these samples were observed.

Diesel and Residual Range Organics by Method AK102/ AK103

The recovery of n-Triacontane and o-Terphenyl in Continuing Calibration Verification (CCV) KWG1704203-3 were outside the control criteria of \pm 20% listed in the analytical report. The recovery of the analyte was within the 60-120% control criteria for surrogate recoveries in laboratory quality control samples specified in the AK102/103 method. No further corrective action was necessary.

No other anomalies associated with the analysis of these samples were observed.

Approved by Award Holen

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS Environmental

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here

K1704419 coc Number: 15-594999

Page | of |

www.alsqlobal.com Canada Toll Free: 1 800 668 9878

									Charles at the second		Carry of Gray July	111,111						
Report To	Contact and company name below will ap	ppear on the final report		Report Forma	t / Distribution		Seíec	t Service	Level Belo	ow - Pieas	e confirm	#I E&P TAT	's with y	our AM - sur	charges will a	pply		
Company:	Golder Associates	LTD	Select Report P		Z EXCEL	EDD (DIGITAL)		F	tegular	[R]	9	tandard T.	AT if red	eived by 3	pm - busine	s days - r	no surcha	rges apply
Contact:	Tampa Reynolds		Quality Control	(QC) Report with Rep	oort Z YES	NO NO	T (Says)		4 day [F	24]			č	1 Bus	iness da	[E1]		
Phone:	1-867-334 - 4468 Company address below will appear on the final		Compare Re	Compare Results to Criteria on Report - provide details below if box checked						3 day [P3]					, Weeker	d or St	atutory	, h
			Select Distributi		- MAIL [8 m	2 day [P2]						holiday [E0]				
Street:	170- 2016 Titanium	n Way	Email 1 or Fax	TJREYNA	DS @ Jelle	·(GWs	Date and Time Required for all E&P TATs:											
City/Province:	Whitehorse Yulian		Email 2 YAD	nail 2 YADDY NCM AUUS @ mailder						For tests that can not be performed according to the service level selected, you will be contacted.								
ostal Code:	Y1A 061		Email 3 VM	ERCER @ ac	leer, com							A	nalysi	s Reque	st			
nvoice To	Same as Report To YES	□ NO		Invoice Distribution						Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below								
	Copy of Invoice with Report YES	NO	Select invoice D	istribution:	EMAIL MAIL	FAX		T]
Company:			Email 1 or Fax	sump as	report					ંસું								
Contact:			Email 2		•			1		Q		ĺ	Í		} }	1		ē
	Project Information		APPLICATION OF THE	Oil and Gas Require	d Fields (client u	se)	_	{	5	e-balla	, }						}	ajie
LS Account # /			AFE/Cost Center:		PO#				65	اف	,	}	- }	l				ont
	657231		Major/Minor Code:		Routing Code:		4	}	$ \cdot $	د_	J		}					o do
O / AFE:			Requisitioner:				_		ا ما	इ	Ì				ĺ		İ	Number of Containers
SD:			Location:				_]	ļ	니	2	• (5	ļ		((E
AIS Lab Wo	rk Order # (lab use only)]	ALS Contact: T	add Pay fair	Sampler: PM	12 M	100	١.,	13	Organic	_ [4				İ	l	_
		i				311	[]	Ť	ੱ ਚੀ		O	\sim						
ALS Sample #	•	n and/or Coordinates		Date	Time	Sample Type	Motals	PA.14	Grafusize	Total	URO	MS/SEM	ł	1 1				
(lab use only)		appear on the report)		(dd-mmm-yy)	(hh:mm)			-	+		<u>/</u>	\rightarrow					ļ	
	DUP-I			28-APR-17	18:00	sellment	X	X	X.	Х								4
	SED17-31	7.		28-APR-17						ال ا				_		. l		. 1
	SED17-09			29-APR-17	19:00				T	T				· -				7
	SED 17 - 13			29-APR-17	16:00					11			1	1		T		
	SED 17-14			30-APR-17	16:00				11	1			+	11	-			
	SEDIA - 1			30 - APR-17			+	+	+	++			+	+		 		
				30 - APR-17		-		 	+	+			-	++				
	SED17-17			11-141-06	10.00			-	-	+				1-1				مىل
]		-							
												$\neg \vdash$	1					
				<u></u> -			1			_		\dashv	1				1	
		Special Instructions / Sp	ecify Criteria to a	dd on report by clicki	a on the dron-do	vn list helow	14.33			SAMI	LECO	NDITIO	NASI	RECEIVE	D (lab us	е опіу)	X454.E	
Drinking	Water (DW) Samples ¹ (client use)		(elect	tronic COC only)			Frozen					S/F	Obse	rvations	Yes		No	
	from a Regulated DW System?	Please archive con and PANs, regalor t directions for Di	used some	165 5- New to	ruareuril en	mach	ice Pac	cks		— ice Cul	oes [Cus	tody s	eal intac	Yes		No	
YES	∠ NO	and PAN's receipt y	irm exacul	en 65 a 77	Y . W. I A	EA-J	Cooling	a Initiat	eď									
samples for hur	man drinking water use?	direction C. Ni	20 . 0 4	or Con	<i>~</i> , ~, .	•	Quigna Na	INIIT	AL COOL	ER TEN	PERATU	RES °C	\$100 PAS	4 7 6 10	FINAL CO	LER TEN	IPERATI	RES C
YES	Z no	and the Di	· · ··································	V3/ JKP(
	SHIPMENT RELEASE (client use)			INITIAL SHIPMENT		use only)		4,000	1. O. N.		FIN	AL SHIP	MENT		TiON (lab	use on		
eleased by:	Date: 1 - MAY-	- 17 Time: R	eceived by:	enre	ate: 5/4/1	7	Time:	4/1	Receive	ed by:				Date:			1	îme:
ER TO BACK PA	GE FOR ALS LOCATIONS AND SAMPLING INFO	ORMATION	معن مرسب		- LABORATORY C	OPY YELLOW			Y									OCTOBER 2015 FRONT

7/25/16

Cooler Receipt and Preservation Form Service Request K17 C4419 DHL Samples were received via? **USPS** Fed Ex **UPS** Courier Hand Delivered Samples were received in: (circle) Cooler Box Envelope Other 3. Were custody seals on coolers? NA N If yes, how many and where? N N If present, were they signed and dated? If present, were custody seals intact? Cooler/COC ID Tracking Number Thermometer Corr. NA Filed Factor Temp Biani Bubble Wrap (Gel Packs) Wet Ice Dry Ice Packing material: Inserts Baggies(Were custody papers properly filled out (ink, signed, etc.)? NA N Were samples received in good condition (temperature, unbroken)? *Indicate in the table below*. NA N If applicable, tissue samples were received: Partially Thawed Frozen Thawed Were all sample labels complete (i.e analysis, preservation, etc.)? NA Ν Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA Ν Were appropriate bottles/containers and volumes received for the tests indicated? N Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below Were VOA vials received without headspace? Indicate in the table below. 12. Was C12/Res negative? N Sample ID on Bottle Sample ID on COC identified by: **Bottle Count** Out of Head-Volume Reagent Lot Number **Bottle Type** Temp space Broke added Sample ID Ηq Reagent initials Time Notes, Discrepancies, & Resolutions:

Page 10 of 52

of____

Page

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Analysis Method: 160.3 Modified

Prep Method: None

Service Request: K1704419

Date Collected: 04/28/17 - 04/30/17

Date Received: 05/4/17

Units: Percent

Basis: As Received

Solids, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
DUP-1	K1704419-001	46.1	-	1	05/05/17 17:28	
SED17-31	K1704419-002	46.8	-	1	05/05/17 17:28	
SED17-09	K1704419-003	57.3	-	1	05/05/17 17:28	
SED17-13	K1704419-004	53.6	-	1	05/05/17 17:28	
SED17-14	K1704419-005	74.1	-	1	05/05/17 17:28	
SED17-11	K1704419-006	80.8	-	1	05/05/17 17:28	
SED17-17	K1704419-007	75.6	-	1	05/05/17 17:28	

QA/QC Report

Client: Service Request: KQ1705502

Project Date Collected:NA

Sediment Date Received:NA **Sample Matrix:**

160.3 Modified **Analysis Method:** Units:Percent **Prep Method:** None Basis: As Received

Replicate Sample Summary Inorganic Parameters

			Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	Result	Result	Average	RPD	Limit	Analyzed
Duplicate	K1704419-003DUP	-		57.2	57.3	<1	20	05/05/17
Batch QC	K1704473-006DUP	-	59.5	59.5	59.5	<1	20	05/05/17
Batch QC	K1704476-002DUP	-	81.4	85.3	83.4	5	20	05/05/17

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/8/2017 9:28:30 AM Superset Reference:17-0000420868 rev 00

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Analysis Method: 821/R-91-100

Prep Method: Method

Service Request: K1704419

Date Collected: 04/29/17 - 04/30/17

Date Received: 05/4/17

Units: uMole/gBasis: Dry

Sulfide, Acid-Volatile

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
SED17-09	K1704419-003	8.39	0.99	20	05/12/17 23:43	5/12/17	
SED17-13	K1704419-004	5.5	1.1	20	05/12/17 23:43	5/12/17	
SED17-14	K1704419-005	0.088	0.041	1	05/12/17 23:43	5/12/17	
SED17-11	K1704419-006	0.043	0.032	1	05/12/17 23:43	5/12/17	
SED17-17	K1704419-007	ND U	0.037	1	05/12/17 23:43	5/12/17	
Method Blank	K1704419-MB	ND U	0.016	1	05/12/17 23:43	5/12/17	

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704419

Project Skagway-Sediment 2017/1657231 Date Collected: 04/29/17

Sample Matrix: Sediment Date Received: 05/04/17

Date Analyzed: 05/12/17

Replicate Sample Summary

General Chemistry Parameters

Sample Name: SED17-09 Units: uMole/g

Lab Code: K1704419-003 **Basis:** Dry

Duplicate Sample

K1704419-

Sample 003DUP

Analyte NameAnalysis MethodMRLResultResultAverageRPDRPD LimitSulfide, Acid-Volatile821/R-91-1000.978.398.828.61545

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/24/2017 11:38:20 AM Superset Reference:17-0000420868 rev 00

QA/QC Report

Client: Golder Associates, Inc.

Skagway-Sediment 2017/1657231

Sample Matrix:

Project:

Sediment

Service Request:

K1704419

Date Collected:

04/29/17

Date Received:

05/04/17

Date Analyzed: Date Extracted:

Units:

Basis:

05/12/17 05/12/17

Duplicate Matrix Spike Summary

Sulfide, Acid-Volatile

Sample Name: SED17-09

uMole/g

Dry

Lab Code:

K1704419-003

Analysis Method:

821/R-91-100

Prep Method:

Method

Matrix Spike

Duplicate Matrix Spike

K1704419-003DMS

K1704419-003MS

	Sample		Spike			Spike		% Rec		RPD	
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit	
Sulfide, Acid-Volatile	8.39	61.8	35.3	151 *	63.2	35.6	154 *	56-142	2.	45	_

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/24/2017 11:38:20 AM Superset Reference:17-0000420868 rev 00

QA/QC Report

Client: Golder Associates, Inc.

Service Request: K1704419

Project:

Skagway-Sediment 2017/1657231

Date Analyzed: 05/12/17

Sample Matrix: Sediment

Date Extracted:

05/12/17

Lab Control Sample Summary

Sulfide, Acid-Volatile

Analysis Method: 821/R-91-100

Units:

uMole/g

Prep Method: Method

Basis:

Dry

Analysis Lot:

545571

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1704419-LCS	0.210	0.228	92	60-115

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Date Collected:
 4/28/2017

 Date Received:
 5/4/2017

 Date Analyzed:
 5/8/2017

K1704419

Service Request:

Particle Size Determination ASTM D422M

Sample Name: DUP-1

Lab Code: K1704419-001

Sand Fraction: Weight (Grams)1.8905Sand Fraction: Weight Recovered (Grams)1.8779Sand Fraction: Percent Recovery99.34

Weight as received (Grams)	35.97
Percent Solids	46.1
Weight Oven-Dried (Grams)	16.5822

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	0.0177	0.11
Gravel, Fine	2.00 mm	10	0.2936	1.77
Sand, Very Coarse	0.850 mm	20	0.3895	2.35
Sand, Coarse	0.425 mm	40	0.2301	1.39
Sand, Medium	0.250 mm	60	0.2109	1.27
Sand, Fine	0.106 mm	140	0.3595	2.17
Sand, Very Fine	0.075 mm	200	0.2859	1.72
Silt			12.0600	72.73
Clay			2.9850	18.00
	·	Total	16.8322	101.51

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Date Collected:
 4/28/2017

 Date Received:
 5/4/2017

 Date Analyzed:
 5/8/2017

K1704419

Service Request:

Particle Size Determination ASTM D422M

Sample Name: SED17-31 Lab Code: K1704419-002

Sand Fraction: Weight (Grams)1.8775Sand Fraction: Weight Recovered (Grams)1.8466Sand Fraction: Percent Recovery98.35

Weight as received (Grams)	30.726
Percent Solids	46.8
Weight Oven-Dried (Grams)	14.3798

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	0.1682	1.17
Gravel, Fine	2.00 mm	10	0.5095	3.54
Sand, Very Coarse	0.850 mm	20	0.3092	2.15
Sand, Coarse	0.425 mm	40	0.1860	1.29
Sand, Medium	0.250 mm	60	0.1512	1.05
Sand, Fine	0.106 mm	140	0.2662	1.85
Sand, Very Fine	0.075 mm	200	0.2012	1.40
Silt			9.2350	64.22
Clay			3.1750	22.08
		Total	14.2015	98.75

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Service Request:
 K1704419

 Date Collected:
 4/29/2017

 Date Received:
 5/4/2017

 Date Analyzed:
 5/8/2017

Particle Size Determination ASTM D422M

Sample Name: SED17-09 Lab Code: K1704419-003

Sand Fraction: Weight (Grams)6.0532Sand Fraction: Weight Recovered (Grams)5.9124Sand Fraction: Percent Recovery97.67

Weight as received (Grams)	36.877
Percent Solids	57.3
Weight Oven-Dried (Grams)	21.1305

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	0.0618	0.29
Gravel, Fine	2.00 mm	10	0.0797	0.38
Sand, Very Coarse	0.850 mm	20	0.3424	1.62
Sand, Coarse	0.425 mm	40	0.8824	4.18
Sand, Medium	0.250 mm	60	1.0183	4.82
Sand, Fine	0.106 mm	140	2.1304	10.08
Sand, Very Fine	0.075 mm	200	1.0409	4.93
Silt			11.6300	55.04
Clay			3.1600	14.95
		Total	20.3459	96.29

dba ALS Environmental **Analytical Report**

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: Date Collected: 4/29/2017 **Date Received:** 5/4/2017 **Date Analyzed:** 5/8/2017

K1704419

Particle Size Determination ASTM D422M

Sample Name: SED17-13 Lab Code: K1704419-004

> Sand Fraction: Weight (Grams) 2.8216 Sand Fraction: Weight Recovered (Grams) 2.7950 Sand Fraction: Percent Recovery 99.06

Weight as received (Grams)	34.504
Percent Solids	53.6
Weight Oven-Dried (Grams)	18.4941

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	0.0000	0.00
Gravel, Fine	2.00 mm	10	0.0757	0.41
Sand, Very Coarse	0.850 mm	20	0.0968	0.52
Sand, Coarse	0.425 mm	40	0.1722	0.93
Sand, Medium	0.250 mm	60	0.2609	1.41
Sand, Fine	0.106 mm	140	1.2640	6.83
Sand, Very Fine	0.075 mm	200	0.7769	4.20
Silt			12.5500	67.86
Clay			3.4250	18.52
		Total	18.6215	100.68

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Service Request:
 K1704419

 Date Collected:
 4/30/2017

 Date Received:
 5/4/2017

 Date Analyzed:
 5/8/2017

Particle Size Determination ASTM D422M

Sample Name: SED17-14 Lab Code: K1704419-005

Sand Fraction: Weight (Grams)31.5780Sand Fraction: Weight Recovered (Grams)31.5668Sand Fraction: Percent Recovery99.96

Weight as received (Grams)	61.826
Percent Solids	74.1
Weight Oven-Dried (Grams)	45.8131

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	0.3433	0.75
Gravel, Fine	2.00 mm	10	0.3756	0.82
Sand, Very Coarse	0.850 mm	20	1.7894	3.91
Sand, Coarse	0.425 mm	40	40 7.0710	15.43
Sand, Medium	0.250 mm	60	9.0659	19.79
Sand, Fine	0.106 mm	140	10.1180	22.09
Sand, Very Fine	0.075 mm	200	2.2068	4.82
Silt			9.0950	19.85
Clay			5.4000	11.79
		Total	45.4650	99.25

dba ALS Environmental **Analytical Report**

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: Date Collected: 4/30/2017 **Date Received:** 5/4/2017 **Date Analyzed:** 5/8/2017

K1704419

Particle Size Determination ASTM D422M

Sample Name: SED17-11 Lab Code: K1704419-006

> Sand Fraction: Weight (Grams) 26.1464 Sand Fraction: Weight Recovered (Grams) 25.9451 Sand Fraction: Percent Recovery 99.23

Weight as received (Grams)	42.967
Percent Solids	80.8
Weight Oven-Dried (Grams)	34.7173

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	1.7671	5.09
Gravel, Fine	2.00 mm	10	2.2919	6.60
Sand, Very Coarse	0.850 mm	20	5.1338	14.79
Sand, Coarse	0.425 mm	40	6.4526	18.59
Sand, Medium	0.250 mm	60	3.6962	10.65
Sand, Fine	0.106 mm	140	4.7630	13.72
Sand, Very Fine	0.075 mm	200	1.6188	4.66
Silt			4.8250	13.90
Clay			2.2550	6.50
	_	Total	32.8034	94.50

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Date Collected:
 4/30/2017

 Date Received:
 5/4/2017

 Date Analyzed:
 5/8/2017

K1704419

Service Request:

Particle Size Determination ASTM D422M

Sample Name: SED17-17 Lab Code: K1704419-007

Sand Fraction: Weight (Grams)15.1919Sand Fraction: Weight Recovered (Grams)15.0948Sand Fraction: Percent Recovery99.36

Weight as received (Grams)	38.952
Percent Solids	75.6
Weight Oven-Dried (Grams)	29.4477

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	0.0000	0.00
Gravel, Fine	2.00 mm	10	0.4569	1.55
Sand, Very Coarse	0.850 mm	20	0.8445	2.87
Sand, Coarse	0.425 mm	40	2.0237	6.87
Sand, Medium	0.250 mm	60	2.8773	9.77
Sand, Fine	0.106 mm	140	6.2528	21.23
Sand, Very Fine	0.075 mm	200	2.2501	7.64
Silt			8.4850	28.81
Clay			4.2450	14.42
	_	Total	27.4353	93.16

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Service Request:
 K1704419

 Date Collected:
 4/28/2017

 Date Received:
 5/4/2017

 Date Analyzed:
 5/8/2017

Particle Size Determination ASTM D422M

Sample Name: DUP-1

Lab Code: K1704419-001DUP

Sand Fraction: Weight (Grams)1.6546Sand Fraction: Weight Recovered (Grams)1.6501Sand Fraction: Percent Recovery99.73

Weight as received (Grams)	29.357
Percent Solids	46.1
Weight Oven-Dried (Grams)	13.5336

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	0.0201	0.15
Gravel, Fine	2.00 mm	10	0.3052	2.26
Sand, Very Coarse	0.850 mm	20	0.3711	2.74
Sand, Coarse	0.425 mm	40 0.2062 60 0.1665	1.52	
Sand, Medium	0.250 mm		0.1665	1.23
Sand, Fine	0.106 mm	140	0.2820	2.08
Sand, Very Fine	0.075 mm	200	0.1915	1.41
Silt			8.7600	64.73
Clay			3.2400	23.94
		Total	13.5426	100.06

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Analysis Method: Walkley-Black

Prep Method: None

Service Request: K1704419

Date Collected: 04/28/17 - 04/30/17

Date Received: 05/4/17

Units: mg/KgBasis: Dry

Carbon, Total Organic

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
DUP-1	K1704419-001	25300	4200	1	05/10/17 14:00	
SED17-31	K1704419-001 K1704419-002	21500	4100	1	05/10/17 14:00	
SED17-09	K1704419-003	8100	3500	1	05/10/17 14:00	
SED17-13	K1704419-004	9700	3700	1	05/10/17 14:00	
SED17-14	K1704419-005	ND U	2500	1	05/10/17 14:00	
SED17-11	K1704419-006	ND U	2300	1	05/10/17 14:00	
SED17-17	K1704419-007	3200	2600	1	05/10/17 14:00	
Method Blank	K1704419-MB	ND U	2000	1	05/10/17 14:00	

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704419

Project Skagway-Sediment 2017/1657231 Date Collected: 04/28/17

Sample Matrix: Sediment Date Received: 05/04/17

Date Analyzed: 05/10/17

Replicate Sample Summary General Chemistry Parameters

Sample Name: DUP-1 Units: mg/Kg

Lab Code: K1704419-001 **Basis:** Dry

Duplicate Sample K1704419-

Sample 001DUP

Analyte NameAnalysis MethodMRLResultResultAverageRPDRPD LimitCarbon, Total OrganicWalkley-Black4200253002470025000220

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/24/2017 11:38:21 AM Superset Reference:17-0000420868 rev 00

QA/QC Report

Client: Golder Associates, Inc. **Service Request:** K1704419

Project: Skagway-Sediment 2017/1657231 **Date Analyzed:**

05/10/17

Sample Matrix:

Sediment

Date Extracted:

NA

Lab Control Sample Summary Carbon, Total Organic

Analysis Method:

Walkley-Black

mg/Kg

Prep Method:

None

Units: Basis:

Dry

Analysis Lot:

544533

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1704419-LCS	6000	5400	110	85-115

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Simultaneously Extractable Metals -1-INORGANIC ANALYSIS DATA PACKAGE

Client: Golder Associates, Inc. Service Request: K1704419

Project No.: 1657231 **Date Collected:** 4/29/2017

Project Name: Skagway-Sediment 2017 Date Received: 5/4/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-09 **Lab Code:** K1704419-003

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.009	1.0	05/12/17	05/17/17	0.009	U	
Arsenic	6010C	0.015	1.0	05/12/17	05/17/17	0.015	U	
Cadmium	6010C	0.0006	1.0	05/12/17	05/17/17	0.0022		
Chromium	6010C	0.006	1.0	05/12/17	05/17/17	0.028		
Copper	6010C	0.006	1.0	05/12/17	05/17/17	0.122		
Lead	6010C	0.003	1.0	05/12/17	05/17/17	0.706		
Mercury	7470A	0.00012	4.0	05/12/17	05/18/17	0.00012	U	
Nickel	6010C	0.003	1.0	05/12/17	05/17/17	0.029		
Silver	6010C	0.003	1.0	05/12/17	05/17/17	0.003	U	
Zinc	6010C	0.009	1.0	05/12/17	05/17/17	1.280		

% Solids: 57.3

Comments:

Client: Golder Associates, Inc. Service Request: K1704419

Project No.: 1657231 **Date Collected:** 4/29/2017

Project Name: Skagway-Sediment 2017 Date Received: 5/4/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-13 **Lab Code:** K1704419-004

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.010	1.0	05/12/17	05/17/17	0.010	U	
Arsenic	6010C	0.017	1.0	05/12/17	05/17/17	0.017	U	
Cadmium	6010C	0.0007	1.0	05/12/17	05/17/17	0.0016		
Chromium	6010C	0.007	1.0	05/12/17	05/17/17	0.021		
Copper	6010C	0.007	1.0	05/12/17	05/17/17	0.369		
Lead	6010C	0.003	1.0	05/12/17	05/17/17	0.940		
Mercury	7470A	0.00014	4.0	05/12/17	05/18/17	0.00014	U	
Nickel	6010C	0.003	1.0	05/12/17	05/17/17	0.020		
Silver	6010C	0.003	1.0	05/12/17	05/17/17	0.003	U	
Zinc	6010C	0.010	1.0	05/12/17	05/17/17	1.730		

% **Solids:** 53.6

Client: Golder Associates, Inc. Service Request: K1704419

Project Name: Skagway-Sediment 2017 Date Received: 5/4/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-14 **Lab Code:** K1704419-005

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.008	1.0	05/12/17	05/17/17	0.008	U	
Arsenic	6010C	0.013	1.0	05/12/17	05/17/17	0.013	U	
Cadmium	6010C	0.0005	1.0	05/12/17	05/17/17	0.0005	U	
Chromium	6010C	0.005	1.0	05/12/17	05/17/17	0.017		
Copper	6010C	0.005	1.0	05/12/17	05/17/17	0.113		
Lead	6010C	0.003	1.0	05/12/17	05/17/17	0.286		
Mercury	7470A	0.00010	4.0	05/12/17	05/18/17	0.00010	U	
Nickel	6010C	0.003	1.0	05/12/17	05/17/17	0.013		
Silver	6010C	0.003	1.0	05/12/17	05/17/17	0.003	U	
Zinc	6010C	0.008	1.0	05/12/17	05/17/17	0.575		

% Solids: 74.1

Client: Golder Associates, Inc. Service Request: K1704419

Project No.: 1657231 **Date Collected:** 4/30/2017

Project Name: Skagway-Sediment 2017 Date Received: 5/4/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-11 **Lab Code:** K1704419-006

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.006	1.0	05/12/17	05/17/17	0.006	U	
Arsenic	6010C	0.010	1.0	05/12/17	05/17/17	0.010	U	
Cadmium	6010C	0.0004	1.0	05/12/17	05/17/17	0.0005		
Chromium	6010C	0.004	1.0	05/12/17	05/17/17	0.014		
Copper	6010C	0.004	1.0	05/12/17	05/17/17	0.091		
Lead	6010C	0.002	1.0	05/12/17	05/17/17	0.253		
Mercury	7470A	0.00008	4.0	05/12/17	05/18/17	0.00008	U	
Nickel	6010C	0.002	1.0	05/12/17	05/17/17	0.011		
Silver	6010C	0.002	1.0	05/12/17	05/17/17	0.002	U	
Zinc	6010C	0.006	1.0	05/12/17	05/17/17	0.724		

% Solids: 80.8

Client: Golder Associates, Inc. Service Request: K1704419

Project No.: 1657231 **Date Collected:** 4/30/2017

Project Name: Skagway-Sediment 2017 Date Received: 5/4/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-17 **Lab Code:** K1704419-007

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.007	1.0	05/12/17	05/17/17	0.007	U	
Arsenic	6010C	0.011	1.0	05/12/17	05/17/17	0.011	U	
Cadmium	6010C	0.0005	1.0	05/12/17	05/17/17	0.0005	U	
Chromium	6010C	0.005	1.0	05/12/17	05/17/17	0.014		
Copper	6010C	0.005	1.0	05/12/17	05/17/17	0.095		
Lead	6010C	0.002	1.0	05/12/17	05/17/17	0.222		
Mercury	7470A	0.00009	4.0	05/12/17	05/18/17	0.00009	U	
Nickel	6010C	0.002	1.0	05/12/17	05/17/17	0.012		
Silver	6010C	0.002	1.0	05/12/17	05/17/17	0.002	U	
Zinc	6010C	0.007	1.0	05/12/17	05/17/17	0.674		

% **Solids:** 75.6

Client: Golder Associates, Inc. Service Request: K1704419

Project No.: 1657231 Date Collected:

Project Name: Skagway-Sediment 2017 Date Received:

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: Method Blank Lab Code: K1704419-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.003	1.0	05/12/17	05/17/17	0.003	U	
Arsenic	6010C	0.005	1.0	05/12/17	05/17/17	0.005	U	
Cadmium	6010C	0.0002	1.0	05/12/17	05/17/17	0.0002	U	
Chromium	6010C	0.002	1.0	05/12/17	05/17/17	0.002	U	
Copper	6010C	0.002	1.0	05/12/17	05/17/17	0.002	U	
Lead	6010C	0.001	1.0	05/12/17	05/17/17	0.001	U	
Nickel	6010C	0.001	1.0	05/12/17	05/17/17	0.001	U	
Silver	6010C	0.001	1.0	05/12/17	05/17/17	0.001	U	
Zinc	6010C	0.003	1.0	05/12/17	05/17/17	0.003	U	

% Solids: 100.0

Simultaneously Extractable Metals - 1 -

INORGANIC ANALYSIS DATA PACKAGE

Client: Golder Associates, Inc. Service Request: K1704419

Project No.: 1657231 Date Collected:

Project Name: Skagway-Sediment 2017 Date Received:

Matrix: SEDIMENT Units: umol/g

Basis: DRY

Sample Name: Method Blank Lab Code: KQ1705983-01

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Mercury	7470A	0.00004	4.0	05/12/17	05/18/17	0.00004	U	

% Solids: 100.0

Simultaneously Extractable Metals

- 5A -

SPIKE SAMPLE RECOVERY

Client: Golder Associates, Inc. Service Request: K1704419

Project No.: 1657231 Units: UMOLE/G

Project Name: Skagway-Sediment 2017 Basis: DRY

Matrix: SEDIMENT % Solids: 57.3

Sample Name: SED17-09S Lab Code: K1704419-003S

Analyte	Control Limit %R	Spike Result C	Sample Result	С	Spike Added	%R	Q	Method
Antimony	75 - 125	0.112	0.009	U	0.127	88		6010C
Arsenic	75 - 125	0.978	0.015	U	1.031	95		6010C
Cadmium	75 - 125	0.3841	0.0022		0.343	111		6010C
Chromium	75 - 125	0.3294	0.0277		0.297	102		6010C
Copper	75 - 125	0.380	0.122		0.304	85		6010C
Lead	75 - 125	1.097	0.706		0.374	105		6010C
Mercury	75 - 125	0.00315	0.00012	U	0.00308	102		7470A
Nickel	75 - 125	0.776	0.029		0.655	114		6010C
Silver	75 - 125	0.160	0.003	U	0.179	89		6010C
Zinc	75 - 125	1.889	1.275		0.590	104		6010C

Simultaneously Extractable Metals

- 6 -DUPLICATES

Client: Golder Associates, Inc. Service Request: K1704419

Project No.: 1657231 Units: UMOLE/G

Project Name: Skagway-Sediment 2017 Basis: DRY

Matrix: SEDIMENT % Solids: 57.3

Sample Name: SED17-09D Lab Code: K1704419-003D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Antimony		0.009	Ū	0.009	Ū			6010C
Arsenic		0.015	U	0.015	U			6010C
Cadmium		0.0022		0.0018		20.0		6010C
Chromium		0.0277		0.0244		12.7		6010C
Copper	30	0.122		0.095		24.9		6010C
Lead	30	0.706		0.607		15.1		6010C
Mercury		0.00012	U	0.00012	Ū			7470A
Nickel	30	0.029		0.026		10.9		6010C
Silver		0.003	U	0.003	Ū			6010C
Zinc	30	1.275		1.142		11.0		6010C

Simultaneously Extractable Metals

- 7 -

LABORATORY CONTROL SAMPLE

Client: Golder Associates, Inc. Service Request: K1704419

Project No.: 1657231

Project Name: Skagway-Sediment 2017

Aqueous LCS Source: ALS MIXED Solid LCS Source:

	Aqueous	(umol/L)			Soli	id (mg/	kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Antimony	4.100	3.865	94					
Arsenic	33.400	32.912	99					
Cadmium	11.100	11.009	99					
Chromium	9.610	10.125	105					
Copper	9.830	8.848	90					
Lead	12.100	11.741	97					
Mercury	0.09960	0.10280	103					
Nickel	21.200	21.610	102					
Silver	5.790	5.522	95					
Zinc	19.100	18.883	99					

Diesel and Residual Range Organics

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Results

Client: Golder Associates, Inc.

Service Request: K1704419 **Project:** Skagway-Sediment 2017/1657231 **Date Collected:** 04/28/2017

Sediment **Date Received:** 05/04/2017 **Sample Matrix:**

Diesel and Residual Range Organics

Sample Name: DUP-1 Units: mg/Kg Lab Code: K1704419-001 Basis: Dry **Extraction Method:** EPA 3550B Level: Low

Analysis Method: AK 102.0/103.0

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	43	1	05/12/17	05/17/17	KWG1703859	
C25 - C36 RRO	ND U	220	1	05/12/17	05/17/17	KWG1703859	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	86	50-150	05/17/17	Acceptable
n-Triacontane	87	50-150	05/17/17	Acceptable

Comments:

Page Printed: 05/27/2017 Form 1A - Organic 1 of 1 08:17:13 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt$ SuperSet Reference: Merged RR198601

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: K1704419

Date Collected: 04/28/2017 **Date Received:** 05/04/2017

Diesel and Residual Range Organics

 Sample Name:
 SED17-31
 Units:
 mg/Kg

 Lab Code:
 K1704419-002
 Basis:
 Dry

 Extraction Method:
 EPA 3550B
 Level:
 Low

Analysis Method: AK 102.0/103.0

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	42	1	05/12/17	05/17/17	KWG1703859	
C25 - C36 RRO	ND U	210	1	05/12/17	05/17/17	KWG1703859	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	70	50-150	05/17/17	Acceptable
n-Triacontane	74	50-150	05/17/17	Acceptable

Comments:

 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt$

Printed: 05/27/2017 08:17:16 Form 1A - Organic Page 1 of 1

Merged

SuperSet Reference:

RR198601

Analytical Results

Client: Golder Associates, Inc.

Service Request: K1704419 **Project:** Skagway-Sediment 2017/1657231 **Date Collected:** 04/29/2017

Sediment **Date Received:** 05/04/2017 **Sample Matrix:**

Diesel and Residual Range Organics

Sample Name: SED17-09 Units: mg/Kg Lab Code: K1704419-003 Basis: Dry **Extraction Method:** EPA 3550B Level: Low

Analysis Method: AK 102.0/103.0

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	79 Z	35	1	05/12/17	05/17/17	KWG1703859	
C25 - C36 RRO	ND U	180	1	05/12/17	05/17/17	KWG1703859	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	74	50-150	05/17/17	Acceptable
n-Triacontane	75	50-150	05/17/17	Acceptable

Comments:

Page Printed: 05/27/2017 Form 1A - Organic 1 of 1 08:17:19 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt$ SuperSet Reference: Merged RR198601

Analytical Results

Client: Golder Associates, Inc.

Service Request: K1704419 **Project:** Skagway-Sediment 2017/1657231 **Date Collected:** 04/29/2017

Sediment **Date Received:** 05/04/2017 **Sample Matrix:**

Diesel and Residual Range Organics

Sample Name: SED17-13 Units: mg/Kg Lab Code: K1704419-004 Basis: Dry **Extraction Method:** EPA 3550B Level: Low

Analysis Method: AK 102.0/103.0

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	44 Z	37	1	05/12/17	05/17/17	KWG1703859	
C25 - C36 RRO	ND U	190	1	05/12/17	05/17/17	KWG1703859	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	72	50-150	05/17/17	Acceptable
n-Triacontane	76	50-150	05/17/17	Acceptable

Comments:

Page Printed: 05/27/2017 Form 1A - Organic 1 of 1 08:17:22 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt$ SuperSet Reference: Merged RR198601

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

AK 102.0/103.0

ND U

Sample Matrix: Sediment

Analysis Method:

C25 - C36 RRO

Service Request: K1704419

Date Collected: 04/30/2017 **Date Received:** 05/04/2017

KWG1703859

Diesel and Residual Range Organics

 Sample Name:
 SED17-14
 Units:
 mg/Kg

 Lab Code:
 K1704419-005
 Basis:
 Dry

 Extraction Method:
 EPA 3550B
 Level:
 Low

140

Dilution Date Date **Extraction** Extracted MRL Factor Analyzed Lot **Analyte Name** Result Q Note C10 - C25 DRO 27 1 KWG1703859 ND U 05/12/17 05/17/17

1

05/12/17

05/17/17

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	87	50-150	05/17/17	Acceptable
n-Triacontane	87	50-150	05/17/17	Acceptable

Comments:

 Printed:
 05/27/2017
 08:17:25
 Form 1A - Organic
 Page
 1 of
 1 urborded:

 urborded:
 05/27/2017
 08:17:25
 Merged
 SuperSet Reference:
 RR198601

Analytical Results

Service Request: K1704419

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231 Date Collected: 04/30/2017

Sample Matrix: Sediment Date Received: 05/04/2017

Diesel and Residual Range Organics

 Sample Name:
 SED17-11
 Units:
 mg/Kg

 Lab Code:
 K1704419-006
 Basis:
 Dry

 Extraction Method:
 EPA 3550B
 Level:
 Low

Analysis Method: AK 102.0/103.0

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	25	1	05/12/17	05/17/17	KWG1703859	
C25 - C36 RRO	ND U	130	1	05/12/17	05/17/17	KWG1703859	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	71	50-150	05/17/17	Acceptable
n-Triacontane	76	50-150	05/17/17	Acceptable

Comments:

 Printed:
 05/27/2017
 08:17:28
 Form 1A - Organic
 Page
 1 of
 1 urborded:

 urborded:
 Uschedlith\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198601

Analytical Results

Client: Golder Associates, Inc.

Service Request: K1704419 **Project:** Skagway-Sediment 2017/1657231 **Date Collected:** 04/30/2017

Sediment **Date Received:** 05/04/2017 **Sample Matrix:**

Diesel and Residual Range Organics

Sample Name: SED17-17 Units: mg/Kg Lab Code: K1704419-007 Basis: Dry **Extraction Method:** EPA 3550B Level: Low

Analysis Method: AK 102.0/103.0

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	27	1	05/12/17	05/17/17	KWG1703859	
C25 - C36 RRO	ND U	140	1	05/12/17	05/17/17	KWG1703859	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	74	50-150	05/17/17	Acceptable
n-Triacontane	79	50-150	05/17/17	Acceptable

Comments:

 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt$

Page Printed: 05/27/2017 Form 1A - Organic 1 of 1 08:17:31

SuperSet Reference:

RR198601

Merged

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sediment **Sample Matrix:**

Service Request: K1704419

Date Collected: NA Date Received: NA

Diesel and Residual Range Organics

Sample Name: Method Blank Lab Code: KWG1703859-5

Extraction Method: EPA 3550B **Analysis Method:**

AK 102.0/103.0

Units: mg/Kg Basis: Dry

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	20	1	05/12/17	05/17/17	KWG1703859	
C25 - C36 RRO	ND U	98	1	05/12/17	05/17/17	KWG1703859	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	75	50-150	05/17/17	Acceptable
n-Triacontane	78	50-150	05/17/17	Acceptable

Comments:

Printed: 05/27/2017 08:17:34 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt$

Page

1 of 1

Page 49 of 52

QA/QC Report

Service Request: K1704419

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Surrogate Recovery Summary Diesel and Residual Range Organics

 Extraction Method:
 EPA 3550B
 Units:
 Percent

 Analysis Method:
 AK 102.0/103.0
 Level:
 Low

Sample Name	Lab Code	Sur1	Sur2
DUP-1	K1704419-001	86	87
SED17-31	K1704419-002	70	74
SED17-09	K1704419-003	74	75
SED17-13	K1704419-004	72	76
SED17-14	K1704419-005	87	87
SED17-11	K1704419-006	71	76
SED17-17	K1704419-007	74	79
Method Blank	KWG1703859-5	75	78
SED17-11MS	KWG1703859-1	78	79
SED17-11DMS	KWG1703859-2	79	83
Lab Control Sample	KWG1703859-3	93	95
Duplicate Lab Control Sample	KWG1703859-4	105	100

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl 50-150 Sur2 = n-Triacontane 50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

 Printed:
 05/27/2017
 08:17:38
 Form 2A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form2.rpt
 SuperSet Reference:
 RR198601

QA/QC Report

Client: Golder Associates, Inc.

Skagway-Sediment 2017/1657231 **Project:**

Sample Matrix: Sediment Service Request: K1704419 **Date Extracted:** 05/12/2017

Date Analyzed: 05/17/2017

Matrix Spike/Duplicate Matrix Spike Summary **Diesel and Residual Range Organics**

Sample Name: Lab Code:

SED17-11 K1704419-006

Extraction Method: Analysis Method:

EPA 3550B AK 102.0/103.0

Units: mg/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1703859

SED17-11MS KWG1703859-1 Matrix Spike

SED17-11DMS KWG1703859-2 **Duplicate Matrix Spike**

	Sample		Spike			Spike		%Rec		RPD
Analyte Name	Result	Result	Amount	%Rec	Result	Amount	%Rec	Limits	RPD	Limit
C10 - C25 DRO	ND	266	327	81	259	328	79	60-140	3	50
C25 - C36 RRO	ND	160	163	98	159	164	97	60-140	0	50

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 05/27/2017 08:17:41 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

Page SuperSet Reference: RR198601

1 of 1

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: K1704419 **Date Extracted:** 05/12/2017

Date Extracted: 05/12/2017 **Date Analyzed:** 05/17/2017 -

05/24/2017

Lab Control Spike/Duplicate Lab Control Spike Summary
Diesel and Residual Range Organics

Extraction Method: EPA 3550B **Analysis Method:** AK 102.0/103.0

Units: mg/KgBasis: DryLevel: Low

Extraction Lot: KWG1703859

Lab Control Sample KWG1703859-3 Lab Control Spike Duplicate Lab Control Sample KWG1703859-4 Duplicate Lab Control Spike

Spike %Rec RPD Spike RPD Amount Amount Limits Limit **Analyte Name** Result %Rec Result %Rec C10 - C25 DRO 251 267 94 245 267 92 75-125 2 20 105 10 20 C25 - C36 RRO 140 133 154 133 60-120 116

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Printed:
 05/27/2017
 08:17:44
 Form 3C - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form3DLC.rpt
 SuperSet Reference:
 RR198601

May 22, 2017

Tamra Reynolds

Golder Associates Ltd.

Whitehorse, YT Y1A0G1

Suite 201C, 170 Titanium Way

ALS Environmental
ALS Group USA, Corp
1317 South 13th Avenue
Kelso, WA 98626

T:+1 360 577 7222

F:+1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K1704471

RE: Skagway-Sediment 2017 / 1657231

Dear Tamra,

Enclosed are the results of the sample(s) submitted to our laboratory May 05, 2017 For your reference, these analyses have been assigned our service request number **K1704471**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsqlobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Howard Holmes Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

Metals

Polynuclear Aromatic Hydrocarbons

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	Not available	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPermitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Maine DHS	Not available	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS ENVIRONMENTAL

Client:Golder Associates, Inc.Service Request No.:K1704471Project:Skagway-Sediment 2017/ 1657231Date Received:05/05/17

Sample Matrix: Sediment

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Eight sediment samples were received for analysis at ALS Environmental on 05/05/17. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Total Metals

Matrix Spike Recovery Exceptions:

The control criteria for matrix spike recovery of Aluminum, Calcium, Iron, Magnesium, Potassium, and Sodium for sample SED17-22 were not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Antimony recoveries are generally low for soil and sediment samples when digested using EPA Method 3050B. Despite anticipated low recoveries, the method is still generally prescribed because of its versatility for general metals analysis. Antimony results (in conjunction with the matrix spike recovery) from this procedure should only be used as indicators to estimate concentrations. The matrix spike recovery of Antimony for sample SED17-22 was below the ALS control criterion. Since low recoveries resulted from a method defect and were possibly magnified by certain matrix components, no corrective action was appropriate. Alternative procedures that specifically target Antimony are available but were not specified for this project. The associated QA/QC results (e.g. control sample, calibration standards, etc.) indicated the analysis was in control.

The matrix spike recovery of Copper for sample SED17-22 was outside the ALS control criteria as a result of the heterogeneous character of the sample. The Relative Percent Difference (RPD) for the replicate analysis supported this. Since the unspiked samples contained high analyte concentrations relative to the amount spiked, the variability between replicates was sufficient to bias the percent recoveries outside normal ALS control criteria. The associated QA/QC results (e.g. control sample, calibration standards, etc.) indicated the analysis was in control. No further corrective action was appropriate.

Approved by

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) for the replicate analysis of Calcium and Copper in sample SED17-22 was outside the normal ALS control limits. The variability in the results was attributed to the heterogeneous character of the sample. Standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

No other anomalies associated with the analysis of these samples were observed.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270

Surrogate Exceptions:

The control criteria were exceeded for one or more surrogates in the replicate Matrix Spikes (MS/DMS) KWG1703683-1 and KWG1703683-2 of sample Batch QC due to matrix interferences. The presence of non-target background components prevented adequate resolution of the surrogates. Accurate quantitation was not possible. No further corrective action was appropriate.

Matrix Spike Recovery Exceptions:

The Matrix Spike (MS) KWG1703683-1 recovery of Fluoranthene for sample Batch QC was outside control criteria. Recoveries in the replicate Laboratory Control Samples (LCS/DLCS) KWG1703683-3 and KWG1703683-4 were acceptable, which indicated the analytical batch was in control. The matrix spike outlier suggested a potential high bias in this matrix. No further corrective action was appropriate.

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) for Fluoranthene in the replicate Matrix Spikes (MS/DMS) KWG1703683-1 and KWG1703683-2 analyses of Batch QC was outside control criteria. The Relative Percent Difference for the analyte in question in the associated replicate Laboratory Control Samples (LCS/DLCS) KWG1703683-3 and KWG1703683-4 was within acceptance limits, indicating the analytical batch was in control. No further corrective action was appropriate.

No other anomalies associated with the analysis of these samples were observed.

Approved by Approved by

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Empiromental

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here (lab use only)

K1704471 coc Number: 15 - 593816

OCTOBER 2015 FRONT

Canada Toll Free: 1 800 668 9878

	www.aisgiobar.com																		
Report To	Contact and company name below will ap	pear on the final report	Report Format / Distribution				Select Service Level Below - Please confirm all E&P TATs with your AM - surcharges will apply												
Company:	Golder associates LTS)	Select Report Format: PDF EXCEL EDD (DIGITAL)				Regular [R] Standard TAT if received by 3 pm - business days - no surcharges apply												
Contact:	Tama Reyselds		1	QC) Report with Re			ry Days).	4	day [P	4]	W		ζ.	1 Bu	siness	day [E	f]		
Phone:	1-867-334 -4468		Compare Res	ults to Criteria on Report			PRIORITY usiness Days)	3	day [P	3]			S RGE	Same D	ay, Wed	ekend o	r Statuto	ry 🖂	
	Company address below will appear on the final		Select Distributio		IL MAIL		(8 us	2	day [P	2]			EMS			day [E0]		ᆜ	
Street:	170- 2016 Titanium N	day	Email 1 or Fax 🖺	SREY NOLDS	e actor,	6th	2000	Date	and Tim	e Requir	ed for all	E&P TA	īs.						
City/Province:	whitehorse, Yukan	(Email 2 PADi	DY MCMANU	5 e golder	ican	For test	ts that car	not be p	erformed	according	to the se	rvice leve	el selected,	, you will l	e contacte	∌d.		
Postal Code:	YIA 061		Email 3 VME	RLERGACIO	E I COM							А	nalysi	is Requ	est				
nvoice To	Same as Report To YES	NO NO			istribution				Indicate I	Filtered (F	F), Preser	ved (P) o	r Filtered	d and Pres	served (F.	P) below			
	Copy of Invoice with Report YES	☐ NO	Select Invoice Di		EMAIL MAIL	FAX													
Company:			Email 1 or Fax	some as	report														
Contact:			Email 2							્ક્રો		Ī						1.	55
	Project Information			il and Gas Require	The second secon	use)	9			1	İ							1	Number of Container
ALS Account # /			AFE/Cost Center:		PO#			İ		্র									Żut
	5.7231		Major/Minor Code:		Routing Code:		1		. 2	(arter		ĺ							of of
PO / AFE:			Requisitioner:		***************************************					\sim		35							lber
.SD:				ocation;					- 1	3	_	N. S.						1	Nun
ALS Lab Wor	k Order # (lab use only)		ALS Contact:	ll Peyfor	Sampler: FW	/ JM	Motals	145	Gna;45,2e	ا د د ا	d	5/5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						-
ALS Sample #	Sample Identificatio	n and/or Coordinates		Date	Time	Sample Type	چ	7	28	Tole I	욅	₹ K							
(lab use only)	(This description will	appear on the report)		(dd-mmm-yy)	(hh:mm)	oumple Type			2) 	[
	SED 17- 12			01 MAY-17	13:00	Sectionant	1	K	χ	λ ₁								14	
	SED17 - 21				16:00			i i	i l	,									
	SED 17 20			1	18:00					TT									
	SED17 - 18			02-4MY-17	11:00	1 1	 	1	1	1					1			1	
	Dup-2			,	12:00	+ + -			1	++			\dashv	+	1	\Box		1-	
	5ED 17-19				13.00	 	++	$\vdash +$		++			-	+	+	\vdash		+	
	· · · · · · · · · · · · · · · · · · ·				 		+	-H		+					+				
	SED 17 - 24			<u> </u>	16:00	ļ		\dashv	$-\!\!\!\!+\!\!\!\!\!+$	4			_			-		11	
	9ED17 - 20				17:00	+		بالنز	£	<u> </u>								طم	
																į			
			- "					Ì											
										-								1	
	_	Special Instructions / S	pecify Criteria to a	idd on report by clic	king on the drop-d	own list below				SAMI	PLE CO	NOTE	ON AS	RECEI	VED (la	b use c	only)		
	Water (DW) Samples ¹ (client use)		(elec	tronic COC only)			Frozer	1				ş	IF Obs	ervation	is	Yes	No		
•	from a Regulated DW System?	Please arthre	cinuted so	nples. 5 clay	turnaround	on metals	Ice Pa	cks		ice Cu	ibes	□ c	ustody	seal inte	act	Yes	☐ No]
	y	Please archive and PHHL, regula	- tumanou	1 pn 65	TOC, Wait	Fec	Coolin	g Initiat											
	man drinking water use?	directions for D.	20 1	WILLIAM	- •			THIRE	IAL COC	LER TE	MPERATI	JRES °C			FINA	L COOLE	R TEMPER	ATURES °C	
YES	<u>/ · · - </u>	O'URCUALD IN TO	ou /																
Pologood bur	SHIPMENT RELEASE (client use)	Time:	Received by: (2	INITIAL SHIPMEN			T:~		Dar-	- d b	Fil	NAL SH	IPMEN	NT RECE		1 (lab us	e only)	TTi	
Released by	Date: 40/4:1	7 60	Teceived by.		Date: 5/5/	7	Time:	40	Receiv	ed by:				Date	٤.			Time:	1

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

7/25/16

	S)	1.11	1,00	Cooler	Receipt	and Pres			01447	P	c _{_	<u>H</u>
ent	KK 1	s juides	7155C. Opened:	alitiz				iest <i>K17</i> _ Inloaded:	07-11	/ F By:	-2	
•	s were rece		USPS	7 9 (7 Fed Ex	UPS	DHL	PDX	Courier	Hand Dei		1	
•	s were rece ustody seal			NA (Box N	<i>Envelope</i> If yes,		and where	? an	e, hon	MA	
If prese	nt, were cu	stody seals	intact?	Y	1.				ed and dated		<u>@</u>	N
Raw sier Temp	Corrected. Cooler Temp	Raw Temp Blank	Corrected Temp Blank	Cerr. Factor	Thermor ID	neter Co	oler/COC ID	NA	Track	ing Number	N/	4 File
<i>'</i> .8'	0.7	A security PMS THE MANAGEMENT TO A THE SECURITY OF THE SECURIT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-0.1	37	3		02-	7 JNU	3/74 50	33	
			-									
Packing	material:	Inserts	Baggies (Bubble Wi	ran Gel I	Packs We	Ice Dry	Ice Slee	ves bo			<u> </u>
`			0.0	(ink, signed		болор фідмец пострі в ^{достроно} дичення в в				NA	Q	N
		-	*			ken)? <i>Indic</i>	ate in the to	able below.		NA	$(\mathbf{\hat{Y}})_{j}$	N
**			-	ssue sample			ozen Po	artially The	twed That		<u>د</u> ک	
	-	•	•	lysis, preser			ı			NA	(Y)	N
	-	-	_		•	=	-	ies in the ta	ble on page 2		<u>\(\rangle \) \(\rangle \) \(\rangle \) \(\rangle \)</u>	N
						the tests ind		r de la el		NA	(Y)	N
			•	-			•	ndicate in i	the table belo	w NA	Y	N
			ithout head	space? Indi	icate in the	table below				NA)	Y	N
wasc	12/Res neg	ative?								NA NA	Y	N
	Sample ID o	n Bottle			Sample ID o	on COC			Identifi	ed by:		
	Sample ID				ut of Head- emp space		Reag			ent Lot mber In	tials Ti	ime
H-4-4-0											_	*
<u>.</u>							_					
									ASSESSION NAMES	INTERNAL BIRES		
	•	s, & Reso	lutiona								<u> </u>	
es, Dis	crepancie	·, •• ~-• ·	iuuons:				States Avenuer					
tes, Dis			iuiions:				Significant September 1					
tes, Dis	crepancie		iuiions:				\$38000					

Page 11 of 45

Page___of___

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Analysis Method: 160.3 Modified

Prep Method: None

Service Request: K1704471

Date Collected: 05/01/17 - 05/02/17

Date Received: 05/5/17

Units: PercentBasis: As Received

Solids, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
SED17-22	K1704471-001	63.7	-	1	05/05/17 17:28	
SED17-21	K1704471-002	62.7	-	1	05/05/17 17:28	
SED17-20	K1704471-003	53.8	-	1	05/05/17 17:28	
SED17-18	K1704471-004	65.7	-	1	05/05/17 17:28	
DUP-2	K1704471-005	63.2	-	1	05/05/17 17:28	
SED17-19	K1704471-006	60.6	-	1	05/05/17 17:28	
SED17-24	K1704471-007	75.8	-	1	05/05/17 17:28	
SED17-28	K1704471-008	68.1	-	1	05/05/17 17:28	

QA/QC Report

Client: Golder Associates, Inc.

Project Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Analysis Method: 160.3 Modified

Prep Method: None

Service Request:K1704471

Date Collected:NA
Date Received:NA

Units:Percent

Basis: As Received

Replicate Sample Summary Inorganic Parameters

			Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	Result	Result	Average	RPD	Limit	Analyzed
Batch QC	K1704419-003DUP	-	57.3	57.2	57.3	<1	20	05/05/17
Batch QC	K1704473-006DUP	-	59.5	59.5	59.5	<1	20	05/05/17
Batch QC	K1704476-002DUP	-	81.4	85.3	83.4	5	20	05/05/17

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/8/2017 9:28:04 AM Superset Reference:17-0000420867 rev 00

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Golder Associates, Inc.

Service Request: K1704471 **Date Collected:** 05/01/17 13:00 **Project:** Skagway-Sediment 2017/1657231

Date Received: 05/05/17 08:40 **Sample Matrix:** Sediment

Sample Name: SED17-22 Basis: Dry

Lab Code: K1704471-001

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	14700	mg/Kg	2.6	2	05/09/17 13:20	05/05/17	
Antimony	6020A	0.096	mg/Kg	0.066	5	05/11/17 08:10	05/05/17	
Arsenic	6020A	4.34	mg/Kg	0.66	5	05/11/17 08:10	05/05/17	
Barium	6010C	337	mg/Kg	1.1	2	05/09/17 13:20	05/05/17	
Beryllium	6020A	0.279	mg/Kg	0.026	5	05/11/17 08:10	05/05/17	
Cadmium	6020A	0.541	mg/Kg	0.026	5	05/11/17 08:10	05/05/17	
Calcium	6010C	30500	mg/Kg	5.3	2	05/09/17 13:20	05/05/17	
Chromium	6020A	16.9	mg/Kg	0.26	5	05/11/17 08:10	05/05/17	
Cobalt	6020A	7.70	mg/Kg	0.026	5	05/11/17 08:10	05/05/17	
Copper	6020A	82.5	mg/Kg	0.13	5	05/11/17 08:10	05/05/17	
Iron	6010C	30400	mg/Kg	5.3	2	05/09/17 13:20	05/05/17	
Lead	6020A	41.6	mg/Kg	0.066	5	05/11/17 08:10	05/05/17	
Magnesium	6010C	9380	mg/Kg	2.6	2	05/09/17 13:20	05/05/17	
Manganese	6010C	398	mg/Kg	0.26	2	05/09/17 13:20	05/05/17	
Mercury	7471B	0.034	mg/Kg	0.021	1	05/09/17 12:48	05/08/17	
Nickel	6020A	9.56	mg/Kg	0.26	5	05/11/17 08:10	05/05/17	
Potassium	6010C	6890	mg/Kg	53	2	05/09/17 13:20	05/05/17	
Selenium	6020A	ND U	mg/Kg	1.3	5	05/11/17 08:10	05/05/17	
Silver	6020A	0.506	mg/Kg	0.026	5	05/11/17 08:10	05/05/17	
Sodium	6010C	7810	mg/Kg	53	2	05/09/17 13:20	05/05/17	
Thallium	6020A	0.326	mg/Kg	0.026	5	05/11/17 08:10	05/05/17	
Vanadium	6020A	52.5	mg/Kg	0.26	5	05/11/17 08:10	05/05/17	
Zinc	6010C	196	mg/Kg	1.3	2	05/09/17 13:20	05/05/17	

Analytical Report

Client: Golder Associates, Inc.

Service Request: K1704471 **Date Collected:** 05/01/17 16:00 **Project:** Skagway-Sediment 2017/1657231

Sample Matrix: Sediment **Date Received:** 05/05/17 08:40

Sample Name: SED17-21 Basis: Dry

Lab Code: K1704471-002

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	14800	mg/Kg	3.1	2	05/09/17 13:30	05/05/17	
Antimony	6020A	0.142	mg/Kg	0.078	5	05/11/17 08:49	05/05/17	
Arsenic	6020A	6.11	mg/Kg	0.78	5	05/11/17 08:49	05/05/17	
Barium	6010C	339	mg/Kg	1.3	2	05/09/17 13:30	05/05/17	
Beryllium	6020A	0.372	mg/Kg	0.031	5	05/11/17 08:49	05/05/17	
Cadmium	6020A	0.623	mg/Kg	0.031	5	05/11/17 08:49	05/05/17	
Calcium	6010C	63300	mg/Kg	6.3	2	05/09/17 13:30	05/05/17	
Chromium	6020A	24.6	mg/Kg	0.31	5	05/11/17 08:49	05/05/17	
Cobalt	6020A	9.53	mg/Kg	0.031	5	05/11/17 08:49	05/05/17	
Copper	6020A	45.6	mg/Kg	0.16	5	05/11/17 08:49	05/05/17	
Iron	6010C	31000	mg/Kg	6.3	2	05/09/17 13:30	05/05/17	
Lead	6020A	29.9	mg/Kg	0.078	5	05/11/17 08:49	05/05/17	
Magnesium	6010C	9730	mg/Kg	3.1	2	05/09/17 13:30	05/05/17	
Manganese	6010C	403	mg/Kg	0.31	2	05/09/17 13:30	05/05/17	
Mercury	7471B	ND U	mg/Kg	0.025	1	05/09/17 12:49	05/08/17	
Nickel	6020A	13.5	mg/Kg	0.31	5	05/11/17 08:49	05/05/17	
Potassium	6010C	7010	mg/Kg	63	2	05/09/17 13:30	05/05/17	
Selenium	6020A	ND U	mg/Kg	1.6	5	05/11/17 08:49	05/05/17	
Silver	6020A	0.281	mg/Kg	0.031	5	05/11/17 08:49	05/05/17	
Sodium	6010C	8680	mg/Kg	63	2	05/09/17 13:30	05/05/17	
Thallium	6020A	0.419	mg/Kg	0.031	5	05/11/17 08:49	05/05/17	
Vanadium	6020A	61.4	mg/Kg	0.31	5	05/11/17 08:49	05/05/17	
Zinc	6010C	198	mg/Kg	1.6	2	05/09/17 13:30	05/05/17	

Analytical Report

Client: Golder Associates, Inc.

Service Request: K1704471 **Date Collected:** 05/01/17 18:00 **Project:** Skagway-Sediment 2017/1657231

Date Received: 05/05/17 08:40 **Sample Matrix:** Sediment

Sample Name: SED17-20 Basis: Dry

Lab Code: K1704471-003

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	17800	mg/Kg	2.8	2	05/09/17 13:32	05/05/17	
Antimony	6020A	0.295	mg/Kg	0.070	5	05/11/17 08:53	05/05/17	
Arsenic	6020A	4.58	mg/Kg	0.70	5	05/11/17 08:53	05/05/17	
Barium	6010C	421	mg/Kg	1.1	2	05/09/17 13:32	05/05/17	
Beryllium	6020A	0.359	mg/Kg	0.028	5	05/11/17 08:53	05/05/17	
Cadmium	6020A	0.794	mg/Kg	0.028	5	05/11/17 08:53	05/05/17	
Calcium	6010C	22300	mg/Kg	5.6	2	05/09/17 13:32	05/05/17	
Chromium	6020A	23.1	mg/Kg	0.28	5	05/11/17 08:53	05/05/17	
Cobalt	6020A	10.4	mg/Kg	0.028	5	05/11/17 08:53	05/05/17	
Copper	6020A	26.5	mg/Kg	0.14	5	05/11/17 08:53	05/05/17	
Iron	6010C	34800	mg/Kg	5.6	2	05/09/17 13:32	05/05/17	
Lead	6020A	33.9	mg/Kg	0.070	5	05/11/17 08:53	05/05/17	
Magnesium	6010C	11500	mg/Kg	2.8	2	05/09/17 13:32	05/05/17	
Manganese	6010C	475	mg/Kg	0.28	2	05/09/17 13:32	05/05/17	
Mercury	7471B	ND U	mg/Kg	0.024	1	05/09/17 12:51	05/08/17	
Nickel	6020A	13.2	mg/Kg	0.28	5	05/11/17 08:53	05/05/17	
Potassium	6010C	8630	mg/Kg	56	2	05/09/17 13:32	05/05/17	
Selenium	6020A	ND U	mg/Kg	1.4	5	05/11/17 08:53	05/05/17	
Silver	6020A	1.63	mg/Kg	0.028	5	05/11/17 08:53	05/05/17	
Sodium	6010C	11000	mg/Kg	56	2	05/09/17 13:32	05/05/17	
Thallium	6020A	0.430	mg/Kg	0.028	5	05/11/17 08:53	05/05/17	
Vanadium	6020A	70.4	mg/Kg	0.28	5	05/11/17 08:53	05/05/17	
Zinc	6010C	173	mg/Kg	1.4	2	05/09/17 13:32	05/05/17	

Analytical Report

Client: Golder Associates, Inc.

Service Request: K1704471 **Date Collected:** 05/02/17 11:00 **Project:** Skagway-Sediment 2017/1657231

Sample Matrix: Sediment **Date Received:** 05/05/17 08:40

Sample Name: SED17-18 Basis: Dry

Lab Code: K1704471-004

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	13300	mg/Kg	2.4	2	05/09/17 13:34	05/05/17	
Antimony	6020A	0.066	mg/Kg	0.061	5	05/11/17 08:57	05/05/17	
Arsenic	6020A	3.37	mg/Kg	0.61	5	05/11/17 08:57	05/05/17	
Barium	6010C	295	mg/Kg	0.98	2	05/09/17 13:34	05/05/17	
Beryllium	6020A	0.276	mg/Kg	0.024	5	05/11/17 08:57	05/05/17	
Cadmium	6020A	0.613	mg/Kg	0.024	5	05/11/17 08:57	05/05/17	
Calcium	6010C	9640	mg/Kg	4.9	2	05/09/17 13:34	05/05/17	
Chromium	6020A	16.9	mg/Kg	0.24	5	05/11/17 08:57	05/05/17	
Cobalt	6020A	8.00	mg/Kg	0.024	5	05/11/17 08:57	05/05/17	
Copper	6020A	46.0	mg/Kg	0.12	5	05/11/17 08:57	05/05/17	
Iron	6010C	24700	mg/Kg	4.9	2	05/09/17 13:34	05/05/17	
Lead	6020A	119	mg/Kg	0.061	5	05/11/17 08:57	05/05/17	
Magnesium	6010C	8390	mg/Kg	2.4	2	05/09/17 13:34	05/05/17	
Manganese	6010C	329	mg/Kg	0.24	2	05/09/17 13:34	05/05/17	
Mercury	7471B	0.152	mg/Kg	0.024	1	05/09/17 12:56	05/08/17	
Nickel	6020A	8.82	mg/Kg	0.24	5	05/11/17 08:57	05/05/17	
Potassium	6010C	6220	mg/Kg	49	2	05/09/17 13:34	05/05/17	
Selenium	6020A	ND U	mg/Kg	1.2	5	05/11/17 08:57	05/05/17	
Silver	6020A	0.330	mg/Kg	0.024	5	05/11/17 08:57	05/05/17	
Sodium	6010C	7010	mg/Kg	49	2	05/09/17 13:34	05/05/17	
Thallium	6020A	0.303	mg/Kg	0.024	5	05/11/17 08:57	05/05/17	
Vanadium	6020A	55.7	mg/Kg	0.24	5	05/11/17 08:57	05/05/17	
Zinc	6010C	240	mg/Kg	1.2	2	05/09/17 13:34	05/05/17	

Analytical Report

Client: Golder Associates, Inc.

Service Request: K1704471 **Date Collected:** 05/02/17 12:00 **Project:** Skagway-Sediment 2017/1657231

Date Received: 05/05/17 08:40 **Sample Matrix:** Sediment

Sample Name: DUP-2 Basis: Dry

Lab Code: K1704471-005

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	13400	mg/Kg	1.8	2	05/09/17 13:37	05/05/17	
Antimony	6020A	0.079	mg/Kg	0.046	5	05/11/17 09:00	05/05/17	
Arsenic	6020A	3.26	mg/Kg	0.46	5	05/11/17 09:00	05/05/17	
Barium	6010C	299	mg/Kg	0.73	2	05/09/17 13:37	05/05/17	
Beryllium	6020A	0.244	mg/Kg	0.018	5	05/11/17 09:00	05/05/17	
Cadmium	6020A	0.603	mg/Kg	0.018	5	05/11/17 09:00	05/05/17	
Calcium	6010C	15400	mg/Kg	3.7	2	05/09/17 13:37	05/05/17	
Chromium	6020A	15.6	mg/Kg	0.18	5	05/11/17 09:00	05/05/17	
Cobalt	6020A	7.25	mg/Kg	0.018	5	05/11/17 09:00	05/05/17	
Copper	6020A	38.1	mg/Kg	0.092	5	05/11/17 09:00	05/05/17	
Iron	6010C	24600	mg/Kg	3.7	2	05/09/17 13:37	05/05/17	
Lead	6020A	112	mg/Kg	0.046	5	05/11/17 09:00	05/05/17	
Magnesium	6010C	8480	mg/Kg	1.8	2	05/09/17 13:37	05/05/17	
Manganese	6010C	327	mg/Kg	0.18	2	05/09/17 13:37	05/05/17	
Mercury	7471B	0.171	mg/Kg	0.028	1	05/09/17 12:57	05/08/17	
Nickel	6020A	8.20	mg/Kg	0.18	5	05/11/17 09:00	05/05/17	
Potassium	6010C	6240	mg/Kg	37	2	05/09/17 13:37	05/05/17	
Selenium	6020A	ND U	mg/Kg	0.92	5	05/11/17 09:00	05/05/17	
Silver	6020A	0.327	mg/Kg	0.018	5	05/11/17 09:00	05/05/17	
Sodium	6010C	7260	mg/Kg	37	2	05/09/17 13:37	05/05/17	
Thallium	6020A	0.291	mg/Kg	0.018	5	05/11/17 09:00	05/05/17	
Vanadium	6020A	51.6	mg/Kg	0.18	5	05/11/17 09:00	05/05/17	
Zinc	6010C	240	mg/Kg	0.92	2	05/09/17 13:37	05/05/17	

Analytical Report

Client: Golder Associates, Inc.

Service Request: K1704471 **Date Collected:** 05/02/17 13:00 **Project:** Skagway-Sediment 2017/1657231

Sample Matrix: Sediment **Date Received:** 05/05/17 08:40

Sample Name: SED17-19 Basis: Dry

Lab Code: K1704471-006

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	12600	mg/Kg	2.5	2	05/09/17 13:49	05/05/17	
Antimony	6020A	ND U	mg/Kg	0.063	5	05/11/17 09:04	05/05/17	
Arsenic	6020A	3.02	mg/Kg	0.63	5	05/11/17 09:04	05/05/17	
Barium	6010C	305	mg/Kg	1.0	2	05/09/17 13:49	05/05/17	
Beryllium	6020A	0.248	mg/Kg	0.025	5	05/11/17 09:04	05/05/17	
Cadmium	6020A	0.436	mg/Kg	0.025	5	05/11/17 09:04	05/05/17	
Calcium	6010C	147000	mg/Kg	25	10	05/09/17 13:57	05/05/17	
Chromium	6020A	16.7	mg/Kg	0.25	5	05/11/17 09:04	05/05/17	
Cobalt	6020A	7.10	mg/Kg	0.025	5	05/11/17 09:04	05/05/17	
Copper	6020A	28.2	mg/Kg	0.13	5	05/11/17 09:04	05/05/17	
Iron	6010C	25200	mg/Kg	5.0	2	05/09/17 13:49	05/05/17	
Lead	6020A	77.1	mg/Kg	0.063	5	05/11/17 09:04	05/05/17	
Magnesium	6010C	8690	mg/Kg	2.5	2	05/09/17 13:49	05/05/17	
Manganese	6010C	334	mg/Kg	0.25	2	05/09/17 13:49	05/05/17	
Mercury	7471B	0.129	mg/Kg	0.027	1	05/09/17 12:59	05/08/17	
Nickel	6020A	9.17	mg/Kg	0.25	5	05/11/17 09:04	05/05/17	
Potassium	6010C	6440	mg/Kg	50	2	05/09/17 13:49	05/05/17	
Selenium	6020A	ND U	mg/Kg	1.3	5	05/11/17 09:04	05/05/17	
Silver	6020A	0.227	mg/Kg	0.025	5	05/11/17 09:04	05/05/17	
Sodium	6010C	8260	mg/Kg	50	2	05/09/17 13:49	05/05/17	
Thallium	6020A	0.279	mg/Kg	0.025	5	05/11/17 09:04	05/05/17	
Vanadium	6020A	50.2	mg/Kg	0.25	5	05/11/17 09:04	05/05/17	
Zinc	6010C	174	mg/Kg	1.3	2	05/09/17 13:49	05/05/17	

Analytical Report

Client: Golder Associates, Inc.

Service Request: K1704471 **Date Collected:** 05/02/17 16:00 **Project:** Skagway-Sediment 2017/1657231

Date Received: 05/05/17 08:40 **Sample Matrix:** Sediment

Sample Name: SED17-24 Basis: Dry

Lab Code: K1704471-007

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	10600	mg/Kg	2.5	2	05/09/17 13:52	05/05/17	
Antimony	6020A	ND U	mg/Kg	0.063	5	05/11/17 09:07	05/05/17	
Arsenic	6020A	2.77	mg/Kg	0.63	5	05/11/17 09:07	05/05/17	
Barium	6010C	222	mg/Kg	1.0	2	05/09/17 13:52	05/05/17	
Beryllium	6020A	0.201	mg/Kg	0.025	5	05/11/17 09:07	05/05/17	
Cadmium	6020A	0.112	mg/Kg	0.025	5	05/11/17 09:07	05/05/17	
Calcium	6010C	16100	mg/Kg	5.0	2	05/09/17 13:52	05/05/17	
Chromium	6020A	14.0	mg/Kg	0.25	5	05/11/17 09:07	05/05/17	
Cobalt	6020A	6.96	mg/Kg	0.025	5	05/11/17 09:07	05/05/17	
Copper	6020A	8.68	mg/Kg	0.13	5	05/11/17 09:07	05/05/17	
Iron	6010C	18700	mg/Kg	5.0	2	05/09/17 13:52	05/05/17	
Lead	6020A	8.13	mg/Kg	0.063	5	05/11/17 09:07	05/05/17	
Magnesium	6010C	6090	mg/Kg	2.5	2	05/09/17 13:52	05/05/17	
Manganese	6010C	282	mg/Kg	0.25	2	05/09/17 13:52	05/05/17	
Mercury	7471B	ND U	mg/Kg	0.015	1	05/09/17 13:01	05/08/17	
Nickel	6020A	6.97	mg/Kg	0.25	5	05/11/17 09:07	05/05/17	
Potassium	6010C	4230	mg/Kg	50	2	05/09/17 13:52	05/05/17	
Selenium	6020A	ND U	mg/Kg	1.3	5	05/11/17 09:07	05/05/17	
Silver	6020A	0.077	mg/Kg	0.025	5	05/11/17 09:07	05/05/17	
Sodium	6010C	4490	mg/Kg	50	2	05/09/17 13:52	05/05/17	
Thallium	6020A	0.216	mg/Kg	0.025	5	05/11/17 09:07	05/05/17	
Vanadium	6020A	41.6	mg/Kg	0.25	5	05/11/17 09:07	05/05/17	
Zinc	6010C	52.6	mg/Kg	1.3	2	05/09/17 13:52	05/05/17	

Analytical Report

Client: Golder Associates, Inc.

Service Request: K1704471 **Date Collected:** 05/02/17 17:00 **Project:** Skagway-Sediment 2017/1657231

Sample Matrix: Sediment **Date Received:** 05/05/17 08:40

Sample Name: SED17-28 Basis: Dry

Lab Code: K1704471-008

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	16200	mg/Kg	2.5	2	05/09/17 13:54	05/05/17	
Antimony	6020A	ND U	mg/Kg	0.064	5	05/11/17 09:11	05/05/17	
Arsenic	6020A	2.61	mg/Kg	0.64	5	05/11/17 09:11	05/05/17	
Barium	6010C	285	mg/Kg	1.0	2	05/09/17 13:54	05/05/17	
Beryllium	6020A	0.170	mg/Kg	0.025	5	05/11/17 09:11	05/05/17	
Cadmium	6020A	0.160	mg/Kg	0.025	5	05/11/17 09:11	05/05/17	
Calcium	6010C	8680	mg/Kg	5.1	2	05/09/17 13:54	05/05/17	
Chromium	6020A	16.9	mg/Kg	0.25	5	05/11/17 09:11	05/05/17	
Cobalt	6020A	6.66	mg/Kg	0.025	5	05/11/17 09:11	05/05/17	
Copper	6020A	8.15	mg/Kg	0.13	5	05/11/17 09:11	05/05/17	
Iron	6010C	21900	mg/Kg	5.1	2	05/09/17 13:54	05/05/17	
Lead	6020A	5.06	mg/Kg	0.064	5	05/11/17 09:11	05/05/17	
Magnesium	6010C	7600	mg/Kg	2.5	2	05/09/17 13:54	05/05/17	
Manganese	6010C	270	mg/Kg	0.25	2	05/09/17 13:54	05/05/17	
Mercury	7471B	ND U	mg/Kg	0.026	1	05/09/17 13:02	05/08/17	
Nickel	6020A	8.42	mg/Kg	0.25	5	05/11/17 09:11	05/05/17	
Potassium	6010C	4820	mg/Kg	51	2	05/09/17 13:54	05/05/17	
Selenium	6020A	ND U	mg/Kg	1.3	5	05/11/17 09:11	05/05/17	
Silver	6020A	0.085	mg/Kg	0.025	5	05/11/17 09:11	05/05/17	
Sodium	6010C	6610	mg/Kg	51	2	05/09/17 13:54	05/05/17	
Thallium	6020A	0.249	mg/Kg	0.025	5	05/11/17 09:11	05/05/17	
Vanadium	6020A	39.6	mg/Kg	0.25	5	05/11/17 09:11	05/05/17	
Zinc	6010C	61.9	mg/Kg	1.3	2	05/09/17 13:54	05/05/17	

Analytical Report

Client: Golder Associates, Inc. **Service Request:** K1704471

Date Collected: NA **Project:** Skagway-Sediment 2017/1657231 **Sample Matrix:**

Date Received: NA Sediment

Sample Name: Method Blank Basis: Dry

Lab Code: KQ1705558-01

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	ND U	mg/Kg	2	2	05/09/17 13:15	05/05/17	
Antimony	6020A	ND U	mg/Kg	0.05	5	05/11/17 08:03	05/05/17	
Arsenic	6020A	ND U	mg/Kg	0.5	5	05/11/17 08:03	05/05/17	
Barium	6010C	ND U	mg/Kg	0.8	2	05/09/17 13:15	05/05/17	
Beryllium	6020A	ND U	mg/Kg	0.020	5	05/11/17 08:03	05/05/17	
Cadmium	6020A	ND U	mg/Kg	0.020	5	05/11/17 08:03	05/05/17	
Calcium	6010C	ND U	mg/Kg	4	2	05/09/17 13:15	05/05/17	
Chromium	6020A	ND U	mg/Kg	0.20	5	05/11/17 08:03	05/05/17	
Cobalt	6020A	ND U	mg/Kg	0.020	5	05/11/17 08:03	05/05/17	
Copper	6020A	ND U	mg/Kg	0.10	5	05/11/17 08:03	05/05/17	
Iron	6010C	ND U	mg/Kg	4	2	05/09/17 13:15	05/05/17	
Lead	6020A	ND U	mg/Kg	0.05	5	05/11/17 08:03	05/05/17	
Magnesium	6010C	ND U	mg/Kg	2	2	05/09/17 13:15	05/05/17	
Manganese	6010C	ND U	mg/Kg	0.2	2	05/09/17 13:15	05/05/17	
Nickel	6020A	ND U	mg/Kg	0.20	5	05/11/17 08:03	05/05/17	
Potassium	6010C	ND U	mg/Kg	40	2	05/09/17 13:15	05/05/17	
Selenium	6020A	ND U	mg/Kg	1.0	5	05/11/17 08:03	05/05/17	
Silver	6020A	ND U	mg/Kg	0.020	5	05/11/17 08:03	05/05/17	
Sodium	6010C	ND U	mg/Kg	40	2	05/09/17 13:15	05/05/17	
Thallium	6020A	ND U	mg/Kg	0.020	5	05/11/17 08:03	05/05/17	
Vanadium	6020A	ND U	mg/Kg	0.20	5	05/11/17 08:03	05/05/17	
Zinc	6010C	ND U	mg/Kg	1.0	2	05/09/17 13:15	05/05/17	

Analytical Report

Client: Golder Associates, Inc. Service Request: K1704471

Project: Skagway-Sediment 2017/1657231 Date Collected: NA

Sample Matrix: Sediment Date Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ1705542-01

Total Metals

Analysis Analyte Name Method Result Units MRL Dil. **Date Analyzed Date Extracted** Q 7471B Mercury ND U mg/Kg 0.02 05/09/17 12:25 05/08/17

Printed 05/11/17 5:05:51 PM Superset Reference:

Page 25 of 45

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc.

Project Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: K1704471

Date Collected: 05/01/17 **Date Received:** 05/05/17

Date Analyzed: 05/09/17 - 05/11/17

Replicate Sample Summary Total Metals

 Sample Name:
 SED17-22
 Units:
 mg/Kg

 Lab Code:
 K1704471-001
 Basis:
 Dry

					J	
Analysis Method	MRL	Sample Result	Duplicate Sample KQ1705558-03 Result	Average	RPD	RPD Limit
						20
						20
6020A	0.72	4.34	4.31	4.33	<1	20
6010C	1.2	337	340	339	<1	20
6020A	0.029	0.279	0.282	0.281	1	20
6020A	0.029	0.541	0.646	0.594	18	20
6010C	5.8	30500	38400	34500	23 *	20
6020A	0.29	16.9	17.7	17.3	5	20
6020A	0.029	7.70	7.69	7.70	<1	20
6020A	0.14	82.5	41.3	61.9	67 *	20
6010C	5.8	30400	29500	30000	3	20
6020A	0.072	41.6	44.7	43.2	7	20
6010C	2.9	9380	9410	9400	<1	20
6010C	0.29	398	389	394	2	20
6020A	0.29	9.56	9.68	9.62	1	20
6010C	58	6890	6940	6920	<1	20
6020A	1.4	ND U	ND U	ND	-	20
6020A	0.029	0.506	0.541	0.524	7	20
6010C	58	7810	8080	7950	3	20
6020A	0.029	0.326	0.318	0.322	3	20
6020A	0.29	52.5	53.1	52.8	1	20
6010C	1.4	196	208	202	6	20
	Method 6010C 6020A 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A	Method MRL 6010C 2.9 6020A 0.072 6020A 0.72 6010C 1.2 6020A 0.029 6010C 5.8 6020A 0.029 6020A 0.029 6020A 0.14 6010C 5.8 6020A 0.072 6010C 2.9 6010C 0.29 6020A 0.29 6010C 58 6020A 0.029 6020A 0.029	Method MRL Result 6010C 2.9 14700 6020A 0.072 0.096 6020A 0.72 4.34 6010C 1.2 337 6020A 0.029 0.279 6020A 0.029 0.541 6010C 5.8 30500 6020A 0.29 16.9 6020A 0.029 7.70 6020A 0.14 82.5 6010C 5.8 30400 6020A 0.072 41.6 6010C 2.9 9380 6010C 0.29 398 6020A 0.29 9.56 6010C 58 6890 6020A 1.4 ND U 6020A 0.029 0.506 6010C 58 7810 6020A 0.029 0.326 6020A 0.029 52.5	Analysis Method MRL Result KQ1705558-03 Method MRL Result Result 6010C 2.9 14700 14500 6020A 0.072 0.096 0.101 6020A 0.72 4.34 4.31 6010C 1.2 337 340 6020A 0.029 0.279 0.282 6020A 0.029 0.541 0.646 6010C 5.8 30500 38400 6020A 0.029 16.9 17.7 6020A 0.029 7.70 7.69 6020A 0.14 82.5 41.3 6010C 5.8 30400 29500 6020A 0.072 41.6 44.7 6010C 2.9 9380 9410 6010C 2.9 9380 9410 6010C 58 6890 6940 6020A 1.4 ND U ND U 6020A 0.029 <td>Method MRL Result Result Average 6010C 2.9 14700 14500 14600 6020A 0.072 0.096 0.101 0.099 6020A 0.72 4.34 4.31 4.33 6010C 1.2 337 340 339 6020A 0.029 0.279 0.282 0.281 6020A 0.029 0.541 0.646 0.594 6010C 5.8 30500 38400 34500 6020A 0.29 16.9 17.7 17.3 6020A 0.029 7.70 7.69 7.70 6020A 0.14 82.5 41.3 61.9 6010C 5.8 30400 29500 30000 6020A 0.072 41.6 44.7 43.2 6010C 2.9 9380 9410 9400 6010C 2.9 398 389 394 6020A 0.29 9.56</td> <td>Method MRL Result Result Average RPD 6010C 2.9 14700 14500 14600 2 6020A 0.072 0.096 0.101 0.099 5 6020A 0.72 4.34 4.31 4.33 <1</td> 6010C 1.2 337 340 339 <1	Method MRL Result Result Average 6010C 2.9 14700 14500 14600 6020A 0.072 0.096 0.101 0.099 6020A 0.72 4.34 4.31 4.33 6010C 1.2 337 340 339 6020A 0.029 0.279 0.282 0.281 6020A 0.029 0.541 0.646 0.594 6010C 5.8 30500 38400 34500 6020A 0.29 16.9 17.7 17.3 6020A 0.029 7.70 7.69 7.70 6020A 0.14 82.5 41.3 61.9 6010C 5.8 30400 29500 30000 6020A 0.072 41.6 44.7 43.2 6010C 2.9 9380 9410 9400 6010C 2.9 398 389 394 6020A 0.29 9.56	Method MRL Result Result Average RPD 6010C 2.9 14700 14500 14600 2 6020A 0.072 0.096 0.101 0.099 5 6020A 0.72 4.34 4.31 4.33 <1

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc. **Service Request:** K1704471

Project Skagway-Sediment 2017/1657231 **Date Collected:** NA

Sample Matrix: Sediment Date Received: NA

Date Analyzed: 05/09/17

Replicate Sample Summary

Total Metals

Sample Name: Batch QC Units: mg/Kg Lab Code: K1704415-001

Basis: Dry

Duplicate Sample Sample KQ1705542-03

Analysis Method Result Result **RPD Limit Analyte Name MRL RPD** Average 7471B ND U ND U 20 Mercury 0.021 ND

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: K1704471 Date Collected: 05/01/17

Date Received: 05/05/17

Date Analyzed:05/09/17 - 05/11/17

Matrix Spike Summary Total Metals

Sample Name: SED17-22 **Lab Code:** K1704471-001

Units:mg/Kg
Basis:Dry

Matrix Spike KQ1705558-04

Analyte Name	Method	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	6010C	14700	15100	600	69 #	75-125
Antimony	6020A	0.096	36.0	150	24 N	75-125
Arsenic	6020A	4.34	154	150	100	75-125
Barium	6010C	337	647	300	104	75-125
Beryllium	6020A	0.279	15.0	15.0	99	75-125
Cadmium	6020A	0.541	16.5	15.0	107	75-125
Calcium	6010C	30500	33000	1500	167 #	75-125
Chromium	6020A	16.9	79.1	60.0	104	75-125
Cobalt	6020A	7.70	159	150	101	75-125
Copper	6020A	82.5	182	74.9	133 N	75-125
Iron	6010C	30400	30200	300	-83 #	75-125
Lead	6020A	41.6	198	150	104	75-125
Magnesium	6010C	9380	10700	1500	85 #	75-125
Manganese	6010C	398	538	150	94	75-125
Nickel	6020A	9.56	159	150	100	75-125
Potassium	6010C	6890	8270	1500	92 #	75-125
Selenium	6020A	ND U	152	150	102	75-125
Silver	6020A	0.506	15.9	15.0	103	75-125
Sodium	6010C	7810	9310	1500	100 #	75-125
Thallium	6020A	0.326	30.6	30.0	101	75-125
Vanadium	6020A	52.5	210	150	105	75-125
Zinc	6010C	196	358	150	108	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Golder Associates, Inc.

Service Request:

K1704471

Project:

Skagway-Sediment 2017/1657231

Date Collected:
Date Received:

N/A

Sample Matrix: Sediment

Date Received: Date Analyzed: N/A

Date Extracted:

05/9/17 05/8/17

Matrix Spike Summary

Total Metals

Sample Name: Batch QC

Units:

mg/Kg

Lab Code:

K1704415-001

Basis:

Dry

Analysis Method: Prep Method:

7471B Method

Matrix Spike

KQ1705542-04

Analyte NameSample ResultResultSpike Amount% Rec% Rec LimitsMercuryND U0.5900.54910880-120

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Lab Control Sample Summary Total Metals

Units:mg/Kg Basis:Dry

Service Request: K1704471

Date Analyzed: 05/09/17

Lab Control Sample

KQ1705558-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	6010C	6880	7930	87	39-161
Barium	6010C	322	308	104	74-126
Calcium	6010C	6730	6610	102	74-126
Iron	6010C	11700	14400	81	36-164
Magnesium	6010C	2550	2640	96	64-136
Manganese	6010C	425	410	104	76-124
Potassium	6010C	2470	2550	97	61-139
Sodium	6010C	3180	2480	128	65-173
Zinc	6010C	190	191	100	70-130

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Lab Control Sample Summary Total Metals

Units:mg/Kg Basis:Dry

Service Request: K1704471

Date Analyzed: 05/11/17

Lab Control Sample

KQ1705558-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Antimony	6020A	51.2	105	49	20-254
Arsenic	6020A	102	98.5	103	69-145
Beryllium	6020A	66.2	66.0	100	74-126
Cadmium	6020A	169	146	116	73-127
Chromium	6020A	188	182	103	71-130
Cobalt	6020A	181	162	112	74-125
Copper	6020A	108	106	102	75-125
Lead	6020A	130	130	100	72-127
Nickel	6020A	166	149	112	73-127
Selenium	6020A	169	154	110	68-132
Silver	6020A	42.6	40.9	104	66-134
Thallium	6020A	210	175	120	69-131
Vanadium	6020A	99.6	96.7	103	65-135

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix:

Sediment

Service Request: K1704471

Date Analyzed: 05/09/17

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Dry

Lab Control Sample KQ1705542-02

Analyte NameAnalytical MethodResultSpike Amount% Rec% Rec LimitsMercury7471B0.4980.50010051-148

Polynuclear Aromatic Hydrocarbons

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Results

Client: Golder Associates, Inc.

Skagway-Sediment 2017/1657231 **Project:**

Sample Matrix: Sediment Service Request: K1704471 **Date Collected:** 05/01/2017 **Date Received:** 05/05/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-22 Lab Code: K1704471-001 **Extraction Method:**

Analysis Method:

8270D SIM

EPA 3546

Units: ug/Kg Basis: Dry Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	7.6	1	05/08/17	05/10/17	KWG1703683	
2-Methylnaphthalene	ND U	7.6	1	05/08/17	05/10/17	KWG1703683	
Acenaphthylene	ND U	7.6	1	05/08/17	05/10/17	KWG1703683	
Acenaphthene	ND U	7.6	1	05/08/17	05/10/17	KWG1703683	
Dibenzofuran	ND U	7.6	1	05/08/17	05/10/17	KWG1703683	
Fluorene	ND U	7.6	1	05/08/17	05/10/17	KWG1703683	
Phenanthrene	17	7.6	1	05/08/17	05/10/17	KWG1703683	
Anthracene	11	7.6	1	05/08/17	05/10/17	KWG1703683	
Fluoranthene	43	7.6	1	05/08/17	05/10/17	KWG1703683	
Pyrene	63	7.6	1	05/08/17	05/10/17	KWG1703683	
Benz(a)anthracene	45	7.6	1	05/08/17	05/10/17	KWG1703683	
Chrysene	67	7.6	1	05/08/17	05/10/17	KWG1703683	
Benzo(b)fluoranthene†	80	7.6	1	05/08/17	05/10/17	KWG1703683	
Benzo(k)fluoranthene	37	7.6	1	05/08/17	05/10/17	KWG1703683	
Benzo(a)pyrene	37	7.6	1	05/08/17	05/10/17	KWG1703683	
Indeno(1,2,3-cd)pyrene	18	7.6	1	05/08/17	05/10/17	KWG1703683	
Dibenz(a,h)anthracene	ND U	7.6	1	05/08/17	05/10/17	KWG1703683	
Benzo(g,h,i)perylene	16	7.6	1	05/08/17	05/10/17	KWG1703683	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	70	38-104	05/10/17	Acceptable
Fluoranthene-d10	87	39-109	05/10/17	Acceptable
Terphenyl-d14	88	38-113	05/10/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/11/2017 Form 1A - Organic Page 1 of 14:40:54

Merged

Page 34 of 45

SuperSet Reference:

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: K1704471

Date Collected: 05/01/2017

Date Received: 05/05/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-21 Lab Code: K1704471-002 Extraction Method: EPA 3546

Analysis Method:

8270D SIM

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	7.7	1	05/08/17	05/10/17	KWG1703683	
2-Methylnaphthalene	ND U	7.7	1	05/08/17	05/10/17	KWG1703683	
Acenaphthylene	ND U	7.7	1	05/08/17	05/10/17	KWG1703683	
Acenaphthene	ND U	7.7	1	05/08/17	05/10/17	KWG1703683	
Dibenzofuran	9.8	7.7	1	05/08/17	05/10/17	KWG1703683	
Fluorene	9.9	7.7	1	05/08/17	05/10/17	KWG1703683	
Phenanthrene	25	7.7	1	05/08/17	05/10/17	KWG1703683	
Anthracene	14	7.7	1	05/08/17	05/10/17	KWG1703683	
Fluoranthene	38	7.7	1	05/08/17	05/10/17	KWG1703683	
Pyrene	39	7.7	1	05/08/17	05/10/17	KWG1703683	
Benz(a)anthracene	22	7.7	1	05/08/17	05/10/17	KWG1703683	
Chrysene	40	7.7	1	05/08/17	05/10/17	KWG1703683	
Benzo(b)fluoranthene†	24	7.7	1	05/08/17	05/10/17	KWG1703683	
Benzo(k)fluoranthene	13	7.7	1	05/08/17	05/10/17	KWG1703683	
Benzo(a)pyrene	9.8	7.7	1	05/08/17	05/10/17	KWG1703683	
Indeno(1,2,3-cd)pyrene	8.3	7.7	1	05/08/17	05/10/17	KWG1703683	
Dibenz(a,h)anthracene	ND U	7.7	1	05/08/17	05/10/17	KWG1703683	
Benzo(g,h,i)perylene	ND U	7.7	1	05/08/17	05/10/17	KWG1703683	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	75	38-104	05/10/17	Acceptable
Fluoranthene-d10	95	39-109	05/10/17	Acceptable
Terphenyl-d14	93	38-113	05/10/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/11/2017 14:40:58 Form 1A - Organic Page 1 of 1

 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} Stealth \label{lem:limit} Crystal.rpt \label{lem:limit} Form \label{lem:limit} lmNew.rpt$

Merged

Page 35 of 45

SuperSet Reference:

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment Service Request: K1704471 **Date Collected:** 05/01/2017 **Date Received:** 05/05/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-20 Lab Code: K1704471-003 **Extraction Method:**

Analysis Method:

EPA 3546 8270D SIM Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	100	9.1	1	05/08/17	05/10/17	KWG1703683	1
2-Methylnaphthalene	62	9.1	1	05/08/17	05/10/17	KWG1703683	
Acenaphthylene	ND U	9.1	1	05/08/17	05/10/17	KWG1703683	
Acenaphthene	26	9.1	1	05/08/17	05/10/17	KWG1703683	
Dibenzofuran	35	9.1	1	05/08/17	05/10/17	KWG1703683	
Fluorene	26	9.1	1	05/08/17	05/10/17	KWG1703683	
Phenanthrene	66	9.1	1	05/08/17	05/10/17	KWG1703683	
Anthracene	32	9.1	1	05/08/17	05/10/17	KWG1703683	
Fluoranthene	350	9.1	1	05/08/17	05/10/17	KWG1703683	
Pyrene	240	9.1	1	05/08/17	05/10/17	KWG1703683	
Benz(a)anthracene	86	9.1	1	05/08/17	05/10/17	KWG1703683	
Chrysene	72	9.1	1	05/08/17	05/10/17	KWG1703683	
Benzo(b)fluoranthene†	110	9.1	1	05/08/17	05/10/17	KWG1703683	
Benzo(k)fluoranthene	42	9.1	1	05/08/17	05/10/17	KWG1703683	
Benzo(a)pyrene	45	9.1	1	05/08/17	05/10/17	KWG1703683	
Indeno(1,2,3-cd)pyrene	23	9.1	1	05/08/17	05/10/17	KWG1703683	
Dibenz(a,h)anthracene	ND U	9.1	1	05/08/17	05/10/17	KWG1703683	
Benzo(g,h,i)perylene	19	9.1	1	05/08/17	05/10/17	KWG1703683	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	76	38-104	05/10/17	Acceptable
Fluoranthene-d10	98	39-109	05/10/17	Acceptable
Terphenyl-d14	94	38-113	05/10/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/11/2017 Form 1A - Organic Page 1 of 14:41:02 SuperSet Reference: Merged RR198172

Page 36 of 45

Analytical Results

Client: Golder Associates, Inc.

Skagway-Sediment 2017/1657231 **Project:**

Sample Matrix: Sediment Service Request: K1704471 **Date Collected:** 05/02/2017 **Date Received:** 05/05/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-18 Lab Code: K1704471-004

Extraction Method: EPA 3546 **Analysis Method:** 8270D SIM Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	7.6	1	05/08/17	05/10/17	KWG1703683	
2-Methylnaphthalene	ND U	7.6	1	05/08/17	05/10/17	KWG1703683	
Acenaphthylene	7.9	7.6	1	05/08/17	05/10/17	KWG1703683	
Acenaphthene	15	7.6	1	05/08/17	05/10/17	KWG1703683	
Dibenzofuran	13	7.6	1	05/08/17	05/10/17	KWG1703683	
Fluorene	29	7.6	1	05/08/17	05/10/17	KWG1703683	
Phenanthrene	190	7.6	1	05/08/17	05/10/17	KWG1703683	
Anthracene	70	7.6	1	05/08/17	05/10/17	KWG1703683	
Fluoranthene	800	7.6	1	05/08/17	05/10/17	KWG1703683	
Pyrene	560	7.6	1	05/08/17	05/10/17	KWG1703683	
Benz(a)anthracene	260	7.6	1	05/08/17	05/10/17	KWG1703683	
Chrysene	290	7.6	1	05/08/17	05/10/17	KWG1703683	
Benzo(b)fluoranthene†	330	7.6	1	05/08/17	05/10/17	KWG1703683	
Benzo(k)fluoranthene	120	7.6	1	05/08/17	05/10/17	KWG1703683	
Benzo(a)pyrene	140	7.6	1	05/08/17	05/10/17	KWG1703683	
Indeno(1,2,3-cd)pyrene	62	7.6	1	05/08/17	05/10/17	KWG1703683	
Dibenz(a,h)anthracene	16	7.6	1	05/08/17	05/10/17	KWG1703683	
Benzo(g,h,i)perylene	49	7.6	1	05/08/17	05/10/17	KWG1703683	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	81	38-104	05/10/17	Acceptable
Fluoranthene-d10	105	39-109	05/10/17	Acceptable
Terphenyl-d14	102	38-113	05/10/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/11/2017 Form 1A - Organic Page 1 of 14:41:07 SuperSet Reference: Merged RR198172 Page 37 of 45

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment Service Request: K1704471 **Date Collected:** 05/02/2017 **Date Received:** 05/05/2017

Polynuclear Aromatic Hydrocarbons

Sample Name:

DUP-2

Lab Code:

K1704471-005

Extraction Method:

EPA 3546

Analysis Method:

8270D SIM

Units: ug/Kg Basis: Dry Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	7.8	1	05/08/17	05/10/17	KWG1703683	
2-Methylnaphthalene	8.9	7.8	1	05/08/17	05/10/17	KWG1703683	
Acenaphthylene	11	7.8	1	05/08/17	05/10/17	KWG1703683	
Acenaphthene	17	7.8	1	05/08/17	05/10/17	KWG1703683	
Dibenzofuran	22	7.8	1	05/08/17	05/10/17	KWG1703683	
Fluorene	52	7.8	1	05/08/17	05/10/17	KWG1703683	
Phenanthrene	380	7.8	1	05/08/17	05/10/17	KWG1703683	
Anthracene	76	7.8	1	05/08/17	05/10/17	KWG1703683	
Fluoranthene	1000	7.8	1	05/08/17	05/10/17	KWG1703683	
Pyrene	690	7.8	1	05/08/17	05/10/17	KWG1703683	
Benz(a)anthracene	390	7.8	1	05/08/17	05/10/17	KWG1703683	
Chrysene	400	7.8	1	05/08/17	05/10/17	KWG1703683	
Benzo(b)fluoranthene†	400	7.8	1	05/08/17	05/10/17	KWG1703683	
Benzo(k)fluoranthene	160	7.8	1	05/08/17	05/10/17	KWG1703683	
Benzo(a)pyrene	170	7.8	1	05/08/17	05/10/17	KWG1703683	
Indeno(1,2,3-cd)pyrene	77	7.8	1	05/08/17	05/10/17	KWG1703683	
Dibenz(a,h)anthracene	23	7.8	1	05/08/17	05/10/17	KWG1703683	
Benzo(g,h,i)perylene	59	7.8	1	05/08/17	05/10/17	KWG1703683	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	82	38-104	05/10/17	Acceptable
Fluoranthene-d10	103	39-109	05/10/17	Acceptable
Terphenyl-d14	101	38-113	05/10/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/11/2017 Form 1A - Organic Page 1 of 14:41:11 Page 38 of 45

Merged

SuperSet Reference:

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment Service Request: K1704471 **Date Collected:** 05/02/2017 **Date Received:** 05/05/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-19 Lab Code: K1704471-006

Extraction Method: EPA 3546 **Analysis Method:** 8270D SIM Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	8.2	1	05/08/17	05/10/17	KWG1703683	
2-Methylnaphthalene	ND U	8.2	1	05/08/17	05/10/17	KWG1703683	
Acenaphthylene	13	8.2	1	05/08/17	05/10/17	KWG1703683	
Acenaphthene	ND U	8.2	1	05/08/17	05/10/17	KWG1703683	
Dibenzofuran	13	8.2	1	05/08/17	05/10/17	KWG1703683	
Fluorene	28	8.2	1	05/08/17	05/10/17	KWG1703683	
Phenanthrene	150	8.2	1	05/08/17	05/10/17	KWG1703683	
Anthracene	150	8.2	1	05/08/17	05/10/17	KWG1703683	
Fluoranthene	710	8.2	1	05/08/17	05/10/17	KWG1703683	
Pyrene	460	8.2	1	05/08/17	05/10/17	KWG1703683	
Benz(a)anthracene	450	8.2	1	05/08/17	05/10/17	KWG1703683	
Chrysene	480	8.2	1	05/08/17	05/10/17	KWG1703683	
Benzo(b)fluoranthene†	420	8.2	1	05/08/17	05/10/17	KWG1703683	
Benzo(k)fluoranthene	180	8.2	1	05/08/17	05/10/17	KWG1703683	
Benzo(a)pyrene	210	8.2	1	05/08/17	05/10/17	KWG1703683	
Indeno(1,2,3-cd)pyrene	95	8.2	1	05/08/17	05/10/17	KWG1703683	
Dibenz(a,h)anthracene	24	8.2	1	05/08/17	05/10/17	KWG1703683	
Benzo(g,h,i)perylene	73	8.2	1	05/08/17	05/10/17	KWG1703683	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	82	38-104	05/10/17	Acceptable
Fluoranthene-d10	106	39-109	05/10/17	Acceptable
Terphenyl-d14	105	38-113	05/10/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/11/2017 Form 1A - Organic Page 1 of 14:41:15 Page 39 of 45

Merged

SuperSet Reference:

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment Service Request: K1704471 **Date Collected:** 05/02/2017 **Date Received:** 05/05/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-24 Lab Code: K1704471-007 **Extraction Method:**

Analysis Method:

EPA 3546 8270D SIM Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	6.6	1	05/08/17	05/10/17	KWG1703683	
2-Methylnaphthalene	ND U	6.6	1	05/08/17	05/10/17	KWG1703683	
Acenaphthylene	ND U	6.6	1	05/08/17	05/10/17	KWG1703683	
Acenaphthene	ND U	6.6	1	05/08/17	05/10/17	KWG1703683	
Dibenzofuran	ND U	6.6	1	05/08/17	05/10/17	KWG1703683	
Fluorene	ND U	6.6	1	05/08/17	05/10/17	KWG1703683	
Phenanthrene	ND U	6.6	1	05/08/17	05/10/17	KWG1703683	
Anthracene	ND U	6.6	1	05/08/17	05/10/17	KWG1703683	
Fluoranthene	ND U	6.6	1	05/08/17	05/10/17	KWG1703683	
Pyrene	ND U	6.6	1	05/08/17	05/10/17	KWG1703683	
Benz(a)anthracene	ND U	6.6	1	05/08/17	05/10/17	KWG1703683	
Chrysene	ND U	6.6	1	05/08/17	05/10/17	KWG1703683	
Benzo(b)fluoranthene†	ND U	6.6	1	05/08/17	05/10/17	KWG1703683	
Benzo(k)fluoranthene	ND U	6.6	1	05/08/17	05/10/17	KWG1703683	
Benzo(a)pyrene	ND U	6.6	1	05/08/17	05/10/17	KWG1703683	
Indeno(1,2,3-cd)pyrene	ND U	6.6	1	05/08/17	05/10/17	KWG1703683	
Dibenz(a,h)anthracene	ND U	6.6	1	05/08/17	05/10/17	KWG1703683	
Benzo(g,h,i)perylene	ND U	6.6	1	05/08/17	05/10/17	KWG1703683	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	77	38-104	05/10/17	Acceptable
Fluoranthene-d10	85	39-109	05/10/17	Acceptable
Terphenyl-d14	92	38-113	05/10/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/11/2017 Form 1A - Organic Page 1 of 14:41:19 1 Merged

Page 40 of 45

SuperSet Reference:

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: K1704471

Date Collected: 05/02/2017

Date Received: 05/05/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-28 Lab Code: K1704471-008 Extraction Method: EPA 3546

Analysis Method:

EPA 3546 8270D SIM Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	7.3	1	05/08/17	05/10/17	KWG1703683	
2-Methylnaphthalene	ND U	7.3	1	05/08/17	05/10/17	KWG1703683	
Acenaphthylene	ND U	7.3	1	05/08/17	05/10/17	KWG1703683	
Acenaphthene	ND U	7.3	1	05/08/17	05/10/17	KWG1703683	
Dibenzofuran	ND U	7.3	1	05/08/17	05/10/17	KWG1703683	
Fluorene	ND U	7.3	1	05/08/17	05/10/17	KWG1703683	
Phenanthrene	ND U	7.3	1	05/08/17	05/10/17	KWG1703683	
Anthracene	ND U	7.3	1	05/08/17	05/10/17	KWG1703683	
Fluoranthene	ND U	7.3	1	05/08/17	05/10/17	KWG1703683	
Pyrene	ND U	7.3	1	05/08/17	05/10/17	KWG1703683	
Benz(a)anthracene	ND U	7.3	1	05/08/17	05/10/17	KWG1703683	
Chrysene	ND U	7.3	1	05/08/17	05/10/17	KWG1703683	
Benzo(b)fluoranthene†	ND U	7.3	1	05/08/17	05/10/17	KWG1703683	
Benzo(k)fluoranthene	ND U	7.3	1	05/08/17	05/10/17	KWG1703683	
Benzo(a)pyrene	ND U	7.3	1	05/08/17	05/10/17	KWG1703683	
Indeno(1,2,3-cd)pyrene	ND U	7.3	1	05/08/17	05/10/17	KWG1703683	
Dibenz(a,h)anthracene	ND U	7.3	1	05/08/17	05/10/17	KWG1703683	
Benzo(g,h,i)perylene	ND U	7.3	1	05/08/17	05/10/17	KWG1703683	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	77	38-104	05/10/17	Acceptable
Fluoranthene-d10	85	39-109	05/10/17	Acceptable
Terphenyl-d14	90	38-113	05/10/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/11/2017 14:41:23 Form 1A - Organic Page 1 of 1

 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

Merged

Page 41 of 45

SuperSet Reference: RR198172

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Soil Service Request: K1704471 Date Collected: NA Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name: Method Blank Lab Code: KWG1703683-5

Extraction Method: EPA 3546 **Analysis Method:** 8270D SIM Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
2-Methylnaphthalene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Acenaphthylene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Acenaphthene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Dibenzofuran	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Fluorene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Phenanthrene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Anthracene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Fluoranthene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Pyrene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Benz(a)anthracene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Chrysene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Benzo(b)fluoranthene†	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Benzo(k)fluoranthene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Benzo(a)pyrene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Indeno(1,2,3-cd)pyrene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Dibenz(a,h)anthracene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	
Benzo(g,h,i)perylene	ND U	4.8	1	05/08/17	05/10/17	KWG1703683	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	72	38-104	05/10/17	Acceptable
Fluoranthene-d10	77	39-109	05/10/17	Acceptable
Terphenyl-d14	87	38-113	05/10/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/11/2017 Form 1A - Organic Page 1 of 14:41:27 Page 42 of 45

Merged

SuperSet Reference:

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704471

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:EPA 3546Units:PercentAnalysis Method:8270D SIMLevel:Low

Sample Name	Lab Code	Sur1	Sur2		Sur3	
Batch QC	K1704415-001	87	109		106	
SED17-22	K1704471-001	70	87		88	
SED17-21	K1704471-002	75	95		93	
SED17-20	K1704471-003	76	98		94	
SED17-18	K1704471-004	81	105		102	
DUP-2	K1704471-005	82	103		101	
SED17-19	K1704471-006	82	106		105	
SED17-24	K1704471-007	77	85		92	
SED17-28	K1704471-008	77	85		90	
Method Blank	KWG1703683-5	72	77		87	
Batch QCMS	KWG1703683-1	86	113	*	107	
Batch QCDMS	KWG1703683-2	90	118	*	114	*
Lab Control Sample	KWG1703683-3	76	87		89	
Duplicate Lab Control Sample	KWG1703683-4	75	84		86	

Surrogate Recovery Control Limits (%)

Sur1	=	Fluorene-d10	38-104
Sur2	=	Fluoranthene-d10	39-109
Sur3	=	Terphenyl-d14	38-113

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

 Printed:
 05/11/2017
 14:41:32
 Form 2A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form2.rpt
 Page 43 of 45
 SuperSet Reference:
 RR198172

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sediment Sample Matrix:

Service Request: K1704471 **Date Extracted:** 05/08/2017 **Date Analyzed:** 05/10/2017

Matrix Spike/Duplicate Matrix Spike Summary Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

Batch OC K1704415-001

Extraction Method: Analysis Method:

EPA 3546

8270D SIM

Units: ug/Kg **Basis:** Dry

Level: Low

Extraction Lot: KWG1703683

Batch QCMS KWG1703683-1 **Matrix Spike**

Batch QCDMS KWG1703683-2 **Duplicate Matrix Spike**

Sample Spike Spike %Rec RPD Result RPD Amount Amount Limits Limit %Rec %Rec **Analyte Name** Result Result 75 29-88 ND 751 1000 772 1010 77 3 40 Naphthalene ND 751 1000 75 785 1010 78 28-98 4 40 2-Methylnaphthalene Acenaphthylene ND 762 1000 76 793 1010 79 32-97 4 40 ND 791 1000 79 814 1010 81 30-101 3 40 Acenaphthene Dibenzofuran ND 811 1000 81 834 1010 83 28-105 3 40 ND 819 1000 82 864 1010 86 23-116 5 40 Fluorene Phenanthrene 12 1150 1000 114 947 1010 93 10-128 19 40 1030 11 853 1000 84 1010 101 27-116 19 40 Anthracene 58 1790 1000 174 * 1110 1010 105 10-138 47 * 40 Fluoranthene 78 1380 1000 130 1050 1010 97 16-134 27 40 Pyrene 37 948 1000 1010 27-127 Benz(a)anthracene 1000 91 96 6 40 9 37 988 1000 95 1080 1010 103 25-132 40 Chrysene 97 Benzo(b)fluoranthene 37 1010 1000 1060 1010 102 21-130 5 40 967 95 1010 1010 5 Benzo(k)fluoranthene 16 1000 99 22-126 40 23 872 1000 85 955 1010 93 25-129 9 40 Benzo(a)pyrene 93 Indeno(1,2,3-cd)pyrene ND 932 1000 987 1010 98 17-138 6 40 ND 961 1000 96 1020 1010 102 32-116 6 40 Dibenz(a,h)anthracene Benzo(g,h,i)perylene 14 1010 1000 100 1050 1010 103 17-130 4 40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Form 3A - Organic Printed: Page 1 of 05/11/2017 14.41.37 $u:\Stealth\Crystal.rpt\Form3DMS.rpt$ SuperSet Reference: RR198172 Page 44 of 45

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Soil

Service Request: K1704471 **Date Extracted:** 05/08/2017 **Date Analyzed:** 05/10/2017

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:
Analysis Method:

EPA 3546 8270D SIM Units: ug/Kg

Basis: Dry

Basis: Dry Level: Low

Extraction Lot: KWG1703683

Lab Control Sample KWG1703683-3 Lab Control Spike Duplicate Lab Control Sample KWG1703683-4 Duplicate Lab Control Spike

	Lau	Control Spike		Duplicate Lab Control Spike					
Analyte Name	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Naphthalene	356	500	71	373	500	75	42-88	5	40
2-Methylnaphthalene	358	500	72	373	500	75	43-92	4	40
Acenaphthylene	359	500	72	382	500	76	44-93	6	40
Acenaphthene	361	500	72	385	500	77	44-95	6	40
Dibenzofuran	366	500	73	388	500	78	44-96	6	40
Fluorene	364	500	73	386	500	77	45-98	6	40
Phenanthrene	371	500	74	389	500	78	41-99	5	40
Anthracene	376	500	75	394	500	79	46-100	5	40
Fluoranthene	399	500	80	412	500	82	49-102	3	40
Pyrene	392	500	78	406	500	81	48-104	4	40
Benz(a)anthracene	395	500	79	407	500	81	52-105	3	40
Chrysene	414	500	83	428	500	86	51-110	3	40
Benzo(b)fluoranthene	422	500	84	433	500	87	52-114	3	40
Benzo(k)fluoranthene	431	500	86	445	500	89	52-112	3	40
Benzo(a)pyrene	400	500	80	409	500	82	52-111	2	40
Indeno(1,2,3-cd)pyrene	379	500	76	382	500	76	44-117	1	40
Dibenz(a,h)anthracene	379	500	76	391	500	78	44-110	3	40
Benzo(g,h,i)perylene	417	500	83	426	500	85	45-107	2	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Printed:
 05/11/2017
 14:41:41
 Form 3C - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form3DLC.rpt
 Page 45 of 45
 SuperSet Reference:
 RR198172

ALS Environmental
ALS Group USA, Corp
1317 South 13th Avenue
Kelso, WA 98626

T:+1 360 577 7222

F:+1 360 636 1068 www.alsglobal.com

June 01, 2017

Analytical Report for Service Request No: K1704473

Tamra Reynolds Golder Associates Ltd. Suite 201C, 170 Titanium Way Whitehorse, YT Y1A0G1

RE: Skagway-Sediment 2017 / 1657231

Dear Tamra,

Enclosed are the results of the sample(s) submitted to our laboratory May 05, 2017 For your reference, these analyses have been assigned our service request number **K1704473**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Howard Holmes Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

General Chemistry

Metals

Diesel and Residual Range Organics

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-	
	data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator	
Oregon – DEQ (NELAP)	yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water	-
Kelso Laboratory Website	www.alsglobal.com	NA
Kelso Laboratory Website	www.aisglobai.com	N.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS ENVIRONMENTAL

Client:Golder Associates, Inc.Service Request No.:K1704473Project:Skagway - Sediment 2017/ 1657231Date Received:05/05/17

Sample Matrix: Sediment

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Eight sediment samples were received for analysis at ALS Environmental on 05/05/17. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

Acid-Volatile Sulfide by EPA Method 821/R-91-100:

The matrix spike recoveries for sample Batch QC were outside control criteria because of suspected matrix interference. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. . No further corrective action was taken.

No other anomalies associated with the analysis of these samples were observed.

Total Metals

No anomalies associated with the analysis of these samples were observed.

Diesel and Residual Range Organics by Method AK102/ AK103

The recovery of n-Triacontane and o-Terphenyl in Continuing Calibration Verification (CCV) KWG1704203-3 were outside the control criteria of \pm 20% listed in the analytical report. The recovery of the analyte was within the 60-120% control criteria for surrogate recoveries in laboratory quality control samples specified in the AK102/103 method. No further corrective action was necessary.

No other anomalies associated with the analysis of these samples were observed.

Approved by Awallhour

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com Environmental

LSD:

Chain of Custody (COC) / Analytical **Request Form**

Affix ALS barcode label here (lab use only)

K1704473 coc Number: 15 - 593816

Canada Toll Free: 1 800 668 9878 www.alsglobal.com Contact and company name below will appear on the final report Report Format / Distribution Report To Select Service Level Below - Please confirm all E&P TATs with your AM - surcharges will apply Select Report Format: PDF Z EXCEL Golder associates LTD Company Regular [R] Standard TAT if received by 3 pm - business days - no surcharges apply Quality Control (QC) Report with Report YES NO Tomra Reguelds Contact 4 day [P4] 1 Business day [E1] 1-867-334 -4468 Compare Results to Criteria on Report - provide details below if box checked Phone: 3 day [P3] Same Day, Weekend or Statutory EMAIL MAIL FAX Select Distribution: 2 day [P2] holiday [E0] Email 1 or Fax TSREYNOLDS & Achter, com 170- 2016 Titalium Way Date and Time Required for all E&P TATs: Street: Email 2 PADDY NCHAUUS & relier, con Email 3 VMERCER & aller, com White horse, Yukan or tests that can not be performed according to the service level selected, you will be contacted. City/Province: Postal Code Analysis Request invoice To Same as Report To YES NO Invoice Distribution Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below Copy of Invoice with Report YES NO Select Invoice Distribution: EMAIL MAIL FAX Email 1 or Fax as report Company: Contact: Email 2 Project Information Oil and Gas Required Fields (client use) AFE/Cost Center ALS Account # / Quote #: 41037 PO# Job#: Routing Code: 1657231 Major/Minor Code PO/AFE: Requisitioner 6021-452e ALS Contact: Toll Pay for Sampler: RW/ ALS Lab Work Order # (lab use only) Sample Identification and/or Coordinates Time ALS Sample # Sample Type (lab use only) (This description will appear on the report) (dd-mmm-yy) (hh:mm) 01 744-17 4FD17-32 B: 00 Sectional × 16:00 SEDIT - DI SED 17- 80 18:00 SED17 - 18 MZ-MAY-17 11:00 Dul-g 12:00 13:00 SED 17-19 SED 17 - 24 16:00 95017-20 17:40 SAMPLE CONDITION AS RECEIVED (lab use only) Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below Drinking Water (DW) Samples1 (client use) SIF Observations Frozen Please archive unused samples. 5-day turnaread on metals and PAHG, regular turnaroad on 65! TOC. Unit for Are samples taken from a Regulated DW System? Ice Packs Yes 🔲 YES NO Cooling Initiated Are samples for human drinking water use? directions for DRO and AUS/SEM. INITIAL COOLER TEMPERATURES C FINAL COOLER TEMPERATURES C INITIAL SHIPMENT RECEPTION (lab use only) SHIPMENT RELEASE (client use) FINAL SHIPMENT RECEPTION (lab use only) Released by Time: Received by: C Date: Received by: Time: 6.0

OCTOBER 2015 FROM

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

PC HH

	1	11 -	1,00	Coole	r Reco	eipt a	•		ation Fo		* * !	1177	_	· · ·	
ent	7/0/	1010ex 1	1753C.	aliti			/	Servic	e Reques			4 12 6 12			
eived:_ <u>2 </u>	714	(Opened:_	215/19	1	— в	y:			loaded	:_ <i>2[3</i>	7.1	By: _	1	
Samples we			USPS	Fed Ex		U PS	DH			Courie	r Ha	ınd Delivered	!	Br. a	
Samples we Were custoo		,	·	Cooler NA ((Y) Bo.	x N	Envelo	•	<i>Other_</i> w many ar	nd whe	re?	ano. 1	900	FNA	
If present, w					_	N	_		ent, were				ישטע	B.	N
	rrected.	Raw	Corrected	Corr.	The	ermome	eter	Coole	r/COC ID			Tracking N	umbe		
Ser Temp Cool	ter Temp	Temp Stank	Temp Blank	Factor - O :		37:	3		<u>N</u>	A Dá	27 1	NU 317	4 5	033	NA FIR
					-										1
- -							_		·						-
				-											
Packing ma	aterial:	Inserts L	Baggies (Bubble V	Vrap	Gel Pa	icks	Wet Ic	e Dry Io	e Si	eeves	box			
Were custoe	dy paper	s properly	filled out	(ink, sign	ed, etc.)?					٠	V.	NA	Ô	Ν
Were samp	les receiv	_	d conditionalicable, tis	•			•	ndicate Fro z			w. Thawed	Thawed	NA	(Y)	N
Were all san	mple labe							1104	en iun	erterry 1	пинеи	1 nuweu	ΝA	(v)	N
Did all samp	ple labels	s and tags a	agree with	custody p	papers?	Indic	ate maj	ior disc	crepancies	in the	table or	n page 2.	NA	∂	N
Were appro	opriate bo	ottles/conta	ainers and	volumes	receive	d for th	ne tests	indica	ted?				NA	Θ	N
Were the p	_		,		•		• • •	•	te pH? Ind	dicate	in the ta	ble below	Y.A	Y	N
Were VOA			hout head	space? In	idicate	in the i	table b	elow.						Y .	N
Was C12/F	Res nega	tive?		Τ	 						~		<u> </u>	/ Y	N
Sam	iple ID on	Bottle	Bottle	Count	Samp Out of	Head.	n COC				Volume	Identified by:			
Se	ample ID			е Туре		space	Broke	рH	Reage		added	Number		Initials	Time
											 -				
	·				<u> </u>										
						<u> </u>			3						
			Į		<u> </u>	<u> </u>	<u> </u>								
tes Discre	nancies	& Rosal	lutions	٠											
otes, Discre	epancies	, & Resol	lutions:_	·		<u></u>	<u></u>								,
otes, Discre	epancies	, & Resol	lutions:_												
otes, Discre	epancies	, & Resol	lutions:_												

Page 10 of 49

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Analysis Method: 160.3 Modified

Prep Method: None

Service Request: K1704473

Date Collected: 05/01/17 - 05/02/17

Date Received: 05/5/17

Units: PercentBasis: As Received

Solids, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
SED17-22	K1704473-001	63.5	-	1	05/05/17 17:28	
SED17-21	K1704473-002	62.8	-	1	05/05/17 17:28	
SED17-20	K1704473-003	53.1	-	1	05/05/17 17:28	
SED17-18	K1704473-004	67.0	-	1	05/05/17 17:28	
DUP-2	K1704473-005	68.1	-	1	05/05/17 17:28	
SED17-19	K1704473-006	59.5	-	1	05/05/17 17:28	
SED17-24	K1704473-007	76.4	-	1	05/05/17 17:28	
SED17-28	K1704473-008	69.9	-	1	05/05/17 17:28	

QA/QC Report

Client: Golder Associates, Inc.

Project Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Analysis Method: 160.3 Modified

Prep Method: None

Service Request:K1704473

Date Collected:NA
Date Received:NA

Units:Percent
Basis: As Received

Replicate Sample Summary Inorganic Parameters

			Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	Result	Result	Average	RPD	Limit	Analyzed
Batch QC	K1704419-003DUP	-	57.3	57.2	57.3	<1	20	05/05/17
Duplicate	K1704473-006DUP	-	59.5	59.5	59.5	<1	20	05/05/17
Batch OC	K1704476-002DUP	_	81.4	85.3	83.4	5	20	05/05/17

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/8/2017 9:28:50 AM Superset Reference:17-0000420869 rev 00

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Analysis Method: 821/R-91-100

Prep Method: Method

Service Request: K1704473

Date Collected: 05/01/17 - 05/02/17

Date Received: 05/5/17

Units: uMole/gBasis: Dry

Sulfide, Acid-Volatile

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
SED17-22	K1704473-001	3.58	0.92	20	05/12/17 23:43	5/12/17	
SED17-18	K1704473-004	2.43	0.86	20	05/12/17 23:43	5/12/17	
SED17-24	K1704473-007	0.105	0.040	1	05/12/17 23:43	5/12/17	
SED17-28	K1704473-008	0.198	0.033	1	05/12/17 23:43	5/12/17	
Method Blank	K1704473-MB	ND U	0.016	1	05/12/17 23:43	5/12/17	

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704473

Project Skagway-Sediment 2017/1657231 Date Collected: NA

Sample Matrix: Sediment Date Received: NA

Date Analyzed: 05/12/17

Replicate Sample Summary General Chemistry Parameters

Sample Name: Batch QC Units: uMole/g

Lab Code: K1704419-003 **Basis:** Dry

Duplicate Sample K1704419-

Sample 003DUP

Analyte NameAnalysis MethodMRLResultResultAverageRPDRPD LimitSulfide, Acid-Volatile821/R-91-1000.978.398.828.61545

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/24/2017 11:41:17 AM Superset Reference:17-0000420869 rev 00

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704473

Project: Skagway-Sediment 2017/1657231 Date Collected: N/A

Sample Matrix: Sediment Date Received: N/A

Date Analyzed: 05/12/17 **Date Extracted:** 05/12/17

Duplicate Matrix Spike Summary Sulfide, Acid-Volatile

Sample Name:Batch QCUnits:uMole/gLab Code:K1704419-003Basis:Dry

Lab Code: K1704419-003 **Basis: Analysis Method:** 821/R-91-100

Prep Method: Method

Matrix Spike Duplicate Matrix Spike

K1704419-003MS K1704419-003DMS

RPD Sample **Spike Spike** % Rec Analyte Name Result Amount % Rec Amount % Rec Limits **RPD** Limit Result Result Sulfide, Acid-Volatile 8.39 61.8 63.2 154 * 45 35.3 35.6 56-142

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/24/2017 11:41:17 AM Superset Reference:17-0000420869 rev 00

QA/QC Report

Client: Golder Associates, Inc.

Service Request: K1704473

Project: Skagway-Sediment 2017/1657231

05/12/17

Sample Matrix: Sediment

Date Analyzed:
Date Extracted:

05/12/17

Lab Control Sample Summary

Sulfide, Acid-Volatile

Analysis Method: 821/R-91-100

Units:

uMole/g

Prep Method: Method

Units: Basis: Dry

Method

Analysis Lot:

545571

Sample Name Lab Code Result Amount % Rec Limits

Lab Control Sample K1704473-LCS 0.210 0.228 92 60-115

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Date Collected:
 5/1/2017

 Date Received:
 5/5/2017

 Date Analyzed:
 5/8/2017

K1704473

Service Request:

Particle Size Determination ASTM D422M

Sample Name: SED17-22 Lab Code: K1704473-001

Sand Fraction: Weight (Grams)6.7250Sand Fraction: Weight Recovered (Grams)6.6555Sand Fraction: Percent Recovery98.97

Weight as received (Grams)	38.348
Percent Solids	63.5
Weight Oven-Dried (Grams)	24.3510

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	0.0000	0.00
Gravel, Fine	2.00 mm	10	0.4633	1.90
Sand, Very Coarse	0.850 mm	20	0.6315	2.59
Sand, Coarse	0.425 mm	40	0.9489	3.90
Sand, Medium	0.250 mm	60	0.9892	4.06
Sand, Fine	0.106 mm	140	1.3619	5.59
Sand, Very Fine	0.075 mm	200	1.7449	7.17
Silt			12.0750	49.59
Clay			5.5150	22.65
	-	Total	23.7297	97.45

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Service Request:
 K1704473

 Date Collected:
 5/1/2017

 Date Received:
 5/5/2017

 Date Analyzed:
 5/8/2017

Particle Size Determination ASTM D422M

Sample Name: SED17-21 Lab Code: K1704473-002

Sand Fraction: Weight (Grams)6.9507Sand Fraction: Weight Recovered (Grams)6.9271Sand Fraction: Percent Recovery99.66

Weight as received (Grams)	31.656
Percent Solids	62.8
Weight Oven-Dried (Grams)	19.8800

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	0.0283	0.14
Gravel, Fine	2.00 mm	10	0.4600	2.31
Sand, Very Coarse	0.850 mm	20	0.9082	4.57
Sand, Coarse	0.425 mm	40	1.1315	5.69
Sand, Medium	0.250 mm	60	0.9715	4.89
Sand, Fine	0.106 mm	140	1.3324	6.70
Sand, Very Fine	0.075 mm	200	1.2446	6.26
Silt			8.2200	41.35
Clay			4.6750	23.52
		Total	18.9715	95.43

dba ALS Environmental

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Date Collected:
 5/1/2017

 Date Received:
 5/5/2017

 Date Analyzed:
 5/8/2017

K1704473

Service Request:

Particle Size Determination ASTM D422M

Sample Name: SED17-20 Lab Code: K1704473-003

Sand Fraction: Weight (Grams)10.9419Sand Fraction: Weight Recovered (Grams)10.8900Sand Fraction: Percent Recovery99.53

Weight as received (Grams)	50.345
Percent Solids	53.1
Weight Oven-Dried (Grams)	26.7332

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	5.9121	22.12
Gravel, Fine	2.00 mm	10	1.5589	5.83
Sand, Very Coarse	0.850 mm	20	0.6553	2.45
Sand, Coarse	0.425 mm	40	0.4203	1.57
Sand, Medium	0.250 mm	60	0.2743	1.03
Sand, Fine	0.106 mm	140	0.7233	2.71
Sand, Very Fine	0.075 mm	200	0.9019	3.37
Silt			14.6650	54.86
Clay			2.6050	9.74
		Total	27.7161	103.68

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Date Collected:
 5/2/2017

 Date Received:
 5/5/2017

 Date Analyzed:
 5/8/2017

K1704473

Service Request:

Particle Size Determination ASTM D422M

Sample Name: SED17-18 Lab Code: K1704473-004

Sand Fraction: Weight (Grams)12.4974Sand Fraction: Weight Recovered (Grams)12.4000Sand Fraction: Percent Recovery99.22

Weight as received (Grams)	37.433
Percent Solids	67.0
Weight Oven-Dried (Grams)	25.0801

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	1.4720	5.87
Gravel, Fine	2.00 mm	10	0.3719	1.48
Sand, Very Coarse	0.850 mm	20	0.3202	1.28
Sand, Coarse	0.425 mm	40	0.8569	3.42
Sand, Medium	0.250 mm	60	2.0109	8.02
Sand, Fine	0.106 mm	140	4.7678	19.01
Sand, Very Fine	0.075 mm	200	2.2278	8.88
Silt			9.2000	36.68
Clay			3.3750	13.46
		Total	24.6025	98.10

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Date Collected:
 5/2/2017

 Date Received:
 5/5/2017

 Date Analyzed:
 5/8/2017

K1704473

Service Request:

Particle Size Determination ASTM D422M

Sample Name: DUP-2

Lab Code: K1704473-005

Sand Fraction: Weight (Grams)11.4415Sand Fraction: Weight Recovered (Grams)11.3894Sand Fraction: Percent Recovery99.54

Weight as received (Grams)	36.274
Percent Solids	68.1
Weight Oven-Dried (Grams)	24.7026

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered	
Gravel, Medium	4.75 mm	4	0.1493	0.60	
Gravel, Fine	2.00 mm	10	0.1761	0.71	
Sand, Very Coarse	0.850 mm	20	0.2383	0.96	
Sand, Coarse	0.425 mm	40	0.9900	4.01	
Sand, Medium	0.250 mm	60	2.4504	9.92	
Sand, Fine	0.106 mm	140	4.9332	19.97	
Sand, Very Fine	0.075 mm	200	2.0430	8.27	
Silt			8.8900	35.99	
Clay			3.4100	13.80	
		Total	23.2803	94.23	

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Date Collected:
 5/2/2017

 Date Received:
 5/5/2017

 Date Analyzed:
 5/8/2017

K1704473

Service Request:

Particle Size Determination ASTM D422M

Sample Name: SED17-19 Lab Code: K1704473-006

Sand Fraction: Weight (Grams)4.6818Sand Fraction: Weight Recovered (Grams)4.6789Sand Fraction: Percent Recovery99.94

Weight as received (Grams)	31.3
Percent Solids	59.5
Weight Oven-Dried (Grams)	18.6235

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	0.0741	0.40
Gravel, Fine	2.00 mm	10	0.1292	0.69
Sand, Very Coarse	0.850 mm	20	0.1525	0.82
Sand, Coarse	0.425 mm	40	0.1887	1.01
Sand, Medium	0.250 mm	60	0.3280	1.76
Sand, Fine	0.106 mm	140	1.8825	10.11
Sand, Very Fine	0.075 mm	200	1.5770	8.47
Silt			10.0600	54.02
Clay			3.6450	19.57
		Total	18.0370	96.85

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Service Request:
 K1704473

 Date Collected:
 5/2/2017

 Date Received:
 5/5/2017

 Date Analyzed:
 5/8/2017

Particle Size Determination ASTM D422M

Sample Name: SED17-24 Lab Code: K1704473-007

Sand Fraction: Weight (Grams)20.9213Sand Fraction: Weight Recovered (Grams)20.8090Sand Fraction: Percent Recovery99.46

Weight as received (Grams)	64.811
Percent Solids	76.4
Weight Oven-Dried (Grams)	49.5156

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered	
Gravel, Medium	4.75 mm	4	1.7298	3.49	
Gravel, Fine	2.00 mm	10	0.9152	1.85	
Sand, Very Coarse	0.850 mm	20	1.1347	2.29	
Sand, Coarse	0.425 mm	40	2.8601	5.78	
Sand, Medium	0.250 mm	60	3.3063	6.68	
Sand, Fine	0.106 mm	140	4.8102	9.71	
Sand, Very Fine	0.075 mm	200	4.5000	9.09	
Silt			23.1700	46.79	
Clay			4.6450	9.38	
	-	Total	47.0713	95.06	

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Service Request:
 K1704473

 Date Collected:
 5/2/2017

 Date Received:
 5/5/2017

 Date Analyzed:
 5/8/2017

Particle Size Determination ASTM D422M

Sample Name: SED17-28 Lab Code: K1704473-008

Sand Fraction: Weight (Grams)15.7086Sand Fraction: Weight Recovered (Grams)15.5703Sand Fraction: Percent Recovery99.12

Weight as received (Grams)	50.36
Percent Solids	69.9
Weight Oven-Dried (Grams)	35.2016

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	0.0090	0.03
Gravel, Fine	2.00 mm	10	0.1052	0.30
Sand, Very Coarse	0.850 mm	20	0.4653	1.32
Sand, Coarse	0.425 mm	40	0.4400	1.25
Sand, Medium	0.250 mm	60	0.3260	0.93
Sand, Fine	0.106 mm	140	5.8790	16.70
Sand, Very Fine	0.075 mm	200	6.0460	17.18
Silt			17.3800	49.37
Clay			1.4800	4.20
		Total	32.1305	91.28

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Date Collected:
 5/1/2017

 Date Received:
 5/5/2017

 Date Analyzed:
 5/8/2017

K1704473

Service Request:

Particle Size Determination ASTM D422M

Sample Name: SED17-22

Lab Code: K1704473-001DUP

Sand Fraction: Weight (Grams)6.2736Sand Fraction: Weight Recovered (Grams)6.2280Sand Fraction: Percent Recovery99.27

Weight as received (Grams)	34.952
Percent Solids	63.5
Weight Oven-Dried (Grams)	22.1945

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered	
Gravel, Medium	4.75 mm	4	0.0900	0.41	
Gravel, Fine	2.00 mm	10	0.3839	1.73	
Sand, Very Coarse	0.850 mm	20	0.5504	2.48	
Sand, Coarse	0.425 mm	40	0.8757	3.95	
Sand, Medium	0.250 mm	60	0.9816	4.42	
Sand, Fine	0.106 mm	140	1.2516	5.64	
Sand, Very Fine	0.075 mm	200	1.3380	6.03	
Silt			10.9100	49.16	
Clay			5.1150	23.05	
	_	Total	21.4962	96.87	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Analysis Method: Walkley-Black

Prep Method: None

Service Request: K1704473

Date Collected: 05/01/17 - 05/02/17

Date Received: 05/5/17

Units: mg/KgBasis: Dry

Carbon, Total Organic

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
SED17-22	K1704473-001	9600	3100	1	05/11/17 15:00	
SED17-21	K1704473-002	8300	3200	1	05/11/17 15:00	
SED17-20	K1704473-003	13700	3700	1	05/11/17 15:00	
SED17-18	K1704473-004	10300	2900	1	05/11/17 15:00	
DUP-2	K1704473-005	10000	2900	1	05/11/17 15:00	
SED17-19	K1704473-006	10600	3300	1	05/11/17 15:00	
SED17-24	K1704473-007	3500	2600	1	05/11/17 15:00	
SED17-28	K1704473-008	6500	2700	1	05/11/17 15:00	
Method Blank	K1704473-MB	ND U	2000	1	05/11/17 15:00	

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704473

Project Skagway-Sediment 2017/1657231 Date Collected: 05/01/17

Sample Matrix: Sediment Date Received: 05/05/17

Date Analyzed: 05/11/17

Replicate Sample Summary

General Chemistry Parameters

Sample Name: SED17-22 Units: mg/Kg

Lab Code: K1704473-001 **Basis:** Dry

Duplicate Sample

K1704473- Sample 001DUP

Analyte NameAnalysis MethodMRLResultResultAverageRPDRPD LimitCarbon, Total OrganicWalkley-Black3100960093009450320

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/24/2017 11:41:18 AM Superset Reference:17-0000420869 rev 00

QA/QC Report

Client: Golder Associates, Inc.

Service Request: K1704473

Project:

Skagway-Sediment 2017/1657231

Date Analyzed: 05/11/17

Sample Matrix:

Sediment

Date Extracted:

cted: NA

Lab Control Sample Summary Carbon, Total Organic

Analysis Method:

Walkley-Black

Units:

mg/Kg

Prep Method:

None

Basis:

Dry

Analysis Lot:

545360

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1704473-LCS	5800	5400	107	85-115

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Client: Golder Associates, Inc. Service Request: K1704473

Project No.: 1657231 **Date Collected:** 5/1/2017

Project Name: Skagway-Sediment 2017 Date Received: 5/5/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-22 **Lab Code:** K1704473-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.009	1.0	05/12/17	05/17/17	0.009	U	
Arsenic	6010C	0.014	1.0	05/12/17	05/17/17	0.014	U	
Cadmium	6010C	0.0006	1.0	05/12/17	05/17/17	0.0026		
Chromium	6010C	0.006	1.0	05/12/17	05/17/17	0.046		
Copper	6010C	0.006	1.0	05/12/17	05/17/17	0.150		
Lead	6010C	0.003	1.0	05/12/17	05/17/17	0.318		
Mercury	7470A	0.00011	4.0	05/12/17	05/18/17	0.00011	U	
Nickel	6010C	0.003	1.0	05/12/17	05/17/17	0.042		
Silver	6010C	0.003	1.0	05/12/17	05/17/17	0.003	U	
Zinc	6010C	0.009	1.0	05/12/17	05/17/17	1.310		·

% **Solids:** 63.5

Client: Golder Associates, Inc. Service Request: K1704473

Project No.: 1657231 **Date Collected:** 5/2/2017

Project Name: Skagway-Sediment 2017 Date Received: 5/5/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-18 Lab Code: K1704473-004

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.008	1.0	05/12/17	05/17/17	0.008	U	
Arsenic	6010C	0.013	1.0	05/12/17	05/17/17	0.013	U	
Cadmium	6010C	0.0005	1.0	05/12/17	05/17/17	0.0008		
Chromium	6010C	0.005	1.0	05/12/17	05/17/17	0.018		
Copper	6010C	0.005	1.0	05/12/17	05/17/17	0.041		
Lead	6010C	0.003	1.0	05/12/17	05/17/17	0.141		
Mercury	7470A	0.00011	4.0	05/12/17	05/18/17	0.00011	U	
Nickel	6010C	0.003	1.0	05/12/17	05/17/17	0.016		
Silver	6010C	0.003	1.0	05/12/17	05/17/17	0.003	U	
Zinc	6010C	0.008	1.0	05/12/17	05/17/17	0.469		

% Solids: 67.0

Client: Golder Associates, Inc. Service Request: K1704473

Project No.: 1657231 **Date Collected:** 5/2/2017

Project Name: Skagway-Sediment 2017 Date Received: 5/5/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-24 **Lab Code:** K1704473-007

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.008	1.0	05/12/17	05/17/17	0.008	U	
Arsenic	6010C	0.013	1.0	05/12/17	05/17/17	0.013	U	
Cadmium	6010C	0.0005	1.0	05/12/17	05/17/17	0.0005	U	
Chromium	6010C	0.005	1.0	05/12/17	05/17/17	0.016		
Copper	6010C	0.005	1.0	05/12/17	05/17/17	0.025		
Lead	6010C	0.003	1.0	05/12/17	05/17/17	0.018		
Mercury	7470A	0.00010	4.0	05/12/17	05/18/17	0.00010	U	
Nickel	6010C	0.003	1.0	05/12/17	05/17/17	0.014		
Silver	6010C	0.003	1.0	05/12/17	05/17/17	0.003	U	
Zinc	6010C	0.008	1.0	05/12/17	05/17/17	0.139		

% Solids: 76.4

Client: Golder Associates, Inc. Service Request: K1704473

Project No.: 1657231 **Date Collected:** 5/2/2017

Project Name: Skagway-Sediment 2017 Date Received: 5/5/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-28 **Lab Code:** K1704473-008

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.006	1.0	05/12/17	05/17/17	0.006	U	
Arsenic	6010C	0.010	1.0	05/12/17	05/17/17	0.010	U	
Cadmium	6010C	0.0004	1.0	05/12/17	05/17/17	0.0004	U	
Chromium	6010C	0.004	1.0	05/12/17	05/17/17	0.018		
Copper	6010C	0.004	1.0	05/12/17	05/17/17	0.017		
Lead	6010C	0.002	1.0	05/12/17	05/17/17	0.008		
Mercury	7470A	0.00008	4.0	05/12/17	05/18/17	0.00008	U	
Nickel	6010C	0.002	1.0	05/12/17	05/17/17	0.014		
Silver	6010C	0.002	1.0	05/12/17	05/17/17	0.002	U	
Zinc	6010C	0.006	1.0	05/12/17	05/17/17	0.108		

% Solids: 69.9

Client: Golder Associates, Inc. Service Request: K1704473

Project No.: 1657231 Date Collected:

Project Name: Skagway-Sediment 2017 Date Received:

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: Method Blank Lab Code: K1704473-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.003	1.0	05/12/17	05/17/17	0.003	U	
Arsenic	6010C	0.005	1.0	05/12/17	05/17/17	0.005	U	
Cadmium	6010C	0.0002	1.0	05/12/17	05/17/17	0.0002	U	
Chromium	6010C	0.002	1.0	05/12/17	05/17/17	0.002	U	
Copper	6010C	0.002	1.0	05/12/17	05/17/17	0.002	U	
Lead	6010C	0.001	1.0	05/12/17	05/17/17	0.001	U	
Nickel	6010C	0.001	1.0	05/12/17	05/17/17	0.001	U	
Silver	6010C	0.001	1.0	05/12/17	05/17/17	0.001	U	
Zinc	6010C	0.003	1.0	05/12/17	05/17/17	0.003	U	

% Solids: 100.0

Simultaneously Extactable Metals - 1 -

INORGANIC ANALYSIS DATA PACKAGE

Client: Golder Associates, Inc. Service Request: K1704473

Project No.: 1657231 Date Collected:

Project Name: Skagway-Sediment 2017 Date Received:

Matrix: SEDIMENT Units: umol/g

Basis: DRY

Sample Name: Method Blank Lab Code: KQ1705983-01

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Mercury	7470A	0.00004	4.0	05/12/17	05/18/17	0.00004	U	

% Solids: 100.0

Simultaneously Extactable Metals

- 5A -

SPIKE SAMPLE RECOVERY

Client: Golder Associates, Inc. Service Request: K1704473

Project No.: 1657231 Units: UMOLE/G

Project Name: Skagway-Sediment 2017 Basis: DRY

Matrix: SEDIMENT % Solids: 57.3

Sample Name: Batch QC1S Lab Code: K1704419-003S

Analyte	Control Limit %R	Spike Result	С	Sample Result	С	Spike Added	%R	Q	Method
Antimony	75 - 125	0.112		0.009	U	0.127	88		6010C
Arsenic	75 - 125	0.978		0.015	U	1.031	95		6010C
Cadmium	75 - 125	0.3841		0.0022		0.343	111		6010C
Chromium	75 - 125	0.3294		0.0277		0.297	102		6010C
Copper	75 - 125	0.380		0.122		0.304	85		6010C
Lead	75 - 125	1.097		0.706		0.374	105		6010C
Mercury	75 - 125	0.00315		0.00012	U	0.00308	102		7470A
Nickel	75 - 125	0.776		0.029		0.655	114		6010C
Silver	75 - 125	0.160		0.003	U	0.179	89		6010C
Zinc	75 - 125	1.889		1.275		0.590	104		6010C

Simultaneously Extactable Metals

- 6 -DUPLICATES

Client: Golder Associates, Inc. Service Request: K1704473

Project No.: 1657231 Units: UMOLE/G

Project Name: Skagway-Sediment 2017 Basis: DRY

Matrix: SEDIMENT % Solids: 57.3

Sample Name: Batch QC1D Lab Code: K1704419-003D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Antimony		0.009	Ū	0.009	Ū			6010C
Arsenic		0.015	U	0.015	U			6010C
Cadmium		0.0022		0.0018		20.0		6010C
Chromium		0.0277		0.0244		12.7		6010C
Copper	30	0.122		0.095		24.9		6010C
Lead	30	0.706		0.607		15.1		6010C
Mercury		0.00012	U	0.00012	U			7470A
Nickel	30	0.029		0.026		10.9		6010C
Silver		0.003	U	0.003	U			6010C
Zinc	30	1.275		1.142		11.0		6010C

Simultaneously Extactable Metals - 7 -

LABORATORY CONTROL SAMPLE

Client: Golder Associates, Inc. Service Request: K1704473

Project No.: 1657231

Project Name: Skagway-Sediment 2017

Aqueous LCS Source: Solid LCS Source: ALS MIXED

	Aqueous	(umol/L)			Soli	ld (mg/	kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Antimony	4.100	3.865	94					
Arsenic	33.400	32.912	99					
Cadmium	11.100	11.009	99				1	
Chromium	9.610	10.125	105					
Copper	9.830	8.848	90					
Lead	12.100	11.741	97					
Mercury	0.09960	0.10280	103					
Nickel	21.200	21.610	102					
Silver	5.790	5.522	95					
Zinc	19.100	18.883	99					

Diesel and Residual Range Organics

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Results

Client: Golder Associates, Inc.

Service Request: K1704473 **Project:** Skagway-Sediment 2017/1657231 **Date Collected:** 05/01/2017

Sediment **Date Received:** 05/05/2017 **Sample Matrix:**

Diesel and Residual Range Organics

Sample Name: SED17-22 Units: mg/Kg Lab Code: K1704473-001 Basis: Dry **Extraction Method:** EPA 3550B Level: Low

Analysis Method: AK 102.0/103.0

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	31	1	05/12/17	05/17/17	KWG1703859	
C25 - C36 RRO	ND U	160	1	05/12/17	05/17/17	KWG1703859	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	92	50-150	05/17/17	Acceptable	
n-Triacontane	94	50-150	05/17/17	Acceptable	

Comments:

Page Printed: 05/27/2017 Form 1A - Organic 1 of 1 08:23:02 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt \\$ SuperSet Reference: Merged RR198602

Analytical Results

Client: Golder Associates, Inc.

Service Request: K1704473 **Project:** Skagway-Sediment 2017/1657231 **Date Collected:** 05/02/2017

Sediment **Date Received:** 05/05/2017 **Sample Matrix:**

Diesel and Residual Range Organics

Sample Name: SED17-18 Units: mg/Kg Lab Code: K1704473-004 Basis: Dry **Extraction Method:** EPA 3550B Level: Low

Analysis Method: AK 102.0/103.0

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	38 Z	30	1	05/12/17	05/17/17	KWG1703859	
C25 - C36 RRO	ND U	150	1	05/12/17	05/17/17	KWG1703859	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	87	50-150	05/17/17	Acceptable
n-Triacontane	88	50-150	05/17/17	Acceptable

Comments:

Page Printed: 05/27/2017 Form 1A - Organic 1 of 1 08:23:05 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt \\$ SuperSet Reference: Merged RR198602

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: K1704473 **Date Collected:** 05/02/2017

Date Received: 05/05/2017

Diesel and Residual Range Organics

 Sample Name:
 SED17-24
 Units:
 mg/Kg

 Lab Code:
 K1704473-007
 Basis:
 Dry

 Extraction Method:
 EPA 3550B
 Level:
 Low

Analysis Method: AK 102.0/103.0

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	26	1	05/12/17	05/17/17	KWG1703859	
C25 - C36 RRO	ND U	130	1	05/12/17	05/17/17	KWG1703859	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	89	50-150	05/17/17	Acceptable
n-Triacontane	90	50-150	05/17/17	Acceptable

Comments:

 Printed:
 05/27/2017
 08:23:09
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198602

Analytical Results

Client: Golder Associates, Inc.

Service Request: K1704473 **Project:** Skagway-Sediment 2017/1657231 **Date Collected:** 05/02/2017

Sediment **Date Received:** 05/05/2017 **Sample Matrix:**

Diesel and Residual Range Organics

Sample Name: SED17-28 Units: mg/Kg Lab Code: K1704473-008 Basis: Dry **Extraction Method:** EPA 3550B Level: Low

Analysis Method: AK 102.0/103.0

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	29	1	05/12/17	05/17/17	KWG1703859	
C25 - C36 RRO	ND U	150	1	05/12/17	05/17/17	KWG1703859	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	85	50-150	05/17/17	Acceptable
n-Triacontane	90	50-150	05/17/17	Acceptable

Comments:

Page Printed: 05/27/2017 Form 1A - Organic 1 of 1 08:23:12 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt \\$ SuperSet Reference: Merged RR198602

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: K1704473

Date Collected: NA
Date Received: NA

Diesel and Residual Range Organics

Sample Name:Method BlankUnits:mg/KgLab Code:KWG1703859-5Basis:DryExtraction Method:EPA 3550BLevel:Low

Analysis Method: AK 102.0/103.0

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	20	1	05/12/17	05/17/17	KWG1703859	
C25 - C36 RRO	ND U	98	1	05/12/17	05/17/17	KWG1703859	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	75	50-150	05/17/17	Acceptable
n-Triacontane	78	50-150	05/17/17	Acceptable

Comments:

 Printed:
 05/27/2017
 08:23:15
 Form 1A - Organic
 Page
 1 of
 1 urborded

 urborded:
 Uschedlith\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198602

QA/QC Report

Service Request: K1704473

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Surrogate Recovery Summary Diesel and Residual Range Organics

 Extraction Method:
 EPA 3550B
 Units:
 Percent

 Analysis Method:
 AK 102.0/103.0
 Level:
 Low

Sample Name	Lab Code	Sur1	Sur2
Batch QC	K1704419-006	71	76
SED17-22	K1704473-001	92	94
SED17-18	K1704473-004	87	88
SED17-24	K1704473-007	89	90
SED17-28	K1704473-008	85	90
Method Blank	KWG1703859-5	75	78
Batch QCMS	KWG1703859-1	78	79
Batch QCDMS	KWG1703859-2	79	83
Lab Control Sample	KWG1703859-3	93	95
Duplicate Lab Control Sample	KWG1703859-4	105	100

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl 50-150 Sur2 = n-Triacontane 50-150

Results flagged with an asterisk $(\mbox{\ensuremath{}^{*}})$ indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

 Printed:
 05/27/2017
 08:23:19
 Form 2A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form2.rpt
 SuperSet Reference:
 RR198602

QA/QC Report

Client: Golder Associates, Inc.

Skagway-Sediment 2017/1657231 **Project:**

Sample Matrix: Sediment **Service Request:** K1704473 **Date Extracted:** 05/12/2017

Date Analyzed: 05/17/2017

Matrix Spike/Duplicate Matrix Spike Summary **Diesel and Residual Range Organics**

Sample Name:

Batch QC

Lab Code:

K1704419-006

Extraction Method: Analysis Method:

EPA 3550B

AK 102.0/103.0

Units: mg/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1703859

Batch QCMS KWG1703859-1 Matrix Spike

Batch QCDMS KWG1703859-2

Duplicate Matrix Spike

Analyte Name	Sample Result	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
C10 - C25 DRO	ND	266	327	81	259	328	79	60-140	3	50
C25 - C36 RRO	ND	160	163	98	159	164	97	60-140	0	50

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 05/27/2017 08:23:22 u:\Stealth\Crystal.rpt\Form3DMS.rpt

Form 3A - Organic

SuperSet Reference: RR198602

Page

1 of 1

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231 **Date Extracted:** 05/12/2017

Sample Matrix: Sediment Date Analyzed: 05/17/2017 -05/24/2017

Lab Control Spike/Duplicate Lab Control Spike Summary **Diesel and Residual Range Organics**

Extraction Method: EPA 3550B Units: mg/Kg **Analysis Method:** AK 102.0/103.0 Basis: Dry

Level: Low

Service Request: K1704473

Extraction Lot: KWG1703859

Lab Control Sample KWG1703859-3 Lab Control Spike

Duplicate Lab Control Sample KWG1703859-4 **Duplicate Lab Control Spike**

Analyte Name	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
C10 - C25 DRO	251	267	94	245	267	92	75-125	2	20
C25 - C36 RRO	140	133	105	154	133	116	60-120	10	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Page 1 of 1 Form 3C - Organic Printed: 05/27/2017 08:23:25 u:\Stealth\Crystal.rpt\Form3DLC.rpt SuperSet Reference: RR198602

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T:+1 360 577 7222

F:+1 360 636 1068 www.alsglobal.com

May 22, 2017

Analytical Report for Service Request No: K1704542

Tamra Reynolds Golder Associates Ltd. Suite 201C, 170 Titanium Way Whitehorse, YT Y1A0G1

RE: Skagway-Sediment 2017 / 1657231

Dear Tamra,

Enclosed are the results of the sample(s) submitted to our laboratory May 08, 2017 For your reference, these analyses have been assigned our service request number **K1704542**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Howard Holmes Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

Metals

Polynuclear Aromatic Hydrocarbons

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOO Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	Not available	-
ISO 17025	http://www.pjlabs.com/	L16-57
	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPer	
Louisiana DEQ	mitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Maine DHS	Not available	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator	
Oregon – DEQ (NELAP)	yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS ENVIRONMENTAL

Client:Golder Associates, Inc.Service Request No.:K1704542Project:Skagway-Sediment 2017/ 1657231Date Received:05/08/17

Sample Matrix: Sediment

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Nine sediment samples were received for analysis at ALS Environmental on 05/08/17. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Total Metals

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) for the replicate analysis of Copper and Nickel in sample SED17-07 was outside the normal ALS control limits. The variability in the results was attributed to the heterogeneous character of the sample. Standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

Matrix Spike Recovery Exceptions:

The control criteria for matrix spike recovery of Aluminum Barium, Iron, and Magnesium for sample SED17-07 were not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Antimony recoveries are generally low for soil and sediment samples when digested using EPA Method 3050B. Despite anticipated low recoveries, the method is still generally prescribed because of its versatility for general metals analysis. Antimony results (in conjunction with the matrix spike recovery) from this procedure should only be used as indicators to estimate concentrations. The matrix spike recovery of Antimony for sample SED17-07 was below the ALS control criterion. Since low recoveries resulted from a method defect and were possibly magnified by certain matrix components, no corrective action was appropriate. Alternative procedures that specifically target Antimony are available but were not specified for this project. The associated QA/QC results (e.g. control sample, calibration standards, etc.) indicated the analysis was in control.

The matrix spike recovery of Barium and Lead for sample SED17-07 was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. No further corrective action was appropriate.

No other anomalies associated with the analysis of these samples were observed.

Approved by Approved by

Polynuclear Aromatic Hydrocarbons by EPA Method 8270

Calibration Verification Exceptions:

The following analytes were flagged as outside the control criterion for Continuing Calibration Verification (CCV) MS11\0515F002.D and MS11\0516F002.D: Fluoranthene and Fluoranthene-d10. In accordance with the EPA Method, 80% or more of the CCV analytes must pass within 20% of the true value. The ALS SOP allows for 40% difference for the remaining analytes. The CCV met these criteria. The quality of the sample data was not significantly affected. No further corrective action was required.

Sample Notes and Discussion:

The results reported for Acenaphthylene in samples SED17-10 and SED17-15 may contain a slight bias. The chromatogram indicated the presence of non-target background components. The matrix interference may have resulted in a slight high bias in the affected samples. The results were flagged with "X" to indicate the issue.

No other anomalies associated with the analysis of these samples were observed.

Approved by Awaldblum

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here

coc Number: 15 - 594997

Page of

Entricante et al www.alsglobal.com

Canada Toll Free: 1 800 668 9878

Report To	Contact and company лате below will appear on the fin	al report	Report Format	Report Format / Distribution Sei			Select Service Level Below - Please confirm all E&P TATs with your AM - surcharges will apply										
Company:	Golder associates LTD	Select I	Report Format: PDF	EXCEL _	EDD (DIGITAL)		Re	egular [RJ 🛭	Sta	ndard TA	T if rece	ived by 3	pm - busin	ess day	/s - no surch	arges apply
Contact:	Tama Regnolds	Quality	Control (QC) Report with Rep	ort YES	NO NO	y S	4	day [P	1]	1		ć	1 Bus	iness d	y [E1	1]	
Phone:	1-867-34 - 4468	a	ompare Results to Criteria on Report -			PRIORITY (Business Days)	3	day [P:	3]			Si Si	ame Da	y, Week	end o	r Statuto	'y ,
	Company address below wilt appear on the final report	Select [Distribution: EMAIL	MAIL [FAX	(Busi	2	day [P:	?]					holiday	(E0)		
Street:	170-2016 THavium you	ل Email 1	OF FAX JREYNOLD	2 golder	· com	and the second	Date	and Time	Require	i for all E	&P TATS						
City/Province:	White horse, Yukon	Email 2	PADDY_MEMI VMERCERE GOL	WUSQ go	ldricom	For test	s that ca	not be pe	rformed a	cording t	o the serv	ice level	selected, y	ou will be o	ontacte	d.	
Postal Code:	V1A 061	Email 3	VMERCER COOL	der 100m	-						An	alysis	Reques	st			
Invoice To	Same as Report To YES NO		Invoice Di				·	Indicate F	iltered (F)	Preserve	ed (P) or	Filtered	and Prese	rved (F/P)	below		_
	Copy of Invoice with Report YES NO	Select I	nvoice Distribution:	EMAIL MAIL	FAX												
Company:		Email 1		ROPONT		4			(Zg)								
Contact:		Email 2		ender reservoir descriptions],	ار گ							l	grs l
	Project Information		Oll and Gas Require		ie)	1			_3								Number of Containers
	Quote #: 4103.7	AFE/Cost		PO#		4		$ \mathcal{A} $	\ ¥							ł	Į ji
	7331	Major/Min		Routing Code:		_		2	~	١.) Jo
PO / AFE:		Requisit				4			<u>اچ</u>	;	₩ ₩						lper l
LSD:		Location	······································	T		4		็บ	2		2					ļ	Non
ALS Lab Wo	rk Order# (lab use only)	ALS Co	ontact: Told Payfela	Sampler: PM	13M	Mobels	PAHS	G128/15/20	(Organit	`~							
ALS Sample #	Sample Identification and/or C	oordinates	Date	Time	Sample Type	े इ	1	20]]]	DRO	AUS						
(lab use only)	(This description will appear on	the report)	(dd-mmm-yy)	(hh:mm)			<u> </u>	9)—	<u> </u>	<						
1	SED17-07		04-11/47-17	10:00	Sectionent	X	X	X	X								14
2.	SED17-12		i	12:00	ſ			1									i
3	Dur-3			13:00			77										
ij	SED 17-01			14:40		17 1		11	71			1					
5	年D17-03			16:00													
	SED17-39		1	1800				\top	\prod								
	SED17-10		05-4447	9:00					I								
	SED 17 - 15		i	10:00		17 1											
Ğ	SED17 - 27		1	12:00				1									17
-	Travel Blank		09-MAY-17	18:00	Witer		1								_		٦ F
	FB-1			18:00	i		11		_				1		\top		1
	EB-1			18:00		at .	1	+		+		+			1		
	Speci	al Instructions / Specify Ca	riteria to add on report by clicki		wn list below				SAMP	LE CO	VDITIO	NASI	RECEIV	ED (lab	use o	nly)	
	Water (DW) Samples' (client use)		(electronic COC only)	_		Frozen	1				SIF	Obse	rvations	Ye	s	No	
	from a Regulated DW System?	erdise unused	samples 5-day +	connerous o	n melals	Ice Par		_	ce Cub	es [Cu	stody s	seal inta	ct Y	es [No	
YES NO and PAN'S regular Victoria				Tor	Nail	Cooling									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Are samples for human drinking water use?				i and the	- m 1:		INIT	IAL COO	ER TEM	PERATUR	RES °C		(0.0000000)	FINAL	OOLE	R TEMPER	ATURES °C
Are samples taken from a Regulated DW System? Phase archive unused samples . 5-day furnaround on metally and PANs, regular turnoround on 65 and TOC, italy for directions for DRO and AUS/SEM.													· · · · · · · · · · · · · · · · · · ·	1 100 100			
SHIPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (lab use only) Pelescent by: Pelescent by: Initial Shipment Reception (lab use only)				b use only)	Time		Dooi	d bre	FIN	AL SHII	PMEN	TRECE		ab us	e only)	Timo	
Released by:	Date: 05 - MAY - 17 15:00 Received by: Date: 5/8/17			Time 081	10	Receive	iu by.				Date:				Time:		
REFER TO BACK P	AGE FOR ALS LOCATIONS AND SAMPLING INFORMATION		WHITE	E - LABORATORY C	OPY YELLOW			V									OGTOBER 2015 PRONT

PC H2

Client	, B	lolder	**************************************	Cool	er Re	ceipt	and P			n Form quest <i>KI</i>		0	t54.	2 2	
Received:_	5/8/17	(Opened:_	5/8	17		By:	<u>K</u>		Unload	ed: <i>5</i> /	s/17_	Ву		
•	s were rec	eived via? eived in: (cir ls on coolers'	No no no no	Fed E		UPS ox N	Enve	-		Cour	and the second	land Delive	red 4 Von 7	/ NA	
If prese	nt, were cu	_ ustody seals i	ntact?	($\widetilde{\mathfrak{Y}}$	N						nd dated?		W	N
Raw Cooler Temp	Corrected. Cooler Temp	Raw Temp Blank 3, 4 Falls	Corrected Jemp Hank	Corr. Facto	かいかい 単 ごうじょうぶん	98 372	ieter	Cool	er/COC	(NA)		Tracking	j Numb		NA Filed
5. Were cu	ustody pap	Inserts 1	filled out	(ink, sigr	ed, etc	:.)?					Sleeves	bxe:	NA		
6. Were sa	ampies rec	eived in good If appl	i condition					and the second	A Principal Contraction of the C			Thawe	NA 1	A Y	N
	-	bels complet		•			•	Approximation of the second					NA	A B	N
		els and tags a								cies in th	e table o	on page 2.	NA	\sim	, N
-		bottles/conta								L. 1:		-11.1.1	NA	\	N
		served bottles received witl	•		-		•	,	ite pri?	inaicate	e in the to	able below	NA (NA	-	ン N N
12. Was C			iout nead.	space: 17	urcurc	. In the	idore b	ciow.					(N)	Y Y	N
			areser dás	9556a	1949au	a a a a a a a a a a a a a a a a a a a		gatian.	na rigigis	and the same		yeers substances		<i>a</i>	
\$	Sample ID o	on Bottle			Samı	ple ID o	n COC					Identified I	<u> эу:</u>		
	Sample II	Y		Count Type		Head- space	Broke	рН	Rea	agent	Volume added	Reagent Numb		Initials	Time
Notes, Disc	crepancie	es, & Resoli	utions:	······································											
														···	
7/25/16													Page	of.	·

Page 11 of 48

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Analysis Method: 160.3 Modified

Prep Method: None

Service Request: K1704542

Date Collected: 05/04/17 - 05/05/17

Date Received: 05/8/17

Units: Percent

Basis: As Received

Solids, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
SED17-07	K1704542-001	83.7	-	1	05/08/17 16:10	
SED17-12	K1704542-002	75.9	-	1	05/08/17 16:10	
DUP-3	K1704542-003	76.8	-	1	05/08/17 16:10	
SED17-01	K1704542-004	72.3	-	1	05/08/17 16:10	
SED17-03	K1704542-005	78.5	-	1	05/08/17 16:10	
SED17-29	K1704542-006	49.6	-	1	05/08/17 16:10	
SED17-10	K1704542-007	77.9	-	1	05/08/17 16:10	
SED17-15	K1704542-008	76.2	-	1	05/08/17 16:10	
SED17-27	K1704542-009	79.1	-	1	05/08/17 16:10	

QA/QC Report

Client: Golder Associates, Inc.

Skagway-Sediment 2017/1657231

Sample Matrix:

Project

Soil

Date Collected:NA
Date Received:NA

Service Request:K1704542

Analysis Method: 1

160.3 Modified

Prep Method: None

Units:Percent
Basis:NA

Replicate Sample Summary Inorganic Parameters

			Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	Result	Result	Average	RPD	Limit	Analyzed
Batch OC	K1704524-001DUP	_	86.4	82.7	84.6	4	20	05/08/17

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/9/2017 9:22:18 AM Superset Reference:17-0000421031 rev 00

QA/QC Report

Client: Golder Associates, Inc.

Project Skagway-Sediment 2017/1657231

Sample Matrix: Soil

Analysis Method:

160.3 Modified

Prep Method: None

Service Request: K1704542

Date Collected: 05/05/17

Date Received: 05/08/17

Units:Percent

Basis: As Received

Replicate Sample Summary Inorganic Parameters

			Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	Result	Result	Average	RPD	Limit	Analyzed
Batch QC	K1704539-001DUP	-	63.4	62.6	63.0	1	20	05/08/17
SED17-10	K1704542-007DUP	-	77.9	76.8	77.4	1	20	05/08/17

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/9/2017 9:22:18 AM Superset Reference:17-0000421031 rev 00

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Golder Associates, Inc.

Service Request: K1704542 **Date Collected:** 05/04/17 10:00 **Project:** Skagway-Sediment 2017/1657231

Sample Matrix: Sediment **Date Received:** 05/08/17 09:40

Sample Name: SED17-07 Basis: Dry

Lab Code: K1704542-001

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	9090	mg/Kg	2.4	2	05/11/17 11:48	05/08/17	
Antimony	6020A	ND U	mg/Kg	0.059	5	05/11/17 09:41	05/08/17	
Arsenic	6020A	1.82	mg/Kg	0.59	5	05/11/17 09:41	05/08/17	
Barium	6010C	179	mg/Kg	0.95	2	05/11/17 11:48	05/08/17	
Beryllium	6020A	0.161	mg/Kg	0.024	5	05/11/17 09:41	05/08/17	
Cadmium	6020A	0.290	mg/Kg	0.024	5	05/11/17 09:41	05/08/17	
Calcium	6010C	3410	mg/Kg	4.7	2	05/11/17 11:48	05/08/17	
Chromium	6020A	9.05	mg/Kg	0.24	5	05/11/17 09:41	05/08/17	
Cobalt	6020A	4.40	mg/Kg	0.024	5	05/11/17 09:41	05/08/17	
Copper	6020A	33.0	mg/Kg	0.12	5	05/11/17 09:41	05/08/17	
Iron	6010C	16800	mg/Kg	4.7	2	05/11/17 11:48	05/08/17	
Lead	6020A	172	mg/Kg	0.059	5	05/11/17 09:41	05/08/17	
Magnesium	6010C	5850	mg/Kg	2.4	2	05/11/17 11:48	05/08/17	
Manganese	6010C	227	mg/Kg	0.24	2	05/11/17 11:48	05/08/17	
Mercury	7471B	0.179	mg/Kg	0.023	1	05/11/17 12:42	05/09/17	
Nickel	6020A	4.55	mg/Kg	0.24	5	05/11/17 09:41	05/08/17	
Potassium	6010C	4100	mg/Kg	47	2	05/11/17 11:48	05/08/17	
Selenium	6020A	ND U	mg/Kg	1.2	5	05/11/17 09:41	05/08/17	
Silver	6020A	0.258	mg/Kg	0.024	5	05/11/17 09:41	05/08/17	
Sodium	6010C	3900	mg/Kg	47	2	05/11/17 11:48	05/08/17	
Thallium	6020A	0.179	mg/Kg	0.024	5	05/11/17 09:41	05/08/17	
Vanadium	6020A	31.0	mg/Kg	0.24	5	05/11/17 09:41	05/08/17	
Zinc	6010C	214	mg/Kg	1.2	2	05/11/17 11:48	05/08/17	

Printed 05/12/17 1:58:03 PM Superset Reference:

Analytical Report

Service Request: K1704542

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231 **Date Collected:** 05/04/17 12:00

Sample Matrix: Sediment Date Received: 05/08/17 09:40

Sample Name: SED17-12 Basis: Dry

Lab Code: K1704542-002

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	7880	mg/Kg	2.0	2	05/11/17 11:58	05/08/17	
Antimony	6020A	0.213	mg/Kg	0.050	5	05/11/17 10:40	05/08/17	
Arsenic	6020A	3.76	mg/Kg	0.50	5	05/11/17 10:40	05/08/17	
Barium	6010C	174	mg/Kg	0.79	2	05/11/17 11:58	05/08/17	
Beryllium	6020A	0.136	mg/Kg	0.020	5	05/11/17 10:40	05/08/17	
Cadmium	6020A	1.21	mg/Kg	0.020	5	05/11/17 10:40	05/08/17	
Calcium	6010C	14300	mg/Kg	4.0	2	05/11/17 11:58	05/08/17	
Chromium	6020A	18.9	mg/Kg	0.20	5	05/11/17 10:40	05/08/17	
Cobalt	6020A	6.86	mg/Kg	0.020	5	05/11/17 10:40	05/08/17	
Copper	6020A	96.2	mg/Kg	0.099	5	05/11/17 10:40	05/08/17	
Iron	6010C	40600	mg/Kg	4.0	2	05/11/17 11:58	05/08/17	
Lead	6020A	469	mg/Kg	0.050	5	05/11/17 10:40	05/08/17	
Magnesium	6010C	5570	mg/Kg	2.0	2	05/11/17 11:58	05/08/17	
Manganese	6010C	370	mg/Kg	0.20	2	05/11/17 11:58	05/08/17	
Mercury	7471B	0.532	mg/Kg	0.021	1	05/11/17 12:49	05/09/17	
Nickel	6020A	15.0	mg/Kg	0.20	5	05/11/17 10:40	05/08/17	
Potassium	6010C	3730	mg/Kg	40	2	05/11/17 11:58	05/08/17	
Selenium	6020A	ND U	mg/Kg	0.99	5	05/11/17 10:40	05/08/17	
Silver	6020A	0.584	mg/Kg	0.020	5	05/11/17 10:40	05/08/17	
Sodium	6010C	4250	mg/Kg	40	2	05/11/17 11:58	05/08/17	
Thallium	6020A	0.202	mg/Kg	0.020	5	05/11/17 10:40	05/08/17	
Vanadium	6020A	29.1	mg/Kg	0.20	5	05/11/17 10:40	05/08/17	
Zinc	6010C	806	mg/Kg	0.99	2	05/11/17 11:58	05/08/17	

Printed 05/12/17 1:58:04 PM Superset Reference:

Analytical Report

Service Request: K1704542

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231 **Date Collected:** 05/04/17 13:00

Sample Matrix: Sediment Date Received: 05/08/17 09:40

Sample Name: DUP-3 Basis: Dry

Lab Code: K1704542-003

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	8420	mg/Kg	2.0	2	05/11/17 12:01	05/08/17	
Antimony	6020A	0.151	mg/Kg	0.050	5	05/11/17 10:02	05/08/17	
Arsenic	6020A	2.59	mg/Kg	0.50	5	05/11/17 10:02	05/08/17	
Barium	6010C	166	mg/Kg	0.79	2	05/11/17 12:01	05/08/17	
Beryllium	6020A	0.171	mg/Kg	0.020	5	05/11/17 10:02	05/08/17	
Cadmium	6020A	1.27	mg/Kg	0.020	5	05/11/17 10:02	05/08/17	
Calcium	6010C	6750	mg/Kg	4.0	2	05/11/17 12:01	05/08/17	
Chromium	6020A	11.5	mg/Kg	0.20	5	05/11/17 10:02	05/08/17	
Cobalt	6020A	5.46	mg/Kg	0.020	5	05/11/17 10:02	05/08/17	
Copper	6020A	88.9	mg/Kg	0.099	5	05/11/17 10:02	05/08/17	
Iron	6010C	17000	mg/Kg	4.0	2	05/11/17 12:01	05/08/17	
Lead	6020A	534	mg/Kg	0.050	5	05/11/17 10:02	05/08/17	
Magnesium	6010C	5540	mg/Kg	2.0	2	05/11/17 12:01	05/08/17	
Manganese	6010C	243	mg/Kg	0.20	2	05/11/17 12:01	05/08/17	
Mercury	7471B	0.460	mg/Kg	0.020	1	05/11/17 12:50	05/09/17	
Nickel	6020A	5.61	mg/Kg	0.20	5	05/11/17 10:02	05/08/17	
Potassium	6010C	3440	mg/Kg	40	2	05/11/17 12:01	05/08/17	
Selenium	6020A	ND U	mg/Kg	0.99	5	05/11/17 10:02	05/08/17	
Silver	6020A	0.571	mg/Kg	0.020	5	05/11/17 10:02	05/08/17	
Sodium	6010C	3640	mg/Kg	40	2	05/11/17 12:01	05/08/17	
Thallium	6020A	0.224	mg/Kg	0.020	5	05/11/17 10:02	05/08/17	
Vanadium	6020A	35.6	mg/Kg	0.20	5	05/11/17 10:02	05/08/17	
Zinc	6010C	776	mg/Kg	0.99	2	05/11/17 12:01	05/08/17	

Printed 05/12/17 1:58:05 PM Superset Reference:

Analytical Report

Service Request: K1704542

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231 **Date Collected:** 05/04/17 14:40

Sample Matrix: Sediment Date Received: 05/08/17 09:40

Sample Name: SED17-01 Basis: Dry

Lab Code: K1704542-004

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	14200	mg/Kg	2.1	2	05/11/17 12:03	05/08/17	
Antimony	6020A	0.096	mg/Kg	0.053	5	05/11/17 10:08	05/08/17	
Arsenic	6020A	3.08	mg/Kg	0.53	5	05/11/17 10:08	05/08/17	
Barium	6010C	272	mg/Kg	0.84	2	05/11/17 12:03	05/08/17	
Beryllium	6020A	0.281	mg/Kg	0.021	5	05/11/17 10:08	05/08/17	
Cadmium	6020A	0.640	mg/Kg	0.021	5	05/11/17 10:08	05/08/17	
Calcium	6010C	4370	mg/Kg	4.2	2	05/11/17 12:03	05/08/17	
Chromium	6020A	21.1	mg/Kg	0.21	5	05/11/17 10:08	05/08/17	
Cobalt	6020A	8.99	mg/Kg	0.021	5	05/11/17 10:08	05/08/17	
Copper	6020A	24.4	mg/Kg	0.11	5	05/11/17 10:08	05/08/17	
Iron	6010C	24500	mg/Kg	4.2	2	05/11/17 12:03	05/08/17	
Lead	6020A	66.5	mg/Kg	0.053	5	05/11/17 10:08	05/08/17	
Magnesium	6010C	8900	mg/Kg	2.1	2	05/11/17 12:03	05/08/17	
Manganese	6010C	318	mg/Kg	0.21	2	05/11/17 12:03	05/08/17	
Mercury	7471B	0.035	mg/Kg	0.020	1	05/11/17 12:52	05/09/17	
Nickel	6020A	11.1	mg/Kg	0.21	5	05/11/17 10:08	05/08/17	
Potassium	6010C	6290	mg/Kg	42	2	05/11/17 12:03	05/08/17	
Selenium	6020A	ND U	mg/Kg	1.1	5	05/11/17 10:08	05/08/17	
Silver	6020A	0.588	mg/Kg	0.021	5	05/11/17 10:08	05/08/17	
Sodium	6010C	5380	mg/Kg	42	2	05/11/17 12:03	05/08/17	
Thallium	6020A	0.337	mg/Kg	0.021	5	05/11/17 10:08	05/08/17	
Vanadium	6020A	64.8	mg/Kg	0.21	5	05/11/17 10:08	05/08/17	
Zinc	6010C	124	mg/Kg	1.1	2	05/11/17 12:03	05/08/17	

Printed 05/12/17 1:58:05 PM Superset Reference:

Analytical Report

Client: Golder Associates, Inc.

Service Request: K1704542 **Date Collected:** 05/04/17 16:00 **Project:** Skagway-Sediment 2017/1657231

Date Received: 05/08/17 09:40 **Sample Matrix:** Sediment

Sample Name: SED17-03 Basis: Dry

Lab Code: K1704542-005

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	6020	mg/Kg	2.2	2	05/11/17 12:13	05/08/17	
Antimony	6020A	ND U	mg/Kg	0.056	5	05/11/17 10:11	05/08/17	
Arsenic	6020A	1.12	mg/Kg	0.56	5	05/11/17 10:11	05/08/17	
Barium	6010C	101	mg/Kg	0.90	2	05/11/17 12:13	05/08/17	
Beryllium	6020A	0.137	mg/Kg	0.022	5	05/11/17 10:11	05/08/17	
Cadmium	6020A	0.078	mg/Kg	0.022	5	05/11/17 10:11	05/08/17	
Calcium	6010C	4240	mg/Kg	4.5	2	05/11/17 12:13	05/08/17	
Chromium	6020A	7.22	mg/Kg	0.22	5	05/11/17 10:11	05/08/17	
Cobalt	6020A	4.12	mg/Kg	0.022	5	05/11/17 10:11	05/08/17	
Copper	6020A	10.1	mg/Kg	0.11	5	05/11/17 10:11	05/08/17	
Iron	6010C	11900	mg/Kg	4.5	2	05/11/17 12:13	05/08/17	
Lead	6020A	8.43	mg/Kg	0.056	5	05/11/17 10:11	05/08/17	
Magnesium	6010C	4250	mg/Kg	2.2	2	05/11/17 12:13	05/08/17	
Manganese	6010C	166	mg/Kg	0.22	2	05/11/17 12:13	05/08/17	
Mercury	7471B	ND U	mg/Kg	0.021	1	05/11/17 12:54	05/09/17	
Nickel	6020A	4.26	mg/Kg	0.22	5	05/11/17 10:11	05/08/17	
Potassium	6010C	2390	mg/Kg	45	2	05/11/17 12:13	05/08/17	
Selenium	6020A	ND U	mg/Kg	1.1	5	05/11/17 10:11	05/08/17	
Silver	6020A	0.044	mg/Kg	0.022	5	05/11/17 10:11	05/08/17	
Sodium	6010C	3250	mg/Kg	45	2	05/11/17 12:13	05/08/17	
Thallium	6020A	0.122	mg/Kg	0.022	5	05/11/17 10:11	05/08/17	
Vanadium	6020A	26.2	mg/Kg	0.22	5	05/11/17 10:11	05/08/17	
Zinc	6010C	40.9	mg/Kg	1.1	2	05/11/17 12:13	05/08/17	

Printed 05/12/17 1:58:05 PM Superset Reference:

Analytical Report

Client: Golder Associates, Inc.

Service Request: K1704542 **Date Collected:** 05/04/17 18:00 **Project:** Skagway-Sediment 2017/1657231

Date Received: 05/08/17 09:40 **Sample Matrix:** Sediment

Sample Name: SED17-29 Basis: Dry

Lab Code: K1704542-006

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	20500	mg/Kg	3.2	2	05/11/17 12:16	05/08/17	
Antimony	6020A	ND U	mg/Kg	0.080	5	05/11/17 10:25	05/08/17	
Arsenic	6020A	5.20	mg/Kg	0.80	5	05/11/17 10:25	05/08/17	
Barium	6010C	409	mg/Kg	1.3	2	05/11/17 12:16	05/08/17	
Beryllium	6020A	0.374	mg/Kg	0.032	5	05/11/17 10:25	05/08/17	
Cadmium	6020A	0.564	mg/Kg	0.032	5	05/11/17 10:25	05/08/17	
Calcium	6010C	31200	mg/Kg	6.4	2	05/11/17 12:16	05/08/17	
Chromium	6020A	23.8	mg/Kg	0.32	5	05/11/17 10:25	05/08/17	
Cobalt	6020A	11.2	mg/Kg	0.032	5	05/11/17 10:25	05/08/17	
Copper	6020A	18.3	mg/Kg	0.16	5	05/11/17 10:25	05/08/17	
Iron	6010C	36100	mg/Kg	6.4	2	05/11/17 12:16	05/08/17	
Lead	6020A	17.0	mg/Kg	0.080	5	05/11/17 10:25	05/08/17	
Magnesium	6010C	13400	mg/Kg	3.2	2	05/11/17 12:16	05/08/17	
Manganese	6010C	465	mg/Kg	0.32	2	05/11/17 12:16	05/08/17	
Mercury	7471B	0.043	mg/Kg	0.029	1	05/11/17 12:59	05/09/17	
Nickel	6020A	12.7	mg/Kg	0.32	5	05/11/17 10:25	05/08/17	
Potassium	6010C	9140	mg/Kg	64	2	05/11/17 12:16	05/08/17	
Selenium	6020A	ND U	mg/Kg	1.6	5	05/11/17 10:25	05/08/17	
Silver	6020A	0.247	mg/Kg	0.032	5	05/11/17 10:25	05/08/17	
Sodium	6010C	13700	mg/Kg	64	2	05/11/17 12:16	05/08/17	
Thallium	6020A	0.486	mg/Kg	0.032	5	05/11/17 10:25	05/08/17	
Vanadium	6020A	73.6	mg/Kg	0.32	5	05/11/17 10:25	05/08/17	
Zinc	6010C	115	mg/Kg	1.6	2	05/11/17 12:16	05/08/17	

Printed 05/12/17 1:58:05 PM Superset Reference:

Analytical Report

Client: Golder Associates, Inc.

Service Request: K1704542 **Date Collected:** 05/05/17 09:00 **Project:** Skagway-Sediment 2017/1657231

Date Received: 05/08/17 09:40 **Sample Matrix:** Sediment

Sample Name: SED17-10 Basis: Dry

Lab Code: K1704542-007

Total Metals

Analyte Name	Analysis Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	7580	mg/Kg	2.3	2	05/11/17 12:18	05/08/17	<u> </u>
Antimony	6020A	ND U	mg/Kg	0.058	5	05/11/17 10:29	05/08/17	
Arsenic	6020A	1.56	mg/Kg	0.58	5	05/11/17 10:29	05/08/17	
Barium	6010C	154	mg/Kg	0.93	2	05/11/17 12:18	05/08/17	
Beryllium	6020A	0.144	mg/Kg	0.023	5	05/11/17 10:29	05/08/17	
Cadmium	6020A	0.265	mg/Kg	0.023	5	05/11/17 10:29	05/08/17	
Calcium	6010C	12800	mg/Kg	4.7	2	05/11/17 12:18	05/08/17	
Chromium	6020A	8.79	mg/Kg	0.23	5	05/11/17 10:29	05/08/17	
Cobalt	6020A	4.19	mg/Kg	0.023	5	05/11/17 10:29	05/08/17	
Copper	6020A	40.7	mg/Kg	0.12	5	05/11/17 10:29	05/08/17	
Iron	6010C	14300	mg/Kg	4.7	2	05/11/17 12:18	05/08/17	
Lead	6020A	107	mg/Kg	0.058	5	05/11/17 10:29	05/08/17	
Magnesium	6010C	4770	mg/Kg	2.3	2	05/11/17 12:18	05/08/17	
Manganese	6010C	180	mg/Kg	0.23	2	05/11/17 12:18	05/08/17	
Mercury	7471B	0.091	mg/Kg	0.017	1	05/11/17 13:00	05/09/17	
Nickel	6020A	4.51	mg/Kg	0.23	5	05/11/17 10:29	05/08/17	
Potassium	6010C	3120	mg/Kg	47	2	05/11/17 12:18	05/08/17	
Selenium	6020A	ND U	mg/Kg	1.2	5	05/11/17 10:29	05/08/17	
Silver	6020A	0.154	mg/Kg	0.023	5	05/11/17 10:29	05/08/17	
Sodium	6010C	3530	mg/Kg	47	2	05/11/17 12:18	05/08/17	
Thallium	6020A	0.152	mg/Kg	0.023	5	05/11/17 10:29	05/08/17	
Vanadium	6020A	29.7	mg/Kg	0.23	5	05/11/17 10:29	05/08/17	
Zinc	6010C	143	mg/Kg	1.2	2	05/11/17 12:18	05/08/17	

Printed 05/12/17 1:58:06 PM Superset Reference:

Analytical Report

Client: Golder Associates, Inc.

Service Request: K1704542 **Date Collected:** 05/05/17 10:00 **Project:** Skagway-Sediment 2017/1657231

Date Received: 05/08/17 09:40 **Sample Matrix:** Sediment

Sample Name: SED17-15 Basis: Dry

Lab Code: K1704542-008

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	8220	mg/Kg	1.9	2	05/11/17 12:21	05/08/17	
Antimony	6020A	ND U	mg/Kg	0.048	5	05/11/17 10:33	05/08/17	
Arsenic	6020A	1.94	mg/Kg	0.48	5	05/11/17 10:33	05/08/17	
Barium	6010C	169	mg/Kg	0.77	2	05/11/17 12:21	05/08/17	
Beryllium	6020A	0.180	mg/Kg	0.019	5	05/11/17 10:33	05/08/17	
Cadmium	6020A	0.254	mg/Kg	0.019	5	05/11/17 10:33	05/08/17	
Calcium	6010C	7200	mg/Kg	3.9	2	05/11/17 12:21	05/08/17	
Chromium	6020A	11.1	mg/Kg	0.19	5	05/11/17 10:33	05/08/17	
Cobalt	6020A	5.17	mg/Kg	0.019	5	05/11/17 10:33	05/08/17	
Copper	6020A	24.5	mg/Kg	0.096	5	05/11/17 10:33	05/08/17	
Iron	6010C	15100	mg/Kg	3.9	2	05/11/17 12:21	05/08/17	
Lead	6020A	66.0	mg/Kg	0.048	5	05/11/17 10:33	05/08/17	
Magnesium	6010C	5350	mg/Kg	1.9	2	05/11/17 12:21	05/08/17	
Manganese	6010C	198	mg/Kg	0.19	2	05/11/17 12:21	05/08/17	
Mercury	7471B	0.048	mg/Kg	0.020	1	05/11/17 13:02	05/09/17	
Nickel	6020A	5.85	mg/Kg	0.19	5	05/11/17 10:33	05/08/17	
Potassium	6010C	3740	mg/Kg	39	2	05/11/17 12:21	05/08/17	
Selenium	6020A	ND U	mg/Kg	0.96	5	05/11/17 10:33	05/08/17	
Silver	6020A	0.119	mg/Kg	0.019	5	05/11/17 10:33	05/08/17	
Sodium	6010C	4190	mg/Kg	39	2	05/11/17 12:21	05/08/17	
Thallium	6020A	0.191	mg/Kg	0.019	5	05/11/17 10:33	05/08/17	
Vanadium	6020A	35.8	mg/Kg	0.19	5	05/11/17 10:33	05/08/17	
Zinc	6010C	105	mg/Kg	0.96	2	05/11/17 12:21	05/08/17	

Printed 05/12/17 1:58:06 PM Superset Reference:

Analytical Report

Service Request: K1704542

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231 **Date Collected:** 05/05/17 12:00

Sample Matrix: Sediment Date Received: 05/08/17 09:40

Sample Name: SED17-27 Basis: Dry

Lab Code: K1704542-009

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	11500	mg/Kg	2.0	2	05/11/17 12:23	05/08/17	
Antimony	6020A	ND U	mg/Kg	0.049	5	05/11/17 10:36	05/08/17	
Arsenic	6020A	1.18	mg/Kg	0.49	5	05/11/17 10:36	05/08/17	
Barium	6010C	147	mg/Kg	0.78	2	05/11/17 12:23	05/08/17	
Beryllium	6020A	0.126	mg/Kg	0.020	5	05/11/17 10:36	05/08/17	
Cadmium	6020A	0.072	mg/Kg	0.020	5	05/11/17 10:36	05/08/17	
Calcium	6010C	5740	mg/Kg	3.9	2	05/11/17 12:23	05/08/17	
Chromium	6020A	12.0	mg/Kg	0.20	5	05/11/17 10:36	05/08/17	
Cobalt	6020A	4.68	mg/Kg	0.020	5	05/11/17 10:36	05/08/17	
Copper	6020A	5.66	mg/Kg	0.098	5	05/11/17 10:36	05/08/17	
Iron	6010C	13000	mg/Kg	3.9	2	05/11/17 12:23	05/08/17	
Lead	6020A	3.13	mg/Kg	0.049	5	05/11/17 10:36	05/08/17	
Magnesium	6010C	4560	mg/Kg	2.0	2	05/11/17 12:23	05/08/17	
Manganese	6010C	179	mg/Kg	0.20	2	05/11/17 12:23	05/08/17	
Mercury	7471B	ND U	mg/Kg	0.018	1	05/11/17 13:03	05/09/17	
Nickel	6020A	5.12	mg/Kg	0.20	5	05/11/17 10:36	05/08/17	
Potassium	6010C	2840	mg/Kg	39	2	05/11/17 12:23	05/08/17	
Selenium	6020A	ND U	mg/Kg	0.98	5	05/11/17 10:36	05/08/17	
Silver	6020A	0.039	mg/Kg	0.020	5	05/11/17 10:36	05/08/17	
Sodium	6010C	3580	mg/Kg	39	2	05/11/17 12:23	05/08/17	
Thallium	6020A	0.161	mg/Kg	0.020	5	05/11/17 10:36	05/08/17	
Vanadium	6020A	28.2	mg/Kg	0.20	5	05/11/17 10:36	05/08/17	
Zinc	6010C	35.9	mg/Kg	0.98	2	05/11/17 12:23	05/08/17	

Printed 05/12/17 1:58:06 PM Superset Reference:

Analytical Report

Client: Golder Associates, Inc. Service Request: K1704542

Project:Skagway-Sediment 2017/1657231Date Collected:NASample Matrix:SedimentDate Received:NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ1705625-01

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	ND U	mg/Kg	2	2	05/11/17 11:43	05/08/17	
Antimony	6020A	ND U	mg/Kg	0.05	5	05/11/17 09:14	05/08/17	
Arsenic	6020A	ND U	mg/Kg	0.5	5	05/11/17 09:14	05/08/17	
Barium	6010C	ND U	mg/Kg	0.8	2	05/11/17 11:43	05/08/17	
Beryllium	6020A	ND U	mg/Kg	0.020	5	05/11/17 09:14	05/08/17	
Cadmium	6020A	ND U	mg/Kg	0.020	5	05/11/17 09:14	05/08/17	
Calcium	6010C	ND U	mg/Kg	4	2	05/11/17 11:43	05/08/17	
Chromium	6020A	ND U	mg/Kg	0.20	5	05/11/17 09:14	05/08/17	
Cobalt	6020A	ND U	mg/Kg	0.020	5	05/11/17 09:14	05/08/17	
Copper	6020A	ND U	mg/Kg	0.10	5	05/11/17 09:14	05/08/17	
Iron	6010C	ND U	mg/Kg	4	2	05/11/17 11:43	05/08/17	
Lead	6020A	ND U	mg/Kg	0.05	5	05/11/17 09:14	05/08/17	
Magnesium	6010C	ND U	mg/Kg	2	2	05/11/17 11:43	05/08/17	
Manganese	6010C	ND U	mg/Kg	0.2	2	05/11/17 11:43	05/08/17	
Nickel	6020A	ND U	mg/Kg	0.20	5	05/11/17 09:14	05/08/17	
Potassium	6010C	ND U	mg/Kg	40	2	05/11/17 11:43	05/08/17	
Selenium	6020A	ND U	mg/Kg	1.0	5	05/11/17 09:14	05/08/17	
Silver	6020A	ND U	mg/Kg	0.020	5	05/11/17 09:14	05/08/17	
Sodium	6010C	ND U	mg/Kg	40	2	05/11/17 11:43	05/08/17	
Thallium	6020A	ND U	mg/Kg	0.020	5	05/11/17 09:14	05/08/17	
Vanadium	6020A	ND U	mg/Kg	0.20	5	05/11/17 09:14	05/08/17	
Zinc	6010C	ND U	mg/Kg	1.0	2	05/11/17 11:43	05/08/17	

Printed 05/12/17 1:58:07 PM Superset Reference:

Analytical Report

Client: Golder Associates, Inc. Service Request: K1704542

Project: Skagway-Sediment 2017/1657231 Date Collected: NA

Sample Matrix: Sediment Date Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ1705630-01

Total Metals

Analysis Analyte Name Method Result Units MRL Dil. **Date Analyzed Date Extracted** Q 7471B Mercury ND U mg/Kg 0.02 05/11/17 12:33 05/09/17

Printed 05/12/17 1:58:08 PM Superset Reference:

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc.

Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Project

Service Request: K1704542

Date Collected: 05/04/17 **Date Received:** 05/08/17

Date Analyzed: 05/11/17

Replicate Sample Summary Total Metals

Sample Name: SED17-07 **Lab Code:** K1704542-001

Units: mg/Kg

Basis: Dry

Lab Couc.	111/01512 001					Dusis. Dry	
	Analysis	1.007	Sample	Duplicate Sample KQ1705625-03			DDD I''
Analyte Name	Method	MRL	Result	Result	Average	RPD	RPD Limit
Aluminum	6010C	2.3	9090	9330	9210	3	20
Antimony	6020A	0.057	ND U	ND U	ND	-	20
Arsenic	6020A	0.57	1.82	1.91	1.87	5	20
Barium	6010C	0.91	179	179	179	<1	20
Beryllium	6020A	0.023	0.161	0.168	0.165	4	20
Cadmium	6020A	0.023	0.290	0.302	0.296	4	20
Calcium	6010C	4.5	3410	3620	3520	6	20
Chromium	6020A	0.23	9.05	11.0	10.0	19	20
Cobalt	6020A	0.023	4.40	5.10	4.75	15	20
Copper	6020A	0.11	33.0	59.4	46.2	57 *	20
Iron	6010C	4.5	16800	18400	17600	9	20
Lead	6020A	0.057	172	178	175	4	20
Magnesium	6010C	2.3	5850	6120	5990	5	20
Manganese	6010C	0.23	227	244	236	7	20
Nickel	6020A	0.23	4.55	5.94	5.25	27 *	20
Potassium	6010C	45	4100	3910	4010	5	20
Selenium	6020A	1.1	ND U	ND U	ND	-	20
Silver	6020A	0.023	0.258	0.282	0.270	9	20
Sodium	6010C	45	3900	3590	3750	8	20
Thallium	6020A	0.023	0.179	0.186	0.183	4	20
Vanadium	6020A	0.23	31.0	34.5	32.8	11	20
Zinc	6010C	1.1	214	219	217	3	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 05/12/17 1:58:07 PM Superset Reference:

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc.

Service Request: K1704542

Project Skagway-Sediment 2017/1657231

Date Collected: 05/04/17 **Date Received:** 05/08/17

Sample Matrix: Sediment

Date Analyzed: 05/11/17

Replicate Sample Summary

Total Metals

0.179

Sample Name: SED17-07

Lab Code:

Mercury

Units: mg/Kg

K1704542-001

7471B

Basis: Dry

Duplicate Sample

Analysis Sample KQ1705630-03
Analyte Name Method MRL Result Result

0.021

 Result
 Average
 RPD
 RPD Limit

 0.160
 0.170
 11
 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 05/12/17 1:58:08 PM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Date Collected: 05/04/17 Date Received: 05/08/17 Date Analyzed: 5/11/17

Service Request:K1704542

Matrix Spike Summary Total Metals

Sample Name: SED17-07 **Lab Code:** K1704542-001

Units:mg/Kg Basis:Dry

Matrix Spike KQ1705625-04

Analyte Name	Method	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	6010C	9090	10000	443	213 #	75-125
Antimony	6020A	ND U	40.1	111	36 N	75-125
Arsenic	6020A	1.82	114	111	101	75-125
Barium	6010C	179	463	222	128 N	75-125
Beryllium	6020A	0.161	10.8	11.1	96	75-125
Cadmium	6020A	0.290	12.0	11.1	106	75-125
Calcium	6010C	3410	4630	1110	110	75-125
Chromium	6020A	9.05	55.9	44.3	106	75-125
Cobalt	6020A	4.40	117	111	102	75-125
Copper	6020A	33.0	101	55.4	122	75-125
Iron	6010C	16800	19000	222	984 #	75-125
Lead	6020A	172	313	111	127 N	75-125
Magnesium	6010C	5850	7270	1110	129 #	75-125
Manganese	6010C	227	357	111	117	75-125
Nickel	6020A	4.55	116	111	100	75-125
Potassium	6010C	4100	5170	1110	96	75-125
Selenium	6020A	ND U	111	111	100	75-125
Silver	6020A	0.258	11.7	11.1	103	75-125
Sodium	6010C	3900	4880	1110	88	75-125
Thallium	6020A	0.179	22.0	22.2	98	75-125
Vanadium	6020A	31.0	150	111	108	75-125
Zinc	6010C	214	324	111	100	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 05/12/17 1:58:08 PM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Skagway-Sediment 2017/1657231

Sample Matrix:

Project:

Sediment

Service Request:

K1704542

Date Collected:

05/04/17

Date Received:

05/08/17 05/11/17

Date Analyzed: **Date Extracted:**

Units:

Basis:

05/9/17

mg/Kg

Dry

Matrix Spike Summary

Total Metals

Sample Name: SED17-07

Lab Code: K1704542-001

Analysis Method: Prep Method:

7471B Method

Matrix Spike

KQ1705630-04

Analyte Name Sample Result Spike Amount % Rec % Rec Limits Result Mercury 0.179 0.732 0.587 80-120

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 05/12/17 1:58:08 PM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Lab Control Sample Summary Total Metals

> Units:mg/Kg Basis:Dry

Service Request: K1704542

Date Analyzed: 05/11/17

Lab Control Sample

KQ1705625-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	6010C	7980	7930	101	39-161
Barium	6010C	308	308	100	74-126
Calcium	6010C	6480	6610	98	74-126
Iron	6010C	12800	14400	89	36-164
Magnesium	6010C	2760	2640	104	64-136
Manganese	6010C	423	410	103	76-124
Potassium	6010C	2610	2550	102	61-139
Sodium	6010C	3050	2480	123	65-173
Zinc	6010C	192	191	100	70-130

Printed 05/12/17 1:58:07 PM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Lab Control Sample Summary Total Metals

Units:mg/Kg Basis:Dry

Service Request: K1704542

Date Analyzed: 05/11/17

Lab Control Sample

KQ1705625-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Antimony	6020A	64.5	105	61	20-254
Arsenic	6020A	101	98.5	103	69-145
Beryllium	6020A	65.9	66.0	100	74-126
Cadmium	6020A	168	146	115	73-127
Chromium	6020A	189	182	104	71-130
Cobalt	6020A	180	162	111	74-125
Copper	6020A	111	106	104	75-125
Lead	6020A	134	130	103	72-127
Nickel	6020A	169	149	113	73-127
Selenium	6020A	170	154	111	68-132
Silver	6020A	43.8	40.9	107	66-134
Thallium	6020A	209	175	120	69-131
Vanadium	6020A	100	96.7	104	65-135

Printed 05/12/17 1:58:07 PM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix:

Sediment

Service Request: K1704542

Date Analyzed: 05/11/17

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Dry

Lab Control Sample

KQ1705630-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Mercury	7471B	6.92	7.10	98	51-149

Printed 05/12/17 1:58:08 PM Superset Reference:

Polynuclear Aromatic Hydrocarbons

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment Service Request: K1704542 **Date Collected:** 05/04/2017 **Date Received:** 05/08/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-07 Lab Code: K1704542-001 **Extraction Method:**

Analysis Method:

EPA 3546 8270D SIM Units: ug/Kg Basis: Dry

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	5.9	1	05/12/17	05/15/17	KWG1703871	
2-Methylnaphthalene	ND U	5.9	1	05/12/17	05/15/17	KWG1703871	
Acenaphthylene	8.3	5.9	1	05/12/17	05/15/17	KWG1703871	
Acenaphthene	ND U	5.9	1	05/12/17	05/15/17	KWG1703871	
Dibenzofuran	ND U	5.9	1	05/12/17	05/15/17	KWG1703871	
Fluorene	6.3	5.9	1	05/12/17	05/15/17	KWG1703871	
Phenanthrene	35	5.9	1	05/12/17	05/15/17	KWG1703871	
Anthracene	22	5.9	1	05/12/17	05/15/17	KWG1703871	
Fluoranthene	60	5.9	1	05/12/17	05/15/17	KWG1703871	*
Pyrene	87	5.9	1	05/12/17	05/15/17	KWG1703871	
Benz(a)anthracene	45	5.9	1	05/12/17	05/15/17	KWG1703871	
Chrysene	92	5.9	1	05/12/17	05/15/17	KWG1703871	
Benzo(b)fluoranthene†	84	5.9	1	05/12/17	05/15/17	KWG1703871	
Benzo(k)fluoranthene	32	5.9	1	05/12/17	05/15/17	KWG1703871	
Benzo(a)pyrene	45	5.9	1	05/12/17	05/15/17	KWG1703871	
Indeno(1,2,3-cd)pyrene	21	5.9	1	05/12/17	05/15/17	KWG1703871	
Dibenz(a,h)anthracene	ND U	5.9	1	05/12/17	05/15/17	KWG1703871	
Benzo(g,h,i)perylene	17	5.9	1	05/12/17	05/15/17	KWG1703871	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	71	38-104	05/15/17	Acceptable
Fluoranthene-d10	89	39-109	05/15/17	Acceptable
Terphenyl-d14	82	38-113	05/15/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/16/2017 Form 1A - Organic Page 1 of 13:45:26 SuperSet Reference: Merged RR198257

Analytical Results

Client: Golder Associates, Inc.

Skagway-Sediment 2017/1657231 **Project:**

Sample Matrix: Sediment Service Request: K1704542 **Date Collected:** 05/04/2017 **Date Received:** 05/08/2017

Units: ug/Kg

E-4-----

Basis: Dry

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-12 Lab Code: K1704542-002

Extraction Method: Analysis Method:

Level: Low EPA 3546 8270D SIM

D:1--4:---

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	6.4	1	05/12/17	05/15/17	KWG1703871	
2-Methylnaphthalene	ND U	6.4	1	05/12/17	05/15/17	KWG1703871	
Acenaphthylene	21	6.4	1	05/12/17	05/15/17	KWG1703871	
Acenaphthene	ND U	6.4	1	05/12/17	05/15/17	KWG1703871	
Dibenzofuran	ND U	6.4	1	05/12/17	05/15/17	KWG1703871	
Fluorene	13	6.4	1	05/12/17	05/15/17	KWG1703871	
Phenanthrene	95	6.4	1	05/12/17	05/15/17	KWG1703871	
Anthracene	56	6.4	1	05/12/17	05/15/17	KWG1703871	
Fluoranthene	370	6.4	1	05/12/17	05/15/17	KWG1703871	*
Pyrene	330	6.4	1	05/12/17	05/15/17	KWG1703871	
Benz(a)anthracene	220	6.4	1	05/12/17	05/15/17	KWG1703871	
Chrysene	280	6.4	1	05/12/17	05/15/17	KWG1703871	
Benzo(b)fluoranthene†	270	6.4	1	05/12/17	05/15/17	KWG1703871	
Benzo(k)fluoranthene	97	6.4	1	05/12/17	05/15/17	KWG1703871	
Benzo(a)pyrene	130	6.4	1	05/12/17	05/15/17	KWG1703871	
Indeno(1,2,3-cd)pyrene	47	6.4	1	05/12/17	05/15/17	KWG1703871	
Dibenz(a,h)anthracene	12	6.4	1	05/12/17	05/15/17	KWG1703871	
Benzo(g,h,i)perylene	39	6.4	1	05/12/17	05/15/17	KWG1703871	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	64	38-104	05/15/17	Acceptable
Fluoranthene-d10	83	39-109	05/15/17	Acceptable
Terphenyl-d14	80	38-113	05/15/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/16/2017 Form 1A - Organic Page 1 of 13:45:30 SuperSet Reference: RR198257

 $u: \label{lem:linear_continuous_continuous} u: \label{lem:linear_continuous$

Merged

Page 37 of 48

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment Service Request: K1704542 **Date Collected:** 05/04/2017 **Date Received:** 05/08/2017

Polynuclear Aromatic Hydrocarbons

Sample Name:

DUP-3

Lab Code:

K1704542-003

Extraction Method: Analysis Method:

EPA 3546 8270D SIM

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	460	6.3	1	05/12/17	05/15/17	KWG1703871	
2-Methylnaphthalene	220	6.3	1	05/12/17	05/15/17	KWG1703871	
Acenaphthylene	110	6.3	1	05/12/17	05/15/17	KWG1703871	
Acenaphthene	770	6.3	1	05/12/17	05/15/17	KWG1703871	
Dibenzofuran	710	6.3	1	05/12/17	05/15/17	KWG1703871	
Fluorene	1200	6.3	1	05/12/17	05/15/17	KWG1703871	
Phenanthrene	7000 D	32	5	05/12/17	05/16/17	KWG1703871	
Anthracene	1400	6.3	1	05/12/17	05/15/17	KWG1703871	
Fluoranthene	8900 D	32	5	05/12/17	05/16/17	KWG1703871	*
Pyrene	5800 D	32	5	05/12/17	05/16/17	KWG1703871	
Benz(a)anthracene	3400 D	32	5	05/12/17	05/16/17	KWG1703871	
Chrysene	3300 D	32	5	05/12/17	05/16/17	KWG1703871	
Benzo(b)fluoranthene†	3600 D	32	5	05/12/17	05/16/17	KWG1703871	
Benzo(k)fluoranthene	1100	6.3	1	05/12/17	05/15/17	KWG1703871	
Benzo(a)pyrene	2400	6.3	1	05/12/17	05/15/17	KWG1703871	
Indeno(1,2,3-cd)pyrene	1300	6.3	1	05/12/17	05/15/17	KWG1703871	
Dibenz(a,h)anthracene	340	6.3	1	05/12/17	05/15/17	KWG1703871	
Benzo(g,h,i)perylene	1200	6.3	1	05/12/17	05/15/17	KWG1703871	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	71	38-104	05/15/17	Acceptable
Fluoranthene-d10	87	39-109	05/15/17	Acceptable
Terphenyl-d14	88	38-113	05/15/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/16/2017 Form 1A - Organic Page 1 of 13:45:34 Page 38 of 48

 $u: \label{lem:linear_continuous_continuous} u: \label{lem:linear_continuous$

Merged

SuperSet Reference:

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment Service Request: K1704542 **Date Collected:** 05/04/2017 **Date Received:** 05/08/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-01 Lab Code: K1704542-004 **Extraction Method:** EPA 3546

Analysis Method:

8270D SIM

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	6.8	1	05/12/17	05/15/17	KWG1703871	
2-Methylnaphthalene	ND U	6.8	1	05/12/17	05/15/17	KWG1703871	
Acenaphthylene	ND U	6.8	1	05/12/17	05/15/17	KWG1703871	
Acenaphthene	ND U	6.8	1	05/12/17	05/15/17	KWG1703871	
Dibenzofuran	ND U	6.8	1	05/12/17	05/15/17	KWG1703871	
Fluorene	ND U	6.8	1	05/12/17	05/15/17	KWG1703871	
Phenanthrene	14	6.8	1	05/12/17	05/15/17	KWG1703871	
Anthracene	8. 7	6.8	1	05/12/17	05/15/17	KWG1703871	
Fluoranthene	33	6.8	1	05/12/17	05/15/17	KWG1703871	*
Pyrene	72	6.8	1	05/12/17	05/15/17	KWG1703871	
Benz(a)anthracene	20	6.8	1	05/12/17	05/15/17	KWG1703871	
Chrysene	36	6.8	1	05/12/17	05/15/17	KWG1703871	
Benzo(b)fluoranthene†	57	6.8	1	05/12/17	05/15/17	KWG1703871	
Benzo(k)fluoranthene	19	6.8	1	05/12/17	05/15/17	KWG1703871	
Benzo(a)pyrene	27	6.8	1	05/12/17	05/15/17	KWG1703871	
Indeno(1,2,3-cd)pyrene	13	6.8	1	05/12/17	05/15/17	KWG1703871	
Dibenz(a,h)anthracene	ND U	6.8	1	05/12/17	05/15/17	KWG1703871	
Benzo(g,h,i)perylene	9.7	6.8	1	05/12/17	05/15/17	KWG1703871	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	66	38-104	05/15/17	Acceptable
Fluoranthene-d10	81	39-109	05/15/17	Acceptable
Terphenyl-d14	77	38-113	05/15/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/16/2017 Form 1A - Organic Page 1 of 13:45:38 Merged

 $u: \label{lem:linear_continuous_continuous} u: \label{lem:linear_continuous$

Page 39 of 48

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment Service Request: K1704542 **Date Collected:** 05/04/2017 **Date Received:** 05/08/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-03 Lab Code: K1704542-005 **Extraction Method:**

Analysis Method:

EPA 3546 8270D SIM Units: ug/Kg Basis: Dry

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
2-Methylnaphthalene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Acenaphthylene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Acenaphthene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Dibenzofuran	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Fluorene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Phenanthrene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Anthracene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Fluoranthene	7.6	6.2	1	05/12/17	05/15/17	KWG1703871	*
Pyrene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Benz(a)anthracene	8.4	6.2	1	05/12/17	05/15/17	KWG1703871	
Chrysene	7.5	6.2	1	05/12/17	05/15/17	KWG1703871	
Benzo(b)fluoranthene†	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Benzo(k)fluoranthene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Benzo(a)pyrene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Indeno(1,2,3-cd)pyrene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Dibenz(a,h)anthracene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Benzo(g,h,i)perylene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	65	38-104	05/15/17	Acceptable
Fluoranthene-d10	80	39-109	05/15/17	Acceptable
Terphenyl-d14	75	38-113	05/15/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/16/2017 Form 1A - Organic Page 1 of 13:45:42 Merged

 $u: \label{lem:linear_continuous_continuous} u: \label{lem:linear_continuous$

Page 40 of 48

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: K1704542

Date Collected: 05/04/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-29 Lab Code: K1704542-006 Extraction Method: EPA 3546

Analysis Method:

EPA 3546 8270D SIM Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	10	1	05/12/17	05/15/17	KWG1703871	
2-Methylnaphthalene	ND U	10	1	05/12/17	05/15/17	KWG1703871	
Acenaphthylene	ND U	10	1	05/12/17	05/15/17	KWG1703871	
Acenaphthene	ND U	10	1	05/12/17	05/15/17	KWG1703871	
Dibenzofuran	ND U	10	1	05/12/17	05/15/17	KWG1703871	
Fluorene	ND U	10	1	05/12/17	05/15/17	KWG1703871	
Phenanthrene	ND U	10	1	05/12/17	05/15/17	KWG1703871	
Anthracene	ND U	10	1	05/12/17	05/15/17	KWG1703871	
Fluoranthene	21	10	1	05/12/17	05/15/17	KWG1703871	*
Pyrene	22	10	1	05/12/17	05/15/17	KWG1703871	
Benz(a)anthracene	23	10	1	05/12/17	05/15/17	KWG1703871	
Chrysene	12	10	1	05/12/17	05/15/17	KWG1703871	
Benzo(b)fluoranthene†	25	10	1	05/12/17	05/15/17	KWG1703871	
Benzo(k)fluoranthene	ND U	10	1	05/12/17	05/15/17	KWG1703871	
Benzo(a)pyrene	11	10	1	05/12/17	05/15/17	KWG1703871	
Indeno(1,2,3-cd)pyrene	ND U	10	1	05/12/17	05/15/17	KWG1703871	
Dibenz(a,h)anthracene	ND U	10	1	05/12/17	05/15/17	KWG1703871	
Benzo(g,h,i)perylene	ND U	10	1	05/12/17	05/15/17	KWG1703871	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	61	38-104	05/15/17	Acceptable
Fluoranthene-d10	47	39-109	05/15/17	Acceptable
Terphenyl-d14	62	38-113	05/15/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/16/2017 13:45:46 Form 1A - Organic Page 1 of 1

 $u: \label{lem:linear_stable} w: \label{lem:linear_stable} u: \label{lem:linear_stable} W: \label{lem:linear_stable} W: \label{lem:linear_stable} u: \label{lem:linear_stable} W: \label{lem:$

Merged

Page 41 of 48

SuperSet Reference:

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment Service Request: K1704542 **Date Collected:** 05/05/2017 **Date Received:** 05/08/2017

Units: ug/Kg

Basis: Dry

Level: Low

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-10 Lab Code: K1704542-007 **Extraction Method:**

EPA 3546

Analysis Method: 8270D SIM

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	6.4	1	05/12/17	05/15/17	KWG1703871	
2-Methylnaphthalene	ND U	6.4	1	05/12/17	05/15/17	KWG1703871	
Acenaphthylene	9.3 X	6.4	1	05/12/17	05/15/17	KWG1703871	
Acenaphthene	ND U	6.4	1	05/12/17	05/15/17	KWG1703871	
Dibenzofuran	ND U	6.4	1	05/12/17	05/15/17	KWG1703871	
Fluorene	16	6.4	1	05/12/17	05/15/17	KWG1703871	
Phenanthrene	91	6.4	1	05/12/17	05/15/17	KWG1703871	
Anthracene	36	6.4	1	05/12/17	05/15/17	KWG1703871	
Fluoranthene	360	6.4	1	05/12/17	05/15/17	KWG1703871	*
Pyrene	230	6.4	1	05/12/17	05/15/17	KWG1703871	
Benz(a)anthracene	120	6.4	1	05/12/17	05/15/17	KWG1703871	
Chrysene	110	6.4	1	05/12/17	05/15/17	KWG1703871	
Benzo(b)fluoranthene†	120	6.4	1	05/12/17	05/15/17	KWG1703871	
Benzo(k)fluoranthene	43	6.4	1	05/12/17	05/15/17	KWG1703871	
Benzo(a)pyrene	60	6.4	1	05/12/17	05/15/17	KWG1703871	
Indeno(1,2,3-cd)pyrene	23	6.4	1	05/12/17	05/15/17	KWG1703871	
Dibenz(a,h)anthracene	ND U	6.4	1	05/12/17	05/15/17	KWG1703871	
Benzo(g,h,i)perylene	17	6.4	1	05/12/17	05/15/17	KWG1703871	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	75	38-104	05/15/17	Acceptable
Fluoranthene-d10	85	39-109	05/15/17	Acceptable
Terphenyl-d14	85	38-113	05/15/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/16/2017 Form 1A - Organic Page 1 of 13:45:50

Merged

Page 42 of 48

SuperSet Reference:

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment Service Request: K1704542 **Date Collected:** 05/05/2017 **Date Received:** 05/08/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-15 Lab Code: K1704542-008 **Extraction Method:** EPA 3546

Analysis Method:

8270D SIM

Units: ug/Kg Basis: Dry

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	6.3	1	05/12/17	05/15/17	KWG1703871	
2-Methylnaphthalene	ND U	6.3	1	05/12/17	05/15/17	KWG1703871	
Acenaphthylene	7.6 X	6.3	1	05/12/17	05/15/17	KWG1703871	
Acenaphthene	ND U	6.3	1	05/12/17	05/15/17	KWG1703871	
Dibenzofuran	ND U	6.3	1	05/12/17	05/15/17	KWG1703871	
Fluorene	8.8	6.3	1	05/12/17	05/15/17	KWG1703871	
Phenanthrene	75	6.3	1	05/12/17	05/15/17	KWG1703871	
Anthracene	18	6.3	1	05/12/17	05/15/17	KWG1703871	
Fluoranthene	260	6.3	1	05/12/17	05/15/17	KWG1703871	*
Pyrene	170	6.3	1	05/12/17	05/15/17	KWG1703871	
Benz(a)anthracene	79	6.3	1	05/12/17	05/15/17	KWG1703871	
Chrysene	61	6.3	1	05/12/17	05/15/17	KWG1703871	
Benzo(b)fluoranthene†	69	6.3	1	05/12/17	05/15/17	KWG1703871	
Benzo(k)fluoranthene	26	6.3	1	05/12/17	05/15/17	KWG1703871	
Benzo(a)pyrene	34	6.3	1	05/12/17	05/15/17	KWG1703871	
Indeno(1,2,3-cd)pyrene	13	6.3	1	05/12/17	05/15/17	KWG1703871	
Dibenz(a,h)anthracene	ND U	6.3	1	05/12/17	05/15/17	KWG1703871	
Benzo(g,h,i)perylene	9.4	6.3	1	05/12/17	05/15/17	KWG1703871	

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	68	38-104	05/15/17	Acceptable
Fluoranthene-d10	79	39-109	05/15/17	Acceptable
Terphenyl-d14	80	38-113	05/15/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/16/2017 Form 1A - Organic Page 1 of 13:45:54 $u: \label{lem:linear_continuous_continuous} u: \label{lem:linear_continuous$ Page 43 of 48

Merged

SuperSet Reference:

Analytical Results

Client: Golder Associates, Inc.

Skagway-Sediment 2017/1657231 **Project:**

Sample Matrix: Sediment Service Request: K1704542 **Date Collected:** 05/05/2017 **Date Received:** 05/08/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: SED17-27 Lab Code: K1704542-009 **Extraction Method:**

Analysis Method:

EPA 3546 8270D SIM Units: ug/Kg Basis: Dry

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
2-Methylnaphthalene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Acenaphthylene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Acenaphthene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Dibenzofuran	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Fluorene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Phenanthrene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Anthracene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Fluoranthene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Pyrene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Benz(a)anthracene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Chrysene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Benzo(b)fluoranthene†	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Benzo(k)fluoranthene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Benzo(a)pyrene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Indeno(1,2,3-cd)pyrene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Dibenz(a,h)anthracene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	
Benzo(g,h,i)perylene	ND U	6.2	1	05/12/17	05/15/17	KWG1703871	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	74	38-104	05/15/17	Acceptable
Fluoranthene-d10	98	39-109	05/15/17	Acceptable
Terphenyl-d14	87	38-113	05/15/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/16/2017 Form 1A - Organic Page 1 of 13:45:58 Page 44 of 48

Merged

SuperSet Reference:

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Soil Service Request: K1704542 Date Collected: NA Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name: Method Blank Lab Code: KWG1703871-5

Extraction Method: EPA 3546 **Analysis Method:**

8270D SIM

Units: ug/Kg Basis: Dry Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	4.8	1	05/12/17	05/15/17	KWG1703871	
2-Methylnaphthalene	ND U	4.8	1	05/12/17	05/15/17	KWG1703871	
Acenaphthylene	ND U	4.8	1	05/12/17	05/15/17	KWG1703871	
Acenaphthene	ND U	4.8	1	05/12/17	05/15/17	KWG1703871	
Dibenzofuran	ND U	4.8	1	05/12/17	05/15/17	KWG1703871	
Fluorene	ND U	4.8	1	05/12/17	05/15/17	KWG1703871	
Phenanthrene	ND U	4.8	1	05/12/17	05/15/17	KWG1703871	
Anthracene	ND U	4.8	1	05/12/17	05/15/17	KWG1703871	
Fluoranthene	ND U	4.8	1	05/12/17	05/15/17	KWG1703871	
Pyrene	ND U	4.8	1	05/12/17	05/15/17	KWG1703871	
Benz(a)anthracene	ND U	4.8	1	05/12/17	05/15/17	KWG1703871	
Chrysene	ND U	4.8	1	05/12/17	05/15/17	KWG1703871	
Benzo(b)fluoranthene†	ND U	4.8	1	05/12/17	05/15/17	KWG1703871	
Benzo(k)fluoranthene	ND U	4.8	1	05/12/17	05/15/17	KWG1703871	
Benzo(a)pyrene	ND U	4.8	1	05/12/17	05/15/17	KWG1703871	
Indeno(1,2,3-cd)pyrene	ND U	4.8	1	05/12/17	05/15/17	KWG1703871	
Dibenz(a,h)anthracene	ND U	4.8	1	05/12/17	05/15/17	KWG1703871	
Benzo(g,h,i)perylene	ND U	4.8	1	05/12/17	05/15/17	KWG1703871	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	72	38-104	05/15/17	Acceptable
Fluoranthene-d10	96	39-109	05/15/17	Acceptable
Terphenyl-d14	88	38-113	05/15/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/16/2017 Form 1A - Organic Page 1 of 13:46:02 1

Merged

Page 45 of 48

SuperSet Reference:

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704542

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:EPA 3546Units:PercentAnalysis Method:8270D SIMLevel:Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
SED17-07	K1704542-001	71	89	82
SED17-12	K1704542-002	64	83	80
DUP-3	K1704542-003	71	87	88
SED17-01	K1704542-004	66	81	77
SED17-03	K1704542-005	65	80	75
SED17-29	K1704542-006	61	47	62
SED17-10	K1704542-007	75	85	85
SED17-15	K1704542-008	68	79	80
SED17-27	K1704542-009	74	98	87
Batch QC	K1704596-001	79	102	84
Method Blank	KWG1703871-5	72	96	88
Batch QCMS	KWG1703871-1	70	94	81
Batch QCDMS	KWG1703871-2	62	81	69
Lab Control Sample	KWG1703871-3	62	81	73
Duplicate Lab Control Sample	KWG1703871-4	60	77	70

Surrogate Recovery Control Limits (%)

Sur1	=	Fluorene-d10	38-104
Sur2	=	Fluoranthene-d10	39-109
Sur3	=	Terphenyl-d14	38-113

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

 Printed:
 05/16/2017
 13:46:07
 Form 2A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form2.rpt
 Page 46 of 48
 SuperSet Reference:
 RR198257

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Soil Service Request: K1704542 **Date Extracted:** 05/12/2017 **Date Analyzed:** 05/15/2017

Matrix Spike/Duplicate Matrix Spike Summary Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code:

Batch QC

Extraction Method:

K1704596-001

Analysis Method:

EPA 3546 8270D SIM Units: ug/Kg Basis: Dry

Level: Low Extraction Lot: KWG1703871

Batch QCMS KWG1703871-1

Batch QCDMS KWG1703871-2

Matrix Spike Duplicate Matrix Spike

Analyte Name	Sample Result	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Naphthalene	ND	376	540	69	331	544	61	29-88	13	40
2-Methylnaphthalene	ND	396	540	73	354	544	65	28-98	11	40
Acenaphthylene	ND	419	540	77	374	544	69	32-97	11	40
Acenaphthene	ND	394	540	73	350	544	64	30-101	12	40
Dibenzofuran	ND	519	540	96	366	544	67	28-105	35	40
Fluorene	ND	408	540	76	363	544	67	23-116	12	40
Phenanthrene	6.0	427	540	78	373	544	67	10-128	14	40
Anthracene	ND	425	540	79	372	544	68	27-116	13	40
Fluoranthene	12	504	540	91	437	544	78	10-138	14	40
Pyrene	7.0	440	540	80	376	544	68	16-134	16	40
Benz(a)anthracene	ND	470	540	87	407	544	75	27-127	14	40
Chrysene	ND	442	540	82	383	544	70	25-132	14	40
Benzo(b)fluoranthene	ND	452	540	84	398	544	73	21-130	13	40
Benzo(k)fluoranthene	ND	454	540	84	397	544	73	22-126	14	40
Benzo(a)pyrene	ND	434	540	80	379	544	70	25-129	13	40
Indeno(1,2,3-cd)pyrene	ND	435	540	80	377	544	69	17-138	14	40
Dibenz(a,h)anthracene	ND	383	540	71	333	544	61	32-116	14	40
Benzo(g,h,i)perylene	ND	421	540	78	362	544	66	17-130	15	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 05/16/2017 Form 3A - Organic Page 1 of 13:46:12 SuperSet Reference: RR198257 Page 47 of 48

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Soil

Service Request: K1704542 **Date Extracted:** 05/12/2017 **Date Analyzed:** 05/15/2017

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3546 **Analysis Method:** 8270D SIM Units: ug/KgBasis: Dry

Level: Low **Extraction Lot:** KWG1703871

Lab Control Sample KWG1703871-3 Lab Control Spike Duplicate Lab Control Sample KWG1703871-4 Duplicate Lab Control Spike

Analyte Name	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Naphthalene	314	500	63	340	500	68	42-88	8	40
2-Methylnaphthalene	334	500	67	362	500	72	43-92	8	40
Acenaphthylene	358	500	72	381	500	76	44-93	6	40
Acenaphthene	337	500	67	359	500	72	44-95	6	40
Dibenzofuran	351	500	70	452	500	90	44-96	25	40
Fluorene	345	500	69	371	500	74	45-98	7	40
Phenanthrene	346	500	69	370	500	74	41-99	7	40
Anthracene	356	500	71	372	500	74	46-100	4	40
Fluoranthene	415	500	83	435	500	87	49-102	5	40
Pyrene	365	500	73	386	500	77	48-104	5	40
Benz(a)anthracene	386	500	77	412	500	82	52-105	6	40
Chrysene	370	500	74	395	500	79	51-110	6	40
Benzo(b)fluoranthene	399	500	80	424	500	85	52-114	6	40
Benzo(k)fluoranthene	405	500	81	429	500	86	52-112	6	40
Benzo(a)pyrene	378	500	76	402	500	80	52-111	6	40
Indeno(1,2,3-cd)pyrene	385	500	77	410	500	82	44-117	6	40
Dibenz(a,h)anthracene	350	500	70	370	500	74	44-110	5	40
Benzo(g,h,i)perylene	363	500	73	383	500	77	45-107	5	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Printed:
 05/16/2017
 13:46:16
 Form 3C - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form3DLC.rpt
 Page 48 of 48
 SuperSet Reference:
 RR198257

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T:+1 360 577 7222

F:+1 360 636 1068 www.alsglobal.com

June 01, 2017

Analytical Report for Service Request No: K1704543

Tamra Reynolds Golder Associates Ltd. Suite 201C, 170 Titanium Way Whitehorse, YT Y1A0G1

RE: Skagway-Sediment 2017 / 1657231

Dear Tamra,

Enclosed are the results of the sample(s) submitted to our laboratory May 08, 2017 For your reference, these analyses have been assigned our service request number **K1704543**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsqlobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Howard Holmes Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

General Chemistry

Metals

Diesel and Residual Range Organics

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- \boldsymbol{Q} $\;\;$ See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-	
	data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator	
Oregon – DEQ (NELAP)	yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water	-
Kelso Laboratory Website	www.alsglobal.com	NA
Kelso Laboratory Website	www.aisglobai.com	N.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS ENVIRONMENTAL

Client:Golder Associates, Inc.Service Request No.:K1704543Project:Skagway - Sediment 2017/ 1657231Date Received:05/08/17

Sample Matrix: Sediment

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Nine sediment samples were received for analysis at ALS Environmental on 05/08/17. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

No anomalies associated with the analysis of these samples were observed.

Total Metals

No anomalies associated with the analysis of these samples were observed.

Diesel and Residual Range Organics by Method AK102/ AK103

No anomalies associated with the analysis of these samples were observed.

Approved by

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS Environ

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here (lab use only)

COC Number: 15 - 594997

Page of H

Enuironmental
www.alsglobal.com
Canada Toli Free: 1 800 668 9878

Report To Contact and company name below will appear on the final report	ı D
	ı D
Contact: Tamma Reg ns 65 Quality Control (QC) Report with Report YES NO Formula (QC) Report With Report YES NO Formula (QC) Report With Report YES NO Formula (QC) Report With Report YES NO Formula (QC) Report With Report YES NO Formula (QC) Report With Report YES NO Formula (QC) Report YES NO Formula (QC) Report YES NO FORMULA (QC) Report YES NO FORMULA (QC) Report YES NO FORMULA (QC) Report YES NO FORMULA (QC) Report YES NO FORMULA (QC) Report YES NO FORMULA (QC) Report YES NO FORMULA (QC) Report YES NO FORMULA (QC) Report YES NO FORMULA (QC) Report YES NO FORMULA (QC) Report YES NO FORMULA (QC) Report YES NO FORMULA (QC) Report YES NO FORMULA (QC) Report YES NO FORMULA (QC) Report YES NO FORMULA (QC) Report YES NO FORMULA (QC) Report YES NO FORMULA (QC) YES NO FORMULA (QC) YES NO FORMULA (QC) YES NO FORMULA (QC) YES NO FORMULA (QC) YES NO FORMULA (QC) YES NO FORMULA (QC) YES NO FORMULA (QC) YES NO FORMULA (QC) YES NO FORMULA (QC) YES NO FORMULA (QC) YES NO FORMULA (QC) YES NO FORMULA (QC) YES NO FORMULA (QC) YES NO FORMULA (QC) YES NO FORMULA (QC) YES N	-
Phone: 1- 867 - 334 - 4460	Statutory
Company address below will appear on the final report Select Distribution: EMIL MAIL FAX A 2 day [P2] Tholiday [E0]	
Street: 170 - 201 C Tivayium yay Email 1 or Fax 3 REYNOLD'S & golder 1 Com Date and Time Required for all ESP TATS:	
City/Province: White hange, Yukan Email 2 PADDY MEMANUS PARANCOM For tests that can not be performed according to the service level selected, you will be contacte	i.
Postal Code: V1A 061 Email 3 VMERCER C quilte : com Analysis Request	
Invoice To Same as Report To YES NO Invoice Distribution Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below	
Copy of Invoice with Report YES NO Select Invoice Distribution: FAX	
Company: Email 1 or Fax Some & Space At	
Company: Email 1 or Fax Save 85 Secont Email 2	ρ
Project Information Oil and Gas Required Fields (client use)	aju e
ALS Account # / Quote #: 41 A 3 7 AFE/Cost Center: PO#	l light
Job #: 1657 331 Major/Minor Code: Routing Code:) <u>6</u>
) j ž
Location:	Number of Containe
Requisitioner: LSD: ALS Lab Work Order # (lab use only) ALS Contact: Told Partin Sampler: PM/ JM ALS Sample # (lab use only) Sample Identification and/or Coordinates (This description will appear on the report) (dd-mmm-yy) (dd-mmm-yy) (hh:mm)	Z
ALS Sample # Sample Identification and/or Coordinates (Iab use only) ALS Contact: Tolk Torte Sampler: M/ JM Sample Time (Ide use only) (Ide use only) (This description will appear on the report) (Ide use only)	
ALS Sample # Sample Identification and/or Coordinates Date Time Sample Type (Ideb use only) (This description will appear on the report) (Ideb use only) (Ideb	
SEDI7-07 OH-MHT-17 10:00 Section X X X X	4
SED17-12 1 3:00 1 1 1 1	
DuP-3 13:00	
SED 17-01 14:40	
SEID17-03 [16:00]	
SED17-24 - 1800	
SED 17-10 05-HAY17 9100	
SED 17 - 15	- - -
<u>▗▗</u> ▗▗▗▗▐▝▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗	
SE017 - 37	
Travel Blank 04-MAY-17 18:00 Water	<u> </u>
FB-1 1/8:00 i	
EB-1 18:00 1 1 1 1	
Special Instructions / Specify Criteria to add on report by clicking on the drop-down list below SAMPLE CONDITION AS RECEIVED (lab use or	ly)
Drinking Water (DW) Samples' (client use) (electronic COC only) Frozen SIF Observations Yes	1
re samples taken from a Regulated DW System? Perce to Alive invited samples, 5-day from a Regulated DW System? Ice Cubes Custody seal intact Yes C	No 🔲
The samples taken from a Regulated DW System? YES DNO PANS Copiler Surples of AUS/SEM. Place and secure interest of the content of the copiler of the cop	
re samples for human drinking water use? Milital Cooler Temperatures of Alactic Cooler Temperatures of Thinal Cooler Temperat	TEMPERATURES C
TES INO TEN BENECHAS TON DEO AND NOS/SEM.	
SHIPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (lab use only) FINAL SHIPMENT RECEPTION (lab use	
Released by: Date: O5 - MAY - 17 IS: 00 Pate: 5/8/11 Time: Received by: Date: 5/8/11 Time: Received by: Date: Date: O5 - MAY - 17 IS: 00 Pate: O5 - MAY - 17	Time:
EFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY YELLOW - CLIENT COPY	OCTOBER 2015 FRONT

7/25/16

Cooler Receipt and Preservation Form ervice Request K17 Client Opened: By: Received: 🍕 Unloaded: Fed Ex **UPS** Hand Delivered **USPS** DHL PDXC Courier > Samples were received via? Cooler 💸 Envelope Other NA Samples were received in: (circle) **Box** 2. NA If yes, how many and where? Were custody seals on coolers? N If present, were they signed and dated? If present, were custody seals intact? Ν N Cooler/COC ID **Tracking Number** Thermometer COTT. Corrected. Raw NA Filed Factor Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves DXES Were custody papers properly filled out (ink, signed, etc.)? NA Ν 5. Were samples received in good condition (temperature, unbroken)? Indicate in the table below. NA N 6. If applicable, tissue samples were received: Frozen Partially Thawed Thawed Were all sample labels complete (i.e analysis, preservation, etc.)? NA N Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA N Were appropriate bottles/containers and volumes received for the tests indicated? NA N Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below N Were VOA vials received without headspace? Indicate in the table below. 12. Was C12/Res negative? Ν Sample ID on COC Sample ID on Bottle identified by: **Bottle Count** Out of Head-Volume Reagent Lot Number added Initials Sample ID **Bottle Type** Temp space Broke рH Reagent Time Votes, Discrepancies, & Resolutions:

Page 10 of 59

Page

of

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Analysis Method: 160.3 Modified

Prep Method: None

Service Request: K1704543

Date Collected: 05/04/17 - 05/05/17

Date Received: 05/8/17

Units: Percent

Basis: As Received

Solids, Total

Lab Code	Result	MRL	Dil.	Date Analyzed	Q
				•	
K1704543-001	83.3	-	1	05/08/17 16:10	
K1704543-002	76.7	-	1	05/08/17 16:10	
K1704543-003	77.0	-	1	05/08/17 16:10	
K1704543-004	71.1	-	1	05/08/17 16:10	
K1704543-005	79.1	-	1	05/08/17 16:10	
K1704543-006	50.1	-	1	05/08/17 16:10	
K1704543-007	77.0	-	1	05/08/17 16:10	
K1704543-008	78.8	-	1	05/08/17 16:10	
K1704543-009	77.5	-	1	05/08/17 16:10	
	K1704543-001 K1704543-002 K1704543-003 K1704543-004 K1704543-005 K1704543-006 K1704543-007 K1704543-008	K1704543-001 83.3 K1704543-002 76.7 K1704543-003 77.0 K1704543-004 71.1 K1704543-005 79.1 K1704543-006 50.1 K1704543-007 77.0 K1704543-008 78.8	K1704543-001 83.3 - K1704543-002 76.7 - K1704543-003 77.0 - K1704543-004 71.1 - K1704543-005 79.1 - K1704543-006 50.1 - K1704543-007 77.0 - K1704543-008 78.8 -	K1704543-001 83.3 - 1 K1704543-002 76.7 - 1 K1704543-003 77.0 - 1 K1704543-004 71.1 - 1 K1704543-005 79.1 - 1 K1704543-006 50.1 - 1 K1704543-007 77.0 - 1 K1704543-008 78.8 - 1	Lab Code Result MRL Dil. Analyzed K1704543-001 83.3 - 1 05/08/17 16:10 K1704543-002 76.7 - 1 05/08/17 16:10 K1704543-003 77.0 - 1 05/08/17 16:10 K1704543-004 71.1 - 1 05/08/17 16:10 K1704543-005 79.1 - 1 05/08/17 16:10 K1704543-006 50.1 - 1 05/08/17 16:10 K1704543-007 77.0 - 1 05/08/17 16:10 K1704543-008 78.8 - 1 05/08/17 16:10

QA/QC Report

Client: Golder Associates, Inc.

Skagway-Sediment 2017/1657231

Sample Matrix:

Project

Soil

Date Collected:NA

Date Received:NA

Service Request:K1704543

Units:Percent

Basis:NA

Analysis Method:

Prep Method:

160.3 Modified None

Replicate Sample Summary Inorganic Parameters

			Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	Result	Result	Average	RPD	Limit	Analyzed
Batch OC	K1704524-001DUP	_	86.4	82.7	84 6	4	20	05/08/17

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/9/2017 9:21:27 AM Superset Reference:17-0000421029 rev 00

QA/QC Report

Client: Golder Associates, Inc.

Project Skagway-Sediment 2017/1657231

Sample Matrix: Soil

Analysis Method: 160.3 Modified

Prep Method: None Service Request:K1704543

Date Collected:NA Date Received:NA

Units:Percent Basis: As Received

Replicate Sample Summary Inorganic Parameters

			Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	Result	Result	Average	RPD	Limit	Analyzed
Batch QC	K1704539-001DUP	-	63.4	62.6	63.0	1	20	05/08/17
Batch QC	K1704542-007DUP	-	77.9	76.8	77.4	1	20	05/08/17

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/9/2017 9:21:27 AM Superset Reference:17-0000421029 rev 00

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Analysis Method: 821/R-91-100

Prep Method: Method

Service Request: K1704543

Date Collected: 05/04/17 - 05/05/17

Date Received: 05/8/17

Units: uMole/gBasis: Dry

Sulfide, Acid-Volatile

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
SED17-07	K1704543-001	0.090	0.034	1	05/19/17 00:32	5/18/17	
SED17-12	K1704543-002	0.125	0.034	1	05/19/17 00:32	5/18/17	
SED17-01	K1704543-004	0.148	0.036	1	05/19/17 00:32	5/18/17	
SED17-03	K1704543-005	0.48	0.12	4	05/19/17 00:32	5/18/17	
SED17-29	K1704543-006	2.7	1.2	20	05/19/17 00:32	5/18/17	
SED17-10	K1704543-007	0.121	0.038	1	05/19/17 00:32	5/18/17	
SED17-15	K1704543-008	0.207	0.035	1	05/19/17 00:32	5/18/17	
SED17-27	K1704543-009	0.057	0.034	1	05/19/17 00:32	5/18/17	
Method Blank	K1704543-MB	ND U	0.016	1	05/19/17 00:32	5/18/17	

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704543

Project Skagway-Sediment 2017/1657231 **Date Collected:** 05/04/17 **Date Received:** 05/08/17

Sample Matrix: Sediment

Date Analyzed: 05/19/17

Replicate Sample Summary General Chemistry Parameters

Sample Name: SED17-07

Lab Code:

Units: uMole/g

K1704543-001

Basis: Dry

Duplicate Sample

K1704543-

001DUP

Analyte Name Analysis Method

Sample Result **MRL**

Result Average

RPD **RPD** Limit

Sulfide, Acid-Volatile 821/R-91-100 0.038 0.090 0.072 0.0813

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/19/2017 12:36:19 PM Superset Reference:17-0000421029 rev 00

QA/QC Report

Client: Golder Associates, Inc.

Skagway-Sediment 2017/1657231

Sample Matrix:

Project:

Sediment

Service Request:

K1704543

Date Collected:

05/04/17 05/08/17

Date Received: Date Analyzed:

05/19/17

Date Extracted:

05/18/17

Duplicate Matrix Spike Summary

Sulfide, Acid-Volatile

SED17-07

K1704543-001

Units: Basis: uMole/g Dry

Analysis Method:

821/R-91-100

Prep Method:

Sample Name:

Lab Code:

Method

Matrix Spike

Duplicate Matrix Spike

K1704543-001DMS

K1704543-001MS

RPD Sample **Spike Spike** % Rec Analyte Name Result Amount % Rec Amount % Rec Limits **RPD** Limit Result Result Sulfide, Acid-Volatile 0.090 23.2 23.5 45 25.8 25.6 56-142

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/19/2017 12:36:19 PM Superset Reference:17-0000421029 rev 00

QA/QC Report

Client: Golder Associates, Inc.

lder Associates, Inc. Service Request: K1704543

Project:Skagway-Sediment 2017/1657231Date Analyzed:05/19/17Sample Matrix:SedimentDate Extracted:05/18/17

Lab Control Sample Summary Sulfide, Acid-Volatile

Analysis Method: 821/R-91-100 Units: uMole/g

Prep Method: Method Basis: Dry

Analysis Lot: 546324

 Sample Name
 Lab Code
 Result
 Amount
 % Rec
 Limits

 Lab Control Sample
 K1704543-LCS
 0.205
 0.221
 92
 60-115

dba ALS Environmental **Analytical Report**

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: Date Collected: 5/4/2017 **Date Received:** 5/8/2017 **Date Analyzed:** 5/9/2017

K1704543

Particle Size Determination ASTM D422M

Sample Name: SED17-07 Lab Code: K1704543-001

> Sand Fraction: Weight (Grams) 55.2558 Sand Fraction: Weight Recovered (Grams) 55.3188 Sand Fraction: Percent Recovery 100.11

Weight as received (Grams)	80.043
Percent Solids	83.3
Weight Oven-Dried (Grams)	66.6758

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	26.7093	40.06
Gravel, Fine	2.00 mm	10	5.6831	8.52
Sand, Very Coarse	0.850 mm	20	5.2360	7.85
Sand, Coarse	0.425 mm	40	3.8782	5.82
Sand, Medium	0.250 mm	60	3.3821	5.07
Sand, Fine	0.106 mm	140	7.0624	10.59
Sand, Very Fine	0.075 mm	200	2.7269	4.09
Silt			10.5500	15.82
Clay			3.8400	5.76
	_	Total	69.0680	103.58

dba ALS Environmental **Analytical Report**

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: Date Collected: 5/4/2017 **Date Received:** 5/8/2017 **Date Analyzed:** 5/9/2017

K1704543

Particle Size Determination ASTM D422M

Sample Name: SED17-12 Lab Code: K1704543-002

> Sand Fraction: Weight (Grams) 33.7671 Sand Fraction: Weight Recovered (Grams) 33.7317 Sand Fraction: Percent Recovery 99.90

Weight as received (Grams)	56.253
Percent Solids	76.7
Weight Oven-Dried (Grams)	43.1461

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	3.2502	7.53
Gravel, Fine	2.00 mm	10	2.8709	6.65
Sand, Very Coarse	0.850 mm	20	7.5027	17.39
Sand, Coarse	0.425 mm	40	9.0485	20.97
Sand, Medium	0.250 mm	60	5.0143	11.62
Sand, Fine	0.106 mm	140	4.5844	10.63
Sand, Very Fine	0.075 mm	200	1.2244	2.84
Silt			5.7000	13.21
Clay			4.1450	9.61
		Total	43.3404	100.45

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Date Collected:
 5/4/2017

 Date Received:
 5/8/2017

 Date Analyzed:
 5/9/2017

K1704543

Service Request:

Particle Size Determination ASTM D422M

Sample Name: DUP-3

Lab Code: K1704543-003

Sand Fraction: Weight (Grams)26.6049Sand Fraction: Weight Recovered (Grams)26.7185Sand Fraction: Percent Recovery100.43

Weight as received (Grams)	42.859
Percent Solids	77.0
Weight Oven-Dried (Grams)	33.0014

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	4.4011	13.34
Gravel, Fine	2.00 mm	10	2.2870	6.93
Sand, Very Coarse	0.850 mm	20	5.4516	16.52
Sand, Coarse	0.425 mm	40	6.6881	20.27
Sand, Medium	0.250 mm	60	3.7556	11.38
Sand, Fine	0.106 mm	140	3.1217	9.46
Sand, Very Fine	0.075 mm	200	0.7804	2.36
Silt			3.7500	11.36
Clay			2.8650	8.68
		Total	33.1005	100.30

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Date Collected:
 5/4/2017

 Date Received:
 5/8/2017

 Date Analyzed:
 5/9/2017

K1704543

Service Request:

Particle Size Determination ASTM D422M

Sample Name: SED17-01 Lab Code: K1704543-004

Sand Fraction: Weight (Grams)9.9158Sand Fraction: Weight Recovered (Grams)9.8114Sand Fraction: Percent Recovery98.95

Weight as received (Grams)	38.891
Percent Solids	71.1
Weight Oven-Dried (Grams)	27.6515

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	0.0000	0.00
Gravel, Fine	2.00 mm	10	0.1259	0.46
Sand, Very Coarse	0.850 mm	20	0.2526	0.91
Sand, Coarse	0.425 mm	40	0.7449	2.69
Sand, Medium	0.250 mm	60	1.4785	5.35
Sand, Fine	0.106 mm	140	3.5123	12.70
Sand, Very Fine	0.075 mm	200	2.7619	9.99
Silt			14.8450	53.69
Clay			4.3000	15.55
	_	Total	28.0211	101.34

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: K1704543
Date Collected: 5/4/2017
Date Received: 5/8/2017
Date Analyzed: 5/9/2017

Particle Size Determination ASTM D422M

Sample Name: SED17-03 Lab Code: K1704543-005

Sand Fraction: Weight (Grams)56.9258Sand Fraction: Weight Recovered (Grams)56.9439Sand Fraction: Percent Recovery100.03

Weight as received (Grams)	80.078
Percent Solids	79.1
Weight Oven-Dried (Grams)	63.3417

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	3.2384	5.11
Gravel, Fine	2.00 mm	10	4.2563	6.72
Sand, Very Coarse	0.850 mm	20	11.6028	18.32
Sand, Coarse	0.425 mm	40	22.7523	35.92
Sand, Medium	0.250 mm	60	10.2106	16.12
Sand, Fine	0.106 mm	140	3.2537	5.14
Sand, Very Fine	0.075 mm	200	1.3536	2.14
Silt			4.5850	7.24
Clay			2.0750	3.28
		Total	63.3277	99.99

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: K1704543
Date Collected: 5/4/2017
Date Received: 5/8/2017
Date Analyzed: 5/9/2017

Particle Size Determination ASTM D422M

Sample Name: SED17-29 Lab Code: K1704543-006

Sand Fraction: Weight (Grams)2.9215Sand Fraction: Weight Recovered (Grams)2.9306Sand Fraction: Percent Recovery100.31

Weight as received (Grams)	38.144
Percent Solids	50.1
Weight Oven-Dried (Grams)	19.1101

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	0.0000	0.00
Gravel, Fine	2.00 mm	10	0.3595	1.88
Sand, Very Coarse	0.850 mm	20	0.4284	2.24
Sand, Coarse	0.425 mm	40	0.3034	1.59
Sand, Medium	0.250 mm	60	0.2830	1.48
Sand, Fine	0.106 mm	140	0.7980	4.18
Sand, Very Fine	0.075 mm	200	0.5638	2.95
Silt			13.4850	70.56
Clay			3.4750	18.18
	-	Total	19.6961	103.06

dba ALS Environmental **Analytical Report**

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: Date Collected: 5/5/2017 **Date Received:** 5/8/2017 **Date Analyzed:** 5/9/2017

K1704543

Particle Size Determination ASTM D422M

Sample Name: SED17-10 Lab Code: K1704543-007

> Sand Fraction: Weight (Grams) 29.6127 Sand Fraction: Weight Recovered (Grams) 29.5764 Sand Fraction: Percent Recovery 99.88

Weight as received (Grams)	46.692
Percent Solids	77.0
Weight Oven-Dried (Grams)	35.9528

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	0.7251	2.02
Gravel, Fine	2.00 mm	10	0.5202	1.45
Sand, Very Coarse	0.850 mm	20	2.1241	5.91
Sand, Coarse	0.425 mm	40	7.7102	21.45
Sand, Medium	0.250 mm	60	8.9902	25.01
Sand, Fine	0.106 mm	140	7.7395	21.53
Sand, Very Fine	0.075 mm	200	1.5180	4.22
Silt			4.0500	11.26
Clay			2.6800	7.45
	·	Total	36.0573	100.30

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: K1704543
Date Collected: 5/5/2017
Date Received: 5/8/2017
Date Analyzed: 5/9/2017

Particle Size Determination ASTM D422M

Sample Name: SED17-15 Lab Code: K1704543-008

Sand Fraction: Weight (Grams)50.8244Sand Fraction: Weight Recovered (Grams)50.7432Sand Fraction: Percent Recovery99.84

Weight as received (Grams)	78.334
Percent Solids	78.8
Weight Oven-Dried (Grams)	61.7272

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	8.0753	13.08
Gravel, Fine	2.00 mm	10	2.4257	3.93
Sand, Very Coarse	0.850 mm	20	6.1139	9.90
Sand, Coarse	0.425 mm	40 13.0416	21.13	
Sand, Medium	0.250 mm	60	10.2483	16.60
Sand, Fine	0.106 mm	140	9.0127	14.60
Sand, Very Fine	0.075 mm	200	1.5212	2.46
Silt			6.4050	10.38
Clay			4.4500	7.21
		Total	61.2937	99.29

dba ALS Environmental Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

 Date Collected:
 5/5/2017

 Date Received:
 5/8/2017

 Date Analyzed:
 5/9/2017

K1704543

Service Request:

Particle Size Determination ASTM D422M

Sample Name: SED17-27 Lab Code: K1704543-009

Sand Fraction: Weight (Grams)41.3098Sand Fraction: Weight Recovered (Grams)39.3105Sand Fraction: Percent Recovery95.16

Weight as received (Grams)	73.062
Percent Solids	77.5
Weight Oven-Dried (Grams)	56.6231

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	2.9522	5.21
Gravel, Fine	2.00 mm	10	3.3763	5.96
Sand, Very Coarse	0.850 mm	20	13.5278	23.89
Sand, Coarse	0.425 mm	40	3.1543	5.57
Sand, Medium	0.250 mm	60	0.4122	0.73
Sand, Fine	0.106 mm	140	3.9210	6.92
Sand, Very Fine	0.075 mm	200	8.1744	14.44
Silt			18.7200	33.06
Clay			0.9900	1.75
		Total	55.2282	97.53

dba ALS Environmental **Analytical Report**

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: Date Collected: 5/4/2017 **Date Received:** 5/8/2017 **Date Analyzed:** 5/9/2017

K1704543

Particle Size Determination ASTM D422M

Sample Name: SED17-07

Lab Code: K1704543-001DUP

> Sand Fraction: Weight (Grams) 55.2208 Sand Fraction: Weight Recovered (Grams) 54.8597 Sand Fraction: Percent Recovery 99.35

Weight as received (Grams)	79.107
Percent Solids	83.3
Weight Oven-Dried (Grams)	65.8961

Description	Sieve Size	Sieve Number	Dry Weight (Grams)	Percent of Total Weight Recovered
Gravel, Medium	4.75 mm	4	28.4376	43.16
Gravel, Fine	2.00 mm	10	4.6724	7.09
Sand, Very Coarse	0.850 mm	20	4.5248	6.87
Sand, Coarse	0.425 mm	40	3.8047	5.77
Sand, Medium	0.250 mm	60	3.2582	4.94
Sand, Fine	0.106 mm	140	6.6283	10.06
Sand, Very Fine	0.075 mm	200	2.4929	3.78
Silt			10.4900	15.92
Clay			3.7150	5.64
		Total	68.0239	103.23

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Analysis Method: Walkley-Black

Prep Method: None

Service Request: K1704543

Date Collected: 05/04/17 - 05/05/17

Date Received: 05/8/17

Units: mg/KgBasis: Dry

Carbon, Total Organic

C IN	T 1 C 1	D 14	MDI	D.I	Date	0
Sample Name	Lab Code	Result	MRL	Dil.	Analyzed	Q
SED17-07	K1704543-001	ND U	2400	1	05/17/17 15:00	_
SED17-12	K1704543-002	ND U	2500	1	05/17/17 15:00	
DUP-3	K1704543-003	ND U	2600	1	05/17/17 15:00	
SED17-01	K1704543-004	ND U	2800	1	05/17/17 15:00	
SED17-03	K1704543-005	ND U	2500	1	05/17/17 15:00	
SED17-29	K1704543-006	24100	3900	1	05/17/17 15:00	
SED17-10	K1704543-007	3600	2600	1	05/17/17 15:00	
SED17-15	K1704543-008	ND U	2400	1	05/17/17 15:00	
SED17-27	K1704543-009	ND U	2500	1	05/17/17 15:00	
Method Blank	K1704543-MB	ND U	2000	1	05/17/17 15:00	

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704543

Project Skagway-Sediment 2017/1657231 Date Collected: 05/04/17

Sample Matrix: Sediment Date Received: 05/08/17

Date Analyzed: 05/17/17

Replicate Sample Summary General Chemistry Parameters

Sample Name: SED17-01 Units: mg/Kg

Lab Code: K1704543-004 **Basis:** Dry

Duplicate Sample

K1704543-

Sample 004DUP

Analyte NameAnalysis MethodMRLResultResultAverageRPDRPD LimitCarbon, Total OrganicWalkley-Black2800ND UND UNCNC20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/19/2017 12:36:20 PM Superset Reference:17-0000421029 rev 00

QA/QC Report

Client: Golder Associates, Inc. **Service Request:** K1704543

Project: Skagway-Sediment 2017/1657231 **Date Analyzed:**

05/17/17

Sample Matrix:

Sediment

Date Extracted:

Lab Control Sample Summary Carbon, Total Organic

Analysis Method:

Walkley-Black

Units:

mg/Kg

Prep Method:

None

Basis:

Analysis Lot:

Dry 546113

NA

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1704543-LCS	4700	5400	87	85-115

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Client: Golder Associates, Inc. Service Request: K1704543

Project No.: 1657231 **Date Collected:** 5/4/2017

Project Name: Skagway-Sediment 2017 Date Received: 5/8/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-07 **Lab Code:** K1704543-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.006	1.0	05/18/17	05/24/17	0.006	U	
Arsenic	6010C	0.011	1.0	05/18/17	05/24/17	0.011	U	
Cadmium	6010C	0.0004	1.0	05/18/17	05/24/17	0.0004	U	
Chromium	6010C	0.004	1.0	05/18/17	05/24/17	0.010		
Copper	6010C	0.004	1.0	05/18/17	05/24/17	0.230		
Lead	6010C	0.002	1.0	05/18/17	05/24/17	0.324		
Mercury	7470A	0.00008	4.0	05/18/17	05/26/17	0.00008	U	
Nickel	6010C	0.002	1.0	05/18/17	05/24/17	0.007		
Silver	6010C	0.002	1.0	05/18/17	05/24/17	0.002	U	
Zinc	6010C	0.006	1.0	05/18/17	05/24/17	0.631		

% Solids: 83.3

Client: Golder Associates, Inc. Service Request: K1704543

Project No.: 1657231 **Date Collected:** 5/4/2017

Project Name: Skagway-Sediment 2017 Date Received: 5/8/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-12 **Lab Code:** K1704543-002

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.006	1.0	05/18/17	05/24/17	0.006	U	
Arsenic	6010C	0.011	1.0	05/18/17	05/24/17	0.011	U	
Cadmium	6010C	0.0004	1.0	05/18/17	05/24/17	0.0009		
Chromium	6010C	0.004	1.0	05/18/17	05/24/17	0.012		
Copper	6010C	0.004	1.0	05/18/17	05/24/17	0.407		
Lead	6010C	0.002	1.0	05/18/17	05/24/17	0.543		
Mercury	7470A	0.00009	4.0	05/18/17	05/26/17	0.00009	U	
Nickel	6010C	0.002	1.0	05/18/17	05/24/17	0.013		
Silver	6010C	0.002	1.0	05/18/17	05/24/17	0.002	U	
Zinc	6010C	0.006	1.0	05/18/17	05/24/17	0.907		

% Solids: 76.7

Client: Golder Associates, Inc. Service Request: K1704543

Project No.: 1657231 **Date Collected:** 5/4/2017

Project Name: Skagway-Sediment 2017 Date Received: 5/8/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-01 **Lab Code:** K1704543-004

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.007	1.0	05/18/17	05/24/17	0.007	U	
Arsenic	6010C	0.011	1.0	05/18/17	05/24/17	0.011	U	
Cadmium	6010C	0.0004	1.0	05/18/17	05/24/17	0.0007		
Chromium	6010C	0.004	1.0	05/18/17	05/24/17	0.014		
Copper	6010C	0.004	1.0	05/18/17	05/24/17	0.073		
Lead	6010C	0.002	1.0	05/18/17	05/24/17	0.177		
Mercury	7470A	0.00009	4.0	05/18/17	05/26/17	0.00009	U	
Nickel	6010C	0.002	1.0	05/18/17	05/24/17	0.013		
Silver	6010C	0.002	1.0	05/18/17	05/24/17	0.002	U	
Zinc	6010C	0.007	1.0	05/18/17	05/24/17	0.502		·

% Solids: 71.1

Client: Golder Associates, Inc. Service Request: K1704543

Project No.: 1657231 **Date Collected:** 5/4/2017

Project Name: Skagway-Sediment 2017 Date Received: 5/8/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-03 **Lab Code:** K1704543-005

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.006	1.0	05/18/17	05/24/17	0.006	U	
Arsenic	6010C	0.009	1.0	05/18/17	05/24/17	0.009	U	
Cadmium	6010C	0.0004	1.0	05/18/17	05/24/17	0.0004	U	
Chromium	6010C	0.004	1.0	05/18/17	05/24/17	0.007		
Copper	6010C	0.004	1.0	05/18/17	05/24/17	0.023		
Lead	6010C	0.002	1.0	05/18/17	05/24/17	0.026		
Mercury	7470A	0.00008	4.0	05/18/17	05/26/17	0.00008	U	
Nickel	6010C	0.002	1.0	05/18/17	05/24/17	0.008		
Silver	6010C	0.002	1.0	05/18/17	05/24/17	0.002	U	
Zinc	6010C	0.006	1.0	05/18/17	05/24/17	0.130		

% Solids: 79.1

Client: Golder Associates, Inc. Service Request: K1704543

Project No.: 1657231 **Date Collected:** 5/4/2017

Project Name: Skagway-Sediment 2017 Date Received: 5/8/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-29 **Lab Code:** K1704543-006

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.011	1.0	05/18/17	05/24/17	0.011	U	
Arsenic	6010C	0.019	1.0	05/18/17	05/24/17	0.019	U	
Cadmium	6010C	0.0007	1.0	05/18/17	05/24/17	0.0032		
Chromium	6010C	0.007	1.0	05/18/17	05/24/17	0.028		
Copper	6010C	0.007	1.0	05/18/17	05/24/17	0.062		
Lead	6010C	0.004	1.0	05/18/17	05/24/17	0.044		
Mercury	7470A	0.00015	4.0	05/18/17	05/26/17	0.00015	U	
Nickel	6010C	0.004	1.0	05/18/17	05/24/17	0.036		
Silver	6010C	0.004	1.0	05/18/17	05/24/17	0.004	U	
Zinc	6010C	0.011	1.0	05/18/17	05/24/17	0.386		·

% Solids: 50.1

Client: Golder Associates, Inc. Service Request: K1704543

Project No.: 1657231 **Date Collected:** 5/5/2017

Project Name: Skagway-Sediment 2017 Date Received: 5/8/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-10 **Lab Code:** K1704543-007

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.007	1.0	05/18/17	05/24/17	0.007	U	
Arsenic	6010C	0.012	1.0	05/18/17	05/24/17	0.012	U	
Cadmium	6010C	0.0005	1.0	05/18/17	05/24/17	0.0005	U	
Chromium	6010C	0.005	1.0	05/18/17	05/24/17	0.009		
Copper	6010C	0.005	1.0	05/18/17	05/24/17	0.085		
Lead	6010C	0.002	1.0	05/18/17	05/24/17	0.235		
Mercury	7470A	0.00009	4.0	05/18/17	05/26/17	0.00009	U	
Nickel	6010C	0.002	1.0	05/18/17	05/24/17	0.006		
Silver	6010C	0.002	1.0	05/18/17	05/24/17	0.002	U	
Zinc	6010C	0.007	1.0	05/18/17	05/24/17	0.430		

% Solids: 77.0

Client: Golder Associates, Inc. Service Request: K1704543

Project No.: 1657231 **Date Collected:** 5/5/2017

Project Name: Skagway-Sediment 2017 Date Received: 5/8/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-15 **Lab Code:** K1704543-008

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.006	1.0	05/18/17	05/24/17	0.006	U	
Arsenic	6010C	0.011	1.0	05/18/17	05/24/17	0.011	U	
Cadmium	6010C	0.0004	1.0	05/18/17	05/24/17	0.0005		
Chromium	6010C	0.004	1.0	05/18/17	05/24/17	0.009		
Copper	6010C	0.004	1.0	05/18/17	05/24/17	0.058		
Lead	6010C	0.002	1.0	05/18/17	05/24/17	0.103		
Mercury	7470A	0.00009	4.0	05/18/17	05/26/17	0.00009	U	
Nickel	6010C	0.002	1.0	05/18/17	05/24/17	0.007		
Silver	6010C	0.002	1.0	05/18/17	05/24/17	0.002	U	
Zinc	6010C	0.006	1.0	05/18/17	05/24/17	0.297		

% Solids: 78.8

Client: Golder Associates, Inc. Service Request: K1704543

Project No.: 1657231 **Date Collected:** 5/5/2017

Project Name: Skagway-Sediment 2017 Date Received: 5/8/2017

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: SED17-27 **Lab Code:** K1704543-009

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.006	1.0	05/18/17	05/24/17	0.006	U	
Arsenic	6010C	0.011	1.0	05/18/17	05/24/17	0.011	U	
Cadmium	6010C	0.0004	1.0	05/18/17	05/24/17	0.0004	U	
Chromium	6010C	0.004	1.0	05/18/17	05/24/17	0.010		
Copper	6010C	0.004	1.0	05/18/17	05/24/17	0.008		
Lead	6010C	0.002	1.0	05/18/17	05/24/17	0.005		
Mercury	7470A	0.00009	4.0	05/18/17	05/26/17	0.00009	U	
Nickel	6010C	0.002	1.0	05/18/17	05/24/17	0.007		
Silver	6010C	0.002	1.0	05/18/17	05/24/17	0.002	U	·
Zinc	6010C	0.006	1.0	05/18/17	05/24/17	0.064		·

% Solids: 77.5

Client: Golder Associates, Inc. Service Request: K1704543

Project No.: 1657231 Date Collected:

Project Name: Skagway-Sediment 2017 Date Received:

Matrix: SEDIMENT Units: uMole/g

Basis: DRY

Sample Name: Method Blank Lab Code: K1704543-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Antimony	6010C	0.003	1.0	05/18/17	05/24/17	0.003	U	
Arsenic	6010C	0.005	1.0	05/18/17	05/24/17	0.005	U	
Cadmium	6010C	0.0002	1.0	05/18/17	05/24/17	0.0002	U	
Chromium	6010C	0.002	1.0	05/18/17	05/24/17	0.002	U	
Copper	6010C	0.002	1.0	05/18/17	05/24/17	0.002	U	
Lead	6010C	0.001	1.0	05/18/17	05/24/17	0.001	U	
Nickel	6010C	0.001	1.0	05/18/17	05/24/17	0.001	U	
Silver	6010C	0.001	1.0	05/18/17	05/24/17	0.001	U	
Zinc	6010C	0.003	1.0	05/18/17	05/24/17	0.003	U	

% Solids: 100.0

Simultaneously Extactable Metals - 1 -

INORGANIC ANALYSIS DATA PACKAGE

Client: Golder Associates, Inc. Service Request: K1704543

Project No.: 1657231 Date Collected:

Project Name: Skagway-Sediment 2017 Date Received:

Matrix: SEDIMENT Units: umol/g

Basis: DRY

Sample Name: Method Blank Lab Code: KQ1706321-01

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Mercury	7470A	0.00004	4.0	05/18/17	05/26/17	0.00004	U	

% Solids: 100.0

Simultaneously Extactable Metals

- 5A -

SPIKE SAMPLE RECOVERY

Client: Golder Associates, Inc. Service Request: K1704543

Project No.: 1657231 Units: UMOLE/G

Project Name: Skagway-Sediment 2017 Basis: DRY

Matrix: SEDIMENT % Solids: 83.3

Sample Name: SED17-07S Lab Code: K1704543-001S

Analyte	Control Limit %R	Spike Result	Sample Result	С	Spike Added	%R	Q	Method
Antimony	75 - 125	0.080	0.006	U	0.087	92		6010C
Arsenic	75 - 125	0.694	0.011	U	0.705	98		6010C
Cadmium	75 - 125	0.2512	0.0004	U	0.234	107		6010C
Chromium	75 - 125	0.2038	0.0103		0.203	95		6010C
Copper	75 - 125	0.415	0.230		0.207	89		6010C
Lead	75 - 125	0.587	0.324		0.255	103		6010C
Mercury	75 - 125	0.00203	0.00008	U	0.00210	97		7470A
Nickel	75 - 125	0.484	0.007		0.447	107		6010C
Silver	75 - 125	0.111	0.002	U	0.122	91		6010C
Zinc	75 - 125	1.050	0.631		0.403	104		6010C

Simultaneously Extactable Metals

- 6 -DUPLICATES

Client: Golder Associates, Inc. Service Request: K1704543

Project No.: 1657231 Units: UMOLE/G

Project Name: Skagway-Sediment 2017 Basis: DRY

Matrix: SEDIMENT % Solids: 83.3

Sample Name: SED17-07D Lab Code: K1704543-001D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Antimony		0.006	Ū	0.007	U			6010C
Arsenic		0.011	Ŭ	0.012	U			6010C
Cadmium		0.0004	Ū	0.0015		200.0		6010C
Chromium		0.0103		0.0092		11.3		6010C
Copper	30	0.230		0.211		8.6		6010C
Lead	30	0.324		0.323		0.3		6010C
Mercury		0.00008	Ū	0.00009	υ			7470A
Nickel		0.007		0.007		0.0		6010C
Silver		0.002	Ū	0.002	υ			6010C
Zinc	30	0.631		0.647		2.5		6010C

Simultaneously Extactable Metals - 7 -

LABORATORY CONTROL SAMPLE

Client: Golder Associates, Inc. Service Request: K1704543

Project No.: 1657231

Project Name: Skagway-Sediment 2017

Aqueous LCS Source: ALS MIXED Solid LCS Source:

	Aqueous	(umol/L)		Solid (mg/kg)				
Analyte	True	Found	%R	True	Found	С	Limits	%R
Antimony	4.100	3.898	95					
Arsenic	33.400	33.530	100					
Cadmium	11.100	11.061	100					
Chromium	9.610	9.336	97					
Copper	9.830	9.649	98					
Lead	12.100	11.857	98					
Mercury	0.09960	0.09360	94					
Nickel	21.200	21.197	100					
Silver	5.790	5.547	96					
Zinc	19.100	19.110	100					

Diesel and Residual Range Organics

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sediment Sample Matrix:

Service Request: K1704543 **Date Collected:** 05/04/2017

Date Received: 05/08/2017

Diesel and Residual Range Organics

Sample Name: SED17-07 Lab Code: K1704543-001 **Extraction Method:** EPA 3550B

Analysis Method:

AK 102.0/103.0

Units: mg/Kg Basis: Dry

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	24	1	05/18/17	05/19/17	KWG1704041	
C25 - C36 RRO	ND U	120	1	05/18/17	05/19/17	KWG1704041	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	68	50-150	05/19/17	Acceptable	
n-Triacontane	66	50-150	05/19/17	Acceptable	

Comments:

Printed: 05/25/2017 14:29:51 Form 1A - Organic Page 1 of 1

Merged

Page 48 of 59

SuperSet Reference:

RR198529

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sediment Sample Matrix:

Service Request: K1704543 **Date Collected:** 05/04/2017

Date Received: 05/08/2017

Diesel and Residual Range Organics

Sample Name: SED17-12 Lab Code: K1704543-002 **Extraction Method:** EPA 3550B

Analysis Method: AK 102.0/103.0 Units: mg/Kg Basis: Dry

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	26	1	05/18/17	05/19/17	KWG1704041	_
C25 - C36 RRO	ND U	130	1	05/18/17	05/19/17	KWG1704041	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	89	50-150	05/19/17	Acceptable	
n-Triacontane	89	50-150	05/19/17	Acceptable	

Comments:

Printed: 05/25/2017 14:29:55 Form 1A - Organic Page 1 of 1 SuperSet Reference: Merged RR198529 Page 49 of 59

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sediment Sample Matrix:

Service Request: K1704543 **Date Collected:** 05/04/2017

Date Received: 05/08/2017

Diesel and Residual Range Organics

Sample Name: SED17-01 Lab Code: K1704543-004 **Extraction Method:** EPA 3550B

Analysis Method:

AK 102.0/103.0

Units: mg/Kg Basis: Dry

Level: Low

		Dilution	Date	Date	Extraction	
Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
ND U	28	1	05/18/17	05/19/17	KWG1704041	
ND U	140	1	05/18/17	05/19/17	KWG1704041	
	ND U	ND U 28	Result Q MRL Factor ND U 28 1	Result Q MRL Factor Extracted ND U 28 1 05/18/17	Result Q MRL Factor Extracted Analyzed ND U 28 1 05/18/17 05/19/17	Result Q MRL Factor Extracted Analyzed Lot ND U 28 1 05/18/17 05/19/17 KWG1704041

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	85	50-150	05/19/17	Acceptable	
n-Triacontane	86	50-150	05/19/17	Acceptable	

Comments:

Printed: 05/25/2017 14:29:58 Form 1A - Organic Page 1 of 1 SuperSet Reference: Merged RR198529 Page 50 of 59

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sediment **Sample Matrix:**

Service Request: K1704543 **Date Collected:** 05/04/2017 **Date Received:** 05/08/2017

Units: mg/Kg

Diesel and Residual Range Organics

Sample Name: SED17-03 Lab Code: K1704543-005 **Extraction Method:**

EPA 3550B

Analysis Method:

AK 102.0/103.0

Basis:	Dry
Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	26	1	05/18/17	05/19/17	KWG1704041	
C25 - C36 RRO	ND U	130	1	05/18/17	05/19/17	KWG1704041	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	70	50-150	05/19/17	Acceptable	
n-Triacontane	71	50-150	05/19/17	Acceptable	

Comments:

Printed: 05/25/2017 14:30:01 Form 1A - Organic Page 1 of 1 SuperSet Reference: Merged RR198529 Page 51 of 59

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sediment Sample Matrix:

Service Request: K1704543 **Date Collected:** 05/04/2017

Date Received: 05/08/2017

Diesel and Residual Range Organics

Sample Name: SED17-29 Lab Code: K1704543-006 **Extraction Method:**

EPA 3550B

Analysis Method:

AK 102.0/103.0

Units:	mg/Kg
Basis:	Dry
T1.	T

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	37	1	05/18/17	05/24/17	KWG1704041	
C25 - C36 RRO	ND U	190	1	05/18/17	05/24/17	KWG1704041	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	94	50-150	05/24/17	Acceptable
n-Triacontane	96	50-150	05/24/17	Acceptable

Comments:

Printed: 05/25/2017 Form 1A - Organic Page 1 of 14:30:04 1 SuperSet Reference: Merged RR198529 Page 52 of 59

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sediment Sample Matrix:

Service Request: K1704543 **Date Collected:** 05/05/2017

Date Received: 05/08/2017

Diesel and Residual Range Organics

Sample Name: SED17-10 Lab Code: K1704543-007 **Extraction Method:**

EPA 3550B

Analysis Method:

AK 102.0/103.0

ate	Extraction	
alvzed	Lot	Note

Units: mg/Kg

Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
C10 - C25 DRO	ND U	26	1	05/18/17	05/19/17	KWG1704041	
C25 - C36 RRO	ND U	130	1	05/18/17	05/19/17	KWG1704041	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	71	50-150	05/19/17	Acceptable
n-Triacontane	72	50-150	05/19/17	Acceptable

Comments:

Printed: 05/25/2017 Form 1A - Organic Page 1 of 14:30:07 1 SuperSet Reference: Merged RR198529 Page 53 of 59

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sediment Sample Matrix:

Service Request: K1704543 **Date Collected:** 05/05/2017 **Date Received:** 05/08/2017

Diesel and Residual Range Organics

Sample Name: SED17-15 Lab Code: K1704543-008 **Extraction Method:**

EPA 3550B

Analysis Method: AK 102.0/103.0 Units: mg/Kg Basis: Dry

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	26	1	05/18/17	05/19/17	KWG1704041	
C25 - C36 RRO	ND U	130	1	05/18/17	05/19/17	KWG1704041	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	68	50-150	05/19/17	Acceptable	
n-Triacontane	69	50-150	05/19/17	Acceptable	

Comments:

Printed: 05/25/2017 Form 1A - Organic Page 1 of 14:30:10 1 $u: \label{lem:linear_stal_rpt} u: \label{lem:linear_rpt} We w. rpt$ SuperSet Reference: Merged RR198529 Page 54 of 59

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sediment Sample Matrix:

Service Request: K1704543 **Date Collected:** 05/05/2017

Date Received: 05/08/2017

Diesel and Residual Range Organics

Sample Name: SED17-27 Lab Code: K1704543-009 **Extraction Method:** EPA 3550B

Basis: Dry Level: Low

Units: mg/Kg

Analysis Method: AK 102.0/103.0

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	26	1	05/18/17	05/19/17	KWG1704041	
C25 - C36 RRO	ND U	130	1	05/18/17	05/19/17	KWG1704041	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	70	50-150	05/19/17	Acceptable
n-Triacontane	70	50-150	05/19/17	Acceptable

Comments:

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: K1704543

Date Collected: NA
Date Received: NA

Diesel and Residual Range Organics

Sample Name: Method Blank
Lab Code: KWG1704041-5

Extraction Method: EPA 3550B

Basis: Dry
Level: Low

Units: mg/Kg

Analysis Method: AK 102.0/103.0

			Dilution	n Date	Date	Extraction	
Analyte Name	Result (Q MR	L Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	U 20	1	05/18/17	05/19/17	KWG1704041	
C25 - C36 RRO	ND U	U 99	1	05/18/17	05/19/17	KWG1704041	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Cerphenyl Cerphenyl	85	50-150	05/19/17	Acceptable
n-Triacontane	80	50-150	05/19/17	Acceptable

Comments:

 Printed:
 05/25/2017
 14:30:16
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 Page 56 of 59
 SuperSet Reference:
 RR198529

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704543

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Surrogate Recovery Summary
Diesel and Residual Range Organics

Extraction Method:EPA 3550BUnits:PercentAnalysis Method:AK 102.0/103.0Level:Low

Sample Name	Lab Code	Sur1	Sur2
SED17-07	K1704543-001	68	66
SED17-12	K1704543-002	89	89
SED17-01	K1704543-004	85	86
SED17-03	K1704543-005	70	71
SED17-29	K1704543-006	94	96
SED17-10	K1704543-007	71	72
SED17-15	K1704543-008	68	69
SED17-27	K1704543-009	70	70
Method Blank	KWG1704041-5	85	80
SED17-07MS	KWG1704041-1	87	86
SED17-07DMS	KWG1704041-2	91	90
Lab Control Sample	KWG1704041-3	89	86
Duplicate Lab Control Sample	KWG1704041-4	89	86

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl 50-150 Sur2 = n-Triacontane 50-150

Results flagged with an asterisk (*) indicate values outside control criteria. Results flagged with a pound (#) indicate the control criteria is not applicable.

 Printed:
 05/25/2017
 14:30:20
 Form 2A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form2.rpt
 Page
 57 of 59
 SuperSet Reference:
 RR198529

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment Service Request: K1704543 **Date Extracted:** 05/18/2017

Date Analyzed: 05/19/2017

Matrix Spike/Duplicate Matrix Spike Summary **Diesel and Residual Range Organics**

Sample Name: Lab Code:

SED17-07 K1704543-001

EPA 3550B

Analysis Method:

Extraction Method:

AK 102.0/103.0

Units: mg/Kg Basis: Dry

Level: Low

Extraction Lot: KWG1704041

SED17-07MS KWG1704041-1

SED17-07DMS KWG1704041-2

Matrix Spike

Duplicate Matrix Spike

	Sample		Spike			Spike		%Rec		RPD
Analyte Name	Result	Result	Amount	%Rec	Result	Amount	%Rec	Limits	RPD	Limit
C10 - C25 DRO	ND	298	318	94	302	317	95	60-140	1	50
C25 - C36 RRO	ND	157	159	99	162	158	102	60-140	3	50

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 05/25/2017 Form 3A - Organic Page 1 of 14:30:25 SuperSet Reference: RR198529 Page 58 of 59

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Sediment

Service Request: K1704543 **Date Extracted:** 05/18/2017

Date Analyzed: 05/19/2017

Lab Control Spike/Duplicate Lab Control Spike Summary
Diesel and Residual Range Organics

 Extraction Method:
 EPA 3550B
 Units: mg/Kg

 Analysis Method:
 AK 102.0/103.0
 Basis: Dry

Level: Low

Extraction Lot: KWG1704041

Lab Control Sample KWG1704041-3

Duplicate Lab Control Sample KWG1704041-4

Lab Control Spike Duplicate Lab Control Spike

		Spike			Spike		%Rec		RPD
Analyte Name	Result	Amount	%Rec	Result	Amount	%Rec	Limits	RPD	Limit
C10 - C25 DRO	248	267	93	241	267	90	75-125	3	20
C25 - C36 RRO	113	133	85	111	133	83	60-120	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Printed:
 05/25/2017
 14:30:29
 Form 3C - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form3DLC.rpt
 Page 59 of 59
 SuperSet Reference:
 RR198529

ALS Environmental
ALS Group USA, Corp
1317 South 13th Avenue
Kelso, WA 98626

T:+1 360 577 7222

F:+1 360 636 1068 www.alsglobal.com

June 07, 2017

Analytical Report for Service Request No: K1704544

Tamra Reynolds Golder Associates Ltd. Suite 201C, 170 Titanium Way Whitehorse, YT Y1A0G1

RE: Skagway-Sediment 2017 / 1657231

Dear Tamra,

Enclosed are the results of the sample(s) submitted to our laboratory May 08, 2017 For your reference, these analyses have been assigned our service request number **K1704544**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsqlobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Howard Holmes Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

General Chemistry

Metals

Diesel and Residual Range Organics

Polynuclear Aromatic Hydrocarbons

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- \boldsymbol{Q} $\;\;$ See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-	
	data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator	
Oregon – DEQ (NELAP)	yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS ENVIRONMENTAL

Client:Golder AssociatesService Request No.:K1704544Project:Skagway-Sediment 2017/ 1657231Date Received:05/08/17

Sample Matrix: Water

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Three water samples were received for analysis at ALS Environmental on 05/08/17. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

No anomalies associated with the analysis of these samples were observed.

Total Metals

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) for the replicate analysis of Aluminum in the Batch QC sample was outside the normal ALS control limits. The variability in the results was attributed to particulate material in the sample. The associated QA/QC results (e.g. control sample, matrix spike, method blank, calibration standards, etc.) indicate the analysis was in control. No further corrective action was appropriate.

No other anomalies associated with the analysis of these samples were observed.

Diesel and Residual Range Organics by Method AK102/ AK103

Sample Notes and Discussion:

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

No other anomalies associated with the analysis of these samples were observed.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270

No anomalies associated with the analysis of these samples were observed.

Approved by Approved by

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here (lab use only)

coc Number: 15 - 594997

Page of H

Environmental

www.alsolobal.com

Canada Toll Free: 1 800 668 9878

				1900/1904	er en en en en en en en en en en en en en		A VAR MA			MARKET					
Report To	Contact and company name below will a	ppear on the final report	Report Form	at / Distribution		Select Se	vice Level	Below - Piea	se confirm	all E&P T/	lTs with you	ır AM - surchar	ges will apply	,	
Company:	Go der associates LTD	Se	lect Report Format: PDF	EXCEL _	EDD (DIGITAL)		Regu	iar [R]	Z	Standard	TAT if rece	ived by 3 pm	- business d	ays - no surch	arges apply
Contact:	Tamra Reynolds	Qu	Quality Control (QC) Report with Report YES NO				4 da	y [P4]	1		ţ	1 Busine	ess day [E	<u>-1</u>]	
Phone:	1-867-34-4468		Compare Results to Criteria on Report		f box checked	PIORIT neess (3 da	/ [P3]			Sa Sa	ıme Day, V	Veekend :	or Statuto	ry 🗀
	Company address below will appear on the final	l report Se	lect Distribution: 🔑 EMA	IL MAIL [FAX	a gr	2 da	/ [P2]			¥ .	hr	oliday (E0	<i>i</i>]	<u></u>
Street:	170 - 201 C Tilayla	em Way En	nail 1 or Fax 3 R F Y UOLD	s e golder	com	: 5	Date and	Time Requ	ired for a	il E&P TA	Ts:				
City/Province:	White horse, Yukon		ail 2 PADDY _ MCM	ANU 50 90	Br. com	For tests t	hat can not	be perform	d accordi			selected, you v	vili be contact	ed.	
Postal Code:	41A 061	Em	ail3 VMERCER (qu	liber 100m							nalysis	Request			
nvoice To	Same as Report To YES	NO		istribution			Indic	ate Filtered	(F), Presi	erved (P) o	л Filtered a	and Preserved	I (F/P) below		
	Copy of Invoice with Report YES	□ NO Sel	ect Invoice Distribution:	EMAIL MAIL	FAX	ــــــــــــــــــــــــــــــــــــــ									
Company:		Em	ail 1 or Fax Same 45	PROGRA				5							
Contact:		Em	ail 2	<u> </u>		_		(<u>8</u>	_		1				ñ
	Project Information	A.A.	Oil and Gas Require	ed Fields (client us	e)]	- 1	્રિક્			ļ	1			Containers
LS Account #		AFE	/Cost Center:	PO#		1 1	_	1, 4	3					İ	ţ
ob#: <i>165</i>	7331	Majo	r/Minor Code:	Routing Code:		1	V]	أسا				1	of C
O/AFE:		Red	uisitioner:				1	کج اح	1	ÆΨ				ļ	ber
SD:		Loc	ation:			J		1 \$	<u>↓</u>				1 1	ĺ	E
ALS Lab Wo	rk Order # (lab use only)	ALS	Contact: Told Payfel	Sampler: PM/	13M	<u></u>	LANS FANS		0	5/5				-	
ALS Sample # (lab use only)	· ·	n and/or Coordinates appear on the report)	Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Moleis	TANS SANT		DRO	AUS					
	SED17-07		04-447-17	10:00	Sections	_	x X	X					77		14
	SED17-12			19:00	f		1	-		<u>-</u>	_	+	11	\dashv	 /
	Dur-3			13:00				++-			+	+	1		11
						 		+- -				+	+		
	SED 17-01	- 		14:40								}	++		╆╂
	ED17-03			16:00				Щ-					$\bot \bot$		↓ ↓
	SED17-24			1800									$\perp \perp \perp$		Ш
i	SED17-10		05-MAY47	9:00											<u> </u>
	SED 17 - 15		j	10:00					ļ						П
	SED17 - 27		1	13:00	1		J	1							1
	Travel Blank		04-444-17		witer		1	1-1	Ť						F .
	FB-1		1	18:00	1			┼──┼			1		1	_	
	EB-1			18:00		4 1		+			+-	 	+		1 1
	KD T							CAN	DI E C	NDITE	N AS D	ECEIVED (/lah uso r	nly)	
Drinking	Water (DW) Samples¹ (client use)	Special Instructions / Specif	y Criteria to add on report by click (electronic COC only)	ing on the drop-dow	n list below	Frozen	gillian digita	- SA	(II. leaker that h		F Observ			No	
•	from a Regulated DW System?	Please endine imuse	1 samples talon 1	tion asout En	melels	lce Packs		ice Ci	bes	☐ Ci	ıstody se	al intact	Yes	No	
YES	₩ NO	AN PANS Conclas	d samples, 5-day to	C TAN	المتال	Cooling In									
e samples for hu	man drinking water use?	D. W. J. Charles	NO A LACKE	Jank Wh.	V-A+ T		INITIAL C	OOLER TE	MPERATI	JRES °C	ESPAÇIOS.	Fit	NAL COOLE	R TEMPERAT	/URES ℃
YES	No	ton directions ton	PRO ad AUS/SEI					<u></u>				<u> </u>			
	SHIPMENT RELEASE (client use)	3000		T RECEPTION (lab			34 1.55		FIN	VAL SH	PMENT	RECEPTION	ON (lab us		
eleased by:	Date: 05-MA	7-17 Time: Rece	ived by:	Date: 5/8/14	-	0840	Rece	eived by:)	Date:			Time:
EED TO BACK D	ACE FOR ALE LOCATIONS AND SAMPLING INS	OPMATION U.S.	- January Indiana	ELLABORATORY CO	DV VELLOW	CLIENT	OPV								OCTOBER 2015 FRONT

ailure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

7/25/16

AL	S												·	c H	<u>}</u>
	Λ	ر د ا		Cooler	Rec	eipt ar	ıd Pr	eserv	ation]	Form		.100	. 1		
lient	(1)	0000						Servic	e Requ	est <i>KI</i>	7	0454	1_		
leceived:	5/8/17		Opened:_	5/8/1	7	B	y:	<u> </u>	U	Inloade	d: 5/8	117	Ву:		
. Sample	es were rece	ived via?	USPS	Fed Ex		U PS	DH	7 1	PDX (Couri	ar H	and Delivered			
•	es were rece			Cooler	Bo		Envel		Othe			ma Denverea	,	NA.	
•	custody seals		_	NA (7	N		-		and wh	iere?	me ho	n t	117.	
If pres	ent, were cu	stody seals	intact?	G	D	N	_				igned an			\mathscr{G}	N
Raw	Corrected.	Raw	Corrected	Corr.	The	mome	ter	Coole	r/COC ID			Tracking N	umbe		-23
Cooler Temp	Cooler Temp	7 H	Jemp Blank	Factor	12	2 3			((NA)	<u> Perilipaga</u>			N/	File
-2.1	-22	Fores	-	-611	3	72							***		<u> </u>
		7													
					+								·····		
- Dookir	ng material:	Incarte	Raggias	Subble II		Cal Pa	oke)	Wat Ia	a Den	Ica 9	Sleeves	bexes			<u></u>
	custody pap				_		CNN	rrei IC	e Diy	ice s	neeves	une)	NA	(Y)	N
	samples rece	• •		-			ו פנת	ndinati	in that	iabla ba	low		NA	§ (-	N
. Were	samples lect	_	d condition licable, tis				•		****			Thawed	INA	\mathbf{U}	iN
. Were a	all sample la		· ·	•						J			NA	P	N
3. Did all	l sample labe	els and tags	agree with	custody p	apers	Indice	ate ma	ior disc	crepanc	ies in th	e table o	n page 2.	NA	Ŏ.	N
). Were	appropriate	bottles/cont	ainers and	volumes r	eceive	d for th	e tests	indica	ted?				NA	<u> </u>	N
0. Were	the pH-pres	served bottle	es (see SMC	GEN SOP) rece	ved at	the app	ropria	te pH?	Indicate	e in the to	ıble below	NA	Θ	N
11. Were	VOA vials	received wi	thout head	space? In	dicate	in the t	able b	elow.					(NA)	Y	N
12. Was	C12/Res neg	gative?											(NA)	Y	N
	Sample ID o	n Bottle		i sinjendi prem	Samj	le ID or	COC			<u> </u>		Identified by:			
															
e Arment	Declaración	39. Au. 71	Bottle	Count	Out of	Head-					Volume	Reagent Lo	ot .		
	Sample II)				space	Broke	рН	Rea	gent	added	Number		Initials T	ime
		·····									 				
								-				<u> </u>			
			_		ŗ							 			
		<u>.</u>						ļ			 	 			
N7_ 4			1-4		L	<u></u>			L	مختضيدين	<u></u>	<u></u>			<u> </u>
votes, D	discrepanci	es, & Keso	uuuons:							(CT			· · · · · · · · · · · · · · · · · · ·		
			<u> </u>										~~~		
											7 1				

Page 10 of 51

Page_____of____

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Water

Analysis Method:

9030M

Prep Method: EPA 9030B Modified

Service Request: K1704544

Date Collected: 05/4/17

Date Received: 05/8/17

Units: mg/L Basis: NA

Sulfide, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Travel Blank	K1704544-001	ND U	0.10	1	05/11/17 17:55	5/11/17	
FB-1	K1704544-002	ND U	0.10	1	05/11/17 17:55	5/11/17	
EB-1	K1704544-003	ND U	0.10	1	05/11/17 17:55	5/11/17	
Method Blank	K1704544-MB1	ND U	0.10	1	05/11/17 17:55	5/11/17	

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704544

Skagway-Sediment 2017/1657231

Date Collected: 05/04/17

Sample Matrix: Water **Date Received:** 05/08/17

Date Analyzed: 05/11/17

Replicate Sample Summary General Chemistry Parameters

Sample Name:

FB-1

Units: mg/L

Lab Code:

Analyte Name

Sulfide, Total

Project

K1704544-002

Basis: NA

Duplicate Sample

K1704544-

Analysis Method

9030M

MRL

0.10

Sample Result

ND U

002DUP

ND U

Result

Average NC

RPD NC

Superset Reference:17-0000421830 rev 00

RPD Limit 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/24/2017 12:10:32 PM

QA/QC Report

Client: Golder Associates, Inc.

Skagway-Sediment 2017/1657231

Sample Matrix:

Project:

Water

Service Request:

K1704544

Date Collected:

05/04/17

Date Received:

05/08/17 05/11/17

Date Analyzed: **Date Extracted:**

05/11/17

Duplicate Matrix Spike Summary

Sulfide, Total

Sample Name:

FB-1

Units: Basis: mg/L NA

Lab Code:

K1704544-002

Analysis Method:

9030M

Prep Method:

EPA 9030B Modified

Matrix Spike

Duplicate Matrix Spike

K1704544-002MS

K1704544-002DMS

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Sulfide, Total	ND U	68	72	94	74	72	102	34-166	8	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/24/2017 12:10:32 PM Superset Reference: 17-0000421830 rev 00

QA/QC Report

Client: Golder Associates, Inc.

Service Request: K1704544

Project:

Skagway-Sediment 2017/1657231

Date Analyzed: 05/11/17

Sample Matrix:

Water

Date Extracted:

05/11/17

Lab Control Sample Summary

Sulfide, Total

Analysis Method:

Prep Method:

9030M

EPA 9030B Modified

,

Units: mg/L

Basis:

NA

Analysis Lot:

545389

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1704544-LCS1	1.17	1.44	81	55-130

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Water

Analysis Method: 9060

Prep Method: None Service Request: K1704544

Date Collected: 05/4/17 **Date Received:** 05/8/17

Units: mg/L

Basis: NA

Carbon, Total Organic

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
Travel Blank	K1704544-001	ND U	0.50	1	05/11/17 18:05	
FB-1	K1704544-002	ND U	0.50	1	05/11/17 19:00	
EB-1	K1704544-003	ND U	0.50	1	05/11/17 20:09	
Method Blank	K1704544-MB1	ND U	0.50	1	05/11/17 16:18	
Method Blank	K1704544-MB2	ND U	0.50	1	05/12/17 02:12	

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Water

Service Request: K1704544

Date Collected: 5/4/17

Date Received: 5/8/17

Date Analyzed: 5/11/17

Replicate Sample Summary General Chemistry Parameters

 Sample Name:
 Travel Blank
 Units: mg/L

 Lab Code:
 K1704544-001
 Basis: NA

Analytical Method: 9060

Analyte Name	MRL	Sample Result	Duplicate Sample Result	Triplicate Sample Result	Quadruplicate Sample Result	Average	RSD	RSI Lim
Carbon, Total Organic	0.50	ND U	ND U	ND U	ND U	NC	NC	20

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Date Collected: 5/4/17 **Sample Matrix:** Water **Date Received:** 5/8/17

Date Analyzed: 5/11/17

Service Request: K1704544

Replicate Sample Summary General Chemistry Parameters

Sample Name: FB-1

Units: mg/L Lab Code: K1704544-002 Basis: NA

Analytical Method: 9060

Analyte Name	MRL	Sample Result	Duplicate Sample Result	Triplicate Sample Result	Quadruplicate Sample Result	Average	RSD	RSI Lim
Carbon, Total Organic	0.50	ND U	ND U	ND U	ND U	NC	NC	20

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Water

Date Collected: 5/4/17 Date Received: 5/8/17 Date Analyzed: 5/11/17

Service Request: K1704544

Units: mg/L

Basis: NA

Replicate Sample Summary General Chemistry Parameters

Sample Name: EB-1

Lab Code: K1704544-003

Analytical Method: 9060

Analyte Name	MRL	Sample Result	Duplicate Sample Result	Triplicate Sample Result	Quadruplicate Sample Result	Average	RSD	RS1 Lim
Carbon, Total Organic	0.50	ND U	ND U	ND U	ND U	NC	NC	20

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix:

Water

Service Request:

K1704544

Date Collected:

05/04/17

Date Received: Date Analyzed: 05/08/17 05/11/17

Date Extracted:

NA

Matrix Spike Summary

Carbon, Total Organic

Sample Name: FB-1

K1704544-002 Lab Code:

Analysis Method: Prep Method:

9060 None **Units:**

mg/L NA

Basis:

Matrix Spike

K1704544-002MS

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Carbon, Total Organic	ND U	27.0	25.0	108	83-117

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 5/24/2017 12:10:35 PM Superset Reference: 17-0000421830 rev 00

QA/QC Report

Client: Golder Associates, Inc.

Service Request: K1704544

Project: Skagway-Sediment 2017/1657231

Date Analyzed:

05/11/17

Sample Matrix:

Water

Date Extracted:

NA

Lab Control Sample Summary

Carbon, Total Organic

Analysis Method: 9060 **Prep Method:** None

Units:

mg/L

Basis:

NA

Analysis Lot:

545392

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1704544-LCS1	25.7	24.0	107	83-117
Lab Control Sample	K1704544-LCS2	24.5	24.0	102	83-117

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231 **Date Collected:** 05/04/17 18:00

Sample Matrix: Water

Date Received: 05/08/17 08:40

Service Request: K1704544

Sample Name: Travel Blank Basis: NA

Lab Code: K1704544-001

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	ND U	ug/L	11	1	05/18/17 11:59	05/16/17	
Antimony	6020A	ND U	ug/L	0.050	1	06/02/17 19:39	05/16/17	
Arsenic	6020A	ND U	ug/L	0.50	1	06/02/17 19:39	05/16/17	
Barium	6010C	ND U	ug/L	4.2	1	05/18/17 11:59	05/16/17	
Beryllium	6020A	ND U	ug/L	0.020	1	06/02/17 19:39	05/16/17	
Cadmium	6020A	ND U	ug/L	0.020	1	06/02/17 19:39	05/16/17	
Calcium	6010C	ND U	ug/L	21	1	05/18/17 11:59	05/16/17	
Chromium	6020A	ND U	ug/L	0.20	1	06/02/17 19:39	05/16/17	
Cobalt	6020A	ND U	ug/L	0.020	1	06/02/17 19:39	05/16/17	
Copper	6020A	ND U	ug/L	0.10	1	06/02/17 19:39	05/16/17	
Iron	6010C	ND U	ug/L	21	1	05/18/17 11:59	05/16/17	
Lead	6020A	ND U	ug/L	0.020	1	06/02/17 19:39	05/16/17	
Magnesium	6010C	ND U	ug/L	5.3	1	05/18/17 11:59	05/16/17	
Manganese	6010C	1.4	ug/L	1.1	1	05/18/17 11:59	05/16/17	
Mercury	7470A	ND U	ug/L	0.20	1	05/18/17 11:39	05/17/17	
Nickel	6020A	ND U	ug/L	0.20	1	06/02/17 19:39	05/16/17	
Potassium	6010C	ND U	ug/L	420	1	05/18/17 11:59	05/16/17	
Selenium	6020A	ND U	ug/L	1.0	1	06/02/17 19:39	05/16/17	
Silver	6020A	ND U	ug/L	0.020	1	06/02/17 19:39	05/16/17	
Sodium	6010C	ND U	ug/L	210	1	05/18/17 11:59	05/16/17	
Thallium	6020A	ND U	ug/L	0.020	1	06/02/17 19:39	05/16/17	
Vanadium	6020A	ND U	ug/L	0.20	1	06/02/17 19:39	05/16/17	
Zinc	6010C	ND U	ug/L	4.2	1	05/18/17 11:59	05/16/17	

Printed 06/05/17 10:27:29 AM Superset Reference:

Analytical Report

Service Request: K1704544

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231 **Date Collected:** 05/04/17 18:00

Sample Matrix: Water Date Received: 05/08/17 08:40

Sample Name: FB-1 Basis: NA

Lab Code: K1704544-002

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	ND U	ug/L	11	1	05/18/17 12:01	05/16/17	
Antimony	6020A	ND U	ug/L	0.050	1	06/02/17 19:44	05/16/17	
Arsenic	6020A	ND U	ug/L	0.50	1	06/02/17 19:44	05/16/17	
Barium	6010C	ND U	ug/L	4.2	1	05/18/17 12:01	05/16/17	
Beryllium	6020A	ND U	ug/L	0.020	1	06/02/17 19:44	05/16/17	
Cadmium	6020A	ND U	ug/L	0.020	1	06/02/17 19:44	05/16/17	
Calcium	6010C	71	ug/L	21	1	05/18/17 12:01	05/16/17	
Chromium	6020A	ND U	ug/L	0.20	1	06/02/17 19:44	05/16/17	
Cobalt	6020A	ND U	ug/L	0.020	1	06/02/17 19:44	05/16/17	
Copper	6020A	ND U	ug/L	0.10	1	06/02/17 19:44	05/16/17	
Iron	6010C	ND U	ug/L	21	1	05/18/17 12:01	05/16/17	
Lead	6020A	ND U	ug/L	0.020	1	06/02/17 19:44	05/16/17	
Magnesium	6010C	11.3	ug/L	5.3	1	05/18/17 12:01	05/16/17	
Manganese	6010C	4.2	ug/L	1.1	1	05/18/17 12:01	05/16/17	
Mercury	7470A	ND U	ug/L	0.20	1	05/18/17 11:44	05/17/17	
Nickel	6020A	ND U	ug/L	0.20	1	06/02/17 19:44	05/16/17	
Potassium	6010C	ND U	ug/L	420	1	05/18/17 12:01	05/16/17	
Selenium	6020A	ND U	ug/L	1.0	1	06/02/17 19:44	05/16/17	
Silver	6020A	ND U	ug/L	0.020	1	06/02/17 19:44	05/16/17	
Sodium	6010C	ND U	ug/L	210	1	05/18/17 12:01	05/16/17	
Thallium	6020A	ND U	ug/L	0.020	1	06/02/17 19:44	05/16/17	
Vanadium	6020A	ND U	ug/L	0.20	1	06/02/17 19:44	05/16/17	
Zinc	6010C	ND U	ug/L	4.2	1	05/18/17 12:01	05/16/17	

Printed 06/05/17 10:27:30 AM Superset Reference:

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231 **Date Collected:** 05/04/17 18:00

Sample Matrix: Water

Date Received: 05/08/17 08:40

Service Request: K1704544

Sample Name: EB-1 Basis: NA

Lab Code: K1704544-003

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	26	ug/L	11	1	05/18/17 12:22	05/16/17	
Antimony	6020A	ND U	ug/L	0.050	1	06/02/17 19:48	05/16/17	
Arsenic	6020A	ND U	ug/L	0.50	1	06/02/17 19:48	05/16/17	
Barium	6010C	ND U	ug/L	4.2	1	05/18/17 12:22	05/16/17	
Beryllium	6020A	ND U	ug/L	0.020	1	06/02/17 19:48	05/16/17	
Cadmium	6020A	ND U	ug/L	0.020	1	06/02/17 19:48	05/16/17	
Calcium	6010C	98	ug/L	21	1	05/18/17 12:22	05/16/17	
Chromium	6020A	ND U	ug/L	0.20	1	06/02/17 19:48	05/16/17	
Cobalt	6020A	ND U	ug/L	0.020	1	06/02/17 19:48	05/16/17	
Copper	6020A	1.62	ug/L	0.10	1	06/02/17 19:48	05/16/17	
Iron	6010C	43	ug/L	21	1	05/18/17 12:22	05/16/17	
Lead	6020A	0.424	ug/L	0.020	1	06/02/17 19:48	05/16/17	
Magnesium	6010C	228	ug/L	5.3	1	05/18/17 12:22	05/16/17	
Manganese	6010C	1.2	ug/L	1.1	1	05/18/17 12:22	05/16/17	
Mercury	7470A	ND U	ug/L	0.20	1	05/18/17 11:45	05/17/17	
Nickel	6020A	ND U	ug/L	0.20	1	06/02/17 19:48	05/16/17	
Potassium	6010C	ND U	ug/L	420	1	05/18/17 12:22	05/16/17	
Selenium	6020A	ND U	ug/L	1.0	1	06/02/17 19:48	05/16/17	
Silver	6020A	ND U	ug/L	0.020	1	06/02/17 19:48	05/16/17	
Sodium	6010C	1890	ug/L	210	1	05/18/17 12:22	05/16/17	
Thallium	6020A	ND U	ug/L	0.020	1	06/02/17 19:48	05/16/17	
Vanadium	6020A	ND U	ug/L	0.20	1	06/02/17 19:48	05/16/17	
Zinc	6010C	ND U	ug/L	4.2	1	05/18/17 12:22	05/16/17	

Printed 06/05/17 10:27:30 AM Superset Reference:

Analytical Report

Client: Golder Associates, Inc. Service Request: K1704544

Project: Skagway-Sediment 2017/1657231 Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: KQ1705866-02

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6010C	ND U	ug/L	11	1	05/18/17 11:54	05/16/17	
Barium	6010C	ND U	ug/L	4.2	1	05/18/17 11:54	05/16/17	
Calcium	6010C	ND U	ug/L	21	1	05/18/17 11:54	05/16/17	
Iron	6010C	ND U	ug/L	21	1	05/18/17 11:54	05/16/17	
Magnesium	6010C	ND U	ug/L	5.3	1	05/18/17 11:54	05/16/17	
Manganese	6010C	ND U	ug/L	1.1	1	05/18/17 11:54	05/16/17	
Potassium	6010C	ND U	ug/L	420	1	05/18/17 11:54	05/16/17	
Sodium	6010C	ND U	ug/L	210	1	05/18/17 11:54	05/16/17	
Zinc	6010C	ND U	ug/L	4.2	1	05/18/17 11:54	05/16/17	

Printed 06/05/17 10:27:31 AM Superset Reference:

Analytical Report

Client: Golder Associates, Inc. Service Request: K1704544

Project:Skagway-Sediment 2017/1657231Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name: Method Blank Basis: NA

Lab Code: KQ1705868-01

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Antimony	6020A	ND U	ug/L	0.050	1	06/02/17 18:24	05/16/17	
Arsenic	6020A	ND U	ug/L	0.50	1	06/02/17 18:24	05/16/17	
Beryllium	6020A	ND U	ug/L	0.020	1	06/02/17 18:24	05/16/17	
Cadmium	6020A	ND U	ug/L	0.020	1	06/02/17 18:24	05/16/17	
Chromium	6020A	ND U	ug/L	0.20	1	06/02/17 18:24	05/16/17	
Cobalt	6020A	ND U	ug/L	0.020	1	06/02/17 18:24	05/16/17	
Copper	6020A	ND U	ug/L	0.10	1	06/02/17 18:24	05/16/17	
Lead	6020A	ND U	ug/L	0.020	1	06/02/17 18:24	05/16/17	
Nickel	6020A	ND U	ug/L	0.20	1	06/02/17 18:24	05/16/17	
Selenium	6020A	ND U	ug/L	1.0	1	06/02/17 18:24	05/16/17	
Silver	6020A	ND U	ug/L	0.020	1	06/02/17 18:24	05/16/17	
Thallium	6020A	ND U	ug/L	0.020	1	06/02/17 18:24	05/16/17	
Vanadium	6020A	ND U	ug/L	0.20	1	06/02/17 18:24	05/16/17	

Printed 06/05/17 10:27:31 AM Superset Reference:

Analytical Report

Client: Service Request: K1704544 Golder Associates, Inc.

Date Collected: NA **Project:** Skagway-Sediment 2017/1657231 Date Received: NA

Sample Matrix: Water

Sample Name: Method Blank Basis: NA

Lab Code: KQ1705871-03

Total Metals

Analysis Analyte Name Method Result Units MRL Dil. **Date Analyzed** Date Extracted Q 7470A Mercury ND U ug/L 0.20 05/18/17 11:36 05/17/17

Printed 06/05/17 10:27:32 AM Superset Reference:

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc.

Service Request: K1704544 Date Collected: NA

Project Skagway-Sediment 2017/1657231

Sample Matrix: **Date Received:** NA Water

Date Analyzed: 05/18/17

Replicate Sample Summary

Total Metals

Sample Name: Units: ug/L Batch QC Lab Code: K1704651-001 Basis: NA

	Analysis		Sample	Duplicate Sample KQ1705866-03			
Analyte Name	Method	MRL	Result	Result	Average	RPD	RPD Limit
Aluminum	6010C	11	191	240	216	23 *	20
Barium	6010C	4.2	61.2	61.4	61.3	<1	20
Calcium	6010C	21	59800	59900	59900	<1	20
Iron	6010C	21	652	660	656	1	20
Magnesium	6010C	5.3	26900	27200	27000	1	20
Manganese	6010C	1.1	670	673	672	<1	20
Potassium	6010C	420	2180	2170	2180	<1	20
Sodium	6010C	210	18400	18600	18500	<1	20
Zinc	6010C	4.2	13.2	13.3	13.3	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 06/05/17 10:27:31 AM Superset Reference:

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc.

Inc. Service Request: K1704544

Project Skagway-Sediment 2017/1657231

Date Collected: NA

Date Received: NA

Sample Matrix: Water

Date Analyzed: 06/02/17

Replicate Sample Summary Total Metals

 Sample Name:
 Batch QC
 Units: ug/L

 Lab Code:
 K1704651-001
 Basis: NA

				Duplicate Sample			
	Analysis		Sample	KQ1705868-03			
Analyte Name	Method	MRL	Result	Result	Average	RPD	RPD Limit
Antimony	6020A	0.050	ND U	ND U	ND	-	20
Arsenic	6020A	0.50	ND U	ND U	ND	-	20
Beryllium	6020A	0.020	0.164	0.176	0.170	7	20
Cadmium	6020A	0.020	0.093	0.086	0.089	7	20
Chromium	6020A	0.20	ND U	ND U	ND	-	20
Cobalt	6020A	0.020	7.62	8.12	7.87	6	20
Copper	6020A	0.10	1.05	1.10	1.07	5	20
Lead	6020A	0.020	0.033	0.036	0.035	8	20
Nickel	6020A	0.20	9.19	9.61	9.40	4	20
Selenium	6020A	1.0	ND U	ND U	ND	-	20
Silver	6020A	0.020	ND U	ND U	ND	-	20
Thallium	6020A	0.020	ND U	ND U	ND	-	20
Vanadium	6020A	0.20	ND U	ND U	ND	_	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 06/05/17 10:27:32 AM Superset Reference:

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc. **Service Request:** K1704544

Project Skagway-Sediment 2017/1657231 Date Collected: NA

Sample Matrix: Water Date Received: NA

Date Analyzed: 05/18/17

Replicate Sample Summary

Total Metals

Sample Name: Batch QC Units: ug/L Lab Code: K1704690-001

Basis: NA

Duplicate Sample KQ1705871-01

Analysis Sample Method Result Result **RPD** RPD Limit **Analyte Name MRL** Average 7470A ND U ND U 20 Mercury 0.20 ND

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 06/05/17 10:27:32 AM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Skagway-Sediment 2017/1657231

Sample Matrix: Water

Project:

Service Request:

K1704544

Date Collected:

N/A

Date Received:

N/A 05/18/17

Date Analyzed: Date Extracted:

05/16/17

Matrix Spike Summary Total Metals

Sample Name: Batch QC

Units: ug/L Basis: NA

Lab Code: K1704651-001

Analysis Method: 6010C

Prep Method: EPA (

EPA CLP-METALS ILM04.0

Matrix Spike KQ1705866-04

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	191	2040	2000	92	75-125
Aluminum	191	2220	2000	101	75-125
Barium	61.2	1170	1000	111	75-125
Calcium	59800	70000	10000	102 #	75-125
Iron	652	1620	1000	97	75-125
Magnesium	26900	36800	10000	98	75-125
Manganese	670	1160	500	98	75-125
Potassium	2180	12000	10000	99	75-125
Sodium	18400	28700	10000	103	75-125
Zinc	13.2	505	500	98	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 06/05/17 10:27:31 AM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Skagway-Sediment 2017/1657231

Sample Matrix: Water

Project:

Service Request:
Date Collected:

K1704544

Date Received:

N/A N/A

Date Analyzed:

06/2/17

Date Extracted:

05/16/17

Matrix Spike Summary Total Metals

Sample Name: Batch QC

Units: u
Basis: 1

ug/L NA

Lab Code: K1704651-001 **Analysis Method:** 6020A

Prep Method:

EPA CLP-METALS ILM04.0

Matrix Spike KQ1705868-04

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Antimony	ND U	52.2	50.0	104	75-125
Arsenic	ND U	54.4	50.0	109	75-125
Beryllium	0.164	2.53	2.50	95	75-125
Cadmium	0.093	25.1	25.0	100	75-125
Chromium	ND U	10.9	10.0	108	75-125
Cobalt	7.62	34.3	25.0	107	75-125
Copper	1.05	13.7	12.5	101	75-125
Lead	0.033	47.3	50.0	95	75-125
Nickel	9.19	34.6	25.0	102	75-125
Selenium	ND U	54.8	50.0	110	75-125
Silver	ND U	12.2	12.5	97	75-125
Thallium	ND U	48.5	50.0	97	75-125
Vanadium	ND U	27.8	25.0	111	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 06/05/17 10:27:32 AM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc. **Service Request:**

K1704544

Project:

Skagway-Sediment 2017/1657231

Date Collected: Date Received:

N/A

Sample Matrix:

Water

Date Analyzed:

N/A 05/18/17

Date Extracted:

05/17/17

Matrix Spike Summary

Total Metals

Sample Name: Batch QC **Units: Basis:** ug/L NA

Lab Code: **Analysis Method: Prep Method:**

K1704690-001

7470A Method

Matrix Spike KQ1705871-02

% Rec Analyte Name Sample Result Spike Amount % Rec Limits Result Mercury ND U 4.90 5.00 96

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 06/05/17 10:27:32 AM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Water

Lab Control Sample Summary Total Metals

> Units:ug/L Basis:NA

Service Request: K1704544

Date Analyzed: 05/18/17

Lab Control Sample

KQ1705866-01

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	6010C	5500	5000	110	80-120
Barium	6010C	5770	5000	115	80-120
Calcium	6010C	13500	12500	108	80-120
Iron	6010C	2620	2500	105	80-120
Magnesium	6010C	12700	12500	102	80-120
Manganese	6010C	1300	1250	104	80-120
Potassium	6010C	13100	12500	105	80-120
Sodium	6010C	13300	12500	106	80-120
Zinc	6010C	1320	1250	105	80-120

Printed 06/05/17 10:27:31 AM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Water

Lab Control Sample Summary Total Metals

Units:ug/L Basis:NA

Service Request: K1704544

Date Analyzed: 06/02/17

Lab Control Sample

KQ1705868-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Antimony	6020A	53.5	50.0	107	80-120
Arsenic	6020A	54.4	50.0	109	80-120
Beryllium	6020A	2.76	2.50	110	80-120
Cadmium	6020A	26.5	25.0	106	80-120
Chromium	6020A	11.2	10.0	112	80-120
Cobalt	6020A	27.8	25.0	111	80-120
Copper	6020A	13.8	12.5	110	80-120
Lead	6020A	50.6	50.0	101	80-120
Nickel	6020A	27.5	25.0	110	80-120
Selenium	6020A	58.0	50.0	116	80-120
Silver	6020A	12.8	12.5	103	80-120
Thallium	6020A	50.7	50.0	101	80-120
Vanadium	6020A	27.1	25.0	109	80-120

Printed 06/05/17 10:27:32 AM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix:

Water

Service Request: K1704544

Date Analyzed: 05/18/17

Lab Control Sample Summary Total Metals

Units:ug/L Basis:NA

Lab Control Sample

KQ1705871-04

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Mercury	7470A	5.13	5.00	103	80-120

Printed 06/05/17 10:27:32 AM Superset Reference:

Diesel and Residual Range Organics

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Results

Client: Golder Associates, Inc.

Service Request: K1704544 **Project:** Skagway-Sediment 2017/1657231 **Date Collected:** 05/04/2017 **Date Received:** 05/08/2017 **Sample Matrix:** Water

Diesel and Residual Range Organics

Sample Name: Travel Blank Units: ug/L Lab Code: K1704544-001 Basis: NA **Extraction Method:** EPA 3510C Level: Low

Analysis Method: AK 102.0/103.0

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	740	1	05/15/17	05/16/17	KWG1703880	
C25 - C36 RRO	ND U	460	1	05/15/17	05/16/17	KWG1703880	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	73	50-150	05/16/17	Acceptable
n-Triacontane	70	50-150	05/16/17	Acceptable

Comments:

 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt \\$

Page Printed: 05/24/2017 Form 1A - Organic 1 of 1 14:14:48

SuperSet Reference:

RR198490

Merged

Analytical Results

Client: Golder Associates, Inc.

Service Request: K1704544 **Project:** Skagway-Sediment 2017/1657231 **Date Collected:** 05/04/2017

Date Received: 05/08/2017 **Sample Matrix:** Water

Diesel and Residual Range Organics

Sample Name: FB-1

Units: ug/L Lab Code: K1704544-002 Basis: NA **Extraction Method:** EPA 3510C Level: Low

Analysis Method: AK 102.0/103.0

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	730	1	05/15/17	05/16/17	KWG1703880	
C25 - C36 RRO	ND U	450	1	05/15/17	05/16/17	KWG1703880	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	93	50-150	05/16/17	Acceptable	
n-Triacontane	89	50-150	05/16/17	Acceptable	

Comments:

Page Printed: 05/24/2017 Form 1A - Organic 1 of 1 14:14:51 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt \\$ SuperSet Reference: Merged RR198490

Analytical Results

Client: Golder Associates, Inc.

Service Request: K1704544 **Project:** Skagway-Sediment 2017/1657231 **Date Collected:** 05/04/2017

Date Received: 05/08/2017 **Sample Matrix:** Water

Diesel and Residual Range Organics

Sample Name: EB-1

Units: ug/L Lab Code: K1704544-003 Basis: NA Level: Low

Extraction Method: EPA 3510C **Analysis Method:** AK 102.0/103.0

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	730	1	05/15/17	05/16/17	KWG1703880	
C25 - C36 RRO	ND U	450	1	05/15/17	05/16/17	KWG1703880	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	93	50-150	05/16/17	Acceptable	
n-Triacontane	87	50-150	05/16/17	Acceptable	

Comments:

 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt \\$

Page Printed: 05/24/2017 Form 1A - Organic 1 of 1 14:14:54

SuperSet Reference:

RR198490

Merged

Analytical Results

Service Request: K1704544

Client: Golder Associates, Inc.

Project:Skagway-Sediment 2017/1657231Date Collected:NASample Matrix:WaterDate Received:NA

Diesel and Residual Range Organics

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 KWG1703880-3
 Basis: NA

 Extraction Method:
 EPA 3510C
 Level: Low

Analysis Method: AK 102.0/103.0

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
C10 - C25 DRO	ND U	730	1	05/15/17	05/16/17	KWG1703880	
C25 - C36 RRO	ND U	450	1	05/15/17	05/16/17	KWG1703880	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	91	50-150	05/16/17	Acceptable
n-Triacontane	89	50-150	05/16/17	Acceptable

Comments:

 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt \\$

Printed: 05/24/2017 14:14:57 Form 1A - Organic Page 1 of 1

SuperSet Reference:

RR198490

Merged

QA/QC Report

Service Request: K1704544

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Water

Surrogate Recovery Summary
Diesel and Residual Range Organics

Extraction Method:EPA 3510CUnits:PercentAnalysis Method:AK 102.0/103.0Level:Low

Sample Name	Lab Code	Sur1	Sur2
Travel Blank	K1704544-001	73	70
FB-1	K1704544-002	93	89
EB-1	K1704544-003	93	87
Method Blank	KWG1703880-3	91	89
Lab Control Sample	KWG1703880-1	90	88
Duplicate Lab Control Sample	KWG1703880-2	83	78

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl 50-150 Sur2 = n-Triacontane 50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

 Printed:
 05/24/2017
 14:15:01
 Form 2A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form2.rpt
 SuperSet Reference:
 RR198490

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Water

Service Request: K1704544 **Date Extracted:** 05/15/2017

Date Analyzed: 05/16/2017 -

05/19/2017

Lab Control Spike/Duplicate Lab Control Spike Summary
Diesel and Residual Range Organics

Extraction Method: EPA 3510C
Analysis Method: AK 102.0/103.0

Units: ug/L
Basis: NA
Level: Low

Extraction Lot: KWG1703880

Lab Control Sample KWG1703880-1 Lab Control Spike Duplicate Lab Control Sample KWG1703880-2

Duplicate Lab Control Spike

		Spike		Spike			Spike %Rec				RPD	
Analyte Name	Result	Amount	%Rec	Result	Amount	%Rec	Limits	RPD	Limit			
C10 - C25 DRO	5310	6400	83	4890	6400	76	75-125	8	20			
C25 - C36 RRO	2710	3200	85	2520	3200	79	60-120	7	20			

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Printed:
 05/24/2017
 14:15:08
 Form 3C - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form3DLC.rpt
 SuperSet Reference:
 RR198490

Polynuclear Aromatic Hydrocarbons

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Water Service Request: K1704544 **Date Collected:** 05/04/2017 **Date Received:** 05/08/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: Travel Blank Lab Code: K1704544-001 **Extraction Method:**

Analysis Method:

EPA 3520C 8270D SIM Units: ug/L Basis: NA Level: Low

Dilution Date Date **Extraction** Analyte Name Result O MRL **Factor** Extracted Analyzed Lot Note KWG1703807 Naphthalene ND U 0.020 05/11/17 05/15/17 KWG1703807 2-Methylnaphthalene 0.020 1 ND U 05/11/17 05/15/17 Acenaphthylene ND U 0.020 1 05/11/17 05/15/17 KWG1703807 KWG1703807 Acenaphthene ND U 0.020 1 05/11/17 05/15/17 Dibenzofuran ND U 0.020 1 05/11/17 05/15/17 KWG1703807 Fluorene ND U 0.020 1 05/11/17 05/15/17 KWG1703807 1 KWG1703807 Phenanthrene ND U 0.020 05/11/17 05/15/17 Anthracene ND U 0.020 1 05/11/17 05/15/17 KWG1703807 Fluoranthene ND U 0.020 1 05/11/17 05/15/17 KWG1703807 KWG1703807 Pvrene ND U 0.020 1 05/11/17 05/15/17 Benz(a)anthracene ND U 0.020 1 05/11/17 05/15/17 KWG1703807 Chrysene ND U 0.020 1 05/11/17 05/15/17 KWG1703807 Benzo(b)fluoranthene† ND U 0.020 1 05/11/17 05/15/17 KWG1703807 Benzo(k)fluoranthene ND U 0.020 1 05/11/17 05/15/17 KWG1703807 KWG1703807 Benzo(a)pyrene ND U 0.020 1 05/11/17 05/15/17 Indeno(1,2,3-cd)pyrene 0.020 1 05/15/17 KWG1703807 ND U 05/11/17 0.020 KWG1703807 Dibenz(a,h)anthracene ND U 1 05/11/17 05/15/17 KWG1703807 Benzo(g,h,i)perylene ND U 0.020 1 05/11/17 05/15/17

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	79	42-131	05/15/17	Acceptable
Fluoranthene-d10	87	42-133	05/15/17	Acceptable
Terphenyl-d14	85	32-129	05/15/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Form 1A - Organic Page Printed: 1 of 05/17/2017 13.07.49 SuperSet Reference: RR198298

 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$

Merged

Page 46 of 51

Analytical Results

Client: Golder Associates, Inc.

Skagway-Sediment 2017/1657231 **Project:**

Sample Matrix: Water Service Request: K1704544 **Date Collected:** 05/04/2017 **Date Received:** 05/08/2017

Polynuclear Aromatic Hydrocarbons

Sample Name:

FB-1

Lab Code: K1704544-002

Extraction Method: Analysis Method:

EPA 3520C

8270D SIM

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result (O MRI	Dilutio Facto		Date Analyzed	Extraction Lot	Note
Naphthalene	ND 1			05/11/17	05/15/17	KWG1703807	1,000
2-Methylnaphthalene	ND I			05/11/17	05/15/17	KWG1703807	
Acenaphthylene	ND I			05/11/17	05/15/17	KWG1703807	
Acenaphthene	ND 1	U 0.02	. 1	05/11/17	05/15/17	KWG1703807	
Dibenzofuran	ND 1	U 0.02	. 1	05/11/17	05/15/17	KWG1703807	
Fluorene	ND 1	U 0.02	1	05/11/17	05/15/17	KWG1703807	
Phenanthrene	ND 1	U 0.02	. 1	05/11/17	05/15/17	KWG1703807	
Anthracene	ND 1	U 0.02	. 1	05/11/17	05/15/17	KWG1703807	
Fluoranthene	ND 1	U 0.02	1	05/11/17	05/15/17	KWG1703807	
Pyrene	ND 1	U 0.02	. 1	05/11/17	05/15/17	KWG1703807	
Benz(a)anthracene	ND 1	U 0.02	. 1	05/11/17	05/15/17	KWG1703807	
Chrysene	ND 1	U 0.02	1	05/11/17	05/15/17	KWG1703807	
Benzo(b)fluoranthene†	ND 1	U 0.02	. 1	05/11/17	05/15/17	KWG1703807	
Benzo(k)fluoranthene	ND 1	U 0.02	. 1	05/11/17	05/15/17	KWG1703807	
Benzo(a)pyrene	ND 1	U 0.02	1	05/11/17	05/15/17	KWG1703807	
Indeno(1,2,3-cd)pyrene	ND 1	U 0.02	. 1	05/11/17	05/15/17	KWG1703807	
Dibenz(a,h)anthracene	ND 1	U 0.02	. 1	05/11/17	05/15/17	KWG1703807	
Benzo(g,h,i)perylene	ND 1	U 0.02	1	05/11/17	05/15/17	KWG1703807	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	76	42-131	05/15/17	Acceptable
Fluoranthene-d10	80	42-133	05/15/17	Acceptable
Terphenyl-d14	80	32-129	05/15/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/17/2017 Form 1A - Organic Page 1 of 13:07:53 1 SuperSet Reference: Merged RR198298 Page 47 of 51

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Water

Service Request: K1704544

Date Collected: 05/04/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

Sample Name:

EB-1

Lab Code:

K1704544-003

Extraction Method: Analysis Method:

EPA 3520C 8270D SIM Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	0.020	1	05/11/17	05/15/17	KWG1703807	
2-Methylnaphthalene	ND U	0.020	1	05/11/17	05/15/17	KWG1703807	
Acenaphthylene	ND U	0.020	1	05/11/17	05/15/17	KWG1703807	
Acenaphthene	ND U	0.020	1	05/11/17	05/15/17	KWG1703807	
Dibenzofuran	ND U	0.020	1	05/11/17	05/15/17	KWG1703807	
Fluorene	ND U	0.020	1	05/11/17	05/15/17	KWG1703807	
Phenanthrene	ND U	0.020	1	05/11/17	05/15/17	KWG1703807	
Anthracene	ND U	0.020	1	05/11/17	05/15/17	KWG1703807	
Fluoranthene	ND U	0.020	1	05/11/17	05/15/17	KWG1703807	
Pyrene	ND U	0.020	1	05/11/17	05/15/17	KWG1703807	
Benz(a)anthracene	ND U	0.020	1	05/11/17	05/15/17	KWG1703807	
Chrysene	ND U	0.020	1	05/11/17	05/15/17	KWG1703807	
Benzo(b)fluoranthene†	ND U	0.020	1	05/11/17	05/15/17	KWG1703807	
Benzo(k)fluoranthene	ND U	0.020	1	05/11/17	05/15/17	KWG1703807	
Benzo(a)pyrene	ND U	0.020	1	05/11/17	05/15/17	KWG1703807	
Indeno(1,2,3-cd)pyrene	ND U	0.020	1	05/11/17	05/15/17	KWG1703807	
Dibenz(a,h)anthracene	ND U	0.020	1	05/11/17	05/15/17	KWG1703807	
Benzo(g,h,i)perylene	ND U	0.020	1	05/11/17	05/15/17	KWG1703807	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	86	42-131	05/15/17	Acceptable
Fluoranthene-d10	91	42-133	05/15/17	Acceptable
Terphenyl-d14	91	32-129	05/15/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/17/2017
 13:07:57
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 Page 48 of 51
 SuperSet Reference:
 RR198298

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Water Service Request: K1704544

Date Collected: NA Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name: Method Blank Lab Code: KWG1703807-3 **Extraction Method:**

Analysis Method:

EPA 3520C

8270D SIM

Units:	ug/L
Basis:	NA
Level:	Low

Dilution Date Date **Extraction** Analyte Name Result O MRL **Factor** Extracted Analyzed Lot Note KWG1703807 Naphthalene ND U 0.010 05/11/17 05/15/17 KWG1703807 2-Methylnaphthalene 0.010 1 ND U 05/11/17 05/15/17 Acenaphthylene ND U 0.010 1 05/11/17 05/15/17 KWG1703807 KWG1703807 Acenaphthene ND U 0.010 1 05/11/17 05/15/17 Dibenzofuran ND U 0.010 1 05/11/17 05/15/17 KWG1703807 Fluorene ND U 0.010 1 05/11/17 05/15/17 KWG1703807 0.010 1 KWG1703807 Phenanthrene ND U 05/11/17 05/15/17 Anthracene ND U 0.010 1 05/11/17 05/15/17 KWG1703807 Fluoranthene ND U 0.010 1 05/11/17 05/15/17 KWG1703807 KWG1703807 Pvrene ND U 0.010 1 05/11/17 05/15/17 Benz(a)anthracene ND U 0.010 1 05/11/17 05/15/17 KWG1703807 Chrysene ND U 0.010 1 05/11/17 05/15/17 KWG1703807 Benzo(b)fluoranthene† ND U 0.010 1 05/11/17 05/15/17 KWG1703807 Benzo(k)fluoranthene ND U 0.010 1 05/11/17 05/15/17 KWG1703807 0.010 KWG1703807 Benzo(a)pyrene ND U 1 05/11/17 05/15/17 Indeno(1,2,3-cd)pyrene 0.010 1 KWG1703807 ND U 05/11/17 05/15/17 0.010 KWG1703807 Dibenz(a,h)anthracene ND U 1 05/11/17 05/15/17 KWG1703807 Benzo(g,h,i)perylene ND U 0.010 1 05/11/17 05/15/17

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	80	42-131	05/15/17	Acceptable
Fluoranthene-d10	90	42-133	05/15/17	Acceptable
Terphenyl-d14	86	32-129	05/15/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Form 1A - Organic Page Printed: 1 of 05/17/2017 13:08:01 $u:\Stealth\Crystal.rpt\Form\ImNew.rpt$ SuperSet Reference: RR198298 Merged Page 49 of 51

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704544

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Water

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:EPA 3520CUnits:PercentAnalysis Method:8270D SIMLevel:Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
Travel Blank	K1704544-001	79	87	85
FB-1	K1704544-002	76	80	80
EB-1	K1704544-003	86	91	91
Method Blank	KWG1703807-3	80	90	86
Lab Control Sample	KWG1703807-1	89	98	94
Duplicate Lab Control Sample	KWG1703807-2	87	95	90

Surrogate Recovery Control Limits (%)

Sur1	=	Fluorene-d10	42-131
Sur2	=	Fluoranthene-d10	42-133
Sur3	=	Terphenyl-d14	32-129

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

 Printed:
 05/17/2017
 13:08:05
 Form 2A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form2.rpt
 Page 50 of 51
 SuperSet Reference:
 RR198298

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway-Sediment 2017/1657231

Sample Matrix: Water

Service Request: K1704544 **Date Extracted:** 05/11/2017 **Date Analyzed:** 05/15/2017

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3520C **Analysis Method:** 8270D SIM

Units: ug/L Basis: NA

Level: Low **Extraction Lot:** KWG1703807

Lab Control Sample KWG1703807-1 Lab Control Spike Duplicate Lab Control Sample KWG1703807-2 Duplicate Lab Control Spike

		P							
Analyte Name	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Naphthalene	2.12	2.50	85	2.05	2.50	82	52-115	3	30
2-Methylnaphthalene	1.92	2.50	77	1.96	2.50	78	48-120	2	30
Acenaphthylene	2.11	2.50	85	2.04	2.50	82	58-124	4	30
Acenaphthene	2.00	2.50	80	1.97	2.50	79	63-121	1	30
Dibenzofuran	2.12	2.50	85	2.06	2.50	82	56-132	3	30
Fluorene	2.09	2.50	84	2.01	2.50	81	68-121	4	30
Phenanthrene	2.14	2.50	86	2.07	2.50	83	64-126	3	30
Anthracene	2.11	2.50	84	2.00	2.50	80	68-127	6	30
Fluoranthene	2.19	2.50	88	2.13	2.50	85	70-127	3	30
Pyrene	2.22	2.50	89	2.11	2.50	84	72-127	5	30
Benz(a)anthracene	2.14	2.50	86	2.06	2.50	83	74-124	4	30
Chrysene	2.16	2.50	86	2.07	2.50	83	74-132	4	30
Benzo(b)fluoranthene	2.36	2.50	94	2.27	2.50	91	73-136	4	30
Benzo(k)fluoranthene	2.24	2.50	90	2.15	2.50	86	74-134	4	30
Benzo(a)pyrene	2.27	2.50	91	2.19	2.50	87	75-131	4	30
Indeno(1,2,3-cd)pyrene	2.33	2.50	93	2.24	2.50	90	63-136	4	30
Dibenz(a,h)anthracene	2.21	2.50	88	2.11	2.50	85	59-135	4	30
Benzo(g,h,i)perylene	2.17	2.50	87	2.10	2.50	84	63-127	3	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Printed:
 05/17/2017
 13:08:09
 Form 3C - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form3DLC.rpt
 Page 51 of 51
 SuperSet Reference:
 RR198298

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T:+1 360 577 7222

F:+1 360 636 1068 www.alsglobal.com

June 01, 2017

Analytical Report for Service Request No: K1704545

Tamra Reynolds Golder Associates Ltd. Suite 201C, 170 Titanium Way Whitehorse, YT Y1A0G1

RE: Skagway Tissue / 1657231

Dear Tamra,

Enclosed are the results of the sample(s) submitted to our laboratory May 08, 2017 For your reference, these analyses have been assigned our service request number **K1704545**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsqlobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Howard Holmes Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

Metals

Polynuclear Aromatic Hydrocarbons

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-	
	data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator	
Oregon – DEQ (NELAP)	yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water	-
Kelso Laboratory Website	www.alsglobal.com	NA
Kelso Laboratory Website	www.aisglobai.com_	N.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS ENVIRONMENTAL

Client:Golder Associates, Inc.Service Request No.:K1704545Project:Skagway Tissue/ 1657231Date Received:05/08/17

Sample Matrix: Animal Tissue

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Thirty-four animal tissue samples were received for analysis at ALS Environmental on 05/08/17. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored frozen at -20°C upon receipt at the laboratory. Homogenization and Rinsate blanks were created at the laboratory and analyzed.

Total Metals Tissue:

Matrix Spike Recovery Exceptions:

The matrix spike recovery of Iron for sample NF-CRAB-02 was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. No further corrective action was appropriate.

The matrix spike recovery of Silver for sample REF-CRAB-03 was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. No further corrective action was appropriate.

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) for the replicate analysis of Calcium and Iron in sample NF-CRAB-02 was outside the Method control limits. The variability in the results was attributed to the heterogeneous distribution of Calcium and Iron in the sample. Freeze drying, grinding in combination with standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

No other anomalies associated with the analysis of these samples were observed.

Total Metals Water:

Matrix Spike Recovery Exceptions:

The matrix spike recovery of Manganese for the Batch QC sample was outside control criteria. However, the analyzed concentration in this sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicates the analytical batch was in control. No further corrective action was appropriate.

Approved by_

The matrix spike recovery of Mercury for sample Homog. Blank was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. No further corrective action was appropriate.

No other anomalies associated with the analysis of these samples were observed.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270

No anomalies associated with the analysis of these samples were observed.

Approved by Awallhum

Page 8 of 144

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Chain of Custody (COC) / Analytical Request Form

coc Number: 15 - 593817

Page 2 of 4

www.alsglobal.com

Canada Toll Free: 1 800 668 9878

Affix ALS barcode label here (lab use only)

Report To	Contact and company name below will ap	Contact and company name below will appear on the final report Report Format / Distribution Se									Select Service Level Below - Please confirm all E&P TATs with your AM - surcharges will apply												
Company:	Golder associales Li	J	Select Report F	Regular [R] Standard TAT if received by 3 pm - business days - no surcharges apply																			
Contact:	Tayora Reynolds		-1	(QC) Report with Rep			T≺ Days)		4 day [P4]			Ž.	1	Busine	ess day [E1]							
Phone:	1-877 - 334 - 4461	8		sults to Criteria on Report			PRIORT Usiness D	3	day [73]			Sam			or Statu	tory _[_					
	Company address below will appear on the final	report	Select Distribution		- MAIL																		
Street:	170-2016 Tlax	vium Yeu	Email 1 or Fax	TJREYNOL	DSC aclos	CICAM		Date and Time Required for all E&P TATs:															
City/Province:	Whitehorse Tukon	. 7	Email 2 PADDY_ MCMANUS & gollor, com Fort								according to t	e service	level sele	cted, you	will be conta	cted.							
Postal Code:	41 A 061		Email 2 PADDY_ HCMANUS & golder.com For Email 3 VMFRCFRE golder.com									Ana	ysis Re	∍quest									
Invoice To	Same as Report To Z YES_	NO		Invoice Distribution						Filtered (f), Preserved	(P) or Fil	lered and	Preserved	d (F/P) belo	w							
	Copy of Invoice with Report YES	□ NO	Select Invoice D	istribution:	EMAIL MAIL	FAX																	
Company:			Email 1 or Fax	same as	report					-													
Contact:			Email 2															ь					
	Project Information			Oil and Gas Require	d Fields (client u	se)						1						Number of Containers					
	Quote #: 41117		AFE/Cost Center:		PO#						İ						İ	Önt					
Job #:	1657231		Major/Minor Code:		Routing Code:		_							.				of C					
PO / AFE:			Requisitioner:]											per							
LSD:			Location:														f	<u> </u>					
ALS Lab Wo	rk Order# (lab use only)		ALS Contact:	iodd Payfair	Sampler: TM /	SM	<u>_</u> <	2	2	0								2					
ALS Sample # (lab use only)	l '	n and/or Coordinates appear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	I	Models	PAM5	X													
į.	NF-PRAWN-OI			03-111-17	>=-	1,5540		X	χ									1					
Ž	UF-PRAWN -02			03 -MAY-17		1		í	1			1	1					<u> </u>					
	NF-PRAWN-03			COMMAY-17	1 1			1	11-					-				_					
	UF-PRAWN-04	 		04-MAY-17	 	+	┼		 -			+-	-	+	+	 	+	 					
					 			+	\vdash			- -	 										
	NF-18AWU-05			04-414-17	ļ			-	\sqcup			 				 	$-\!\!\!\!+\!\!\!\!\!-$						
	NF- NUSSEL-01		****	29-11PR-17								<u> </u>											
7	NF- MUSSEL - 02			3(-APR-17_)		1					1											
3	NF-MUSSEL - 03			39-478-17]					
	NF- MUSSEL-04			29-APR-17				1															
	NF- HUSSEL - 05			De - 17 - 17				+	\vdash					-	+		\neg	1					
				01-M M-17	 			-		-+		+	┼──┼			 	+						
<u> </u>	NE-CRAB-OI	***************************************							-		_	-	╂╼╾┼			 -	+	L					
12	NF-CRAB-02		·····	04-MAY-17			10000000000			- 4 4 4		VITION!		200000									
<u>`</u>	g Water (DW) Samples¹ (client use)	Special Instructions / S	(eler	ctronic COC only)			Frozen	1			PLE CONI	SIF (Observa	itions	Yes		No						
	from a Regulated DW System?	Tissue is 40 by	<u>homogeu</u>	izel ad an	aliquet o	fthe	ice Pa			Ice Cu	bes	Cust	ody sea	I intact	Yes		No						
	✓ NO	bo and	LITER PHESE	ور ولا من المار و	Maria	Cooling				Total and a control of the control o	282	entoprocessore	Gallendologia Park Sal			······································							
	ıman drinking water use?	homogenate is do	المركب المالية		INII	TIAL CO	OLER TE	MPERATURE	S°C			FINAL COO	LER TEMPI	ERATURE	s°C								
YES	4-J	somite me con	mer gelow																				
Pologod bu	SHIPMENT RELEASE (client use)	Time	Possived by	initial SHIPMENT RECEPTION (lab use only)					Desc	and but	FINAL	SHIP			ION (lab	use only)		<u>o:</u>					
Released by:	Date: OS-MI	A-17 18:00	Time: Received by: Date: /8 / Time: 5/8 / T							Time: Date: Time:													
FEED TO DAOM E	MACE FOR ALC LOCATIONS AND CAMPLING MI	ECONATION	/ /	THARA	E LABORATORY	CODY VELLOU	/ OLIES	NIT CO	DV									TAGED MAKE CRAME					

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here (lab use only)

COC Number: 15-593818
Page 3 of 4

ensirorre entai www.alsglobal.com

Canada Toll Free: 1 800 668 9878

				· · · · · · · · · · · · · · · · · · ·						and the same of the	ang sa sa sa					
Report To	Contact and company name below will app				t / Distribution		Select :	Service L	evel Below - Ph	ease confirm al	E&P TATs	with your AM	- surcharge	s will appl	у	
Company:	Golder associations LTD		Select Report Fo			EDD (DIGITAL)	<u></u>	R	egular [R]		andard TAT	if received	oy 3 pm -	business c	lays - no surch	arges apply
Contact:	Tames REYNOLDS		Quality Control (QC) Report with Re	port YES	NO	RIORITY siness Days)	4	day [P4]		Ş	į 1 <i>1</i>	Busines	s day [i	∄1]	
Phone:	1-877-334-4468			ults to Criteria on Report			RIORI	3	day [P3]		RS	Same			or Statuto	oy ┌─┐
	Company address below will appear on the final		Select Distribution						day [P2]		Ē		hol	iday (E)]	
Street:	170-201 C Titanium	Way	Email 1 or Fax	13 REYNOL	.DS @ GOLD	ER LON		Date	and Time Re	quired for all	E&P TATs:	ASSESSED NO.				
City/Province:	White horse Yukan		Email 2	ERCER @ G	LDER COM		For test	s that ca	not be perfor	ned according	to the service	e level selec	ted. you wi	i be contac	ted.	
Postal Code:	41A DGZ	····	Email 3 PAD	DY-HIMA	1045 @ Gold	er.cen	<u> </u>	***			Ana	alysis Red	quest			
Invoice To	Same as Report To YES	□ NO		Invoice D	stribution		L		Indicate Filter	ed (F), Preserv	red (P) or F	iltered and F	reserved (F/P) belov	v	
	Copy of Invoice with Report YES	NO NO	Select Invoice Di	stribution:	EMAIL MAIL	FAX										
Сотрапу:			Email 1 or Fax	Samo 1c	rement											7
Contact:			Email 2	(47	Į.										į l	ρ
	Project Information		C	il and Gas Require	d Fields (client us	se)										ill e
ALS Account # /	Quote #: 41117		AFE/Cost Center.		PO#											onta
Job #:	1657231		Major/Minor Code:		Routing Code:				Ì						.]	J.
PO / AFE:			Requisitioner:												.) Jec. (
LSD:			Location:													Number of Container
ALCIALWA	rk Order # (lab use only)		ALS Contact:	all Porfain	Sampler: Tul	<i>(i</i> 20	2	~								Z
ALG Lau Wo	K Cidel # (lab use only)		ALG COMISCI. (, (Sampler: J M	1 rul	لإس	工								
ALS Sample # (lab use only)	•	n and/or Coordinates appear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Morkis	PAH								
13	NF-CRAB-03			04-MHT-17	ŧ	TISSUD	λ	Ý.								17
14	MF-CRAB-01			03-MAY-17		11,546	(~			+	+				+ *
15	MF-CRAB-02			03 -MAY-17	 			1-		+		++	+-	1		+
15 16	MF-CRAB 03			03 - MAY-13	-		┼-╂-┤	-		+		++		-		
17	MF-CRAB-04			03-NAY-17		 				+ +		+		1		
18	MF - CRAB-05			13 MM 17				-			-	+				+
10	FF - MUSSEL- 01			24 - ATR-17			+	-				+		+	_	1
w T	FF-MUSSEL-OZ			34		 	H	+		-		+		1	-	
			_			 	H					++-			-	
	FF - MUSSEL - 03			<u>a(</u>			 -	\dashv				++		4		
	FF-MUSIEL-04			A								+				
	FF-MUSSEL - OS			29 d							i					1
24	REF- MUSSEL - 01			24-MAY-17	2	2	4	J.								
Duinkin		Special Instructions / S			ting on the drop-do	wn list below				AMPLE CO	NOITION	AS REC	EIVED (C. Contractor and Contractor	only)	
· · · · · · · · · · · · · · · · · · ·	Water (DW) Samples [†] (client use)			tronic COC only)			Frozer					Observati		Yes	☐ No	
	from a Regulated DW System?	Rejulc- prioris	y for a	11 Xissup 6	ausles s	eρ	Ice Pa		_	Cubes	Cus	tody seal	intact	Yes	☐ No	
	NO	Regulation Prioris	Cor son	A Sucola	dia		Coolin	g Initia	<u></u>	- V., Lag. 20 - 2 195-						
		13 3 13 817	100		CLCBA 2.			INIT	IAL COOLER	TEMPERATU	RES °C		Fil	IAL COOL	ER TEMPER	ATURES °C
YES	⊠ NO															
Dalassad hw	SHIPMENT RELEASE (client use)	LTime	Occalued by:	HITIAL SHIPMEN	T RECEPTION (la		Time		Decaire		AL SHIP	MENT RE)N (lab i	ise only)	Time
Released by	Date: 05 ~ M/	17 17 Issan	Received by:		5/8/i	<u> </u>	75 (1) 10 (1) 10 (1) 10 (1) 10 (1)	40	Received b	у.		D	ate:			Time:
REFER TO BACK F	AGE FOR ALS LOCATIONS AND SAMPLING INF	ORMATION		WHI	E - LABORATORY C	OPY YELLOW	- CLIF	NT COL	Υ							OC1035R 2015 FRONT

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

ALS

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here (lab use only)

K1724645 coc Number: 15-593654

Page 4 of 4

Enticonnectat
www.alsglobal.com

Canada Toll Free: 1 800 668 9878

					0.65500																
Report To Contact and company name below will appear on the final report				Report Format	/ Dist	ribution		Select Service Level Below - Please confirm all E&P TATs with your AM - surcharges will apply													
Company:	Golder Associates LT	>	Select Report Fo	ormat: 📝 PDF	EΧ	(CEL	EDD (DIGITAL)		Re	gular [R]	St	andard 1	TAT if red	eived by 3	pm - busine	s days -	no surchar	ges apply			
Contact:	TAMRA REYNOLDS		Quality Control (Ormat: PDF QC) Report with Rep	ort	YES	NO	- ×	ွန်ရီ 4 day [P4] 💆 👌						1 Business day [E1]						
Phone:	1-877 - 334- 4468		Compare Res	ults to Criteria on Report -	provide	details below i	f box checked	PRIORITY (Business Days)	3	day [P3]	Ī	ļ	RGEN S	Same Day	, Weekei	d or S	tatutory				
	Company address below will appear on the final r	eport	Select Distribution	,				र्व वर्ष [P2] holiday [E0]													
Street:	170-3016 Titanium	Email 1 or Fax TJREY WOLDS @ GOLDER COM							Date and Time Required for all E&P TATs:												
City/Province:	White horse Yukon	Email 2 PA DiD	T - MCM AN L	6 حن	16010	CR. COM	For test	s that car	not be perfo	med according	to the se	rvice leve	el selected. y	ou will be co	ntacted.						
Postał Code:	41A 06'1		Email 3 () M (E	RCER @ GOL	DER	· Com						Α	nalysi	s Reque	st						
Invoice To	pice To Same as Report To Z YES NO			Invoice Distribution							ed (F), Presen	red (P) c	or Filtered	f and Prese	rved (F/P) b	elow					
	Copy of Invoice with Report	NO	Select Invoice D	istribution:	EMAIL	MAIL	FAX														
Сотралу:	,		Email 1 or Fax	famo as	٨٤	pant															
Contact:			Email 2			i]				İ						মূ			
	Project Information			il and Gas Require	d Field	ls (client u:	ie)											ajne			
	Quote #: 4 1117	***************************************	AFE/Cost Center:		PO#			1										Containe			
Job#: 16	57931		Major/Minor Code:		Routii	ng Code:						l	İ					of C			
PO / AFE:			Requisitioner:															ber			
.SD:			Location:											- 1				mn.			
ALS Lab Wo	rk Order# (lab use only)		ALS Contact:	odd Poytain	Samp	oler: PU	/54	Molals	PAHS									_			
ALS Sample #	Sample Identification	and/or Coordinates		Date		Time		2	4												
(lab use only)	(This description will	appear on the report)		(dd-mmm-yy)] (hh:mm)	Sample Type														
99	REF-MUSSEL- OZ			29-APR-17		7	Tissur	X.	X.									4			
	REF - MU 55EL - 03			36		 		í	1			\dashv				+	†	1			
	REF MUSSEL OH			24		 			\dashv		 						+				
				2 1		 		-				+									
28	REF - NUSSEL - 05					<u> </u>					+ +					-	-				
19	REF- PRAWN-01			04-MAY-17		<u> </u>			\perp												
30	REF-PRAND- 02			05-MMY-17		<u> </u>															
31	REF-PRAUD- 02 REF-PRAUD- 03			05-MAY-17																	
32	REF-CRAB-OL			29-APR-17	基例	12 77															
43	RFF-CRAB - OR			2 (-APR-17									\neg								
	REF-CRAB-03			NS-WAY-17	``			1	1			_				1					
	ILI CKED 63	,,4		02 711 17		 					 						···				
						<u> </u>					+ +-					 	 				
								35333474255	Calan Ara A		AMPLE CO	MOSTI	ONAC	BECEN	ED VIAL	5-0-0-1	1				
Drinking	Water (DW) Samples¹ (client use)	Special Instructions / S		add on report by click tronic COC only)	ing on	the drop-do	wn list below	Frozer	1					ervations			,				
re samples taken	from a Regulated DW System?	Roadon Oriando	la rate	Victor San	sky	Place	te coe	Ice Pa						seal inta		=	No				
YES	Z NO	negative process	_ /0.	10772	1. '	1	/E /CC	Coolin	g Initiat	ed _			-								
re samples for hu	ıman drinking water use?	Regular priority COC 15-59361	7 +0 5	pecitic ins	HU	1/64>			INIIT	IAL COOLER	TEMPERATE	RES°C		(A) (B) (B)	FINALCO	OLER T	MPERAT	JRES°C			
YES	ZŽ NO			•																	
	SHIPMENT RELEASE (client use)			MICTIAL SHIPMEN	T REC	EPTION (lạ				ar - 100 may 1		AL SH	IPMEN		PTION (la	b use c					
Released by W	Date: 05-M/	Time: 15:00	Received by:		Date:	5/8/1	7	Time	<i>it</i>	Received	oy:			Date:				Time:			
EEER TO BACK 9	AGE FOR ALS LOCATIONS AND SAMPLING INF			WHIT			OPY YELLOW			· · · · · · · · · · · · · · · · · · ·								OCTOBER 2015 FRONT			

PC H2

Client	18/17	older	Opened:_	Cooler 5/8/1	· Reco		•		e Requ	Form lest <i>K1</i> Inloade		10464	15 By-x		
. Were custo	ere rece	ived in: (cir s on coolers	?	Fed Ex Cooler	Bo.	UPS X N N		o pe /es, hov		and wh	nere?0	nd Delivered	n +	NA GJ	
Raw C	corrected.	Raw Temp Blenk 3, 4 FORES	Corrected Jemp Stank	Corr. Factor		98 72		·	COC II		igned and	Tracking No	umber	. Oranier	IA Filed
Were sam Were all sam Did all sam Were appl Were the Were VO Were VO Were VO	ody pap ples reco ample labo ropriate pH-pres OA vials	ers properly eived in goo If app bels comple els and tags bottles/cont served bottle received wi gative?	filled out of condition of cond	(ink, signed to the control of the c	ed, etc. ature, to eles were ervatio papers receive erceive dicate	.)? unbrokere receion, etc.) Indiced for this	en)? Inved: (1)? The tests the apprint table before the second table before the second table before the second table before the second table before the second table before the second table before the second table before the second table before the second table before the second table before the second table before the second table before the second table table before the second table ta	rdicate Froze for disc indicate propriat	in the Forepand	table bel Partially ties in th	Thawed te table on in the tab		NA NA NA NA NA NA	\(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac\	N N N N N N
	Sample II			Count Type		Head- space	Broke	рН	Rea	gent	Volume added	Reagent Lo Number		nitials	Time
Votes, Discr	repanci	es, & Reso	lutions:												·
7/25/16												Pa	ıge	of	·

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Analysis Method: Calculation

Prep Method: None

Service Request: K1704545

Date Collected: 04/29/17 - 05/05/17

Date Received: 05/8/17

Units: Percent Basis: Wet

Moisture

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
NF-PRAWN-01	K1704545-001	73.6	-	1	05/16/17 13:15	
NF-PRAWN-02	K1704545-002	78.4	-	1	05/16/17 13:15	
NF-PRAWN-03	K1704545-003	79.0	-	1	05/16/17 13:15	
NF-PRAWN-04	K1704545-004	83.1	-	1	05/16/17 13:15	
NF-PRAWN-05	K1704545-005	81.9	-	1	05/16/17 13:15	
NF-MUSSEL-01	K1704545-006	81.4	-	1	05/16/17 13:15	
NF-MUSSEL-02	K1704545-007	79.4	-	1	05/16/17 13:15	
NF-MUSSEL-03	K1704545-008	81.1	-	1	05/16/17 13:15	
NF-MUSSEL-04	K1704545-009	80.2	-	1	05/16/17 13:15	
NF-MUSSEL-05	K1704545-010	78.9	-	1	05/16/17 13:15	
NF-CRAB-01	K1704545-011	78.6	-	1	05/16/17 13:15	
NF-CRAB-02	K1704545-012	79.1	-	1	05/16/17 13:15	
NF-CRAB-03	K1704545-013	79.9	-	1	05/16/17 13:15	
MF-CRAB-01	K1704545-014	79.2	-	1	05/16/17 13:15	
MF-CRAB-02	K1704545-015	86.5	-	1	05/16/17 13:15	
MF-CRAB-03	K1704545-016	83.7	-	1	05/16/17 13:15	
MF-CRAB-04	K1704545-017	78.9	-	1	05/16/17 13:15	
MF-CRAB-05	K1704545-018	86.1	-	1	05/16/17 13:15	
FF-MUSSEL-01	K1704545-019	79.6	-	1	05/16/17 13:15	
FF-MUSSEL-02	K1704545-020	67.6	-	1	05/16/17 13:15	
FF-MUSSEL-03	K1704545-021	79.0	-	1	05/16/17 13:15	
FF-MUSSEL-04	K1704545-022	80.2	-	1	05/16/17 13:15	
FF-MUSSEL-05	K1704545-023	75.3	-	1	05/16/17 13:15	
REF-MUSSEL-01	K1704545-024	77.6	-	1	05/16/17 13:15	
REF-MUSSEL-02	K1704545-025	75.5	-	1	05/16/17 13:15	
REF-MUSSEL-03	K1704545-026	81.0	-	1	05/16/17 13:15	
REF-MUSSEL-04	K1704545-027	78.6	-	1	05/16/17 13:15	
REF-MUSSEL-05	K1704545-028	82.6	-	1	05/16/17 13:15	
REF-PRAWN-01	K1704545-029	79.1	-	1	05/16/17 13:15	
REF-PRAWN-02	K1704545-030	82.3	-	1	05/16/17 13:15	
REF-PRAWN-03	K1704545-031	79.0	-	1	05/16/17 13:15	
REF-CRAB-01	K1704545-032	83.9	-	1	05/16/17 13:15	
REF-CRAB-02	K1704545-033	76.8	-	1	05/16/17 13:15	
REF-CRAB-03	K1704545-034	84.1	-	1	05/16/17 13:15	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Analysis Method: Freeze Dry **Prep Method:** None

Anarytical Repor

Service Request: K1704545

Date Collected: 04/29/17 - 05/05/17

Date Received: 05/8/17

Units: Percent Basis: Wet

Total Solids

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
NF-PRAWN-01	K1704545-001	26.4	-	1	05/16/17 13:15	
NF-PRAWN-02	K1704545-002	21.6	-	1	05/16/17 13:15	
NF-PRAWN-03	K1704545-003	21.0	-	1	05/16/17 13:15	
NF-PRAWN-04	K1704545-004	16.9	-	1	05/16/17 13:15	
NF-PRAWN-05	K1704545-005	18.1	-	1	05/16/17 13:15	
NF-MUSSEL-01	K1704545-006	18.6	-	1	05/16/17 13:15	
NF-MUSSEL-02	K1704545-007	20.6	-	1	05/16/17 13:15	
NF-MUSSEL-03	K1704545-008	18.9	-	1	05/16/17 13:15	
NF-MUSSEL-04	K1704545-009	19.8	-	1	05/16/17 13:15	
NF-MUSSEL-05	K1704545-010	21.1	-	1	05/16/17 13:15	
NF-CRAB-01	K1704545-011	21.4	-	1	05/16/17 13:15	
NF-CRAB-02	K1704545-012	20.9	-	1	05/16/17 13:15	
NF-CRAB-03	K1704545-013	20.1	-	1	05/16/17 13:15	
MF-CRAB-01	K1704545-014	20.8	-	1	05/16/17 13:15	
MF-CRAB-02	K1704545-015	13.5	-	1	05/16/17 13:15	
MF-CRAB-03	K1704545-016	16.3	-	1	05/16/17 13:15	
MF-CRAB-04	K1704545-017	21.1	-	1	05/16/17 13:15	
MF-CRAB-05	K1704545-018	13.9	-	1	05/16/17 13:15	
FF-MUSSEL-01	K1704545-019	20.4	-	1	05/16/17 13:15	
FF-MUSSEL-02	K1704545-020	32.4	-	1	05/16/17 13:15	
FF-MUSSEL-03	K1704545-021	21.0	-	1	05/16/17 13:15	
FF-MUSSEL-04	K1704545-022	19.8	-	1	05/16/17 13:15	
FF-MUSSEL-05	K1704545-023	24.7	-	1	05/16/17 13:15	
REF-MUSSEL-01	K1704545-024	22.4	-	1	05/16/17 13:15	
REF-MUSSEL-02	K1704545-025	24.5	-	1	05/16/17 13:15	
REF-MUSSEL-03	K1704545-026	19.0	-	1	05/16/17 13:15	
REF-MUSSEL-04	K1704545-027	21.4	-	1	05/16/17 13:15	
REF-MUSSEL-05	K1704545-028	17.4	-	1	05/16/17 13:15	
REF-PRAWN-01	K1704545-029	20.9	-	1	05/16/17 13:15	
REF-PRAWN-02	K1704545-030	17.7		1	05/16/17 13:15	
REF-PRAWN-03	K1704545-031	21.0	-	1	05/16/17 13:15	
REF-CRAB-01	K1704545-032	16.1	-	1	05/16/17 13:15	
REF-CRAB-02	K1704545-033	23.2	-	1	05/16/17 13:15	
REF-CRAB-03	K1704545-034	15.9	-	1	05/16/17 13:15	

QA/QC Report

Service Request:K1704545

Client: Golder Associates, Inc.

Project Skagway Tissue/1657231 **Date Collected:**05/04/17 - 05/05/17

Sample Matrix: Animal Tissue Date Received:05/08/17

Analysis Method:Freeze DryUnits:PercentPrep Method:NoneBasis:Wet

Replicate Sample Summary Inorganic Parameters

G L N			Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	Result	Result	Average	RPD	Limit	Analyzed
NF-CRAB-02	K1704545-012DUP	-	20.9	20.8	20.9	<1	20	05/16/17
REF-CRAB-03	K1704545-034DUP	-	15.9	16.1	16.0	1	20	05/16/17

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 05/18/17 7:45:06 AM Superset Reference:17-0000422068 rev 00

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue **Service Request:** K1704545 **Date Collected:** 04/29-05/15/17 **Date Received:** 05/08-16/17

Mercury, Total

Prep Method: Analysis Method: 1631E

Test Notes:

METHOD

Units: ng/g Basis: Wet

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
NF-PRAWN-01	K1704545-001	2.6	5	05/19/17	05/22/17	33.4	
NF-PRAWN-02	K1704545-002	2.1	5	05/19/17	05/22/17	34.9	
NF-PRAWN-03	K1704545-003	2.1	5	05/19/17	05/22/17	23.4	
NF-PRAWN-04	K1704545-004	1.7	5	05/19/17	05/22/17	24.6	
NF-PRAWN-05	K1704545-005	1.8	5	05/19/17	05/22/17	45.7	
NF-MUSSEL-01	K1704545-006	1.9	5	05/19/17	05/22/17	17.8	
NF-MUSSEL-02	K1704545-007	2.0	5	05/19/17	05/22/17	18.9	
NF-MUSSEL-03	K1704545-008	1.9	5	05/19/17	05/22/17	15.4	
NF-MUSSEL-04	K1704545-009	2.0	5	05/19/17	05/22/17	18.9	
NF-MUSSEL-05	K1704545-010	2.1	5	05/19/17	05/22/17	21.8	
NF-CRAB-01	K1704545-011	2.1	5	05/19/17	05/22/17	97.1	
NF-CRAB-02	K1704545-012	2.1	5	05/19/17	05/22/17	73.9	
NF-CRAB-03	K1704545-013	2.0	5	05/19/17	05/22/17	73.4	
MF-CRAB-01	K1704545-014	2.1	5	05/19/17	05/22/17	95.4	
MF-CRAB-02	K1704545-015	1.4	5	05/19/17	05/22/17	29.5	
MF-CRAB-03	K1704545-016	1.6	5	05/19/17	05/22/17	69.2	
MF-CRAB-04	K1704545-017	2.1	5	05/19/17	05/22/17	73.6	
MF-CRAB-05	K1704545-018	1.4	5	05/19/17	05/22/17	31.8	
FF-MUSSEL-01	K1704545-019	2.0	5	05/19/17	05/22/17	16.9	
FF-MUSSEL-02	K1704545-020	0.6	1	05/19/17	05/22/17	15.1	
Method Blank 1	K1704545-MB1	0.1	1	05/19/17	05/22/17	ND	
Method Blank 2	K1704545-MB2	0.1	1	05/19/17	05/22/17	ND	
Method Blank 3	K1704545-MB3	0.1	1	05/19/17	05/22/17	ND	

Analytical Report

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue **Service Request:** K1704545 **Date Collected:** 04/29-05/15/17 **Date Received:** 05/08-16/17

Units: ng/g

Basis: Wet

Mercury, Total

Prep Method: Analysis Method: 1631E

METHOD

Test Notes:

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
FF-MUSSEL-03	K1704545-021	2.1	5	05/19/17	05/22/17	18.7	
FF-MUSSEL-04	K1704545-022	2.0	5	05/19/17	05/22/17	16.5	
FF-MUSSEL-05	K1704545-023	2.5	5	05/19/17	05/22/17	15.3	
REF-MUSSEL-01	K1704545-024	2.2	5	05/19/17	05/22/17	12.8	
REF-MUSSEL-02	K1704545-025	2.5	5	05/19/17	05/22/17	15.2	
REF-MUSSEL-03	K1704545-026	1.9	5	05/19/17	05/22/17	12.2	
REF-MUSSEL-04	K1704545-027	2.1	5	05/19/17	05/22/17	11.3	
REF-MUSSEL-05	K1704545-028	1.7	5	05/19/17	05/22/17	11.3	
REF-PRAWN-01	K1704545-029	2.1	5	05/19/17	05/22/17	20.4	
REF-PRAWN-02	K1704545-030	1.8	5	05/19/17	05/22/17	24.1	
REF-PRAWN-03	K1704545-031	2.1	5	05/19/17	05/22/17	29.1	
REF-CRAB-01	K1704545-032	1.6	5	05/19/17	05/22/17	62.6	
REF-CRAB-02	K1704545-033	2.3	5	05/19/17	05/22/17	71.6	
REF-CRAB-03	K1704545-034	1.6	5	05/19/17	05/22/17	122	
Method Blank 1	K1704545-MB1	0.2	1	05/19/17	05/22/17	ND	
Method Blank 2	K1704545-MB2	0.2	1	05/19/17	05/22/17	ND	
Method Blank 3	K1704545-MB3	0.2	1	05/19/17	05/22/17	ND	

QA/QC Report

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue Service Request: K1704545 **Date Collected:** 05/03/17 **Date Received:** 05/08/17 **Date Extracted:** 05/19/17 **Date Analyzed:** 05/22/17

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: Lab Code:

NF-CRAB-02

K1704545-012MS,

K1704545-012MSD

Units: ng/g

Basis: Wet

Test Notes:

Percent Recovery

Analyte	Prep Method	Analysis Method	MRL	•		Sample Result	Spike MS	Result DMS	MS	DMS	ALS Acceptance Limits	Relative Percent Difference	Result Notes
Mercury	METHOD	1631E	2.1	104	105	73.9	184	182	106	103	70-130	1	

Page No.: K1704545ICP.AB1 - DMS 05/24/17

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal tissue

Particle Request: K1704545
Date Collected: 05/03/17
Date Received: 05/08/17
Date Extracted: 05/19/17
Date Analyzed: 05/22/17

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: Lab Code:

Test Notes:

FF-MUSSEL-02

K1704545-020MS,

K1704545-020MSD

Units: ng/g

Basis: Wet

Percent Recovery

	Prep	Analysis		Spike	e Level	Sample	Spike	Result			ALS Acceptance	Relative Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Mercury	METHOD	1631E	3.2	161	161	15.1	173	171	98	97	70-130	1	

K1704545ICP.AB1 - DMS (2) 05/24/17 Page No.:

Client: Golder Associates, Inc. Service Request: K1704545

Project:Skagway Tissue/1657231Date Collected:NALCS Matrix:WaterDate Received:NA

Date Extracted: NA **Date Analyzed:** 05/22/17

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Initial)

Units: ng/g

Basis: NA

Test Notes:

						ALS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.37	107	70-130	

Client: Golder Associates, Inc. Service Request: K1704545

Project:Skagway Tissue/1657231Date Collected:NALCS Matrix:WaterDate Received:NA

Date Extracted: NA **Date Analyzed:** 05/22/17

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Final)

Units: ng/g

Basis: NA

Test Notes:

						ALS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.00	100	70-130	

Client:Golder Associates, Inc.Service Request:K1704545Project:Skagway Tissue/1657231Date Collected:NA

LCS Matrix: Animal tissue Date Received: NA

Date Extracted: 05/19/17

Date Analyzed: 05/22/17

Quality Control Sample (QCS) Summary

Total Metals

Sample Name: Quality Control Sample Units: ng/g

Lab Code: Basis: Dry

Test Notes:

Source: TORT-3 ALS

Percent Recovery Prep Analysis True Percent Acceptance Result Analyte Method Limits Method Value Result Recovery **Notes** 285 98 **METHOD** 1631E 292 70-130 Mercury

K1704545ICP.AB1 - QCS (icv) 05/24/17 Page No.:

QA/QC Report

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue **Service Request:** K1704545 **Date Collected:** 04/29/17 **Date Received:** 05/08/17 **Date Extracted:** 05/19/17 **Date Analyzed:** 05/22/17

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: Lab Code:

REF-CRAB-02

K1704545-033MS,

K1704545-033MSD

Units: ng/g

Basis: Wet

Test Notes:

Percent Recovery

	Prep	Analysis		Spike	Level	Sample	Spike		1 (1)	cnt	ALS Acceptance	Relative Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Mercury	METHOD	1631E	2.3	116	116	71.6	196	197	107	108	70-130	<1	

Page No.: K1704545ICP.AB2 - DMS 05/24/17

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal tissue

Particle Request: K1704545
Date Collected: 04/29/17
Date Received: 05/08/17
Date Extracted: 05/19/17
Date Analyzed: 05/22/17

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: Lab Code: REF-CRAB-03

K1704545-034MS,

K1704545-034DMS

Units: ng/g

Basis: Wet

Test Notes:

Percent Recovery

	Prep	Analysis		Spike	Level	Sample	Spike				ALS Acceptance	Relative Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Mercury	METHOD	1631E	1.6	79.1	79.5	122	206	205	106	104	70-130	<1	

K1704545ICP.AB2 - DMS (2) 05/24/17 Page No.:

Client: Golder Associates, Inc. Service Request: K1704545

Project:Skagway Tissue/1657231Date Collected:NALCS Matrix:WaterDate Received:NA

Date Extracted: NA **Date Analyzed:** 05/22/17

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Initial)

Units: ng/g

Basis: NA

Test Notes:

						ALS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.42	108	70-130	

Client: Golder Associates, Inc. Service Request: K1704545

Project:Skagway Tissue/1657231Date Collected:NALCS Matrix:WaterDate Received:NA

Date Extracted: NA **Date Analyzed:** 05/22/17

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Final)

Units: ng/g

Basis: NA

Test Notes:

						ALS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.32	106	70-130	

Client:Golder Associates, Inc.Service Request:K1704545Project:Skagway Tissue/1657231Date Collected:NA

LCS Matrix: Animal tissue Date Received: NA
Date Extracted: 05/19/17

Date Analyzed: 05/22/17

Quality Control Sample (QCS) Summary

Total Metals

Sample Name: Quality Control Sample Units: ng/g

Lab Code: Basis: Dry

Test Notes:

Source: TORT-3 ALS

Percent Recovery Prep Analysis True Percent Acceptance Result Analyte Method Limits Method Value Result Recovery **Notes** 293 **METHOD** 1631E 292 100 70-130 Mercury

K1704545ICP.AB2 - QCS (icv) 05/24/17 Page No.:

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: NF-PRAWN-01

Lab Code: K1704545-001

Service Request: K1704545 **Date Collected:** 05/03/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	21.8	mg/Kg	0.53	5	05/24/17 14:06	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.013	5	05/24/17 14:06	05/17/17	
Arsenic	6020A	4.94	mg/Kg	0.13	5	05/24/17 14:06	05/17/17	
Barium	6020A	3.89	mg/Kg	0.013	5	05/24/17 14:06	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0053	5	05/24/17 14:06	05/17/17	
Cadmium	6020A	0.487	mg/Kg	0.0053	5	05/24/17 14:06	05/17/17	
Calcium	6010C	16000	mg/Kg	5.3	10	05/24/17 16:59	05/17/17	
Chromium	6020A	0.436	mg/Kg	0.053	5	05/24/17 14:06	05/17/17	
Cobalt	6020A	0.0626	mg/Kg	0.0053	5	05/24/17 14:06	05/17/17	
Copper	6020A	22.1	mg/Kg	0.026	5	05/24/17 14:06	05/17/17	
Iron	6020A	80.4	mg/Kg	0.26	5	05/24/17 14:06	05/17/17	
Lead	6020A	0.435	mg/Kg	0.0053	5	05/24/17 14:06	05/17/17	
Magnesium	6010C	883	mg/Kg	0.13	1	05/24/17 15:54	05/17/17	
Manganese	6020A	3.42	mg/Kg	0.013	5	05/24/17 14:06	05/17/17	
Nickel	6020A	0.359	mg/Kg	0.053	5	05/24/17 14:06	05/17/17	
Potassium	6010C	2730	mg/Kg	11	1	05/24/17 15:54	05/17/17	
Selenium	7742	0.472	mg/Kg	0.026	5	05/26/17 11:28	05/17/17	
Silver	6020A	0.443	mg/Kg	0.0053	5	05/24/17 14:06	05/17/17	
Sodium	6010C	3200	mg/Kg	5.3	1	05/24/17 15:54	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0053	5	05/24/17 14:06	05/17/17	
Vanadium	6020A	0.136	mg/Kg	0.053	5	05/24/17 14:06	05/17/17	
Zinc	6020A	16.7	mg/Kg	0.13	5	05/24/17 14:06	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: NF-PRAWN-02

Lab Code: K1704545-002

cai Report

Service Request: K1704545 **Date Collected:** 05/03/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	23.7	mg/Kg	0.43	5	05/24/17 14:10	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.011	5	05/24/17 14:10	05/17/17	
Arsenic	6020A	1.20	mg/Kg	0.11	5	05/24/17 14:10	05/17/17	
Barium	6020A	2.32	mg/Kg	0.011	5	05/24/17 14:10	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0043	5	05/24/17 14:10	05/17/17	
Cadmium	6020A	0.418	mg/Kg	0.0043	5	05/24/17 14:10	05/17/17	
Calcium	6010C	11800	mg/Kg	4.3	10	05/24/17 17:02	05/17/17	
Chromium	6020A	0.532	mg/Kg	0.043	5	05/24/17 14:10	05/17/17	
Cobalt	6020A	0.0481	mg/Kg	0.0043	5	05/24/17 14:10	05/17/17	
Copper	6020A	20.4	mg/Kg	0.022	5	05/24/17 14:10	05/17/17	
Iron	6020A	104	mg/Kg	0.22	5	05/24/17 14:10	05/17/17	
Lead	6020A	1.05	mg/Kg	0.0043	5	05/24/17 14:10	05/17/17	
Magnesium	6010C	557	mg/Kg	0.11	1	05/24/17 15:56	05/17/17	
Manganese	6020A	4.33	mg/Kg	0.011	5	05/24/17 14:10	05/17/17	
Nickel	6020A	0.346	mg/Kg	0.043	5	05/24/17 14:10	05/17/17	
Potassium	6010C	2390	mg/Kg	8.6	1	05/24/17 15:56	05/17/17	
Selenium	7742	0.338	mg/Kg	0.022	5	05/26/17 11:33	05/17/17	
Silver	6020A	0.271	mg/Kg	0.0043	5	05/24/17 14:10	05/17/17	
Sodium	6010C	3320	mg/Kg	4.3	1	05/24/17 15:56	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0043	5	05/24/17 14:10	05/17/17	
Vanadium	6020A	0.186	mg/Kg	0.043	5	05/24/17 14:10	05/17/17	
Zinc	6020A	14.5	mg/Kg	0.11	5	05/24/17 14:10	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: NF-PRAWN-03

Lab Code: K1704545-003

Service Request: K1704545 **Date Collected:** 05/04/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	2.26	mg/Kg	0.42	5	05/24/17 14:14	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.011	5	05/24/17 14:14	05/17/17	
Arsenic	6020A	19.3	mg/Kg	0.11	5	05/24/17 14:14	05/17/17	
Barium	6020A	0.056	mg/Kg	0.011	5	05/24/17 14:14	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0042	5	05/24/17 14:14	05/17/17	
Cadmium	6020A	0.0827	mg/Kg	0.0042	5	05/24/17 14:14	05/17/17	
Calcium	6010C	830	mg/Kg	0.42	1	05/24/17 16:09	05/17/17	
Chromium	6020A	0.484	mg/Kg	0.042	5	05/24/17 14:14	05/17/17	
Cobalt	6020A	0.0162	mg/Kg	0.0042	5	05/24/17 14:14	05/17/17	
Copper	6020A	7.06	mg/Kg	0.021	5	05/24/17 14:14	05/17/17	
Iron	6020A	12.2	mg/Kg	0.21	5	05/24/17 14:14	05/17/17	
Lead	6020A	0.0260	mg/Kg	0.0042	5	05/24/17 14:14	05/17/17	
Magnesium	6010C	352	mg/Kg	0.11	1	05/24/17 16:09	05/17/17	
Manganese	6020A	0.476	mg/Kg	0.011	5	05/24/17 14:14	05/17/17	
Nickel	6020A	0.233	mg/Kg	0.042	5	05/24/17 14:14	05/17/17	
Potassium	6010C	2900	mg/Kg	8.4	1	05/24/17 16:09	05/17/17	
Selenium	7742	0.285	mg/Kg	0.021	5	05/26/17 11:37	05/17/17	
Silver	6020A	0.117	mg/Kg	0.0042	5	05/24/17 14:14	05/17/17	
Sodium	6010C	2620	mg/Kg	4.2	1	05/24/17 16:09	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0042	5	05/24/17 14:14	05/17/17	
Vanadium	6020A	ND U	mg/Kg	0.042	5	05/24/17 14:14	05/17/17	
Zinc	6020A	13.0	mg/Kg	0.11	5	05/24/17 14:14	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: NF-PRAWN-04

Lab Code: K1704545-004

Service Request: K1704545

Date Collected: 05/04/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	1.00	mg/Kg	0.34	5	05/24/17 14:19	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.0085	5	05/24/17 14:19	05/17/17	
Arsenic	6020A	8.65	mg/Kg	0.085	5	05/24/17 14:19	05/17/17	
Barium	6020A	0.0460	mg/Kg	0.0085	5	05/24/17 14:19	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0034	5	05/24/17 14:19	05/17/17	
Cadmium	6020A	0.0878	mg/Kg	0.0034	5	05/24/17 14:19	05/17/17	
Calcium	6010C	740	mg/Kg	0.34	1	05/24/17 16:11	05/17/17	
Chromium	6020A	0.427	mg/Kg	0.034	5	05/24/17 14:19	05/17/17	
Cobalt	6020A	0.0099	mg/Kg	0.0034	5	05/24/17 14:19	05/17/17	
Copper	6020A	8.08	mg/Kg	0.017	5	05/24/17 14:19	05/17/17	
Iron	6020A	22.4	mg/Kg	0.17	5	05/24/17 14:19	05/17/17	
Lead	6020A	0.0139	mg/Kg	0.0034	5	05/24/17 14:19	05/17/17	
Magnesium	6010C	318	mg/Kg	0.085	1	05/24/17 16:11	05/17/17	
Manganese	6020A	0.291	mg/Kg	0.0085	5	05/24/17 14:19	05/17/17	
Nickel	6020A	0.203	mg/Kg	0.034	5	05/24/17 14:19	05/17/17	
Potassium	6010C	2340	mg/Kg	6.8	1	05/24/17 16:11	05/17/17	
Selenium	7742	0.188	mg/Kg	0.017	5	05/26/17 11:42	05/17/17	
Silver	6020A	0.0869	mg/Kg	0.0034	5	05/24/17 14:19	05/17/17	
Sodium	6010C	2660	mg/Kg	3.4	1	05/24/17 16:11	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0034	5	05/24/17 14:19	05/17/17	
Vanadium	6020A	ND U	mg/Kg	0.034	5	05/24/17 14:19	05/17/17	
Zinc	6020A	9.98	mg/Kg	0.085	5	05/24/17 14:19	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: NF-PRAWN-05

Lab Code: K1704545-005

Service Request: K1704545

Date Collected: 05/04/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	0.74	mg/Kg	0.36	5	05/24/17 14:23	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.0090	5	05/24/17 14:23	05/17/17	
Arsenic	6020A	8.02	mg/Kg	0.090	5	05/24/17 14:23	05/17/17	
Barium	6020A	0.0420	mg/Kg	0.0090	5	05/24/17 14:23	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0036	5	05/24/17 14:23	05/17/17	
Cadmium	6020A	0.133	mg/Kg	0.0036	5	05/24/17 14:23	05/17/17	
Calcium	6010C	615	mg/Kg	0.36	1	05/24/17 16:14	05/17/17	
Chromium	6020A	0.447	mg/Kg	0.036	5	05/24/17 14:23	05/17/17	
Cobalt	6020A	0.0139	mg/Kg	0.0036	5	05/24/17 14:23	05/17/17	
Copper	6020A	6.36	mg/Kg	0.018	5	05/24/17 14:23	05/17/17	
Iron	6020A	7.21	mg/Kg	0.18	5	05/24/17 14:23	05/17/17	
Lead	6020A	0.0081	mg/Kg	0.0036	5	05/24/17 14:23	05/17/17	
Magnesium	6010C	353	mg/Kg	0.090	1	05/24/17 16:14	05/17/17	
Manganese	6020A	0.313	mg/Kg	0.0090	5	05/24/17 14:23	05/17/17	
Nickel	6020A	0.202	mg/Kg	0.036	5	05/24/17 14:23	05/17/17	
Potassium	6010C	2710	mg/Kg	7.2	1	05/24/17 16:14	05/17/17	
Selenium	7742	0.214	mg/Kg	0.018	5	05/26/17 11:51	05/17/17	
Silver	6020A	0.118	mg/Kg	0.0036	5	05/24/17 14:23	05/17/17	
Sodium	6010C	2800	mg/Kg	3.6	1	05/24/17 16:14	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0036	5	05/24/17 14:23	05/17/17	
Vanadium	6020A	ND U	mg/Kg	0.036	5	05/24/17 14:23	05/17/17	
Zinc	6020A	10.7	mg/Kg	0.090	5	05/24/17 14:23	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: NF-MUSSEL-01

Lab Code: K1704545-006

Service Request: K1704545

Date Collected: 04/29/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	12.9	mg/Kg	0.37	5	05/24/17 14:27	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.0093	5	05/24/17 14:27	05/17/17	
Arsenic	6020A	2.83	mg/Kg	0.093	5	05/24/17 14:27	05/17/17	
Barium	6020A	0.876	mg/Kg	0.0093	5	05/24/17 14:27	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0037	5	05/24/17 14:27	05/17/17	
Cadmium	6020A	1.22	mg/Kg	0.0037	5	05/24/17 14:27	05/17/17	
Calcium	6010C	391	mg/Kg	0.37	1	05/24/17 16:16	05/17/17	
Chromium	6020A	1.06	mg/Kg	0.037	5	05/24/17 14:27	05/17/17	
Cobalt	6020A	0.102	mg/Kg	0.0037	5	05/24/17 14:27	05/17/17	
Copper	6020A	5.74	mg/Kg	0.019	5	05/24/17 14:27	05/17/17	
Iron	6020A	76.6	mg/Kg	0.19	5	05/24/17 14:27	05/17/17	
Lead	6020A	2.64	mg/Kg	0.0037	5	05/24/17 14:27	05/17/17	
Magnesium	6010C	661	mg/Kg	0.093	1	05/24/17 16:16	05/17/17	
Manganese	6020A	1.94	mg/Kg	0.0093	5	05/24/17 14:27	05/17/17	
Nickel	6020A	0.666	mg/Kg	0.037	5	05/24/17 14:27	05/17/17	
Potassium	6010C	2470	mg/Kg	7.4	1	05/24/17 16:16	05/17/17	
Selenium	7742	1.06	mg/Kg	0.074	20	05/26/17 11:56	05/17/17	
Silver	6020A	0.0128	mg/Kg	0.0037	5	05/24/17 14:27	05/17/17	
Sodium	6010C	4510	mg/Kg	3.7	1	05/24/17 16:16	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0037	5	05/24/17 14:27	05/17/17	
Vanadium	6020A	0.163	mg/Kg	0.037	5	05/24/17 14:27	05/17/17	
Zinc	6020A	22.6	mg/Kg	0.093	5	05/24/17 14:27	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: NF-MUSSEL-02

Lab Code: K1704545-007

Service Request: K1704545 **Date Collected:** 04/29/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	14.3	mg/Kg	0.41	5	05/24/17 14:41	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.010	5	05/24/17 14:41	05/17/17	
Arsenic	6020A	2.64	mg/Kg	0.10	5	05/24/17 14:41	05/17/17	
Barium	6020A	1.23	mg/Kg	0.010	5	05/24/17 14:41	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0041	5	05/24/17 14:41	05/17/17	
Cadmium	6020A	1.50	mg/Kg	0.0041	5	05/24/17 14:41	05/17/17	
Calcium	6010C	2880	mg/Kg	0.41	1	05/24/17 16:19	05/17/17	
Chromium	6020A	0.344	mg/Kg	0.041	5	05/24/17 14:41	05/17/17	
Cobalt	6020A	0.0969	mg/Kg	0.0041	5	05/24/17 14:41	05/17/17	
Copper	6020A	1.86	mg/Kg	0.021	5	05/24/17 14:41	05/17/17	
Iron	6020A	57.8	mg/Kg	0.21	5	05/24/17 14:41	05/17/17	
Lead	6020A	3.22	mg/Kg	0.0041	5	05/24/17 14:41	05/17/17	
Magnesium	6010C	686	mg/Kg	0.10	1	05/24/17 16:19	05/17/17	
Manganese	6020A	2.43	mg/Kg	0.010	5	05/24/17 14:41	05/17/17	
Nickel	6020A	0.316	mg/Kg	0.041	5	05/24/17 14:41	05/17/17	
Potassium	6010C	2520	mg/Kg	8.2	1	05/24/17 16:19	05/17/17	
Selenium	7742	1.19	mg/Kg	0.082	20	05/26/17 12:01	05/17/17	
Silver	6020A	0.0139	mg/Kg	0.0041	5	05/24/17 14:41	05/17/17	
Sodium	6010C	4520	mg/Kg	4.1	1	05/24/17 16:19	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0041	5	05/24/17 14:41	05/17/17	
Vanadium	6020A	0.196	mg/Kg	0.041	5	05/24/17 14:41	05/17/17	
Zinc	6020A	20.6	mg/Kg	0.10	5	05/24/17 14:41	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: NF-MUSSEL-03

Lab Code: K1704545-008

Service Request: K1704545

Date Collected: 04/29/17 **Date Received:** 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	12.0	mg/Kg	0.38	5	05/24/17 14:45	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.0095	5	05/24/17 14:45	05/17/17	
Arsenic	6020A	2.78	mg/Kg	0.095	5	05/24/17 14:45	05/17/17	
Barium	6020A	0.955	mg/Kg	0.0095	5	05/24/17 14:45	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0038	5	05/24/17 14:45	05/17/17	
Cadmium	6020A	1.25	mg/Kg	0.0038	5	05/24/17 14:45	05/17/17	
Calcium	6010C	3390	mg/Kg	0.38	1	05/24/17 16:21	05/17/17	
Chromium	6020A	0.221	mg/Kg	0.038	5	05/24/17 14:45	05/17/17	
Cobalt	6020A	0.0896	mg/Kg	0.0038	5	05/24/17 14:45	05/17/17	
Copper	6020A	1.69	mg/Kg	0.019	5	05/24/17 14:45	05/17/17	
Iron	6020A	46.8	mg/Kg	0.19	5	05/24/17 14:45	05/17/17	
Lead	6020A	2.03	mg/Kg	0.0038	5	05/24/17 14:45	05/17/17	
Magnesium	6010C	680	mg/Kg	0.095	1	05/24/17 16:21	05/17/17	
Manganese	6020A	2.46	mg/Kg	0.0095	5	05/24/17 14:45	05/17/17	
Nickel	6020A	0.275	mg/Kg	0.038	5	05/24/17 14:45	05/17/17	
Potassium	6010C	2460	mg/Kg	7.6	1	05/24/17 16:21	05/17/17	
Selenium	7742	1.07	mg/Kg	0.076	20	05/26/17 12:05	05/17/17	
Silver	6020A	0.0141	mg/Kg	0.0038	5	05/24/17 14:45	05/17/17	
Sodium	6010C	4660	mg/Kg	3.8	1	05/24/17 16:21	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0038	5	05/24/17 14:45	05/17/17	
Vanadium	6020A	0.173	mg/Kg	0.038	5	05/24/17 14:45	05/17/17	
Zinc	6020A	18.4	mg/Kg	0.095	5	05/24/17 14:45	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: NF-MUSSEL-04

Lab Code: K1704545-009

Service Request: K1704545

Date Collected: 04/29/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	15.3	mg/Kg	0.40	5	05/24/17 14:49	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.0099	5	05/24/17 14:49	05/17/17	
Arsenic	6020A	2.55	mg/Kg	0.099	5	05/24/17 14:49	05/17/17	
Barium	6020A	1.20	mg/Kg	0.0099	5	05/24/17 14:49	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0040	5	05/24/17 14:49	05/17/17	
Cadmium	6020A	1.43	mg/Kg	0.0040	5	05/24/17 14:49	05/17/17	
Calcium	6010C	851	mg/Kg	0.40	1	05/24/17 16:24	05/17/17	
Chromium	6020A	0.525	mg/Kg	0.040	5	05/24/17 14:49	05/17/17	
Cobalt	6020A	0.103	mg/Kg	0.0040	5	05/24/17 14:49	05/17/17	
Copper	6020A	1.87	mg/Kg	0.020	5	05/24/17 14:49	05/17/17	
Iron	6020A	57.7	mg/Kg	0.20	5	05/24/17 14:49	05/17/17	
Lead	6020A	3.23	mg/Kg	0.0040	5	05/24/17 14:49	05/17/17	
Magnesium	6010C	662	mg/Kg	0.099	1	05/24/17 16:24	05/17/17	
Manganese	6020A	2.09	mg/Kg	0.0099	5	05/24/17 14:49	05/17/17	
Nickel	6020A	0.410	mg/Kg	0.040	5	05/24/17 14:49	05/17/17	
Potassium	6010C	2520	mg/Kg	7.9	1	05/24/17 16:24	05/17/17	
Selenium	7742	1.13	mg/Kg	0.079	20	05/26/17 12:10	05/17/17	
Silver	6020A	0.0151	mg/Kg	0.0040	5	05/24/17 14:49	05/17/17	
Sodium	6010C	4300	mg/Kg	4.0	1	05/24/17 16:24	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0040	5	05/24/17 14:49	05/17/17	
Vanadium	6020A	0.178	mg/Kg	0.040	5	05/24/17 14:49	05/17/17	
Zinc	6020A	24.1	mg/Kg	0.099	5	05/24/17 14:49	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: NF-MUSSEL-05

Lab Code: K1704545-010

Service Request: K1704545

Date Collected: 04/29/17 **Date Received:** 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	18.1	mg/Kg	0.42	5	05/24/17 14:54	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.011	5	05/24/17 14:54	05/17/17	
Arsenic	6020A	2.90	mg/Kg	0.11	5	05/24/17 14:54	05/17/17	
Barium	6020A	1.25	mg/Kg	0.011	5	05/24/17 14:54	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0042	5	05/24/17 14:54	05/17/17	
Cadmium	6020A	1.56	mg/Kg	0.0042	5	05/24/17 14:54	05/17/17	
Calcium	6010C	670	mg/Kg	0.42	1	05/24/17 16:27	05/17/17	
Chromium	6020A	0.392	mg/Kg	0.042	5	05/24/17 14:54	05/17/17	
Cobalt	6020A	0.119	mg/Kg	0.0042	5	05/24/17 14:54	05/17/17	
Copper	6020A	1.91	mg/Kg	0.021	5	05/24/17 14:54	05/17/17	
Iron	6020A	64.9	mg/Kg	0.21	5	05/24/17 14:54	05/17/17	
Lead	6020A	4.07	mg/Kg	0.0042	5	05/24/17 14:54	05/17/17	
Magnesium	6010C	630	mg/Kg	0.11	1	05/24/17 16:27	05/17/17	
Manganese	6020A	2.18	mg/Kg	0.011	5	05/24/17 14:54	05/17/17	
Nickel	6020A	0.409	mg/Kg	0.042	5	05/24/17 14:54	05/17/17	
Potassium	6010C	2720	mg/Kg	8.4	1	05/24/17 16:27	05/17/17	
Selenium	7742	1.72	mg/Kg	0.084	20	05/26/17 12:19	05/17/17	
Silver	6020A	0.0151	mg/Kg	0.0042	5	05/24/17 14:54	05/17/17	
Sodium	6010C	4030	mg/Kg	4.2	1	05/24/17 16:27	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0042	5	05/24/17 14:54	05/17/17	
Vanadium	6020A	0.253	mg/Kg	0.042	5	05/24/17 14:54	05/17/17	
Zinc	6020A	23.7	mg/Kg	0.11	5	05/24/17 14:54	05/17/17	

Analytical Report

Service Request: K1704545

Date Collected: 05/01/17

Date Received: 05/08/17 08:40

Basis: Wet

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: NF-CRAB-01

Lab Code: K1704545-011

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	6.96	mg/Kg	0.43	5	05/24/17 14:58	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.011	5	05/24/17 14:58	05/17/17	
Arsenic	6020A	3.56	mg/Kg	0.11	5	05/24/17 14:58	05/17/17	
Barium	6020A	1.22	mg/Kg	0.011	5	05/24/17 14:58	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0043	5	05/24/17 14:58	05/17/17	
Cadmium	6020A	0.0483	mg/Kg	0.0043	5	05/24/17 14:58	05/17/17	
Calcium	6010C	8040	mg/Kg	0.43	1	05/24/17 16:29	05/17/17	
Chromium	6020A	0.195	mg/Kg	0.043	5	05/24/17 14:58	05/17/17	
Cobalt	6020A	0.0604	mg/Kg	0.0043	5	05/24/17 14:58	05/17/17	
Copper	6020A	3.97	mg/Kg	0.021	5	05/24/17 14:58	05/17/17	
Iron	6020A	15.8	mg/Kg	0.21	5	05/24/17 14:58	05/17/17	
Lead	6020A	0.245	mg/Kg	0.0043	5	05/24/17 14:58	05/17/17	
Magnesium	6010C	621	mg/Kg	0.11	1	05/24/17 16:29	05/17/17	
Manganese	6020A	1.26	mg/Kg	0.011	5	05/24/17 14:58	05/17/17	
Nickel	6020A	0.108	mg/Kg	0.043	5	05/24/17 14:58	05/17/17	
Potassium	6010C	3020	mg/Kg	8.6	1	05/24/17 16:29	05/17/17	
Selenium	7742	0.283	mg/Kg	0.021	5	05/26/17 12:24	05/17/17	
Silver	6020A	0.0632	mg/Kg	0.0043	5	05/24/17 14:58	05/17/17	
Sodium	6010C	3950	mg/Kg	4.3	1	05/24/17 16:29	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0043	5	05/24/17 14:58	05/17/17	
Vanadium	6020A	ND U	mg/Kg	0.043	5	05/24/17 14:58	05/17/17	
Zinc	6020A	36.3	mg/Kg	0.11	5	05/24/17 14:58	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: NF-CRAB-02

Lab Code: K1704545-012

Service Request: K1704545 **Date Collected:** 05/04/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	7.10	mg/Kg	0.42	5	05/24/17 15:02	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.010	5	05/24/17 15:02	05/17/17	
Arsenic	6020A	3.97	mg/Kg	0.10	5	05/24/17 15:02	05/17/17	
Barium	6020A	0.173	mg/Kg	0.010	5	05/24/17 15:02	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0042	5	05/24/17 15:02	05/17/17	
Cadmium	6020A	0.111	mg/Kg	0.0042	5	05/24/17 15:02	05/17/17	
Calcium	6010C	939	mg/Kg	0.42	1	05/24/17 15:46	05/17/17	
Chromium	6020A	0.144	mg/Kg	0.042	5	05/24/17 15:02	05/17/17	
Cobalt	6020A	0.0774	mg/Kg	0.0042	5	05/24/17 15:02	05/17/17	
Copper	6020A	8.26	mg/Kg	0.021	5	05/24/17 15:02	05/17/17	
Iron	6020A	32.7	mg/Kg	0.21	5	05/24/17 15:02	05/17/17	
Lead	6020A	0.174	mg/Kg	0.0042	5	05/24/17 15:02	05/17/17	
Magnesium	6010C	400	mg/Kg	0.10	1	05/24/17 15:46	05/17/17	
Manganese	6020A	0.501	mg/Kg	0.010	5	05/24/17 15:02	05/17/17	
Nickel	6020A	0.096	mg/Kg	0.042	5	05/24/17 15:02	05/17/17	
Potassium	6010C	3140	mg/Kg	8.3	1	05/24/17 15:46	05/17/17	
Selenium	7742	0.605	mg/Kg	0.042	10	05/26/17 11:10	05/17/17	
Silver	6020A	0.117	mg/Kg	0.0042	5	05/24/17 15:02	05/17/17	
Sodium	6010C	3910	mg/Kg	4.2	1	05/24/17 15:46	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0042	5	05/24/17 15:02	05/17/17	
Vanadium	6020A	ND U	mg/Kg	0.042	5	05/24/17 15:02	05/17/17	
Zinc	6020A	46.0	mg/Kg	0.10	5	05/24/17 15:02	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: NF-CRAB-03

Lab Code: K1704545-013

Service Request: K1704545

Date Collected: 05/04/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	10.2	mg/Kg	0.40	5	05/24/17 15:37	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.010	5	05/24/17 15:37	05/17/17	
Arsenic	6020A	3.83	mg/Kg	0.10	5	05/24/17 15:37	05/17/17	
Barium	6020A	0.263	mg/Kg	0.010	5	05/24/17 15:37	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0040	5	05/24/17 15:37	05/17/17	
Cadmium	6020A	0.0571	mg/Kg	0.0040	5	05/24/17 15:37	05/17/17	
Calcium	6010C	1150	mg/Kg	0.40	1	05/24/17 16:32	05/17/17	
Chromium	6020A	0.270	mg/Kg	0.040	5	05/24/17 15:37	05/17/17	
Cobalt	6020A	0.0862	mg/Kg	0.0040	5	05/24/17 15:37	05/17/17	
Copper	6020A	11.8	mg/Kg	0.020	5	05/24/17 15:37	05/17/17	
Iron	6020A	36.6	mg/Kg	0.20	5	05/24/17 15:37	05/17/17	
Lead	6020A	0.241	mg/Kg	0.0040	5	05/24/17 15:37	05/17/17	
Magnesium	6010C	426	mg/Kg	0.10	1	05/24/17 16:32	05/17/17	
Manganese	6020A	0.786	mg/Kg	0.010	5	05/24/17 15:37	05/17/17	
Nickel	6020A	0.150	mg/Kg	0.040	5	05/24/17 15:37	05/17/17	
Potassium	6010C	2990	mg/Kg	8.0	1	05/24/17 16:32	05/17/17	
Selenium	7742	0.659	mg/Kg	0.020	5	05/26/17 12:29	05/17/17	
Silver	6020A	0.119	mg/Kg	0.0040	5	05/24/17 15:37	05/17/17	
Sodium	6010C	4060	mg/Kg	4.0	1	05/24/17 16:32	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0040	5	05/24/17 15:37	05/17/17	
Vanadium	6020A	0.045	mg/Kg	0.040	5	05/24/17 15:37	05/17/17	
Zinc	6020A	47.2	mg/Kg	0.10	5	05/24/17 15:37	05/17/17	

Analytical Report

Service Request: K1704545

Date Collected: 05/03/17

Date Received: 05/08/17 08:40

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: MF-CRAB-01 Basis: Wet

Lab Code: K1704545-014

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	7.52	mg/Kg	0.42	5	05/24/17 15:42	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.010	5	05/24/17 15:42	05/17/17	
Arsenic	6020A	4.35	mg/Kg	0.10	5	05/24/17 15:42	05/17/17	
Barium	6020A	0.252	mg/Kg	0.010	5	05/24/17 15:42	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0042	5	05/24/17 15:42	05/17/17	
Cadmium	6020A	0.0887	mg/Kg	0.0042	5	05/24/17 15:42	05/17/17	
Calcium	6010C	1450	mg/Kg	0.42	1	05/24/17 16:42	05/17/17	
Chromium	6020A	0.087	mg/Kg	0.042	5	05/24/17 15:42	05/17/17	
Cobalt	6020A	0.0702	mg/Kg	0.0042	5	05/24/17 15:42	05/17/17	
Copper	6020A	6.04	mg/Kg	0.021	5	05/24/17 15:42	05/17/17	
Iron	6020A	17.2	mg/Kg	0.21	5	05/24/17 15:42	05/17/17	
Lead	6020A	0.282	mg/Kg	0.0042	5	05/24/17 15:42	05/17/17	
Magnesium	6010C	426	mg/Kg	0.10	1	05/24/17 16:42	05/17/17	
Manganese	6020A	0.684	mg/Kg	0.010	5	05/24/17 15:42	05/17/17	
Nickel	6020A	0.067	mg/Kg	0.042	5	05/24/17 15:42	05/17/17	
Potassium	6010C	3320	mg/Kg	8.3	1	05/24/17 16:42	05/17/17	
Selenium	7742	0.703	mg/Kg	0.021	5	05/26/17 12:33	05/17/17	
Silver	6020A	0.0792	mg/Kg	0.0042	5	05/24/17 15:42	05/17/17	
Sodium	6010C	4050	mg/Kg	4.2	1	05/24/17 16:42	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0042	5	05/24/17 15:42	05/17/17	
Vanadium	6020A	ND U	mg/Kg	0.042	5	05/24/17 15:42	05/17/17	
Zinc	6020A	44.0	mg/Kg	0.10	5	05/24/17 15:42	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: MF-CRAB-02

Lab Code: K1704545-015

Service Request: K1704545 **Date Collected:** 05/03/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	5.68	mg/Kg	0.27	5	05/24/17 15:46	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.0067	5	05/24/17 15:46	05/17/17	
Arsenic	6020A	1.83	mg/Kg	0.067	5	05/24/17 15:46	05/17/17	
Barium	6020A	0.106	mg/Kg	0.0067	5	05/24/17 15:46	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0027	5	05/24/17 15:46	05/17/17	
Cadmium	6020A	0.119	mg/Kg	0.0027	5	05/24/17 15:46	05/17/17	
Calcium	6010C	1210	mg/Kg	0.27	1	05/24/17 16:44	05/17/17	
Chromium	6020A	0.839	mg/Kg	0.027	5	05/24/17 15:46	05/17/17	
Cobalt	6020A	0.0697	mg/Kg	0.0027	5	05/24/17 15:46	05/17/17	
Copper	6020A	6.69	mg/Kg	0.013	5	05/24/17 15:46	05/17/17	
Iron	6020A	17.4	mg/Kg	0.13	5	05/24/17 15:46	05/17/17	
Lead	6020A	0.0339	mg/Kg	0.0027	5	05/24/17 15:46	05/17/17	
Magnesium	6010C	368	mg/Kg	0.067	1	05/24/17 16:44	05/17/17	
Manganese	6020A	0.330	mg/Kg	0.0067	5	05/24/17 15:46	05/17/17	
Nickel	6020A	0.387	mg/Kg	0.027	5	05/24/17 15:46	05/17/17	
Potassium	6010C	1980	mg/Kg	5.4	1	05/24/17 16:44	05/17/17	
Selenium	7742	0.252	mg/Kg	0.013	5	05/26/17 12:38	05/17/17	
Silver	6020A	0.119	mg/Kg	0.0027	5	05/24/17 15:46	05/17/17	
Sodium	6010C	6880	mg/Kg	27	10	05/30/17 09:05	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0027	5	05/24/17 15:46	05/17/17	
Vanadium	6020A	ND U	mg/Kg	0.027	5	05/24/17 15:46	05/17/17	
Zinc	6020A	23.7	mg/Kg	0.067	5	05/24/17 15:46	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: MF-CRAB-03

Lab Code: K1704545-016

Service Request: K1704545 **Date Collected:** 05/03/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	5.90	mg/Kg	0.33	5	05/24/17 15:50	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.0082	5	05/24/17 15:50	05/17/17	
Arsenic	6020A	3.14	mg/Kg	0.082	5	05/24/17 15:50	05/17/17	
Barium	6020A	0.139	mg/Kg	0.0082	5	05/24/17 15:50	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0033	5	05/24/17 15:50	05/17/17	
Cadmium	6020A	0.194	mg/Kg	0.0033	5	05/24/17 15:50	05/17/17	
Calcium	6010C	1100	mg/Kg	0.33	1	05/24/17 16:47	05/17/17	
Chromium	6020A	0.202	mg/Kg	0.033	5	05/24/17 15:50	05/17/17	
Cobalt	6020A	0.0716	mg/Kg	0.0033	5	05/24/17 15:50	05/17/17	
Copper	6020A	6.97	mg/Kg	0.016	5	05/24/17 15:50	05/17/17	
Iron	6020A	15.5	mg/Kg	0.16	5	05/24/17 15:50	05/17/17	
Lead	6020A	0.0450	mg/Kg	0.0033	5	05/24/17 15:50	05/17/17	
Magnesium	6010C	319	mg/Kg	0.082	1	05/24/17 16:47	05/17/17	
Manganese	6020A	0.413	mg/Kg	0.0082	5	05/24/17 15:50	05/17/17	
Nickel	6020A	0.125	mg/Kg	0.033	5	05/24/17 15:50	05/17/17	
Potassium	6010C	2770	mg/Kg	6.5	1	05/24/17 16:47	05/17/17	
Selenium	7742	0.634	mg/Kg	0.033	10	05/26/17 14:56	05/17/17	
Silver	6020A	0.0842	mg/Kg	0.0033	5	05/24/17 15:50	05/17/17	
Sodium	6010C	5190	mg/Kg	3.3	1	05/24/17 16:47	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0033	5	05/24/17 15:50	05/17/17	
Vanadium	6020A	0.034	mg/Kg	0.033	5	05/24/17 15:50	05/17/17	
Zinc	6020A	31.4	mg/Kg	0.082	5	05/24/17 15:50	05/17/17	

Analytical Report

Service Request: K1704545

Date Collected: 05/03/17

Date Received: 05/08/17 08:40

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: MF-CRAB-04 Basis: Wet

Lab Code: K1704545-017

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	8.60	mg/Kg	0.42	5	05/24/17 15:55	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.011	5	05/24/17 15:55	05/17/17	
Arsenic	6020A	3.13	mg/Kg	0.11	5	05/24/17 15:55	05/17/17	
Barium	6020A	0.376	mg/Kg	0.011	5	05/24/17 15:55	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0042	5	05/24/17 15:55	05/17/17	
Cadmium	6020A	0.0312	mg/Kg	0.0042	5	05/24/17 15:55	05/17/17	
Calcium	6010C	2350	mg/Kg	0.42	1	05/24/17 16:49	05/17/17	
Chromium	6020A	0.318	mg/Kg	0.042	5	05/24/17 15:55	05/17/17	
Cobalt	6020A	0.0844	mg/Kg	0.0042	5	05/24/17 15:55	05/17/17	
Copper	6020A	8.42	mg/Kg	0.021	5	05/24/17 15:55	05/17/17	
Iron	6020A	21.6	mg/Kg	0.21	5	05/24/17 15:55	05/17/17	
Lead	6020A	0.0231	mg/Kg	0.0042	5	05/24/17 15:55	05/17/17	
Magnesium	6010C	431	mg/Kg	0.11	1	05/24/17 16:49	05/17/17	
Manganese	6020A	0.755	mg/Kg	0.011	5	05/24/17 15:55	05/17/17	
Nickel	6020A	0.165	mg/Kg	0.042	5	05/24/17 15:55	05/17/17	
Potassium	6010C	3170	mg/Kg	8.4	1	05/24/17 16:49	05/17/17	
Selenium	7742	0.582	mg/Kg	0.021	5	05/26/17 12:52	05/17/17	
Silver	6020A	0.120	mg/Kg	0.0042	5	05/24/17 15:55	05/17/17	
Sodium	6010C	4280	mg/Kg	4.2	1	05/24/17 16:49	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0042	5	05/24/17 15:55	05/17/17	
Vanadium	6020A	ND U	mg/Kg	0.042	5	05/24/17 15:55	05/17/17	
Zinc	6020A	44.5	mg/Kg	0.11	5	05/24/17 15:55	05/17/17	

Analytical Report

Service Request: K1704545

Date Collected: 05/03/17

Date Received: 05/08/17 08:40

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: MF-CRAB-05 Basis: Wet

Lab Code: K1704545-018

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	2.91	mg/Kg	0.28	5	05/24/17 15:59	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.0069	5	05/24/17 15:59	05/17/17	
Arsenic	6020A	1.87	mg/Kg	0.069	5	05/24/17 15:59	05/17/17	
Barium	6020A	0.0912	mg/Kg	0.0069	5	05/24/17 15:59	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0028	5	05/24/17 15:59	05/17/17	
Cadmium	6020A	0.0187	mg/Kg	0.0028	5	05/24/17 15:59	05/17/17	
Calcium	6010C	1270	mg/Kg	0.28	1	05/24/17 16:52	05/17/17	
Chromium	6020A	0.105	mg/Kg	0.028	5	05/24/17 15:59	05/17/17	
Cobalt	6020A	0.0832	mg/Kg	0.0028	5	05/24/17 15:59	05/17/17	
Copper	6020A	6.45	mg/Kg	0.014	5	05/24/17 15:59	05/17/17	
Iron	6020A	7.13	mg/Kg	0.14	5	05/24/17 15:59	05/17/17	
Lead	6020A	0.0441	mg/Kg	0.0028	5	05/24/17 15:59	05/17/17	
Magnesium	6010C	327	mg/Kg	0.069	1	05/24/17 16:52	05/17/17	
Manganese	6020A	0.212	mg/Kg	0.0069	5	05/24/17 15:59	05/17/17	
Nickel	6020A	0.060	mg/Kg	0.028	5	05/24/17 15:59	05/17/17	
Potassium	6010C	2080	mg/Kg	5.5	1	05/24/17 16:52	05/17/17	
Selenium	7742	0.388	mg/Kg	0.014	5	05/26/17 12:56	05/17/17	
Silver	6020A	0.114	mg/Kg	0.0028	5	05/24/17 15:59	05/17/17	
Sodium	6010C	6550	mg/Kg	28	10	05/30/17 09:07	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0028	5	05/24/17 15:59	05/17/17	
Vanadium	6020A	ND U	mg/Kg	0.028	5	05/24/17 15:59	05/17/17	
Zinc	6020A	24.4	mg/Kg	0.069	5	05/24/17 15:59	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: FF-MUSSEL-01

Lab Code: K1704545-019

Service Request: K1704545 **Date Collected:** 04/29/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	19.0	mg/Kg	0.41	5	05/24/17 16:03	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.010	5	05/24/17 16:03	05/17/17	
Arsenic	6020A	2.69	mg/Kg	0.10	5	05/24/17 16:03	05/17/17	
Barium	6020A	2.96	mg/Kg	0.010	5	05/24/17 16:03	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0041	5	05/24/17 16:03	05/17/17	
Cadmium	6020A	1.34	mg/Kg	0.0041	5	05/24/17 16:03	05/17/17	
Calcium	6010C	1620	mg/Kg	0.41	1	05/24/17 16:54	05/17/17	
Chromium	6020A	0.376	mg/Kg	0.041	5	05/24/17 16:03	05/17/17	
Cobalt	6020A	0.106	mg/Kg	0.0041	5	05/24/17 16:03	05/17/17	
Copper	6020A	1.82	mg/Kg	0.020	5	05/24/17 16:03	05/17/17	
Iron	6020A	51.4	mg/Kg	0.20	5	05/24/17 16:03	05/17/17	
Lead	6020A	0.243	mg/Kg	0.0041	5	05/24/17 16:03	05/17/17	
Magnesium	6010C	629	mg/Kg	0.10	1	05/24/17 16:54	05/17/17	
Manganese	6020A	4.71	mg/Kg	0.010	5	05/24/17 16:03	05/17/17	
Nickel	6020A	0.403	mg/Kg	0.041	5	05/24/17 16:03	05/17/17	
Potassium	6010C	2620	mg/Kg	8.1	1	05/24/17 16:54	05/17/17	
Selenium	7742	1.10	mg/Kg	0.081	20	05/26/17 13:01	05/17/17	
Silver	6020A	0.0268	mg/Kg	0.0041	5	05/24/17 16:03	05/17/17	
Sodium	6010C	4200	mg/Kg	4.1	1	05/24/17 16:54	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0041	5	05/24/17 16:03	05/17/17	
Vanadium	6020A	0.171	mg/Kg	0.041	5	05/24/17 16:03	05/17/17	
Zinc	6020A	22.9	mg/Kg	0.10	5	05/24/17 16:03	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: FF-MUSSEL-02

Lab Code: K1704545-020

Service Request: K1704545 **Date Collected:** 04/29/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	16.2	mg/Kg	0.65	5	05/24/17 16:08	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.016	5	05/24/17 16:08	05/17/17	
Arsenic	6020A	2.14	mg/Kg	0.16	5	05/24/17 16:08	05/17/17	
Barium	6020A	4.77	mg/Kg	0.016	5	05/24/17 16:08	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0065	5	05/24/17 16:08	05/17/17	
Cadmium	6020A	0.938	mg/Kg	0.0065	5	05/24/17 16:08	05/17/17	
Calcium	6010C	62500	mg/Kg	6.5	10	05/24/17 17:04	05/17/17	
Chromium	6020A	0.478	mg/Kg	0.065	5	05/24/17 16:08	05/17/17	
Cobalt	6020A	0.0827	mg/Kg	0.0065	5	05/24/17 16:08	05/17/17	
Copper	6020A	1.35	mg/Kg	0.032	5	05/24/17 16:08	05/17/17	
Iron	6020A	47.1	mg/Kg	0.32	5	05/24/17 16:08	05/17/17	
Lead	6020A	0.211	mg/Kg	0.0065	5	05/24/17 16:08	05/17/17	
Magnesium	6010C	630	mg/Kg	0.16	1	05/24/17 16:57	05/17/17	
Manganese	6020A	3.83	mg/Kg	0.016	5	05/24/17 16:08	05/17/17	
Nickel	6020A	0.361	mg/Kg	0.065	5	05/24/17 16:08	05/17/17	
Potassium	6010C	2160	mg/Kg	13	1	05/24/17 16:57	05/17/17	
Selenium	7742	0.943	mg/Kg	0.032	5	05/26/17 13:06	05/17/17	
Silver	6020A	0.0159	mg/Kg	0.0065	5	05/24/17 16:08	05/17/17	
Sodium	6010C	4310	mg/Kg	6.5	1	05/24/17 16:57	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0065	5	05/24/17 16:08	05/17/17	
Vanadium	6020A	0.256	mg/Kg	0.065	5	05/24/17 16:08	05/17/17	
Zinc	6020A	14.9	mg/Kg	0.16	5	05/24/17 16:08	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: FF-MUSSEL-03

Lab Code: K1704545-021

Service Request: K1704545 **Date Collected:** 04/29/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	31.9	mg/Kg	0.42	5	05/24/17 16:38	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.011	5	05/24/17 16:38	05/17/17	
Arsenic	6020A	2.67	mg/Kg	0.11	5	05/24/17 16:38	05/17/17	
Barium	6020A	2.09	mg/Kg	0.011	5	05/24/17 16:38	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0042	5	05/24/17 16:38	05/17/17	
Cadmium	6020A	1.56	mg/Kg	0.0042	5	05/24/17 16:38	05/17/17	
Calcium	6010C	7110	mg/Kg	0.42	1	05/24/17 14:27	05/17/17	
Chromium	6020A	0.366	mg/Kg	0.042	5	05/24/17 16:38	05/17/17	
Cobalt	6020A	0.149	mg/Kg	0.0042	5	05/24/17 16:38	05/17/17	
Copper	6020A	1.87	mg/Kg	0.021	5	05/24/17 16:38	05/17/17	
Iron	6020A	72.4	mg/Kg	0.21	5	05/24/17 16:38	05/17/17	
Lead	6020A	0.406	mg/Kg	0.0042	5	05/24/17 16:38	05/17/17	
Magnesium	6010C	664	mg/Kg	0.11	1	05/24/17 14:27	05/17/17	
Manganese	6020A	6.67	mg/Kg	0.011	5	05/24/17 16:38	05/17/17	
Nickel	6020A	0.591	mg/Kg	0.042	5	05/24/17 16:38	05/17/17	
Potassium	6010C	2500	mg/Kg	8.4	1	05/24/17 14:27	05/17/17	
Selenium	7742	1.25	mg/Kg	0.084	20	05/26/17 13:47	05/17/17	
Silver	6020A	0.0267	mg/Kg	0.0042	5	05/24/17 16:38	05/17/17	
Sodium	6010C	4360	mg/Kg	4.2	1	05/24/17 14:27	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0042	5	05/24/17 16:38	05/17/17	
Vanadium	6020A	0.915	mg/Kg	0.042	5	05/24/17 16:38	05/17/17	
Zinc	6020A	21.7	mg/Kg	0.11	5	05/24/17 16:38	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: FF-MUSSEL-04

Lab Code: K1704545-022

Service Request: K1704545 **Date Collected:** 04/29/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	26.2	mg/Kg	0.40	5	05/24/17 16:42	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.0099	5	05/24/17 16:42	05/17/17	
Arsenic	6020A	2.64	mg/Kg	0.099	5	05/24/17 16:42	05/17/17	
Barium	6020A	1.33	mg/Kg	0.0099	5	05/24/17 16:42	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0040	5	05/24/17 16:42	05/17/17	
Cadmium	6020A	1.54	mg/Kg	0.0040	5	05/24/17 16:42	05/17/17	
Calcium	6010C	634	mg/Kg	0.40	1	05/24/17 14:30	05/17/17	
Chromium	6020A	0.435	mg/Kg	0.040	5	05/24/17 16:42	05/17/17	
Cobalt	6020A	0.110	mg/Kg	0.0040	5	05/24/17 16:42	05/17/17	
Copper	6020A	1.64	mg/Kg	0.020	5	05/24/17 16:42	05/17/17	
Iron	6020A	66.1	mg/Kg	0.20	5	05/24/17 16:42	05/17/17	
Lead	6020A	0.326	mg/Kg	0.0040	5	05/24/17 16:42	05/17/17	
Magnesium	6010C	727	mg/Kg	0.099	1	05/24/17 14:30	05/17/17	
Manganese	6020A	2.57	mg/Kg	0.0099	5	05/24/17 16:42	05/17/17	
Nickel	6020A	0.361	mg/Kg	0.040	5	05/24/17 16:42	05/17/17	
Potassium	6010C	2660	mg/Kg	7.9	1	05/24/17 14:30	05/17/17	
Selenium	7742	0.992	mg/Kg	0.079	20	05/26/17 13:52	05/17/17	
Silver	6020A	0.0265	mg/Kg	0.0040	5	05/24/17 16:42	05/17/17	
Sodium	6010C	4710	mg/Kg	4.0	1	05/24/17 14:30	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0040	5	05/24/17 16:42	05/17/17	
Vanadium	6020A	0.307	mg/Kg	0.040	5	05/24/17 16:42	05/17/17	
Zinc	6020A	18.4	mg/Kg	0.099	5	05/24/17 16:42	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: FF-MUSSEL-05

Lab Code: K1704545-023

Service Request: K1704545

Date Collected: 04/29/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	16.6	mg/Kg	0.49	5	05/24/17 16:47	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.012	5	05/24/17 16:47	05/17/17	
Arsenic	6020A	2.47	mg/Kg	0.12	5	05/24/17 16:47	05/17/17	
Barium	6020A	1.87	mg/Kg	0.012	5	05/24/17 16:47	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0049	5	05/24/17 16:47	05/17/17	
Cadmium	6020A	1.32	mg/Kg	0.0049	5	05/24/17 16:47	05/17/17	
Calcium	6010C	22400	mg/Kg	4.9	10	05/24/17 15:34	05/17/17	
Chromium	6020A	0.288	mg/Kg	0.049	5	05/24/17 16:47	05/17/17	
Cobalt	6020A	0.100	mg/Kg	0.0049	5	05/24/17 16:47	05/17/17	
Copper	6020A	1.47	mg/Kg	0.025	5	05/24/17 16:47	05/17/17	
Iron	6020A	49.3	mg/Kg	0.25	5	05/24/17 16:47	05/17/17	
Lead	6020A	0.278	mg/Kg	0.0049	5	05/24/17 16:47	05/17/17	
Magnesium	6010C	715	mg/Kg	0.12	1	05/24/17 14:33	05/17/17	
Manganese	6020A	3.75	mg/Kg	0.012	5	05/24/17 16:47	05/17/17	
Nickel	6020A	0.339	mg/Kg	0.049	5	05/24/17 16:47	05/17/17	
Potassium	6010C	2550	mg/Kg	9.9	1	05/24/17 14:33	05/17/17	
Selenium	7742	1.10	mg/Kg	0.049	10	05/26/17 13:57	05/17/17	
Silver	6020A	0.0173	mg/Kg	0.0049	5	05/24/17 16:47	05/17/17	
Sodium	6010C	4430	mg/Kg	4.9	1	05/24/17 14:33	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0049	5	05/24/17 16:47	05/17/17	
Vanadium	6020A	0.342	mg/Kg	0.049	5	05/24/17 16:47	05/17/17	
Zinc	6020A	16.3	mg/Kg	0.12	5	05/24/17 16:47	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: REF-MUSSEL-01

Lab Code: K1704545-024

Service Request: K1704545 **Date Collected:** 04/29/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	50.8	mg/Kg	0.45	5	05/24/17 16:51	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.011	5	05/24/17 16:51	05/17/17	
Arsenic	6020A	2.58	mg/Kg	0.11	5	05/24/17 16:51	05/17/17	
Barium	6020A	1.75	mg/Kg	0.011	5	05/24/17 16:51	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0045	5	05/24/17 16:51	05/17/17	
Cadmium	6020A	1.18	mg/Kg	0.0045	5	05/24/17 16:51	05/17/17	
Calcium	6010C	2310	mg/Kg	0.45	1	05/24/17 14:45	05/17/17	
Chromium	6020A	0.208	mg/Kg	0.045	5	05/24/17 16:51	05/17/17	
Cobalt	6020A	0.127	mg/Kg	0.0045	5	05/24/17 16:51	05/17/17	
Copper	6020A	1.53	mg/Kg	0.022	5	05/24/17 16:51	05/17/17	
Iron	6020A	106	mg/Kg	0.22	5	05/24/17 16:51	05/17/17	
Lead	6020A	0.110	mg/Kg	0.0045	5	05/24/17 16:51	05/17/17	
Magnesium	6010C	578	mg/Kg	0.11	1	05/24/17 14:45	05/17/17	
Manganese	6020A	3.63	mg/Kg	0.011	5	05/24/17 16:51	05/17/17	
Nickel	6020A	0.379	mg/Kg	0.045	5	05/24/17 16:51	05/17/17	
Potassium	6010C	2790	mg/Kg	8.9	1	05/24/17 14:45	05/17/17	
Selenium	7742	1.32	mg/Kg	0.089	20	05/26/17 14:01	05/17/17	
Silver	6020A	0.0232	mg/Kg	0.0045	5	05/24/17 16:51	05/17/17	
Sodium	6010C	3170	mg/Kg	4.5	1	05/24/17 14:45	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0045	5	05/24/17 16:51	05/17/17	
Vanadium	6020A	0.535	mg/Kg	0.045	5	05/24/17 16:51	05/17/17	
Zinc	6020A	19.0	mg/Kg	0.11	5	05/24/17 16:51	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: REF-MUSSEL-02

Lab Code: K1704545-025

Service Request: K1704545

Date Collected: 04/29/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	49.3	mg/Kg	0.49	5	05/24/17 16:55	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.012	5	05/24/17 16:55	05/17/17	
Arsenic	6020A	3.03	mg/Kg	0.12	5	05/24/17 16:55	05/17/17	
Barium	6020A	1.88	mg/Kg	0.012	5	05/24/17 16:55	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0049	5	05/24/17 16:55	05/17/17	
Cadmium	6020A	1.50	mg/Kg	0.0049	5	05/24/17 16:55	05/17/17	
Calcium	6010C	2160	mg/Kg	0.49	1	05/24/17 14:47	05/17/17	
Chromium	6020A	0.272	mg/Kg	0.049	5	05/24/17 16:55	05/17/17	
Cobalt	6020A	0.141	mg/Kg	0.0049	5	05/24/17 16:55	05/17/17	
Copper	6020A	1.96	mg/Kg	0.024	5	05/24/17 16:55	05/17/17	
Iron	6020A	106	mg/Kg	0.24	5	05/24/17 16:55	05/17/17	
Lead	6020A	0.115	mg/Kg	0.0049	5	05/24/17 16:55	05/17/17	
Magnesium	6010C	609	mg/Kg	0.12	1	05/24/17 14:47	05/17/17	
Manganese	6020A	3.81	mg/Kg	0.012	5	05/24/17 16:55	05/17/17	
Nickel	6020A	0.441	mg/Kg	0.049	5	05/24/17 16:55	05/17/17	
Potassium	6010C	2810	mg/Kg	9.8	1	05/24/17 14:47	05/17/17	
Selenium	7742	1.57	mg/Kg	0.098	20	05/26/17 14:10	05/17/17	
Silver	6020A	0.0357	mg/Kg	0.0049	5	05/24/17 16:55	05/17/17	
Sodium	6010C	3420	mg/Kg	4.9	1	05/24/17 14:47	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0049	5	05/24/17 16:55	05/17/17	
Vanadium	6020A	0.568	mg/Kg	0.049	5	05/24/17 16:55	05/17/17	
Zinc	6020A	21.6	mg/Kg	0.12	5	05/24/17 16:55	05/17/17	

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: REF-MUSSEL-03

Lab Code: K1704545-026 Analytical Report

Service Request: K1704545 **Date Collected:** 04/29/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	32.1	mg/Kg	0.38	5	05/24/17 17:00	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.0095	5	05/24/17 17:00	05/17/17	
Arsenic	6020A	2.09	mg/Kg	0.095	5	05/24/17 17:00	05/17/17	
Barium	6020A	1.21	mg/Kg	0.0095	5	05/24/17 17:00	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0038	5	05/24/17 17:00	05/17/17	
Cadmium	6020A	1.11	mg/Kg	0.0038	5	05/24/17 17:00	05/17/17	
Calcium	6010C	635	mg/Kg	0.38	1	05/24/17 14:50	05/17/17	
Chromium	6020A	0.357	mg/Kg	0.038	5	05/24/17 17:00	05/17/17	
Cobalt	6020A	0.0947	mg/Kg	0.0038	5	05/24/17 17:00	05/17/17	
Copper	6020A	3.02	mg/Kg	0.019	5	05/24/17 17:00	05/17/17	
Iron	6020A	74.5	mg/Kg	0.19	5	05/24/17 17:00	05/17/17	
Lead	6020A	0.100	mg/Kg	0.0038	5	05/24/17 17:00	05/17/17	
Magnesium	6010C	528	mg/Kg	0.095	1	05/24/17 14:50	05/17/17	
Manganese	6020A	2.31	mg/Kg	0.0095	5	05/24/17 17:00	05/17/17	
Nickel	6020A	0.426	mg/Kg	0.038	5	05/24/17 17:00	05/17/17	
Potassium	6010C	2480	mg/Kg	7.6	1	05/24/17 14:50	05/17/17	
Selenium	7742	1.27	mg/Kg	0.076	20	05/26/17 14:15	05/17/17	
Silver	6020A	0.0261	mg/Kg	0.0038	5	05/24/17 17:00	05/17/17	
Sodium	6010C	3010	mg/Kg	3.8	1	05/24/17 14:50	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0038	5	05/24/17 17:00	05/17/17	
Vanadium	6020A	0.251	mg/Kg	0.038	5	05/24/17 17:00	05/17/17	
Zinc	6020A	19.1	mg/Kg	0.095	5	05/24/17 17:00	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: REF-MUSSEL-04

Lab Code: K1704545-027

Service Request: K1704545

Date Collected: 04/29/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	19.8	mg/Kg	0.43	5	05/24/17 17:04	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.011	5	05/24/17 17:04	05/17/17	
Arsenic	6020A	2.27	mg/Kg	0.11	5	05/24/17 17:04	05/17/17	
Barium	6020A	1.18	mg/Kg	0.011	5	05/24/17 17:04	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0043	5	05/24/17 17:04	05/17/17	
Cadmium	6020A	1.33	mg/Kg	0.0043	5	05/24/17 17:04	05/17/17	
Calcium	6010C	6700	mg/Kg	0.43	1	05/24/17 14:52	05/17/17	
Chromium	6020A	0.244	mg/Kg	0.043	5	05/24/17 17:04	05/17/17	
Cobalt	6020A	0.0928	mg/Kg	0.0043	5	05/24/17 17:04	05/17/17	
Copper	6020A	1.50	mg/Kg	0.021	5	05/24/17 17:04	05/17/17	
Iron	6020A	49.7	mg/Kg	0.21	5	05/24/17 17:04	05/17/17	
Lead	6020A	0.0877	mg/Kg	0.0043	5	05/24/17 17:04	05/17/17	
Magnesium	6010C	542	mg/Kg	0.11	1	05/24/17 14:52	05/17/17	
Manganese	6020A	2.36	mg/Kg	0.011	5	05/24/17 17:04	05/17/17	
Nickel	6020A	0.343	mg/Kg	0.043	5	05/24/17 17:04	05/17/17	
Potassium	6010C	2530	mg/Kg	8.5	1	05/24/17 14:52	05/17/17	
Selenium	7742	1.14	mg/Kg	0.085	20	05/26/17 14:20	05/17/17	
Silver	6020A	0.0192	mg/Kg	0.0043	5	05/24/17 17:04	05/17/17	
Sodium	6010C	3110	mg/Kg	4.3	1	05/24/17 14:52	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0043	5	05/24/17 17:04	05/17/17	
Vanadium	6020A	0.171	mg/Kg	0.043	5	05/24/17 17:04	05/17/17	
Zinc	6020A	17.5	mg/Kg	0.11	5	05/24/17 17:04	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: REF-MUSSEL-05

Lab Code: K1704545-028

Service Request: K1704545 **Date Collected:** 04/29/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	31.6	mg/Kg	0.35	5	05/24/17 17:09	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.0087	5	05/24/17 17:09	05/17/17	
Arsenic	6020A	2.12	mg/Kg	0.087	5	05/24/17 17:09	05/17/17	
Barium	6020A	1.34	mg/Kg	0.0087	5	05/24/17 17:09	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0035	5	05/24/17 17:09	05/17/17	
Cadmium	6020A	0.940	mg/Kg	0.0035	5	05/24/17 17:09	05/17/17	
Calcium	6010C	1330	mg/Kg	0.35	1	05/24/17 14:55	05/17/17	
Chromium	6020A	0.343	mg/Kg	0.035	5	05/24/17 17:09	05/17/17	
Cobalt	6020A	0.101	mg/Kg	0.0035	5	05/24/17 17:09	05/17/17	
Copper	6020A	2.11	mg/Kg	0.017	5	05/24/17 17:09	05/17/17	
Iron	6020A	76.1	mg/Kg	0.17	5	05/24/17 17:09	05/17/17	
Lead	6020A	0.0792	mg/Kg	0.0035	5	05/24/17 17:09	05/17/17	
Magnesium	6010C	450	mg/Kg	0.087	1	05/24/17 14:55	05/17/17	
Manganese	6020A	2.45	mg/Kg	0.0087	5	05/24/17 17:09	05/17/17	
Nickel	6020A	0.426	mg/Kg	0.035	5	05/24/17 17:09	05/17/17	
Potassium	6010C	1790	mg/Kg	7.0	1	05/24/17 14:55	05/17/17	
Selenium	7742	1.24	mg/Kg	0.070	20	05/26/17 14:24	05/17/17	
Silver	6020A	0.0193	mg/Kg	0.0035	5	05/24/17 17:09	05/17/17	
Sodium	6010C	2450	mg/Kg	3.5	1	05/24/17 14:55	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0035	5	05/24/17 17:09	05/17/17	
Vanadium	6020A	0.346	mg/Kg	0.035	5	05/24/17 17:09	05/17/17	
Zinc	6020A	16.6	mg/Kg	0.087	5	05/24/17 17:09	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: REF-PRAWN-01

Lab Code: K1704545-029

Service Request: K1704545 **Date Collected:** 05/04/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	1.22	mg/Kg	0.42	5	05/24/17 17:26	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.010	5	05/24/17 17:26	05/17/17	
Arsenic	6020A	5.89	mg/Kg	0.10	5	05/24/17 17:26	05/17/17	
Barium	6020A	0.060	mg/Kg	0.010	5	05/24/17 17:26	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0042	5	05/24/17 17:26	05/17/17	
Cadmium	6020A	0.165	mg/Kg	0.0042	5	05/24/17 17:26	05/17/17	
Calcium	6010C	886	mg/Kg	0.42	1	05/24/17 14:57	05/17/17	
Chromium	6020A	0.332	mg/Kg	0.042	5	05/24/17 17:26	05/17/17	
Cobalt	6020A	0.0155	mg/Kg	0.0042	5	05/24/17 17:26	05/17/17	
Copper	6020A	7.39	mg/Kg	0.021	5	05/24/17 17:26	05/17/17	
Iron	6020A	7.72	mg/Kg	0.21	5	05/24/17 17:26	05/17/17	
Lead	6020A	0.0051	mg/Kg	0.0042	5	05/24/17 17:26	05/17/17	
Magnesium	6010C	411	mg/Kg	0.10	1	05/24/17 14:57	05/17/17	
Manganese	6020A	0.383	mg/Kg	0.010	5	05/24/17 17:26	05/17/17	
Nickel	6020A	0.150	mg/Kg	0.042	5	05/24/17 17:26	05/17/17	
Potassium	6010C	3150	mg/Kg	8.4	1	05/24/17 14:57	05/17/17	
Selenium	7742	0.279	mg/Kg	0.021	5	05/26/17 14:29	05/17/17	
Silver	6020A	0.153	mg/Kg	0.0042	5	05/24/17 17:26	05/17/17	
Sodium	6010C	3250	mg/Kg	4.2	1	05/24/17 14:57	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0042	5	05/24/17 17:26	05/17/17	
Vanadium	6020A	ND U	mg/Kg	0.042	5	05/24/17 17:26	05/17/17	
Zinc	6020A	14.4	mg/Kg	0.10	5	05/24/17 17:26	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: REF-PRAWN-02

Lab Code: K1704545-030

Service Request: K1704545

Date Collected: 05/05/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	1.40	mg/Kg	0.35	5	05/24/17 17:30	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.0089	5	05/24/17 17:30	05/17/17	
Arsenic	6020A	4.26	mg/Kg	0.089	5	05/24/17 17:30	05/17/17	
Barium	6020A	0.0839	mg/Kg	0.0089	5	05/24/17 17:30	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0035	5	05/24/17 17:30	05/17/17	
Cadmium	6020A	0.107	mg/Kg	0.0035	5	05/24/17 17:30	05/17/17	
Calcium	6010C	818	mg/Kg	0.35	1	05/24/17 14:59	05/17/17	
Chromium	6020A	1.04	mg/Kg	0.035	5	05/24/17 17:30	05/17/17	
Cobalt	6020A	0.0290	mg/Kg	0.0035	5	05/24/17 17:30	05/17/17	
Copper	6020A	69.6	mg/Kg	0.018	5	05/24/17 17:30	05/17/17	
Iron	6020A	242	mg/Kg	0.18	5	05/24/17 17:30	05/17/17	
Lead	6020A	0.0043	mg/Kg	0.0035	5	05/24/17 17:30	05/17/17	
Magnesium	6010C	337	mg/Kg	0.089	1	05/24/17 14:59	05/17/17	
Manganese	6020A	0.526	mg/Kg	0.0089	5	05/24/17 17:30	05/17/17	
Nickel	6020A	0.526	mg/Kg	0.035	5	05/24/17 17:30	05/17/17	
Potassium	6010C	2630	mg/Kg	7.1	1	05/24/17 14:59	05/17/17	
Selenium	7742	0.306	mg/Kg	0.018	5	05/26/17 14:38	05/17/17	
Silver	6020A	0.108	mg/Kg	0.0035	5	05/24/17 17:30	05/17/17	
Sodium	6010C	2580	mg/Kg	3.5	1	05/24/17 14:59	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0035	5	05/24/17 17:30	05/17/17	
Vanadium	6020A	ND U	mg/Kg	0.035	5	05/24/17 17:30	05/17/17	
Zinc	6020A	10.7	mg/Kg	0.089	5	05/24/17 17:30	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: REF-PRAWN-03

Lab Code: K1704545-031

Service Request: K1704545

Date Collected: 05/05/17 **Date Received:** 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	1.32	mg/Kg	0.42	5	05/24/17 17:35	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.011	5	05/24/17 17:35	05/17/17	
Arsenic	6020A	4.97	mg/Kg	0.11	5	05/24/17 17:35	05/17/17	
Barium	6020A	0.061	mg/Kg	0.011	5	05/24/17 17:35	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0042	5	05/24/17 17:35	05/17/17	
Cadmium	6020A	0.0887	mg/Kg	0.0042	5	05/24/17 17:35	05/17/17	
Calcium	6010C	873	mg/Kg	0.42	1	05/24/17 15:02	05/17/17	
Chromium	6020A	0.358	mg/Kg	0.042	5	05/24/17 17:35	05/17/17	
Cobalt	6020A	0.0128	mg/Kg	0.0042	5	05/24/17 17:35	05/17/17	
Copper	6020A	7.24	mg/Kg	0.021	5	05/24/17 17:35	05/17/17	
Iron	6020A	14.0	mg/Kg	0.21	5	05/24/17 17:35	05/17/17	
Lead	6020A	ND U	mg/Kg	0.0042	5	05/24/17 17:35	05/17/17	
Magnesium	6010C	410	mg/Kg	0.11	1	05/24/17 15:02	05/17/17	
Manganese	6020A	0.420	mg/Kg	0.011	5	05/24/17 17:35	05/17/17	
Nickel	6020A	0.171	mg/Kg	0.042	5	05/24/17 17:35	05/17/17	
Potassium	6010C	3150	mg/Kg	8.4	1	05/24/17 15:02	05/17/17	
Selenium	7742	0.266	mg/Kg	0.021	5	05/26/17 14:43	05/17/17	
Silver	6020A	0.159	mg/Kg	0.0042	5	05/24/17 17:35	05/17/17	
Sodium	6010C	2720	mg/Kg	4.2	1	05/24/17 15:02	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0042	5	05/24/17 17:35	05/17/17	
Vanadium	6020A	ND U	mg/Kg	0.042	5	05/24/17 17:35	05/17/17	
Zinc	6020A	13.1	mg/Kg	0.11	5	05/24/17 17:35	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: REF-CRAB-01

Lab Code: K1704545-032

Service Request: K1704545 **Date Collected:** 04/29/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	7.22	mg/Kg	0.32	5	05/24/17 17:39	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.0080	5	05/24/17 17:39	05/17/17	
Arsenic	6020A	3.49	mg/Kg	0.080	5	05/24/17 17:39	05/17/17	
Barium	6020A	0.158	mg/Kg	0.0080	5	05/24/17 17:39	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0032	5	05/24/17 17:39	05/17/17	
Cadmium	6020A	0.107	mg/Kg	0.0032	5	05/24/17 17:39	05/17/17	
Calcium	6010C	1380	mg/Kg	0.32	1	05/24/17 15:04	05/17/17	
Chromium	6020A	0.206	mg/Kg	0.032	5	05/24/17 17:39	05/17/17	
Cobalt	6020A	0.101	mg/Kg	0.0032	5	05/24/17 17:39	05/17/17	
Copper	6020A	8.36	mg/Kg	0.016	5	05/24/17 17:39	05/17/17	
Iron	6020A	18.2	mg/Kg	0.16	5	05/24/17 17:39	05/17/17	
Lead	6020A	0.0170	mg/Kg	0.0032	5	05/24/17 17:39	05/17/17	
Magnesium	6010C	403	mg/Kg	0.080	1	05/24/17 15:04	05/17/17	
Manganese	6020A	0.363	mg/Kg	0.0080	5	05/24/17 17:39	05/17/17	
Nickel	6020A	0.121	mg/Kg	0.032	5	05/24/17 17:39	05/17/17	
Potassium	6010C	2610	mg/Kg	6.4	1	05/24/17 15:04	05/17/17	
Selenium	7742	0.497	mg/Kg	0.016	5	05/26/17 14:47	05/17/17	
Silver	6020A	0.183	mg/Kg	0.0032	5	05/24/17 17:39	05/17/17	
Sodium	6010C	5470	mg/Kg	3.2	1	05/24/17 15:04	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0032	5	05/24/17 17:39	05/17/17	
Vanadium	6020A	0.035	mg/Kg	0.032	5	05/24/17 17:39	05/17/17	
Zinc	6020A	32.4	mg/Kg	0.080	5	05/24/17 17:39	05/17/17	

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: REF-CRAB-02

Lab Code: K1704545-033 Analytical Report

Service Request: K1704545 **Date Collected:** 04/29/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	7.54	mg/Kg	0.46	5	05/24/17 17:43	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.012	5	05/24/17 17:43	05/17/17	
Arsenic	6020A	4.85	mg/Kg	0.12	5	05/24/17 17:43	05/17/17	
Barium	6020A	0.301	mg/Kg	0.012	5	05/24/17 17:43	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0046	5	05/24/17 17:43	05/17/17	
Cadmium	6020A	0.0426	mg/Kg	0.0046	5	05/24/17 17:43	05/17/17	
Calcium	6010C	1220	mg/Kg	0.46	1	05/24/17 15:07	05/17/17	
Chromium	6020A	0.254	mg/Kg	0.046	5	05/24/17 17:43	05/17/17	
Cobalt	6020A	0.0747	mg/Kg	0.0046	5	05/24/17 17:43	05/17/17	
Copper	6020A	8.41	mg/Kg	0.023	5	05/24/17 17:43	05/17/17	
Iron	6020A	19.7	mg/Kg	0.23	5	05/24/17 17:43	05/17/17	
Lead	6020A	0.0180	mg/Kg	0.0046	5	05/24/17 17:43	05/17/17	
Magnesium	6010C	396	mg/Kg	0.12	1	05/24/17 15:07	05/17/17	
Manganese	6020A	1.27	mg/Kg	0.012	5	05/24/17 17:43	05/17/17	
Nickel	6020A	0.136	mg/Kg	0.046	5	05/24/17 17:43	05/17/17	
Potassium	6010C	3470	mg/Kg	9.3	1	05/24/17 15:07	05/17/17	
Selenium	7742	0.611	mg/Kg	0.023	5	05/26/17 14:52	05/17/17	
Silver	6020A	0.188	mg/Kg	0.0046	5	05/24/17 17:43	05/17/17	
Sodium	6010C	3850	mg/Kg	4.6	1	05/24/17 15:07	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0046	5	05/24/17 17:43	05/17/17	
Vanadium	6020A	ND U	mg/Kg	0.046	5	05/24/17 17:43	05/17/17	
Zinc	6020A	48.5	mg/Kg	0.12	5	05/24/17 17:43	05/17/17	

Analytical Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Sample Name: REF-CRAB-03

Lab Code: K1704545-034

Service Request: K1704545 **Date Collected:** 05/05/17

Date Received: 05/08/17 08:40

Basis: Wet

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	6.65	mg/Kg	0.32	5	05/24/17 17:48	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.0079	5	05/24/17 17:48	05/17/17	
Arsenic	6020A	5.47	mg/Kg	0.079	5	05/24/17 17:48	05/17/17	
Barium	6020A	0.166	mg/Kg	0.0079	5	05/24/17 17:48	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.0032	5	05/24/17 17:48	05/17/17	
Cadmium	6020A	0.0566	mg/Kg	0.0032	5	05/24/17 17:48	05/17/17	
Calcium	6010C	1120	mg/Kg	0.32	1	05/24/17 14:20	05/17/17	
Chromium	6020A	0.105	mg/Kg	0.032	5	05/24/17 17:48	05/17/17	
Cobalt	6020A	0.0942	mg/Kg	0.0032	5	05/24/17 17:48	05/17/17	
Copper	6020A	11.2	mg/Kg	0.016	5	05/24/17 17:48	05/17/17	
Iron	6020A	14.5	mg/Kg	0.16	5	05/24/17 17:48	05/17/17	
Lead	6020A	0.0104	mg/Kg	0.0032	5	05/24/17 17:48	05/17/17	
Magnesium	6010C	414	mg/Kg	0.079	1	05/24/17 14:20	05/17/17	
Manganese	6020A	0.584	mg/Kg	0.0079	5	05/24/17 17:48	05/17/17	
Nickel	6020A	0.075	mg/Kg	0.032	5	05/24/17 17:48	05/17/17	
Potassium	6010C	2330	mg/Kg	6.3	1	05/24/17 14:20	05/17/17	
Selenium	7742	0.528	mg/Kg	0.032	10	05/26/17 13:29	05/17/17	
Silver	6020A	0.255	mg/Kg	0.0032	5	05/24/17 17:48	05/17/17	
Sodium	6010C	5130	mg/Kg	3.2	1	05/24/17 14:20	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.0032	5	05/24/17 17:48	05/17/17	
Vanadium	6020A	0.033	mg/Kg	0.032	5	05/24/17 17:48	05/17/17	
Zinc	6020A	39.8	mg/Kg	0.079	5	05/24/17 17:48	05/17/17	

Analytical Report

Client: Service Request: K1704545 Golder Associates, Inc.

Date Collected: 05/15/17 14:27 **Project:** Skagway Tissue/1657231 **Date Received:** 05/16/17 09:02 Water

Sample Matrix:

Sample Name: Homog. Blank Basis: NA Lab Code: K1704545-035

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed		Q
Aluminum	6020A	4.0	ug/L	4.0	1	05/23/17 17:39	05/19/17	
Antimony	6020A	ND U	ug/L	0.050	1	05/23/17 17:39	05/19/17	
Arsenic	6020A	ND U	ug/L	0.50	1	05/23/17 17:39	05/19/17	
Barium	6020A	ND U	ug/L	0.050	1	05/26/17 16:50	05/25/17	
Beryllium	6020A	ND U	ug/L	0.020	1	05/23/17 17:39	05/19/17	
Cadmium	6020A	0.028	ug/L	0.020	1	05/23/17 17:39	05/19/17	
Calcium	6010C	ND U	ug/L	21	1	05/23/17 14:30	05/19/17	
Chromium	6020A	ND U	ug/L	0.20	1	05/26/17 16:50	05/25/17	
Cobalt	6020A	ND U	ug/L	0.020	1	05/26/17 16:50	05/25/17	
Copper	6020A	20.7	ug/L	0.10	1	05/23/17 17:39	05/19/17	
Iron	6020A	56.6	ug/L	2.0	1	05/23/17 17:39	05/19/17	
Lead	6020A	0.037	ug/L	0.020	1	05/23/17 17:39	05/19/17	
Magnesium	6010C	10.8	ug/L	5.3	1	05/23/17 14:30	05/19/17	
Manganese	6020A	0.050	ug/L	0.050	1	05/26/17 16:50	05/25/17	
Mercury	7470A	ND U	ug/L	0.20	1	05/25/17 07:27	05/24/17	
Nickel	6020A	ND U	ug/L	0.20	1	05/26/17 16:50	05/25/17	
Potassium	6010C	ND U	ug/L	210	1	05/23/17 14:30	05/19/17	
Selenium	6020A	ND U	ug/L	1.0	1	05/23/17 17:39	05/19/17	
Silver	6020A	ND U	ug/L	0.020	1	05/23/17 17:39	05/19/17	
Sodium	6010C	ND U	ug/L	210	1	05/23/17 14:30	05/19/17	
Thallium	6020A	ND U	ug/L	0.020	1	05/23/17 17:39	05/19/17	
Vanadium	6020A	ND U	ug/L	0.20	1	05/23/17 17:39	05/19/17	
Zinc	6020A	ND U	ug/L	2.0	1	05/26/17 16:50	05/25/17	

Analytical Report

Client: Golder Associates, Inc. Service Request: K1704545

Project: Skagway Tissue/1657231 Date Collected: NA

Sample Matrix: Animal Tissue Date Received: NA

Sample Name: Method Blank Basis: Wet

Lab Code: KQ1706061-07

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	ND U	mg/Kg	0.4	5	05/24/17 16:12	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.01	5	05/24/17 16:12	05/17/17	
Arsenic	6020A	ND U	mg/Kg	0.1	5	05/24/17 16:12	05/17/17	
Barium	6020A	ND U	mg/Kg	0.01	5	05/24/17 16:12	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.004	5	05/24/17 16:12	05/17/17	
Cadmium	6020A	ND U	mg/Kg	0.004	5	05/24/17 16:12	05/17/17	
Calcium	6010C	ND U	mg/Kg	0.4	1	05/24/17 14:10	05/17/17	
Chromium	6020A	ND U	mg/Kg	0.04	5	05/24/17 16:12	05/17/17	
Cobalt	6020A	ND U	mg/Kg	0.004	5	05/24/17 16:12	05/17/17	
Copper	6020A	ND U	mg/Kg	0.02	5	05/24/17 16:12	05/17/17	
Iron	6020A	ND U	mg/Kg	0.2	5	05/24/17 16:12	05/17/17	
Lead	6020A	ND U	mg/Kg	0.004	5	05/24/17 16:12	05/17/17	
Magnesium	6010C	ND U	mg/Kg	0.1	1	05/24/17 14:10	05/17/17	
Manganese	6020A	ND U	mg/Kg	0.01	5	05/24/17 16:12	05/17/17	
Nickel	6020A	ND U	mg/Kg	0.04	5	05/24/17 16:12	05/17/17	
Potassium	6010C	ND U	mg/Kg	8	1	05/24/17 14:10	05/17/17	
Selenium	7742	ND U	mg/Kg	0.02	5	05/26/17 13:15	05/17/17	
Silver	6020A	ND U	mg/Kg	0.004	5	05/24/17 16:12	05/17/17	
Sodium	6010C	ND U	mg/Kg	4	1	05/24/17 14:10	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.004	5	05/24/17 16:12	05/17/17	
Vanadium	6020A	ND U	mg/Kg	0.04	5	05/24/17 16:12	05/17/17	
Zinc	6020A	ND U	mg/Kg	0.1	5	05/24/17 16:12	05/17/17	

Analytical Report

Client: Golder Associates, Inc. Service Request: K1704545

Project: Skagway Tissue/1657231 Date Collected: NA

Sample Matrix: Animal Tissue Date Received: NA

Sample Name: Method Blank Basis: Wet

Lab Code: KQ1706062-01

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	ND U	mg/Kg	0.4	5	05/24/17 13:48	05/17/17	
Antimony	6020A	ND U	mg/Kg	0.01	5	05/24/17 13:48	05/17/17	
Arsenic	6020A	ND U	mg/Kg	0.1	5	05/24/17 13:48	05/17/17	
Barium	6020A	ND U	mg/Kg	0.01	5	05/24/17 13:48	05/17/17	
Beryllium	6020A	ND U	mg/Kg	0.004	5	05/24/17 13:48	05/17/17	
Cadmium	6020A	ND U	mg/Kg	0.004	5	05/24/17 13:48	05/17/17	
Calcium	6010C	ND U	mg/Kg	0.4	1	05/24/17 15:36	05/17/17	
Chromium	6020A	ND U	mg/Kg	0.04	5	05/24/17 13:48	05/17/17	
Cobalt	6020A	ND U	mg/Kg	0.004	5	05/24/17 13:48	05/17/17	
Copper	6020A	ND U	mg/Kg	0.02	5	05/24/17 13:48	05/17/17	
Iron	6020A	ND U	mg/Kg	0.2	5	05/25/17 11:18	05/17/17	
Lead	6020A	ND U	mg/Kg	0.004	5	05/24/17 13:48	05/17/17	
Magnesium	6010C	ND U	mg/Kg	0.1	1	05/24/17 15:36	05/17/17	
Manganese	6020A	ND U	mg/Kg	0.01	5	05/24/17 13:48	05/17/17	
Nickel	6020A	ND U	mg/Kg	0.04	5	05/24/17 13:48	05/17/17	
Potassium	6010C	ND U	mg/Kg	8	1	05/24/17 15:36	05/17/17	
Selenium	7742	ND U	mg/Kg	0.02	5	05/26/17 10:56	05/17/17	
Silver	6020A	ND U	mg/Kg	0.004	5	05/24/17 13:48	05/17/17	
Sodium	6010C	ND U	mg/Kg	4	1	05/24/17 15:36	05/17/17	
Thallium	6020A	ND U	mg/Kg	0.004	5	05/24/17 13:48	05/17/17	
Vanadium	6020A	ND U	mg/Kg	0.04	5	05/24/17 13:48	05/17/17	
Zinc	6020A	ND U	mg/Kg	0.1	5	05/24/17 13:48	05/17/17	

Analytical Report

Client: Golder Associates, Inc. Service Request: K1704545

Project: Skagway Tissue/1657231 Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: KQ1706210-02

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Calcium	6010C	ND U	ug/L	21	1	05/23/17 14:25	05/19/17	
Magnesium	6010C	ND U	ug/L	5.3	1	05/23/17 14:25	05/19/17	
Potassium	6010C	ND U	ug/L	210	1	05/23/17 14:25	05/19/17	
Sodium	6010C	ND U	ug/L	210	1	05/23/17 14:25	05/19/17	

Analytical Report

Client: Golder Associates, Inc. Service Request: K1704545

Project: Skagway Tissue/1657231 Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: KQ1706208-01

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	6020A	ND U	ug/L	4.0	1	05/23/17 17:35	05/19/17	
Antimony	6020A	ND U	ug/L	0.050	1	05/23/17 17:35	05/19/17	
Arsenic	6020A	ND U	ug/L	0.50	1	05/23/17 17:35	05/19/17	
Beryllium	6020A	ND U	ug/L	0.020	1	05/23/17 17:35	05/19/17	
Cadmium	6020A	ND U	ug/L	0.020	1	05/23/17 17:35	05/19/17	
Copper	6020A	ND U	ug/L	0.10	1	05/23/17 17:35	05/19/17	
Iron	6020A	ND U	ug/L	2.0	1	05/23/17 17:35	05/19/17	
Lead	6020A	ND U	ug/L	0.020	1	05/23/17 17:35	05/19/17	
Selenium	6020A	ND U	ug/L	1.0	1	05/23/17 17:35	05/19/17	
Silver	6020A	ND U	ug/L	0.020	1	05/23/17 17:35	05/19/17	
Thallium	6020A	ND U	ug/L	0.020	1	05/23/17 17:35	05/19/17	
Vanadium	6020A	ND U	ug/L	0.20	1	05/23/17 17:35	05/19/17	

Analytical Report

Client: Golder Associates, Inc. Service Request: K1704545

Project: Skagway Tissue/1657231 Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: KQ1706583-01

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Barium	6020A	ND U	ug/L	0.050	1	05/26/17 16:44	05/25/17	
Chromium	6020A	ND U	ug/L	0.20	1	05/26/17 16:44	05/25/17	
Cobalt	6020A	ND U	ug/L	0.020	1	05/26/17 16:44	05/25/17	
Manganese	6020A	ND U	ug/L	0.050	1	05/26/17 16:44	05/25/17	
Nickel	6020A	ND U	ug/L	0.20	1	05/26/17 16:44	05/25/17	
Zinc	6020A	ND U	ug/L	2.0	1	05/26/17 16:44	05/25/17	

Analytical Report

Client: Golder Associates, Inc. Service Request: K1704545

Project: Skagway Tissue/1657231 Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name: Method Blank Basis: NA

Lab Code: KQ1706211-01

Total Metals

Analysis Analyte Name Method Result Units MRL Dil. **Date Analyzed** Date Extracted Q 7470A Mercury ND U ug/L 0.20 05/25/17 07:24 05/24/17

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc. **Project** Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Service Request: K1704545

Date Collected: 05/05/17 **Date Received:** 05/08/17

Date Analyzed: 05/24/17 - 05/26/17

Replicate Sample Summary Total Metals

 Sample Name:
 REF-CRAB-03
 Units: mg/Kg

 Lab Code:
 K1704545-034
 Basis: Wet

Analysis	MDI	Sample	Duplicate Sample KQ1706061-05		DDD	DDD 1 2
						RPD Limit
	0.32				4	20
6020A	0.0079	ND U	ND U	ND	-	20
6020A	0.079	5.47	5.63	5.55		20
6020A	0.0079	0.166	0.158	0.162	5	20
6020A	0.0032	ND U	ND U	ND	-	20
6020A	0.0032	0.0566	0.0613	0.0590	8	20
6010C	0.32	1120	1010	1070	10	20
6020A	0.032	0.105	0.108	0.107	2	20
6020A	0.0032	0.0942	0.0977	0.0960	4	20
6020A	0.016	11.2	11.3	11.3	1	20
6020A	0.16	14.5	14.3	14.4	1	20
6020A	0.0032	0.0104	0.0106	0.0105	2	20
6010C	0.079	414	415	415	<1	20
6020A	0.0079	0.584	0.573	0.579	2	20
6020A	0.032	0.075	0.076	0.076	2	20
6010C	6.3	2330	2330	2330	<1	20
7742	0.032	0.528	0.519	0.524	2	20
6020A	0.0032	0.255	0.273	0.264	7	20
6010C	3.2	5130	5150	5140	<1	20
6020A	0.0032	ND U	ND U	ND	-	20
6020A	0.032	0.033	0.034	0.034	2	20
6020A	0.079	39.8	39.9	39.9	<1	20
	Method 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6010C 6020A 6010C 7742 6020A 6010C 7742 6020A 6010C 6020A	Method MRL 6020A 0.32 6020A 0.0079 6020A 0.0079 6020A 0.0079 6020A 0.0032 6020A 0.0032 6020A 0.032 6020A 0.0032 6020A 0.0032 6020A 0.016 6020A 0.16 6020A 0.0032 6010C 0.079 6020A 0.0079 6020A 0.032 6010C 6.3 7742 0.032 6010C 3.2 6020A 0.0032 6010C 3.2 6020A 0.0032 6020A 0.0032	Method MRL Result 6020A 0.32 6.65 6020A 0.0079 ND U 6020A 0.079 5.47 6020A 0.0079 0.166 6020A 0.0032 ND U 6020A 0.0032 0.0566 6010C 0.32 1120 6020A 0.032 0.105 6020A 0.0032 0.0942 6020A 0.016 11.2 6020A 0.016 14.5 6020A 0.0032 0.0104 6010C 0.079 414 6020A 0.0079 0.584 6020A 0.032 0.075 6010C 6.3 2330 7742 0.032 0.528 6020A 0.0032 0.255 6010C 3.2 5130 6020A 0.0032 ND U 6020A 0.0032 0.033	Analysis Method MRL Result KQ1706061-05 6020A 0.32 6.65 6.39 6020A 0.0079 ND U ND U 6020A 0.0079 5.47 5.63 6020A 0.0079 0.166 0.158 6020A 0.0032 ND U ND U 6020A 0.0032 0.0566 0.0613 6010C 0.32 1120 1010 6020A 0.032 0.105 0.108 6020A 0.0032 0.0942 0.0977 6020A 0.016 11.2 11.3 6020A 0.0032 0.0104 0.0106 6010C 0.079 414 415 6020A 0.0079 0.584 0.573 6020A 0.0032 0.075 0.076 6010C 6.3 2330 2330 7742 0.032 0.528 0.519 6020A 0.0032 0.528 0.519 <td< td=""><td>Analysis Method MRL Result Result Average 6020A 0.32 6.65 6.39 6.52 6020A 0.0079 ND U ND U ND 6020A 0.0079 5.47 5.63 5.55 6020A 0.0079 0.166 0.158 0.162 6020A 0.0032 ND U ND U ND 6020A 0.0032 0.0566 0.0613 0.0590 6010C 0.32 1120 1010 1070 6020A 0.0032 0.0566 0.0613 0.0590 6010C 0.32 1120 1010 1070 6020A 0.0032 0.0942 0.0977 0.0960 6020A 0.016 11.2 11.3 11.3 6020A 0.032 0.0104 0.0106 0.0105 6010C 0.079 414 415 415 6020A 0.032 0.075 0.076 0.076 <td< td=""><td>Analysis Method MRL MRL Result Result Result Result Average Result RPD 6020A 0.32 6.65 6.39 6.52 4 6020A 0.0079 ND U ND U ND - 6020A 0.0079 5.47 5.63 5.55 3 6020A 0.0079 0.166 0.158 0.162 5 6020A 0.0032 ND U ND U ND - 6020A 0.0032 0.0566 0.0613 0.0590 8 6010C 0.32 1120 1010 1070 10 6020A 0.032 0.105 0.108 0.107 2 6020A 0.0032 0.0942 0.0977 0.0960 4 6020A 0.016 11.2 11.3 11.3 1 6020A 0.032 0.0104 0.0106 0.0105 2 6010C 0.079 414 415 415 <1</td> 6020A</td<></td></td<>	Analysis Method MRL Result Result Average 6020A 0.32 6.65 6.39 6.52 6020A 0.0079 ND U ND U ND 6020A 0.0079 5.47 5.63 5.55 6020A 0.0079 0.166 0.158 0.162 6020A 0.0032 ND U ND U ND 6020A 0.0032 0.0566 0.0613 0.0590 6010C 0.32 1120 1010 1070 6020A 0.0032 0.0566 0.0613 0.0590 6010C 0.32 1120 1010 1070 6020A 0.0032 0.0942 0.0977 0.0960 6020A 0.016 11.2 11.3 11.3 6020A 0.032 0.0104 0.0106 0.0105 6010C 0.079 414 415 415 6020A 0.032 0.075 0.076 0.076 <td< td=""><td>Analysis Method MRL MRL Result Result Result Result Average Result RPD 6020A 0.32 6.65 6.39 6.52 4 6020A 0.0079 ND U ND U ND - 6020A 0.0079 5.47 5.63 5.55 3 6020A 0.0079 0.166 0.158 0.162 5 6020A 0.0032 ND U ND U ND - 6020A 0.0032 0.0566 0.0613 0.0590 8 6010C 0.32 1120 1010 1070 10 6020A 0.032 0.105 0.108 0.107 2 6020A 0.0032 0.0942 0.0977 0.0960 4 6020A 0.016 11.2 11.3 11.3 1 6020A 0.032 0.0104 0.0106 0.0105 2 6010C 0.079 414 415 415 <1</td> 6020A</td<>	Analysis Method MRL MRL Result Result Result Result Average Result RPD 6020A 0.32 6.65 6.39 6.52 4 6020A 0.0079 ND U ND U ND - 6020A 0.0079 5.47 5.63 5.55 3 6020A 0.0079 0.166 0.158 0.162 5 6020A 0.0032 ND U ND U ND - 6020A 0.0032 0.0566 0.0613 0.0590 8 6010C 0.32 1120 1010 1070 10 6020A 0.032 0.105 0.108 0.107 2 6020A 0.0032 0.0942 0.0977 0.0960 4 6020A 0.016 11.2 11.3 11.3 1 6020A 0.032 0.0104 0.0106 0.0105 2 6010C 0.079 414 415 415 <1

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc.

Project Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Service Request: K1704545

Date Collected: 05/04/17

Date Received: 05/08/17

Date Analyzed: 05/24/17 - 05/26/17

Replicate Sample Summary Total Metals

 Sample Name:
 NF-CRAB-02
 Units: mg/Kg

 Lab Code:
 K1704545-012
 Basis: Wet

	Analysis		Sample	Duplicate Sample KQ1706062-05			
Analyte Name	Method	MRL	Result	Result	Average	RPD	RPD Limit
Aluminum	6020A	0.42	7.10	6.87	6.99	3	20
Antimony	6020A	0.010	ND U	ND U	ND	-	20
Arsenic	6020A	0.10	3.97	3.89	3.93	2	20
Barium	6020A	0.010	0.173	0.206	0.190	17	20
Beryllium	6020A	0.0042	ND U	ND U	ND	-	20
Cadmium	6020A	0.0042	0.111	0.105	0.108	6	20
Calcium	6010C	0.42	939	1580	1260	51 *	20
Chromium	6020A	0.042	0.144	0.167	0.156	15	20
Cobalt	6020A	0.0042	0.0774	0.0767	0.0771	<1	20
Copper	6020A	0.021	8.26	8.14	8.20	1	20
Iron	6020A	0.21	32.7	22.9	27.8	35 *	20
Lead	6020A	0.0042	0.174	0.169	0.172	3	20
Magnesium	6010C	0.10	400	424	412	6	20
Manganese	6020A	0.010	0.501	0.536	0.519	7	20
Nickel	6020A	0.042	0.096	0.102	0.099	6	20
Potassium	6010C	8.3	3140	3200	3170	2	20
Selenium	7742	0.042	0.605	0.598	0.602	1	20
Silver	6020A	0.0042	0.117	0.113	0.115	3	20
Sodium	6010C	4.2	3910	3990	3950	2	20
Thallium	6020A	0.0042	ND U	ND U	ND	-	20
Vanadium	6020A	0.042	ND U	ND U	ND	-	20
Zinc	6020A	0.10	46.0	46.7	46.4	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704545

ProjectSkagway Tissue/1657231Date Collected: NASample Matrix:WaterDate Received: NA

Date Analyzed: 05/23/17

Replicate Sample Summary
Total Metals

 Sample Name:
 Batch QC
 Units: ug/L

 Lab Code:
 K1704900-012
 Basis: NA

Duplicate Sample Analysis Sample KQ1706210-03 Method MRL Result Result **RPD RPD Limit Analyte Name** Average Calcium 6010C 29 29 21 29 2 20 Magnesium ND U ND U ND 20 6010C 5.3 Potassium 6010C 20 210 ND U ND U ND Sodium 6010C 210 ND U ND U ND 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704545

ProjectSkagway Tissue/1657231Date Collected: NASample Matrix:WaterDate Received: NA

Date Analyzed: 05/23/17

Replicate Sample Summary
Dissolved Metals

 Sample Name:
 Batch QC
 Units: ug/L

 Lab Code:
 K1704816-001
 Basis: NA

				Duplicate Sample			
	Analysis		Sample	KQ1706208-03			
Analyte Name	Method	MRL	Result	Result	Average	RPD	RPD Limit
Aluminum	6020A	4.0	ND U	ND U	ND	-	20
Antimony	6020A	0.050	0.307	0.292	0.299	5	20
Arsenic	6020A	0.50	0.71	0.63	0.67	12	20
Beryllium	6020A	0.020	ND U	ND U	ND	-	20
Cadmium	6020A	0.020	0.035	0.023	0.029	44 #	20
Copper	6020A	0.10	1.90	1.93	1.91	2	20
Iron	6020A	2.0	2.6	2.4	2.5	11	20
Lead	6020A	0.020	0.052	0.039	0.045	30 #	20
Selenium	6020A	1.0	ND U	ND U	ND	-	20
Silver	6020A	0.020	ND U	ND U	ND	-	20
Thallium	6020A	0.020	ND U	ND U	ND	-	20
Vanadium	6020A	0.20	0.95	0.93	0.94	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc.

Project Skagway Tissue/1657231

Sample Matrix: Water **Service Request:** K1704545

Date Collected: NA

Date Received: NA

Date Analyzed: 05/26/17

Replicate Sample Summary

Dissolved Metals

Sample Name: Batch QC Units: ug/L Lab Code: K1704816-005 Basis: NA

Dunlicata Sample

	Analysis		Sample	KQ1706583-03			
Analyte Name	Method	MRL	Result	Result	Average	RPD	RPD Limit
Barium	6020A	0.050	18.7	18.3	18.5	3	20
Chromium	6020A	0.20	ND U	ND U	ND	-	20
Cobalt	6020A	0.020	0.199	0.195	0.197	2	20
Manganese	6020A	0.050	92.8	88.9	90.8	4	20
Nickel	6020A	0.20	4.25	4.04	4.15	5	20
Zinc	6020A	2.0	2.4	2.4	2.4	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

dba ALS Environmental

QA/QC Report

Client: Golder Associates, Inc. **Service Request:** K1704545 **Project**

Skagway Tissue/1657231 **Date Collected:** 05/15/17

Sample Matrix: Water **Date Received:** 05/16/17 **Date Analyzed:** 05/25/17

Replicate Sample Summary

Total Metals

Sample Name: Homog. Blank Units: ug/L

Lab Code: K1704545-035 Basis: NA

Duplicate Sample

Analysis Sample KQ1706211-03 Method Result Result **RPD RPD Limit Analyte Name MRL** Average 7470A ND U ND U Mercury 0.20 ND 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Service Request: K1704545

Date Collected:05/05/17 **Date Received:**05/08/17

Date Analyzed:05/24/17 - 05/26/17

Matrix Spike Summary Total Metals

Sample Name: REF-CRAB-03 Lab Code: K1704545-034 Units:mg/Kg
Basis:Wet

Matrix Spike KQ1706061-06

Analyte Name	Method	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	6020A	6.65	40.1	31.8	105	75-125
Antimony	6020A	ND U	8.59	7.95	108	75-125
Arsenic	6020A	5.47	8.60	2.66	118	75-125
Barium	6020A	0.166	16.4	15.9	102	75-125
Beryllium	6020A	ND U	0.810	0.795	102	75-125
Cadmium	6020A	0.0566	0.945	0.795	112	75-125
Calcium	6010C	1120	1010	26.6	-434 #	75-125
Chromium	6020A	0.105	3.63	3.18	111	75-125
Cobalt	6020A	0.0942	8.97	7.95	112	75-125
Copper	6020A	11.2	16.2	3.98	125	75-125
Iron	6020A	14.5	33.1	15.9	117	75-125
Lead	6020A	0.0104	7.19	7.95	90	75-125
Magnesium	6010C	414	457	26.6	162 #	75-125
Manganese	6020A	0.584	9.57	7.95	113	75-125
Nickel	6020A	0.075	8.52	7.95	106	75-125
Potassium	6010C	2330	2460	26.6	491 #	75-125
Selenium	7742	0.53	3.30	2.66	105	75-125
Silver	6020A	0.255	0.683	0.795	54 N	75-125
Sodium	6010C	5130	5320	26.6	725 #	75-125
Thallium	6020A	ND U	0.489	0.529	92	75-125
Vanadium	6020A	0.033	9.10	7.95	114	75-125
Zinc	6020A	39.8	49.3	7.95	120 #	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Service Request: K1704545

Date Collected: 05/04/17

Date Received: 05/08/17

Date Analyzed:05/24/17 - 05/26/17

Matrix Spike Summary Total Metals

Sample Name: NF-CRAB-02 Lab Code: K1704545-012 Units:mg/Kg
Basis:Wet

Matrix Spike KQ1706062-06

Analyte Name	Method	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	6020A	7.10	49.7	41.8	102	75-125
Antimony	6020A	ND U	11.2	10.5	108	75-125
Arsenic	6020A	3.97	7.72	3.49	108	75-125
Barium	6020A	0.173	20.9	20.9	99	75-125
Beryllium	6020A	ND U	1.09	1.05	104	75-125
Cadmium	6020A	0.111	1.27	1.05	111	75-125
Calcium	6010C	939	980	34.9	118#	75-125
Chromium	6020A	0.144	4.48	4.18	104	75-125
Cobalt	6020A	0.0774	10.9	10.5	103	75-125
Copper	6020A	8.26	13.3	5.23	96	75-125
Iron	6020A	32.7	44.6	20.9	57 N	75-125
Lead	6020A	0.174	9.80	10.5	92	75-125
Magnesium	6010C	400	442	34.9	119#	75-125
Manganese	6020A	0.501	11.7	10.5	107	75-125
Nickel	6020A	0.096	10.6	10.5	100	75-125
Potassium	6010C	3140	3240	34.9	300 #	75-125
Selenium	7742	0.60	4.10	3.49	100	75-125
Silver	6020A	0.117	1.21	1.05	104	75-125
Sodium	6010C	3910	4090	34.9	511#	75-125
Thallium	6020A	ND U	0.653	0.696	94	75-125
Vanadium	6020A	ND U	11.0	10.5	106	75-125
Zinc	6020A	46.0	56.9	10.5	104 #	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704545

Project: Skagway Tissue/1657231 Date Collected: N/A

Sample Matrix: Water Date Received: N/A

Date Analyzed: 05/23/17 **Date Extracted:** 05/19/17

Matrix Spike Summary Total Metals

 Sample Name:
 Batch QC
 Units:
 ug/L

 Lab Code:
 K1704900-012
 Basis:
 NA

Analysis Method: 6010C

Prep Method: EPA CLP-METALS ILM04.0

Matrix Spike KQ1706210-04

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Calcium	29	9400	10000	94	75-125
Magnesium	ND U	9860	10000	99	75-125
Potassium	ND U	9810	10000	98	75-125
Sodium	ND U	9960	10000	99	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704545

Project: Skagway Tissue/1657231 Date Collected: N/A

Sample Matrix: Water Date Received: N/A

Date Analyzed: 05/23/17 **Date Extracted:** 05/19/17

Matrix Spike Summary Dissolved Metals

 Sample Name:
 Batch QC
 Units:
 ug/L

 Lab Code:
 K1704816-001
 Basis:
 NA

Analysis Method: 6020A

Prep Method: EPA CLP-METALS ILM04.0

Matrix Spike KQ1706208-04

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	ND U	98.4	100	95	75-125
Antimony	0.307	50.5	50.0	100	75-125
Arsenic	0.71	53.2	50.0	105	75-125
Beryllium	ND U	2.43	2.50	97	75-125
Cadmium	0.035	24.0	25.0	96	75-125
Copper	1.90	14.6	12.5	102	75-125
Iron	2.6	53.3	50.0	101	75-125
Lead	0.052	45.9	50.0	92	75-125
Selenium	ND U	51.1	50.0	102	75-125
Silver	ND U	11.6	12.5	93	75-125
Thallium	ND U	46.8	50.0	94	75-125
Vanadium	0.95	27.3	25.0	105	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704545

Project: Skagway Tissue/1657231 Date Collected: N/A

Sample Matrix: Water Date Received: N/A

Date Analyzed: 05/26/17

Date Extracted: 05/25/17

Matrix Spike Summary Dissolved Metals

 Sample Name:
 Batch QC
 Units:
 ug/L

 Lab Code:
 K1704816-005
 Basis:
 NA

Analysis Method: 6020A

Prep Method: EPA CLP-METALS ILM04.0

Matrix Spike KQ1706583-04

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Barium	18.7	120	100	101	75-125
Chromium	ND U	10.3	10.0	103	75-125
Cobalt	0.199	24.4	25.0	97	75-125
Manganese	92.8	111	25.0	73 N	75-125
Nickel	4.25	27.7	25.0	94	75-125
Zinc	2.4	24 3	25.0	88	75-125

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Golder Associates, Inc. **Project:**

Skagway Tissue/1657231

Sample Matrix: Water

Service Request: Date Collected:

K1704545

Date Received:

05/15/17 05/16/17

Date Analyzed:

05/25/17

Date Extracted:

05/24/17

Matrix Spike Summary

Total Metals

Sample Name: Lab Code:

Homog. Blank K1704545-035 **Units: Basis:** ug/L NA

Analysis Method: Prep Method:

7470A Method

Matrix Spike

KQ1706211-04

Analyte Name Sample Result Spike Amount % Rec % Rec Limits Result Mercury ND U 3.63 5.00

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Service Request: K1704545 Date Analyzed: 05/24/17

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Wet

Lab Control Sample

KQ1706061-08

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Calcium	6010C	176	167	106	80-120
Magnesium	6010C	169	167	102	80-120
Potassium	6010C	163	167	98	80-120
Sodium	6010C	167	167	100	80-120

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Service Request: K1704545 Date Analyzed: 05/24/17

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Wet

Lab Control Sample

KQ1706061-08

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	6020A	216	200	108	80-120
Antimony	6020A	50.5	50.0	101	80-120
Arsenic	6020A	17.0	16.7	102	80-120
Barium	6020A	96.2	100	96	80-120
Beryllium	6020A	5.26	5.00	105	80-120
Cadmium	6020A	5.32	5.00	106	80-120
Chromium	6020A	21.3	20.0	106	80-120
Cobalt	6020A	53.5	50.0	107	80-120
Copper	6020A	26.2	25.0	105	80-120
Iron	6020A	106	100	106	80-120
Lead	6020A	50.0	50.0	100	80-120
Manganese	6020A	52.5	50.0	105	80-120
Nickel	6020A	52.9	50.0	106	80-120
Silver	6020A	5.36	5.00	107	80-120
Thallium	6020A	3.39	3.33	102	80-120
Vanadium	6020A	51.7	50.0	103	80-120
Zinc	6020A	51.9	50.0	104	80-120

QA/QC Report

Total Metals

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix:

Animal Tissue

Service Request: K1704545 Date Analyzed: 05/26/17

Lab Control Sample Summary

Units:mg/Kg
Basis:Wet

Lab Control Sample

KQ1706061-08

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Selenium	7742	16.4	16.7	98	80-120

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix:

Animal Tissue

Service Request: K1704545 Date Analyzed: 05/24/17

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Wet

Lab Control Sample

KQ1706062-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Calcium	6010C	176	167	105	80-120
Magnesium	6010C	172	167	103	80-120
Potassium	6010C	168	167	101	80-120
Sodium	6010C	166	167	99	80-120

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Animal Tissue

Service Request: K1704545 Date Analyzed: 05/24/17

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Wet

Lab Control Sample

KQ1706062-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	6020A	206	200	103	80-120
Antimony	6020A	52.0	50.0	104	80-120
Arsenic	6020A	17.3	16.7	104	80-120
Barium	6020A	100	100	100	80-120
Beryllium	6020A	5.15	5.00	103	80-120
Cadmium	6020A	5.31	5.00	106	80-120
Chromium	6020A	20.9	20.0	104	80-120
Cobalt	6020A	52.2	50.0	104	80-120
Copper	6020A	25.8	25.0	103	80-120
Iron	6020A	103	100	103	80-120
Lead	6020A	51.1	50.0	102	80-120
Manganese	6020A	52.8	50.0	106	80-120
Nickel	6020A	52.0	50.0	104	80-120
Silver	6020A	5.45	5.00	109	80-120
Thallium	6020A	3.47	3.33	104	80-120
Vanadium	6020A	52.3	50.0	105	80-120
Zinc	6020A	51.3	50.0	103	80-120

Printed 5/30/2017 2:23:17 PM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix:

Animal Tissue

Service Request: K1704545 Date Analyzed: 05/26/17

Lab Control Sample Summary Total Metals

Units:mg/Kg
Basis:Wet

Lab Control Sample

KQ1706062-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Selenium	7742	16.9	16.7	101	80-120

Printed 5/30/2017 2:23:17 PM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix:

Water

Service Request: K1704545

Date Analyzed: 05/23/17

Lab Control Sample Summary Total Metals

Units:ug/L Basis:NA

Lab Control Sample

KQ1706210-01

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Calcium	6010C	12800	12500	102	80-120
Magnesium	6010C	13000	12500	104	80-120
Potassium	6010C	13400	12500	107	80-120
Sodium	6010C	13200	12500	106	80-120

Printed 5/30/2017 2:23:18 PM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Water

Service Request: K1704545 Date Analyzed: 05/23/17

Lab Control Sample Summary Total Metals

Units:ug/L Basis:NA

Lab Control Sample

KQ1706208-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	6020A	112	100	112	80-120
Antimony	6020A	54.8	50.0	110	80-120
Arsenic	6020A	55.9	50.0	112	80-120
Beryllium	6020A	2.65	2.50	106	80-120
Cadmium	6020A	28.2	25.0	113	80-120
Copper	6020A	14.7	12.5	118	80-120
Iron	6020A	57.9	50.0	116	80-120
Lead	6020A	54.7	50.0	109	80-120
Selenium	6020A	56.4	50.0	113	80-120
Silver	6020A	14.0	12.5	112	80-120
Thallium	6020A	54.8	50.0	110	80-120
Vanadium	6020A	27.7	25.0	111	80-120

Printed 5/30/2017 2:23:19 PM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Water

Service Request: K1704545 Date Analyzed: 05/26/17

Lab Control Sample Summary Total Metals

Units:ug/L Basis:NA

Lab Control Sample

KQ1706583-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Barium	6020A	102	100	102	80-120
Chromium	6020A	10.3	10.0	103	80-120
Cobalt	6020A	25.5	25.0	102	80-120
Manganese	6020A	25.2	25.0	101	80-120
Nickel	6020A	25.3	25.0	101	80-120
Zinc	6020A	24.5	25.0	98	80-120

Printed 5/30/2017 2:23:19 PM Superset Reference:

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Service Request: K1704545 **Date Analyzed:** 05/25/17

Sample Matrix: W

Water

Lab Control Sample Summary Total Metals

> Units:ug/L Basis:NA

Lab Control Sample

KQ1706211-02

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Mercury	7470A	4.45	5.00	89	80-120

Printed 5/30/2017 2:23:20 PM Superset Reference:

Client:Golder Associates, Inc.Service Request:K1704545Project:Skagway Tissue/1657231Date Collected:NALCS Matrix:TissueDate Received:NA

Date Received: NA

Date Extracted: 05/17/17

Date Analyzed: 05/24-26/17

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm)

Lab Code: KQ1706062-03-SRM1 Basis: Dry

Test Notes: Dorm-4 Solids = 94.5%

Source: N.R.C.C. Dorm-4

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	6020A	6.8	8.0	118	4.93-8.93	
Cadmium	PSEP Tissue	6020A	0.306	0.328	107	0.233 - 0.385	
Chromium	PSEP Tissue	6020A	1.87	1.75	94	1.37-2.44	
Copper	PSEP Tissue	6020A	15.9	16.1	101	12.0 - 20.2	
Iron	PSEP Tissue	6020A	341	354	104	251-442	
Lead	PSEP Tissue	6020A	0.416	0.319	77	0.290 - 0.563	
Nickel	PSEP Tissue	6020A	1.36	1.34	99	0.912-1.9	
Selenium	PSEP Tissue	7742	3.56	3.67	103	2.58 - 4.68	
Zinc	PSEP Tissue	6020A	52.20	56.2	108	39.2 - 66.5	

Client:Golder Associates, Inc.Service Request:K1704545Project:Skagway Tissue/1657231Date Collected:NALCS Matrix:TissueDate Received:NA

Date Received: NA **Date Extracted:** 05/17/17 **Date Analyzed:** 05/24-26/17

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm)

Lab Code: KQ1706062-04-SRM1 Basis: Dry

Test Notes: Tort-3 Solids = 99.1%

Source: N.R.C.C. Tort-3

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	6020A	59.5	69.4	117	44.6-76.0	
Cadmium	PSEP Tissue	6020A	42.3	43.0	102	32.4-52.9	
Chromium	PSEP Tissue	6020A	1.95	1.71	88	1.37-2.63	
Copper	PSEP Tissue	6020A	497	454	91	380-623	
Iron	PSEP Tissue	6020A	179	166	93	137-224	
Lead	PSEP Tissue	6020A	0.225	0.187	83	0.166-0.292	
Manganese	PSEP Tissue	6020A	15.6	14.8	95	11.7-19.9	
Nickel	PSEP Tissue	6020A	5.3	5.0	94	4.05-6.65	
Selenium	PSEP Tissue	7742	10.9	10.6	97	7.9-14.3	
Vanadium	PSEP Tissue	6020A	9.1	8.9	98	7.0-11.4	
Zinc	PSEP Tissue	6020A	136	136	100	104-170	

Client:Golder Associates, Inc.Service Request:K1704545Project:Skagway Tissue/1657231Date Collected:NALCS Matrix:TissueDate Received:NA

Date Extracted: 05/17/17
Date Analyzed: 05/24-26/17

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm)

Lab Code: KQ1706061-09-SRM3 Basis: Dry

Test Notes: Dorm-4 Solids = 94.5%

Source: N.R.C.C. Dorm-4

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	6020A	6.8	7.5	110	4.93-8.93	
Cadmium	PSEP Tissue	6020A	0.306	0.345	113	0.233 - 0.385	
Chromium	PSEP Tissue	6020A	1.87	2.24	120	1.37-2.44	
Copper	PSEP Tissue	6020A	15.9	16.0	101	12.0 - 20.2	
Iron	PSEP Tissue	6020A	341	357	105	251-442	
Lead	PSEP Tissue	6020A	0.416	0.307	74	0.290 - 0.563	
Nickel	PSEP Tissue	6020A	1.36	1.35	99	0.912-1.9	
Selenium	PSEP Tissue	7742	3.56	3.17	89	2.58 - 4.68	
Zinc	PSEP Tissue	6020A	52.20	54.7	105	39.2 - 66.5	

Client:Golder Associates, Inc.Service Request:K1704545Project:Skagway Tissue/1657231Date Collected:NALCS Matrix:TissueDate Received:NA

Date Received: NA
Date Extracted: 05/17/17
Date Analyzed: 05/24-26/17

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm)

Lab Code: KQ1706061-10-SRM4 Basis: Dry

Test Notes: Tort-3 Solids = 99.1%

Source: N.R.C.C. Tort-3

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	6020A	59.5	70.0	118	44.6-76.0	
Cadmium	PSEP Tissue	6020A	42.3	45.2	107	32.4-52.9	
Chromium	PSEP Tissue	6020A	1.95	1.89	97	1.37-2.63	
Copper	PSEP Tissue	6020A	497	466	94	380-623	
Iron	PSEP Tissue	6020A	179	171	96	137-224	
Lead	PSEP Tissue	6020A	0.225	0.185	82	0.166-0.292	
Manganese	PSEP Tissue	6020A	15.6	16.4	105	11.7-19.9	
Nickel	PSEP Tissue	6020A	5.3	5.1	96	4.05-6.65	
Selenium	PSEP Tissue	7742	10.9	10.8	99	7.9-14.3	
Vanadium	PSEP Tissue	6020A	9.1	9.3	102	7.0-11.4	
Zinc	PSEP Tissue	6020A	136	139	102	104-170	

Polynuclear Aromatic Hydrocarbons

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

8270D SIM

Sample Matrix: Animal tissue

Analysis Method:

Service Request: K1704545

Date Collected: 05/03/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 NF-PRAWN-01
 Units:
 ug/kg

 Lab Code:
 K1704545-001
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

			Dilut	ion Date	Date	Extraction	
Analyte Name	Result	Q M	RL Fact	or Extracted	Analyzed	Lot	Note
Naphthalene	ND 1	U 5	1 1	05/24/17	05/30/17	KWG1704277	
2-Methylnaphthalene	ND	U 5	1 1	05/24/17	05/30/17	KWG1704277	
Acenaphthylene	ND 1	U 5	1 1	05/24/17	05/30/17	KWG1704277	
Acenaphthene	ND 1	U 5	1 1	05/24/17	05/30/17	KWG1704277	
Dibenzofuran	ND	U 5	1 1	05/24/17	05/30/17	KWG1704277	
Fluorene	ND 1	U 5	1 1	05/24/17	05/30/17	KWG1704277	
Phenanthrene	ND 1	U 5	1 1	05/24/17	05/30/17	KWG1704277	
Anthracene	ND	U 5	1 1	05/24/17	05/30/17	KWG1704277	
Fluoranthene	ND 1	U 5	1 1	05/24/17	05/30/17	KWG1704277	
Pyrene	ND 1	U 5	1 1	05/24/17	05/30/17	KWG1704277	
Benz(a)anthracene	ND	U 5	1 1	05/24/17	05/30/17	KWG1704277	
Chrysene	ND 1	U 5	1 1	05/24/17	05/30/17	KWG1704277	
Benzo(b)fluoranthene†	ND	U 5	1 1	05/24/17	05/30/17	KWG1704277	
Benzo(k)fluoranthene	ND 1	U 5	1 1	05/24/17	05/30/17	KWG1704277	
Benzo(a)pyrene	ND 1	U 5	1 1	05/24/17	05/30/17	KWG1704277	
Indeno(1,2,3-cd)pyrene	ND 1	U 5	1 1	05/24/17	05/30/17	KWG1704277	
Dibenz(a,h)anthracene	ND	U 5	1 1	05/24/17	05/30/17	KWG1704277	
Benzo(g,h,i)perylene	ND 1	U 5	1 1	05/24/17	05/30/17	KWG1704277	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	80	42-106	05/30/17	Acceptable
Fluoranthene-d10	84	45-109	05/30/17	Acceptable
Terphenyl-d14	87	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:55:47
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545

Date Collected: 05/03/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

Sample Name:NF-PRAWN-02Units:ug/KgLab Code:K1704545-002Basis:WetExtraction Method:EPA 3541Level:Low

Analysis Method: 8270D SIM

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
2-Methylnaphthalene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthylene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenzofuran	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluorene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Phenanthrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Anthracene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluoranthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benz(a)anthracene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Chrysene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(b)fluoranthene†	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(k)fluoranthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(a)pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Indeno(1,2,3-cd)pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenz(a,h)anthracene	5.7		5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(g,h,i)perylene	22		5.0	1	05/24/17	05/30/17	KWG1704277	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	70	42-106	05/30/17	Acceptable
Fluoranthene-d10	72	45-109	05/30/17	Acceptable
Terphenyl-d14	78	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:55:53
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Date Collected: 05/04/2017 **Date Received:** 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 NF-PRAWN-03
 Units: ug/Kg

 Lab Code:
 K1704545-003
 Basis: Wet

 Extraction Method:
 EPA 3541
 Level: Low

Analysis Method: 8270D SIM

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND		8.4	1	05/24/17	05/30/17	KWG1704277	11010
-				1			KWG1704277	
2-Methylnaphthalene	ND		8.4	1	05/24/17	05/30/17		
Acenaphthylene	ND	U	8.4	1	05/24/17	05/30/17	KWG1704277	
Acenaphthene	ND	U	8.4	1	05/24/17	05/30/17	KWG1704277	
Dibenzofuran	ND	U	8.4	1	05/24/17	05/30/17	KWG1704277	
Fluorene	ND	U	8.4	1	05/24/17	05/30/17	KWG1704277	
Phenanthrene	ND	U	8.4	1	05/24/17	05/30/17	KWG1704277	
Anthracene	ND	U	8.4	1	05/24/17	05/30/17	KWG1704277	
Fluoranthene	ND	U	8.4	1	05/24/17	05/30/17	KWG1704277	
Pyrene	ND	U	8.4	1	05/24/17	05/30/17	KWG1704277	
Benz(a)anthracene	ND	U	8.4	1	05/24/17	05/30/17	KWG1704277	
Chrysene	ND	U	8.4	1	05/24/17	05/30/17	KWG1704277	
Benzo(b)fluoranthene†	ND	U	8.4	1	05/24/17	05/30/17	KWG1704277	
Benzo(k)fluoranthene	ND	U	8.4	1	05/24/17	05/30/17	KWG1704277	
Benzo(a)pyrene	ND	U	8.4	1	05/24/17	05/30/17	KWG1704277	
Indeno(1,2,3-cd)pyrene	ND	U	8.4	1	05/24/17	05/30/17	KWG1704277	
Dibenz(a,h)anthracene	ND	U	8.4	1	05/24/17	05/30/17	KWG1704277	
Benzo(g,h,i)perylene	ND	U	8.4	1	05/24/17	05/30/17	KWG1704277	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	66	42-106	05/30/17	Acceptable
Fluoranthene-d10	72	45-109	05/30/17	Acceptable
Terphenyl-d14	79	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:55:57
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545

Date Collected: 05/04/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 NF-PRAWN-04
 Units:
 ug/Kg

 Lab Code:
 K1704545-004
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Analysis Method: 8270D SIM

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
2-Methylnaphthalene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthylene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenzofuran	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluorene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Phenanthrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Anthracene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluoranthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benz(a)anthracene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Chrysene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(b)fluoranthene†	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(k)fluoranthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(a)pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Indeno(1,2,3-cd)pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenz(a,h)anthracene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(g,h,i)perylene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	70	42-106	05/30/17	Acceptable
Fluoranthene-d10	73	45-109	05/30/17	Acceptable
Terphenyl-d14	81	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:56:01
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Date Collected: 05/04/2017 **Date Received:** 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 NF-PRAWN-05
 Units:
 ug/Kg

 Lab Code:
 K1704545-005
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Analysis Method: 8270D SIM

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
2-Methylnaphthalene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthylene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenzofuran	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluorene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Phenanthrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Anthracene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluoranthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benz(a)anthracene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Chrysene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(b)fluoranthene†	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(k)fluoranthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(a)pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Indeno(1,2,3-cd)pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenz(a,h)anthracene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(g,h,i)perylene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	68	42-106	05/30/17	Acceptable
Fluoranthene-d10	72	45-109	05/30/17	Acceptable
Terphenyl-d14	81	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Merged

Comments:

Printed: 05/31/2017 16:56:05 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

SuperSet Reference: RR198691

Page

1 of 1

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

8270D SIM

Sample Matrix: Animal tissue

Analysis Method:

Service Request: K1704545 Date Collected: 04/29/2017 Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 NF-MUSSEL-01
 Units:
 ug/Kg

 Lab Code:
 K1704545-006
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Dilution Date Date **Extraction** MRL **Factor Extracted** Analyzed **Analyte Name** Result Q Lot Note ND U 5.5 KWG1704277 05/24/17 05/30/17 Naphthalene 1 2-Methylnaphthalene ND U 5.5 1 05/24/17 05/30/17 KWG1704277 Acenaphthylene ND U 5.5 1 05/24/17 05/30/17 KWG1704277 ND U 5.5 05/30/17 KWG1704277 Acenaphthene 1 05/24/17 KWG1704277 Dibenzofuran ND U 5.5 1 05/24/17 05/30/17 Fluorene ND U 5.5 05/24/17 05/30/17 KWG1704277 1 5.5 1 KWG1704277 Phenanthrene 33 05/24/17 05/30/17 ND U 5.5 05/30/17 KWG1704277 Anthracene 1 05/24/17 Fluoranthene 50 5.5 1 05/24/17 05/30/17 KWG1704277 KWG1704277 Pyrene 30 5.5 1 05/24/17 05/30/17 Benz(a)anthracene 8.5 5.5 1 05/24/17 05/30/17 KWG1704277 5.5 KWG1704277 Chrysene 13 1 05/24/17 05/30/17 Benzo(b)fluoranthene† 11 5.5 1 05/24/17 05/30/17 KWG1704277 Benzo(k)fluoranthene ND U 5.5 05/24/17 05/30/17 KWG1704277 1 KWG1704277 5.5 Benzo(a)pyrene ND U 1 05/24/17 05/30/17 KWG1704277 Indeno(1,2,3-cd)pyrene ND U 5.5 1 05/24/17 05/30/17 Dibenz(a,h)anthracene ND U 5.5 1 05/24/17 05/30/17 KWG1704277 ND U 5.5 1 05/24/17 05/30/17 KWG1704277 Benzo(g,h,i)perylene

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	69	42-106	05/30/17	Acceptable
Fluoranthene-d10	72	45-109	05/30/17	Acceptable
Terphenyl-d14	77	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:56:09
 Form 1A - Organic
 Page
 1 of

 u:\Stealth\Crystal.rpt\Form\Im\New.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545

Date Collected: 04/29/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 NF-MUSSEL-02
 Units:
 ug/kg

 Lab Code:
 K1704545-007
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Analysis Method: 8270D SIM

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
2-Methylnaphthalene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthylene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenzofuran	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluorene	5.3		5.0	1	05/24/17	05/30/17	KWG1704277	
Phenanthrene	40		5.0	1	05/24/17	05/30/17	KWG1704277	
Anthracene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluoranthene	49		5.0	1	05/24/17	05/30/17	KWG1704277	
Pyrene	25		5.0	1	05/24/17	05/30/17	KWG1704277	
Benz(a)anthracene	11		5.0	1	05/24/17	05/30/17	KWG1704277	
Chrysene	16		5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(b)fluoranthene†	12		5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(k)fluoranthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(a)pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Indeno(1,2,3-cd)pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenz(a,h)anthracene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(g,h,i)perylene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	73	42-106	05/30/17	Acceptable
Fluoranthene-d10	75	45-109	05/30/17	Acceptable
Terphenyl-d14	78	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:56:13
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545

Date Collected: 04/29/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 NF-MUSSEL-03
 Units:
 ug/Kg

 Lab Code:
 K1704545-008
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Analysis Method: 8270D SIM

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
2-Methylnaphthalene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthylene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenzofuran	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluorene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Phenanthrene	35	5.0	1	05/24/17	05/30/17	KWG1704277	
Anthracene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluoranthene	51	5.0	1	05/24/17	05/30/17	KWG1704277	
Pyrene	31	5.0	1	05/24/17	05/30/17	KWG1704277	
Benz(a)anthracene	9.1	5.0	1	05/24/17	05/30/17	KWG1704277	
Chrysene	13	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(b)fluoranthene†	9.7	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(k)fluoranthene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(a)pyrene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Indeno(1,2,3-cd)pyrene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenz(a,h)anthracene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(g,h,i)perylene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	72	42-106	05/30/17	Acceptable
Fluoranthene-d10	75	45-109	05/30/17	Acceptable
Terphenyl-d14	79	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:56:17
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Date Collected: K1704545 **Date Collected:** 04/29/2017 **Date Received:** 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 NF-MUSSEL-04
 Units:
 ug/kg

 Lab Code:
 K1704545-009
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Analysis Method: 8270D SIM

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
2-Methylnaphthalene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthylene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenzofuran	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluorene	5.1	5.0	1	05/24/17	05/30/17	KWG1704277	
Phenanthrene	38	5.0	1	05/24/17	05/30/17	KWG1704277	
Anthracene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluoranthene	53	5.0	1	05/24/17	05/30/17	KWG1704277	
Pyrene	29	5.0	1	05/24/17	05/30/17	KWG1704277	
Benz(a)anthracene	9.4	5.0	1	05/24/17	05/30/17	KWG1704277	
Chrysene	15	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(b)fluoranthene†	12	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(k)fluoranthene	5.5	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(a)pyrene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Indeno(1,2,3-cd)pyrene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenz(a,h)anthracene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(g,h,i)perylene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	67	42-106	05/30/17	Acceptable
Fluoranthene-d10	72	45-109	05/30/17	Acceptable
Terphenyl-d14	77	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:56:21
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545

Date Collected: 04/29/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 NF-MUSSEL-05
 Units:
 ug/Kg

 Lab Code:
 K1704545-010
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Analysis Method: 8270D SIM

		Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	
Analyte Name	Result							Note
Naphthalene	ND	U	5.5	1	05/24/17	05/30/17	KWG1704277	
2-Methylnaphthalene	ND	U	5.5	1	05/24/17	05/30/17	KWG1704277	
Acenaphthylene	ND	U	5.5	1	05/24/17	05/30/17	KWG1704277	
Acenaphthene	ND	U	5.5	1	05/24/17	05/30/17	KWG1704277	
Dibenzofuran	ND	U	5.5	1	05/24/17	05/30/17	KWG1704277	
Fluorene	6.1		5.5	1	05/24/17	05/30/17	KWG1704277	
Phenanthrene	51		5.5	1	05/24/17	05/30/17	KWG1704277	
Anthracene	ND	U	5.5	1	05/24/17	05/30/17	KWG1704277	
Fluoranthene	81		5.5	1	05/24/17	05/30/17	KWG1704277	
Pyrene	44		5.5	1	05/24/17	05/30/17	KWG1704277	
Benz(a)anthracene	13		5.5	1	05/24/17	05/30/17	KWG1704277	
Chrysene	20		5.5	1	05/24/17	05/30/17	KWG1704277	
Benzo(b)fluoranthene†	15		5.5	1	05/24/17	05/30/17	KWG1704277	
Benzo(k)fluoranthene	7.5		5.5	1	05/24/17	05/30/17	KWG1704277	
Benzo(a)pyrene	ND	U	5.5	1	05/24/17	05/30/17	KWG1704277	
Indeno(1,2,3-cd)pyrene	ND	U	5.5	1	05/24/17	05/30/17	KWG1704277	
Dibenz(a,h)anthracene	ND	U	5.5	1	05/24/17	05/30/17	KWG1704277	
Benzo(g,h,i)perylene	ND	U	5.5	1	05/24/17	05/30/17	KWG1704277	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	77	42-106	05/30/17	Acceptable
Fluoranthene-d10	82	45-109	05/30/17	Acceptable
Terphenyl-d14	85	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:56:25
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

8270D SIM

Sample Matrix: Animal tissue

Analysis Method:

Service Request: K1704545

Date Collected: 05/01/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 NF-CRAB-01
 Units:
 ug/Kg

 Lab Code:
 K1704545-011
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

		Q MRL	Dilution	Date	Date	Extraction		
Analyte Name	Result		MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
2-Methylnaphthalene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthylene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenzofuran	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluorene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Phenanthrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Anthracene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluoranthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benz(a)anthracene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Chrysene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(b)fluoranthene†	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(k)fluoranthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(a)pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Indeno(1,2,3-cd)pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenz(a,h)anthracene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(g,h,i)perylene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	70	42-106	05/30/17	Acceptable
Fluoranthene-d10	76	45-109	05/30/17	Acceptable
Terphenyl-d14	83	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:56:29
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Animal tissue **Sample Matrix:**

Analysis Method:

Service Request: K1704545 **Date Collected:** 05/04/2017 **Date Received:** 05/08/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: NF-CRAB-02 Units: ug/Kg Lab Code: K1704545-012 Basis: Wet **Extraction Method:** EPA 3541 Level: Low 8270D SIM

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND		5.0	1	05/24/17	05/30/17	KWG1704277	11010
2-Methylnaphthalene	ND		5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthylene	ND ND		5.0	1	05/24/17	05/30/17	KWG1704277 KWG1704277	
Acenaphthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenzofuran	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluorene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Phenanthrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Anthracene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluoranthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benz(a)anthracene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Chrysene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(b)fluoranthene†	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(k)fluoranthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(a)pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Indeno(1,2,3-cd)pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenz(a,h)anthracene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(g,h,i)perylene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	72	42-106	05/30/17	Acceptable
Fluoranthene-d10	75	45-109	05/30/17	Acceptable
Terphenyl-d14	83	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

16:56:33 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Printed: 05/31/2017

Form 1A - Organic

Merged

SuperSet Reference:

Page RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Animal tissue **Sample Matrix:**

Service Request: K1704545 **Date Collected:** 05/04/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: NF-CRAB-03 Units: ug/Kg Lab Code: K1704545-013 Basis: Wet **Extraction Method:** EPA 3541 Level: Low

Analysis Method: 8270D SIM

			Dilutio	on Date	Date	Extraction	
Analyte Name	Result (Q MRL	Facto	r Extracted	Analyzed	Lot	Note
Naphthalene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
2-Methylnaphthalene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthylene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenzofuran	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Fluorene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Phenanthrene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Anthracene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Fluoranthene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Pyrene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Benz(a)anthracene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Chrysene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(b)fluoranthene†	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(k)fluoranthene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(a)pyrene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Indeno(1,2,3-cd)pyrene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenz(a,h)anthracene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(g,h,i)perylene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	71	42-106	05/30/17	Acceptable
Fluoranthene-d10	75	45-109	05/30/17	Acceptable
Terphenyl-d14	83	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

16:56:37 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Printed: 05/31/2017

Merged

Form 1A - Organic

Page 111 of 144

SuperSet Reference:

Page 1 of 1

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545

Date Collected: 05/03/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 MF-CRAB-01
 Units:
 ug/Kg

 Lab Code:
 K1704545-014
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Analysis Method: 8270D SIM

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
2-Methylnaphthalene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthylene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenzofuran	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluorene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Phenanthrene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Anthracene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluoranthene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Pyrene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benz(a)anthracene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Chrysene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(b)fluoranthene†	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(k)fluoranthene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(a)pyrene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Indeno(1,2,3-cd)pyrene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenz(a,h)anthracene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(g,h,i)perylene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	70	42-106	05/30/17	Acceptable
Fluoranthene-d10	72	45-109	05/30/17	Acceptable
Terphenyl-d14	78	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:56:41
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Date Collected: 05/03/2017 **Date Received:** 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 MF-CRAB-02
 Units:
 ug/Kg

 Lab Code:
 K1704545-015
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Analysis Method: 8270D SIM

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
2-Methylnaphthalene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthylene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenzofuran	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluorene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Phenanthrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Anthracene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluoranthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benz(a)anthracene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Chrysene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(b)fluoranthene†	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(k)fluoranthene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(a)pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Indeno(1,2,3-cd)pyrene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenz(a,h)anthracene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(g,h,i)perylene	ND	U	5.0	1	05/24/17	05/30/17	KWG1704277	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	62	42-106	05/30/17	Acceptable
Fluoranthene-d10	66	45-109	05/30/17	Acceptable
Terphenyl-d14	73	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:56:45
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

8270D SIM

Sample Matrix: Animal tissue

Analysis Method:

Service Request: K1704545

Date Collected: 05/03/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 MF-CRAB-03
 Units:
 ug/Kg

 Lab Code:
 K1704545-016
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

			Dilutio	on Date	Date	Extraction	
Analyte Name	Result (Q MRL	Facto	r Extracted	Analyzed	Lot	Note
Naphthalene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
2-Methylnaphthalene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthylene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenzofuran	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Fluorene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Phenanthrene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Anthracene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Fluoranthene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Pyrene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Benz(a)anthracene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Chrysene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(b)fluoranthene†	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(k)fluoranthene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(a)pyrene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Indeno(1,2,3-cd)pyrene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenz(a,h)anthracene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(g,h,i)perylene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	67	42-106	05/30/17	Acceptable
Fluoranthene-d10	75	45-109	05/30/17	Acceptable
Terphenyl-d14	83	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Merged

Comments:

Printed: 05/31/2017 16:56:49 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

SuperSet Reference: RR198691

Page

1 of 1

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

8270D SIM

Animal tissue **Sample Matrix:**

Analysis Method:

Service Request: K1704545 **Date Collected:** 05/03/2017 **Date Received:** 05/08/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: MF-CRAB-04 Units: ug/Kg Lab Code: K1704545-017 Basis: Wet **Extraction Method:** EPA 3541 Level: Low

			Dilutio	on Date	Date	Extraction	
Analyte Name	Result (Q MRL	Facto	r Extracted	Analyzed	Lot	Note
Naphthalene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
2-Methylnaphthalene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthylene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenzofuran	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Fluorene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Phenanthrene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Anthracene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Fluoranthene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Pyrene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Benz(a)anthracene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Chrysene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(b)fluoranthene†	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(k)fluoranthene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(a)pyrene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Indeno(1,2,3-cd)pyrene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenz(a,h)anthracene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(g,h,i)perylene	ND U	U 5.0	1	05/24/17	05/30/17	KWG1704277	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	83	42-106	05/30/17	Acceptable
Fluoranthene-d10	93	45-109	05/30/17	Acceptable
Terphenyl-d14	100	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

16:56:53 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Printed: 05/31/2017

Form 1A - Organic

Page 1 of 1 SuperSet Reference: RR198691

Merged

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Animal tissue **Sample Matrix:**

Analysis Method:

Service Request: K1704545 **Date Collected:** 05/03/2017 **Date Received:** 05/08/2017

Polynuclear Aromatic Hydrocarbons

Units: ug/Kg **Sample Name:** MF-CRAB-05 Lab Code: K1704545-018 Basis: Wet **Extraction Method:** EPA 3541 Level: Low 8270D SIM

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
2-Methylnaphthalene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Acenaphthylene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Acenaphthene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Dibenzofuran	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Fluorene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Phenanthrene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Anthracene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Fluoranthene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Pyrene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benz(a)anthracene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Chrysene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(b)fluoranthene†	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(k)fluoranthene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(a)pyrene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Indeno(1,2,3-cd)pyrene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Dibenz(a,h)anthracene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(g,h,i)perylene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	75	42-106	05/30/17	Acceptable
Fluoranthene-d10	80	45-109	05/30/17	Acceptable
Terphenyl-d14	91	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Form 1A - Organic Page Printed: 05/31/2017 16:56:57 1 of 1 u:\Stealth\Crystal.rpt\Form1mNew.rpt SuperSet Reference: RR198691 Merged

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545

Date Collected: 04/29/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 FF-MUSSEL-01
 Units:
 ug/Kg

 Lab Code:
 K1704545-019
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Analysis Method: 8270D SIM

A. I. (N	D 14 0	MDI	Dilution	Date	Date	Extraction	NI.
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
2-Methylnaphthalene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Acenaphthylene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Acenaphthene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Dibenzofuran	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Fluorene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Phenanthrene	11	5.0	1	05/25/17	05/30/17	KWG1704280	
Anthracene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Fluoranthene	11	5.0	1	05/25/17	05/30/17	KWG1704280	
Pyrene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benz(a)anthracene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Chrysene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(b)fluoranthene†	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(k)fluoranthene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(a)pyrene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Indeno(1,2,3-cd)pyrene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Dibenz(a,h)anthracene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(g,h,i)perylene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	79	42-106	05/30/17	Acceptable
Fluoranthene-d10	81	45-109	05/30/17	Acceptable
Terphenyl-d14	87	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:57:01
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545

Date Collected: 04/29/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 FF-MUSSEL-02
 Units: ug/Kg

 Lab Code:
 K1704545-020
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Analysis Method: 8270D SIM

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
2-Methylnaphthalene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Acenaphthylene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Acenaphthene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Dibenzofuran	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Fluorene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Phenanthrene	11	5.0	1	05/25/17	05/30/17	KWG1704280	
Anthracene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Fluoranthene	13	5.0	1	05/25/17	05/30/17	KWG1704280	
Pyrene	5.2	5.0	1	05/25/17	05/30/17	KWG1704280	
Benz(a)anthracene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Chrysene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(b)fluoranthene†	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(k)fluoranthene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(a)pyrene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Indeno(1,2,3-cd)pyrene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Dibenz(a,h)anthracene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(g,h,i)perylene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	79	42-106	05/30/17	Acceptable
Fluoranthene-d10	81	45-109	05/30/17	Acceptable
Terphenyl-d14	88	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:57:07
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

8270D SIM

Sample Matrix: Animal tissue

Analysis Method:

Service Request: K1704545

Date Collected: 04/29/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 FF-MUSSEL-03
 Units: ug/Kg

 Lab Code:
 K1704545-021
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Dilution Date Date **Extraction** MRL **Factor Extracted** Analyzed **Analyte Name** Result Q Lot Note ND U KWG1704280 5.0 05/25/17 05/30/17 Naphthalene 1 2-Methylnaphthalene ND U 5.0 1 05/25/17 05/30/17 KWG1704280 Acenaphthylene ND U 5.0 1 05/25/17 05/30/17 KWG1704280 ND U 5.0 05/30/17 KWG1704280 Acenaphthene 1 05/25/17 KWG1704280 Dibenzofuran ND U 5.0 1 05/25/17 05/30/17 Fluorene ND U 5.0 05/25/17 05/30/17 KWG1704280 1 1 KWG1704280 Phenanthrene 11 5.0 05/25/17 05/30/17 ND U 5.0 05/25/17 05/30/17 KWG1704280 Anthracene 1 Fluoranthene 12 5.0 1 05/25/17 05/30/17 KWG1704280 Pyrene 5.4 5.0 1 05/25/17 05/30/17 KWG1704280 ND U 5.0 1 05/25/17 05/30/17 KWG1704280 Benz(a)anthracene KWG1704280 Chrysene ND U 5.0 1 05/25/17 05/30/17 Benzo(b)fluoranthene† ND U 5.0 1 05/25/17 05/30/17 KWG1704280 Benzo(k)fluoranthene ND U 5.0 05/25/17 05/30/17 KWG1704280 1 KWG1704280 5.0 Benzo(a)pyrene ND U 1 05/25/17 05/30/17 Indeno(1,2,3-cd)pyrene ND U 5.0 1 05/25/17 05/30/17 KWG1704280

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	78	42-106	05/30/17	Acceptable
Fluoranthene-d10	82	45-109	05/30/17	Acceptable
Terphenyl-d14	86	41-102	05/30/17	Acceptable

1

1

05/25/17

05/25/17

05/30/17

05/30/17

KWG1704280

KWG1704280

5.0

5.0

† Analyte Comments

Benzo(b)fluoranthene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

This analyte cannot be separated from Benzo(j)fluoranthene.

ND U

ND U

Comments:

 Printed:
 05/31/2017
 16:57:11
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\Im\New.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545

Date Collected: 04/29/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 FF-MUSSEL-04
 Units:
 ug/Kg

 Lab Code:
 K1704545-022
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Analysis Method: 8270D SIM

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
·				ractor			KWG1704280	Note
Naphthalene	ND		5.0	1	05/25/17	05/30/17		
2-Methylnaphthalene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Acenaphthylene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Acenaphthene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Dibenzofuran	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Fluorene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Phenanthrene	12		5.0	1	05/25/17	05/30/17	KWG1704280	
Anthracene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Fluoranthene	14		5.0	1	05/25/17	05/30/17	KWG1704280	
Pyrene	6.1		5.0	1	05/25/17	05/30/17	KWG1704280	
Benz(a)anthracene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Chrysene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(b)fluoranthene†	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(k)fluoranthene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(a)pyrene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Indeno(1,2,3-cd)pyrene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Dibenz(a,h)anthracene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(g,h,i)perylene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	72	42-106	05/30/17	Acceptable	
Fluoranthene-d10	75	45-109	05/30/17	Acceptable	
Terphenyl-d14	79	41-102	05/30/17	Acceptable	

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:57:15
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545

Date Collected: 04/29/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 FF-MUSSEL-05
 Units: ug/Kg

 Lab Code:
 K1704545-023
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Analysis Method: 8270D SIM

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
2-Methylnaphthalene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Acenaphthylene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Acenaphthene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Dibenzofuran	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Fluorene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Phenanthrene	12	5.0	1	05/25/17	05/31/17	KWG1704280	
Anthracene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Fluoranthene	16	5.0	1	05/25/17	05/31/17	KWG1704280	
Pyrene	6.8	5.0	1	05/25/17	05/31/17	KWG1704280	
Benz(a)anthracene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Chrysene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(b)fluoranthene†	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(k)fluoranthene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(a)pyrene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Indeno(1,2,3-cd)pyrene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Dibenz(a,h)anthracene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(g,h,i)perylene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	85	42-106	05/31/17	Acceptable
Fluoranthene-d10	89	45-109	05/31/17	Acceptable
Terphenyl-d14	90	41-102	05/31/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:57:19
 Form 1A - Organic
 Page
 1 of

 u:\Stealth\Crystal.rpt\Form\Im\New.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545

Date Collected: 04/29/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 REF-MUSSEL-01
 Units:
 ug/kg

 Lab Code:
 K1704545-024
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Analysis Method: 8270D SIM

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
2-Methylnaphthalene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Acenaphthylene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Acenaphthene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Dibenzofuran	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Fluorene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Phenanthrene	8.0	5.0	1	05/25/17	05/31/17	KWG1704280	
Anthracene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Fluoranthene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Pyrene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benz(a)anthracene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Chrysene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(b)fluoranthene†	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(k)fluoranthene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(a)pyrene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Indeno(1,2,3-cd)pyrene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Dibenz(a,h)anthracene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(g,h,i)perylene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	83	42-106	05/31/17	Acceptable
Fluoranthene-d10	86	45-109	05/31/17	Acceptable
Terphenyl-d14	92	41-102	05/31/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:57:23
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

8270D SIM

Sample Matrix: Animal tissue

Analysis Method:

Service Request: K1704545

Date Collected: 04/29/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 REF-MUSSEL-02
 Units:
 ug/kg

 Lab Code:
 K1704545-025
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	5.0	1	05/25/17	05/31/17	KWG1704280	
2-Methylnaphthalene	ND	U	5.0	1	05/25/17	05/31/17	KWG1704280	
Acenaphthylene	ND	U	5.0	1	05/25/17	05/31/17	KWG1704280	
Acenaphthene	ND	U	5.0	1	05/25/17	05/31/17	KWG1704280	
Dibenzofuran	ND	U	5.0	1	05/25/17	05/31/17	KWG1704280	
Fluorene	ND	U	5.0	1	05/25/17	05/31/17	KWG1704280	
Phenanthrene	ND	U	5.0	1	05/25/17	05/31/17	KWG1704280	
Anthracene	ND	U	5.0	1	05/25/17	05/31/17	KWG1704280	
Fluoranthene	ND	U	5.0	1	05/25/17	05/31/17	KWG1704280	
Pyrene	ND	U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benz(a)anthracene	ND	U	5.0	1	05/25/17	05/31/17	KWG1704280	
Chrysene	ND	U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(b)fluoranthene†	ND	U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(k)fluoranthene	ND	U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(a)pyrene	ND	U	5.0	1	05/25/17	05/31/17	KWG1704280	
Indeno(1,2,3-cd)pyrene	ND	U	5.0	1	05/25/17	05/31/17	KWG1704280	
Dibenz(a,h)anthracene	ND	U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(g,h,i)perylene	ND	U	5.0	1	05/25/17	05/31/17	KWG1704280	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	86	42-106	05/31/17	Acceptable
Fluoranthene-d10	88	45-109	05/31/17	Acceptable
Terphenyl-d14	92	41-102	05/31/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:57:27
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545

Date Collected: 04/29/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 REF-MUSSEL-03
 Units:
 ug/kg

 Lab Code:
 K1704545-026
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Analysis Method: 8270D SIM

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	5.6	1	05/25/17	05/31/17	KWG1704280	
2-Methylnaphthalene	ND	U	5.6	1	05/25/17	05/31/17	KWG1704280	
Acenaphthylene	ND	U	5.6	1	05/25/17	05/31/17	KWG1704280	
Acenaphthene	ND	U	5.6	1	05/25/17	05/31/17	KWG1704280	
Dibenzofuran	ND	U	5.6	1	05/25/17	05/31/17	KWG1704280	
Fluorene	ND	U	5.6	1	05/25/17	05/31/17	KWG1704280	
Phenanthrene	ND	U	5.6	1	05/25/17	05/31/17	KWG1704280	
Anthracene	ND	U	5.6	1	05/25/17	05/31/17	KWG1704280	
Fluoranthene	ND	U	5.6	1	05/25/17	05/31/17	KWG1704280	
Pyrene	ND	U	5.6	1	05/25/17	05/31/17	KWG1704280	
Benz(a)anthracene	ND	U	5.6	1	05/25/17	05/31/17	KWG1704280	
Chrysene	ND	U	5.6	1	05/25/17	05/31/17	KWG1704280	
Benzo(b)fluoranthene†	ND	U	5.6	1	05/25/17	05/31/17	KWG1704280	
Benzo(k)fluoranthene	ND	U	5.6	1	05/25/17	05/31/17	KWG1704280	
Benzo(a)pyrene	ND	U	5.6	1	05/25/17	05/31/17	KWG1704280	
Indeno(1,2,3-cd)pyrene	ND	U	5.6	1	05/25/17	05/31/17	KWG1704280	
Dibenz(a,h)anthracene	ND	U	5.6	1	05/25/17	05/31/17	KWG1704280	
Benzo(g,h,i)perylene	ND	U	5.6	1	05/25/17	05/31/17	KWG1704280	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	82	42-106	05/31/17	Acceptable
Fluoranthene-d10	87	45-109	05/31/17	Acceptable
Terphenyl-d14	89	41-102	05/31/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:57:31
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Animal tissue **Sample Matrix:**

Analysis Method:

Service Request: K1704545 **Date Collected:** 04/29/2017 **Date Received:** 05/08/2017

Polynuclear Aromatic Hydrocarbons

REF-MUSSEL-04 **Sample Name:** Units: ug/Kg Lab Code: K1704545-027 Basis: Wet **Extraction Method:** EPA 3541 Level: Low 8270D SIM

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND	U	6.1	1	05/25/17	05/31/17	KWG1704280	
2-Methylnaphthalene	ND		6.1	1	05/25/17	05/31/17	KWG1704280	
Acenaphthylene	ND	U	6.1	1	05/25/17	05/31/17	KWG1704280	
Acenaphthene	ND	U	6.1	1	05/25/17	05/31/17	KWG1704280	
Dibenzofuran	ND	U	6.1	1	05/25/17	05/31/17	KWG1704280	
Fluorene	ND	U	6.1	1	05/25/17	05/31/17	KWG1704280	
Phenanthrene	ND	U	6.1	1	05/25/17	05/31/17	KWG1704280	
Anthracene	ND	U	6.1	1	05/25/17	05/31/17	KWG1704280	
Fluoranthene	ND	U	6.1	1	05/25/17	05/31/17	KWG1704280	
Pyrene	ND	U	6.1	1	05/25/17	05/31/17	KWG1704280	
Benz(a)anthracene	ND	U	6.1	1	05/25/17	05/31/17	KWG1704280	
Chrysene	ND	U	6.1	1	05/25/17	05/31/17	KWG1704280	
Benzo(b)fluoranthene†	ND	U	6.1	1	05/25/17	05/31/17	KWG1704280	
Benzo(k)fluoranthene	ND	U	6.1	1	05/25/17	05/31/17	KWG1704280	
Benzo(a)pyrene	ND	U	6.1	1	05/25/17	05/31/17	KWG1704280	
Indeno(1,2,3-cd)pyrene	ND	U	6.1	1	05/25/17	05/31/17	KWG1704280	
Dibenz(a,h)anthracene	ND	U	6.1	1	05/25/17	05/31/17	KWG1704280	
Benzo(g,h,i)perylene	ND	U	6.1	1	05/25/17	05/31/17	KWG1704280	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	85	42-106	05/31/17	Acceptable
Fluoranthene-d10	89	45-109	05/31/17	Acceptable
Terphenyl-d14	93	41-102	05/31/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/31/2017 16:57:35 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

Page 1 of 1 SuperSet Reference: RR198691

Merged

Analytical Results

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

8270D SIM

Sample Matrix: Animal tissue

Analysis Method:

Service Request: K1704545 Date Collected: 04/29/2017 Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 REF-MUSSEL-05
 Units:
 ug/kg

 Lab Code:
 K1704545-028
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Dilution Date Date **Extraction** MRL **Factor Extracted** Analyzed Analyte Name Result Q Lot Note ND U KWG1704280 5.0 05/25/17 05/30/17 Naphthalene 1 2-Methylnaphthalene ND U 5.0 1 05/25/17 05/30/17 KWG1704280 Acenaphthylene ND U 5.0 1 05/25/17 05/30/17 KWG1704280 ND U 5.0 05/30/17 KWG1704280 Acenaphthene 1 05/25/17 KWG1704280 Dibenzofuran ND U 5.0 1 05/25/17 05/30/17 Fluorene ND U 5.0 05/25/17 05/30/17 KWG1704280 1 1 KWG1704280 Phenanthrene ND U 5.0 05/25/17 05/30/17 ND U 5.0 05/25/17 05/30/17 KWG1704280 Anthracene 1 Fluoranthene ND U 5.0 1 05/25/17 05/30/17 KWG1704280 Pyrene ND U 5.0 1 05/25/17 05/30/17 KWG1704280 ND U 5.0 1 05/25/17 05/30/17 KWG1704280 Benz(a)anthracene KWG1704280 Chrysene ND U 5.0 1 05/25/17 05/30/17 Benzo(b)fluoranthene† ND U 5.0 1 05/25/17 05/30/17 KWG1704280 Benzo(k)fluoranthene ND U 5.0 05/25/17 05/30/17 KWG1704280 1 KWG1704280 5.0 Benzo(a)pyrene ND U 1 05/25/17 05/30/17 Indeno(1,2,3-cd)pyrene ND U 5.0 1 05/25/17 05/30/17 KWG1704280

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	82	42-106	05/30/17	Acceptable
Fluoranthene-d10	84	45-109	05/30/17	Acceptable
Terphenyl-d14	88	41-102	05/30/17	Acceptable

1

1

05/25/17

05/25/17

05/30/17

05/30/17

KWG1704280

KWG1704280

5.0

5.0

† Analyte Comments

Benzo(b)fluoranthene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

This analyte cannot be separated from Benzo(j)fluoranthene.

ND U

ND U

Comments:

 Printed:
 05/31/2017
 16:57:41
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Date Collected: 05/04/2017 **Date Received:** 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 REF-PRAWN-01
 Units:
 ug/Kg

 Lab Code:
 K1704545-029
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Analysis Method: 8270D SIM

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	7.8	1	05/25/17	05/30/17	KWG1704280	
2-Methylnaphthalene	ND	U	7.8	1	05/25/17	05/30/17	KWG1704280	
Acenaphthylene	ND	U	7.8	1	05/25/17	05/30/17	KWG1704280	
Acenaphthene	ND	U	7.8	1	05/25/17	05/30/17	KWG1704280	
Dibenzofuran	ND	U	7.8	1	05/25/17	05/30/17	KWG1704280	
Fluorene	ND	U	7.8	1	05/25/17	05/30/17	KWG1704280	
Phenanthrene	ND	U	7.8	1	05/25/17	05/30/17	KWG1704280	
Anthracene	ND	U	7.8	1	05/25/17	05/30/17	KWG1704280	
Fluoranthene	ND	U	7.8	1	05/25/17	05/30/17	KWG1704280	
Pyrene	ND	U	7.8	1	05/25/17	05/30/17	KWG1704280	
Benz(a)anthracene	ND	U	7.8	1	05/25/17	05/30/17	KWG1704280	
Chrysene	ND	U	7.8	1	05/25/17	05/30/17	KWG1704280	
Benzo(b)fluoranthene†	ND	U	7.8	1	05/25/17	05/30/17	KWG1704280	
Benzo(k)fluoranthene	ND	U	7.8	1	05/25/17	05/30/17	KWG1704280	
Benzo(a)pyrene	ND	U	7.8	1	05/25/17	05/30/17	KWG1704280	
Indeno(1,2,3-cd)pyrene	ND	U	7.8	1	05/25/17	05/30/17	KWG1704280	
Dibenz(a,h)anthracene	ND	U	7.8	1	05/25/17	05/30/17	KWG1704280	
Benzo(g,h,i)perylene	ND	U	7.8	1	05/25/17	05/30/17	KWG1704280	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	74	42-106	05/30/17	Acceptable
Fluoranthene-d10	80	45-109	05/30/17	Acceptable
Terphenyl-d14	88	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:57:45
 Form 1A - Organic
 Page
 1 of

 u:\Stealth\Crystal.rpt\Form\Im\New.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545

Date Collected: 05/05/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 REF-PRAWN-02
 Units:
 ug/Kg

 Lab Code:
 K1704545-030
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Analysis Method: 8270D SIM

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
2-Methylnaphthalene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Acenaphthylene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Acenaphthene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Dibenzofuran	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Fluorene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Phenanthrene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Anthracene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Fluoranthene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Pyrene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benz(a)anthracene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Chrysene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(b)fluoranthene†	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(k)fluoranthene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(a)pyrene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Indeno(1,2,3-cd)pyrene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Dibenz(a,h)anthracene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(g,h,i)perylene	ND	U	5.0	1	05/25/17	05/30/17	KWG1704280	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	64	42-106	05/30/17	Acceptable
Fluoranthene-d10	68	45-109	05/30/17	Acceptable
Terphenyl-d14	72	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:57:49
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545 **Date Collected:** 05/05/2017 **Date Problem of 109/2017**

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 REF-PRAWN-03
 Units:
 ug/kg

 Lab Code:
 K1704545-031
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Analysis Method: 8270D SIM

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
2-Methylnaphthalene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Acenaphthylene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Acenaphthene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Dibenzofuran	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Fluorene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Phenanthrene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Anthracene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Fluoranthene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Pyrene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benz(a)anthracene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Chrysene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(b)fluoranthene†	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(k)fluoranthene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(a)pyrene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Indeno(1,2,3-cd)pyrene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Dibenz(a,h)anthracene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(g,h,i)perylene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	78	42-106	05/30/17	Acceptable
Fluoranthene-d10	81	45-109	05/30/17	Acceptable
Terphenyl-d14	89	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:57:53
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Animal tissue **Sample Matrix:**

Analysis Method:

Service Request: K1704545 **Date Collected:** 04/29/2017 **Date Received:** 05/08/2017

Polynuclear Aromatic Hydrocarbons

Units: ug/Kg **Sample Name:** REF-CRAB-01 Lab Code: K1704545-032 Basis: Wet **Extraction Method:** EPA 3541 Level: Low 8270D SIM

			Dilutio	on Date	Date	Extraction	
Analyte Name	Result (Q MRL	Facto	r Extracted	Analyzed	Lot	Note
Naphthalene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
2-Methylnaphthalene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Acenaphthylene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Acenaphthene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Dibenzofuran	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Fluorene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Phenanthrene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Anthracene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Fluoranthene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Pyrene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Benz(a)anthracene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Chrysene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(b)fluoranthene†	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(k)fluoranthene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(a)pyrene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Indeno(1,2,3-cd)pyrene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Dibenz(a,h)anthracene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(g,h,i)perylene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	65	42-106	05/31/17	Acceptable
Fluoranthene-d10	73	45-109	05/31/17	Acceptable
Terphenyl-d14	83	41-102	05/31/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Form 1A - Organic Page Printed: 05/31/2017 16:57:57 1 of 1 u:\Stealth\Crystal.rpt\Form1mNew.rpt SuperSet Reference: RR198691 Merged

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Animal tissue **Sample Matrix:**

Analysis Method:

Service Request: K1704545 **Date Collected:** 04/29/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: REF-CRAB-02 Units: ug/Kg Lab Code: K1704545-033 Basis: Wet **Extraction Method:** EPA 3541 Level: Low 8270D SIM

			Dilutio	on Date	Date	Extraction	
Analyte Name	Result (Q MRL	Facto	r Extracted	Analyzed	Lot	Note
Naphthalene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
2-Methylnaphthalene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Acenaphthylene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Acenaphthene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Dibenzofuran	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Fluorene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Phenanthrene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Anthracene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Fluoranthene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Pyrene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Benz(a)anthracene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Chrysene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(b)fluoranthene†	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(k)fluoranthene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(a)pyrene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Indeno(1,2,3-cd)pyrene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Dibenz(a,h)anthracene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(g,h,i)perylene	ND U	J 5.0	1	05/25/17	05/31/17	KWG1704280	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	79	42-106	05/31/17	Acceptable
Fluoranthene-d10	86	45-109	05/31/17	Acceptable
Terphenyl-d14	91	41-102	05/31/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Merged

Comments:

Printed: 05/31/2017 16:58:01 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Form 1A - Organic

SuperSet Reference: RR198691 Page

1 of 1

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545 Date Collected: 05/05/2017

Date Received: 05/08/2017

Polynuclear Aromatic Hydrocarbons

 Sample Name:
 REF-CRAB-03
 Units: ug/Kg

 Lab Code:
 K1704545-034
 Basis:
 Wet

 Extraction Method:
 EPA 3541
 Level:
 Low

Analysis Method: 8270D SIM

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
2-Methylnaphthalene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Acenaphthylene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Acenaphthene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Dibenzofuran	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Fluorene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Phenanthrene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Anthracene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Fluoranthene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Pyrene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benz(a)anthracene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Chrysene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(b)fluoranthene†	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(k)fluoranthene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(a)pyrene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Indeno(1,2,3-cd)pyrene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Dibenz(a,h)anthracene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	
Benzo(g,h,i)perylene	ND U	5.0	1	05/25/17	05/31/17	KWG1704280	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	74	42-106	05/31/17	Acceptable
Fluoranthene-d10	78	45-109	05/31/17	Acceptable
Terphenyl-d14	89	41-102	05/31/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:58:05
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545

Date Collected: NA **Date Received:** NA

Polynuclear Aromatic Hydrocarbons

Sample Name: Method Blank **Lab Code:** KWG1704277-5

Extraction Method: EPA 3541 **Analysis Method:** 8270D SIM

Basis: Wet
Level: Low

Units: ug/Kg

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
2-Methylnaphthalene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthylene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Acenaphthene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenzofuran	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluorene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Phenanthrene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Anthracene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Fluoranthene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Pyrene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benz(a)anthracene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Chrysene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(b)fluoranthene†	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(k)fluoranthene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(a)pyrene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Indeno(1,2,3-cd)pyrene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Dibenz(a,h)anthracene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	
Benzo(g,h,i)perylene	ND U	5.0	1	05/24/17	05/30/17	KWG1704277	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	58	42-106	05/30/17	Acceptable
Fluoranthene-d10	76	45-109	05/30/17	Acceptable
Terphenyl-d14	84	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/31/2017 16:58:09 Form 1A - Organic
u:\Stealth\Crystal.rpt\Form1mNew.rpt Merged SuperSet Reference:

1 of 1

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545

Date Collected: NA **Date Received:** NA

Polynuclear Aromatic Hydrocarbons

Sample Name: Method Blank **Lab Code:** KWG1704280-5

Extraction Method: EPA 3541 **Analysis Method:** 8270D SIM

Units: ug/Kg
Basis: Wet

Level: Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
2-Methylnaphthalene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Acenaphthylene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Acenaphthene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Dibenzofuran	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Fluorene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Phenanthrene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Anthracene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Fluoranthene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Pyrene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benz(a)anthracene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Chrysene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(b)fluoranthene†	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(k)fluoranthene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(a)pyrene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Indeno(1,2,3-cd)pyrene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Dibenz(a,h)anthracene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	
Benzo(g,h,i)perylene	ND U	5.0	1	05/25/17	05/30/17	KWG1704280	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	62	42-106	05/30/17	Acceptable
Fluoranthene-d10	66	45-109	05/30/17	Acceptable
Terphenyl-d14	76	41-102	05/30/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

 Printed:
 05/31/2017
 16:58:13
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR198691

QA/QC Report

Service Request: K1704545

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Surrogate Recovery Summary

Polynuclear Aromatic Hydrocarbons

Extraction Method:EPA 3541Units:PercentAnalysis Method:8270D SIMLevel:Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
NF-PRAWN-01	K1704545-001	80	84	87
NF-PRAWN-02	K1704545-002	70	72	78
NF-PRAWN-03	K1704545-003	66	72	79
NF-PRAWN-04	K1704545-004	70	73	81
NF-PRAWN-05	K1704545-005	68	72	81
NF-MUSSEL-01	K1704545-006	69	72	77
NF-MUSSEL-02	K1704545-007	73	75	78
NF-MUSSEL-03	K1704545-008	72	75	79
NF-MUSSEL-04	K1704545-009	67	72	77
NF-MUSSEL-05	K1704545-010	77	82	85
NF-CRAB-01	K1704545-011	70	76	83
NF-CRAB-02	K1704545-012	72	75	83
NF-CRAB-03	K1704545-013	71	75	83
MF-CRAB-01	K1704545-014	70	72	78
MF-CRAB-02	K1704545-015	62	66	73
MF-CRAB-03	K1704545-016	67	75	83
MF-CRAB-04	K1704545-017	83	93	100
MF-CRAB-05	K1704545-018	75	80	91
FF-MUSSEL-01	K1704545-019	79	81	87
FF-MUSSEL-02	K1704545-020	79	81	88
FF-MUSSEL-03	K1704545-021	78	82	86
FF-MUSSEL-04	K1704545-022	72	75	79
FF-MUSSEL-05	K1704545-023	85	89	90
REF-MUSSEL-01	K1704545-024	83	86	92
REF-MUSSEL-02	K1704545-025	86	88	92
REF-MUSSEL-03	K1704545-026	82	87	89
REF-MUSSEL-04	K1704545-027	85	89	93
REF-MUSSEL-05	K1704545-028	82	84	88
REF-PRAWN-01	K1704545-029	74	80	88
REF-PRAWN-02	K1704545-030	64	68	72
REF-PRAWN-03	K1704545-031	78	81	89
REF-CRAB-01	K1704545-032	65	73	83
REF-CRAB-02	K1704545-033	79	86	91
REF-CRAB-03	K1704545-034	74	78	89

Surrogate Recovery Control Limits (%)

 Sur1 = Fluorene-d10
 42-106

 Sur2 = Fluoranthene-d10
 45-109

 Sur3 = Terphenyl-d14
 41-102

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

 Printed:
 05/31/2017
 16:58:20
 Form 2A - Organic
 Page
 1 of
 2

 u:\Stealth\Crystal.rpt\Form2.rpt
 SuperSet Reference:
 RR198691

QA/QC Report

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:EPA 3541Units:PercentAnalysis Method:8270D SIMLevel:Low

Sample Name	<u>Lab Code</u>	Sur1	Sur2	Sur3
Method Blank	KWG1704277-5	58	76	84
Method Blank	KWG1704280-5	62	66	76
NF-CRAB-01MS	KWG1704277-1	77	84	88
NF-CRAB-01DMS	KWG1704277-2	72	79	83
MF-CRAB-05MS	KWG1704280-1	78	86	90
MF-CRAB-05DMS	KWG1704280-2	69	76	81
Lab Control Sample	KWG1704277-3	67	73	82
Duplicate Lab Control Sample	KWG1704277-4	66	76	86
Lab Control Sample	KWG1704280-3	78	85	92
Duplicate Lab Control Sample	KWG1704280-4	65	76	83

Surrogate Recovery Control Limits (%)

Sur1	=	Fluorene-d10	42-106
Sur2	=	Fluoranthene-d10	45-109
Sur3	=	Terphenyl-d14	41-102

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

 Printed:
 05/31/2017
 16:58:20
 Form 2A - Organic
 Page
 2 of
 2

 u:\Stealth\Crystal.rpt\Form2.rpt
 SuperSet Reference:
 RR198691

QA/QC Report

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545 **Date Extracted:** 05/24/2017 **Date Analyzed:** 05/30/2017

Matrix Spike/Duplicate Matrix Spike Summary Polynuclear Aromatic Hydrocarbons

Sample Name: NF-CRAB-01 Lab Code: K1704545-011

Extraction Method: EPA 3541 **Analysis Method:** 8270D SIM

Units: ug/Kg
Basis: Wet

Level: Low

Extraction Lot: KWG1704277

NF-CRAB-01MS KWG1704277-1 **Matrix Spike** NF-CRAB-01DMS KWG1704277-2 **Duplicate Matrix Spike**

Analyte Name	Sample Result	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Naphthalene	ND	312	497	63	299	496	60	37-104	4	40
2-Methylnaphthalene	ND	311	497	63	298	496	60	39-115	4	40
Acenaphthylene	ND	351	497	71	339	496	68	39-115	4	40
Acenaphthene	ND	353	497	71	335	496	68	41-116	5	40
Dibenzofuran	ND	368	497	74	347	496	70	41-121	6	40
Fluorene	ND	396	497	80	370	496	75	43-117	7	40
Phenanthrene	ND	389	497	78	363	496	73	42-119	7	40
Anthracene	ND	393	497	79	361	496	73	42-124	8	40
Fluoranthene	ND	415	497	84	386	496	78	42-130	7	40
Pyrene	ND	455	497	92	420	496	85	33-125	8	40
Benz(a)anthracene	ND	426	497	86	390	496	79	42-123	9	40
Chrysene	ND	430	497	87	396	496	80	40-134	8	40
Benzo(b)fluoranthene	ND	433	497	87	405	496	82	27-139	7	40
Benzo(k)fluoranthene	ND	407	497	82	376	496	76	40-125	8	40
Benzo(a)pyrene	ND	402	497	81	369	496	74	39-130	9	40
Indeno(1,2,3-cd)pyrene	ND	403	497	81	368	496	74	37-143	9	40
Dibenz(a,h)anthracene	ND	361	497	73	336	496	68	39-141	7	40
Benzo(g,h,i)perylene	ND	424	497	85	389	496	78	35-140	9	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Printed:
 05/31/2017
 16:58:25
 Form 3A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form3DMS.rpt
 SuperSet Reference:
 RR198691

QA/QC Report

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue Service Request: K1704545 **Date Extracted:** 05/25/2017 **Date Analyzed:** 05/30/2017

Matrix Spike/Duplicate Matrix Spike Summary Polynuclear Aromatic Hydrocarbons

Sample Name: MF-CRAB-05 Lab Code: K1704545-018

Extraction Method: EPA 3541

Analysis Method: 8270D SIM Units: ug/Kg Basis: Wet

Level: Low

Extraction Lot: KWG1704280

MF-CRAB-05MS KWG1704280-1 Matrix Spike

MF-CRAB-05DMS KWG1704280-2 **Duplicate Matrix Spike**

Analyte Name	Sample Result	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Naphthalene	ND	307	499	62	258	496	52	37-104	18	40
2-Methylnaphthalene	ND	303	499	61	257	496	52	39-115	17	40
Acenaphthylene	ND	347	499	70	297	496	60	39-115	15	40
Acenaphthene	ND	348	499	70	295	496	59	41-116	16	40
Dibenzofuran	ND	358	499	72	305	496	62	41-121	16	40
Fluorene	ND	383	499	77	328	496	66	43-117	15	40
Phenanthrene	ND	381	499	76	326	496	66	42-119	16	40
Anthracene	ND	384	499	77	326	496	66	42-124	16	40
Fluoranthene	ND	406	499	81	350	496	70	42-130	15	40
Pyrene	ND	430	499	86	371	496	75	33-125	15	40
Benz(a)anthracene	ND	416	499	83	357	496	72	42-123	15	40
Chrysene	ND	421	499	84	361	496	73	40-134	15	40
Benzo(b)fluoranthene	ND	430	499	86	365	496	74	27-139	16	40
Benzo(k)fluoranthene	ND	408	499	82	347	496	70	40-125	16	40
Benzo(a)pyrene	ND	397	499	80	336	496	68	39-130	17	40
Indeno(1,2,3-cd)pyrene	ND	376	499	75	315	496	63	37-143	18	40
Dibenz(a,h)anthracene	ND	328	499	66	265	496	53	39-141	21	40
Benzo(g,h,i)perylene	ND	402	499	81	340	496	68	35-140	17	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Form 3A - Organic Page Printed: 05/31/2017 16:58:29 1 of 1 $u:\Stealth\Crystal.rpt\Form3DMS.rpt$ SuperSet Reference: RR198691

QA/QC Report

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545 **Date Extracted:** 05/24/2017 **Date Analyzed:** 05/30/2017

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3 **Analysis Method:** 8270I

EPA 3541 8270D SIM Units: ug/Kg
Basis: Wet

Level: Low **Extraction Lot:** KWG1704277

Lab Control Sample KWG1704277-3 Lab Control Spike Duplicate Lab Control Sample KWG1704277-4 Duplicate Lab Control Spike

		control spine		Dupitette Eus control spine					
Analyte Name	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Naphthalene	291	500	58	270	500	54	42-107	8	40
2-Methylnaphthalene	287	500	57	268	500	54	40-116	7	40
Acenaphthylene	312	500	62	290	500	58	41-112	7	40
Acenaphthene	308	500	62	290	500	58	43-113	6	40
Dibenzofuran	318	500	64	300	500	60	43-114	6	40
Fluorene	327	500	65	313	500	63	44-114	4	40
Phenanthrene	323	500	65	307	500	61	44-115	5	40
Anthracene	328	500	66	315	500	63	45-121	4	40
Fluoranthene	356	500	71	349	500	70	47-123	2	40
Pyrene	395	500	79	390	500	78	41-121	1	40
Benz(a)anthracene	386	500	77	377	500	75	42-123	2	40
Chrysene	392	500	78	385	500	77	46-130	2	40
Benzo(b)fluoranthene	403	500	81	404	500	81	46-125	0	40
Benzo(k)fluoranthene	387	500	77	377	500	75	47-125	3	40
Benzo(a)pyrene	371	500	74	358	500	72	45-128	3	40
Indeno(1,2,3-cd)pyrene	363	500	73	335	500	67	45-128	8	40
Dibenz(a,h)anthracene	316	500	63	270	500	54	44-128	16	40
Benzo(g,h,i)perylene	381	500	76	363	500	73	43-125	5	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 05/31/2017 16:58:33 u:\Stealth\Crystal.rpt\Form3DLC.rpt

SuperSet Reference:

QA/QC Report

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Animal tissue

Service Request: K1704545 **Date Extracted:** 05/25/2017 **Date Analyzed:** 05/30/2017

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:
Analysis Method:

EPA 3541 8270D SIM olynuclear Aromatic Hydrocarbons

Units: ug/KgBasis: WetLevel: Low

Extraction Lot: KWG1704280

Lab Control Sample KWG1704280-3 Lab Control Spike Duplicate Lab Control Sample KWG1704280-4 Duplicate Lab Control Spike

		control spine		- D upneut	2 upneute 2us contror spine				
Analyte Name	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Naphthalene	324	500	65	274	500	55	42-107	17	40
2-Methylnaphthalene	321	500	64	268	500	54	40-116	18	40
Acenaphthylene	362	500	72	304	500	61	41-112	17	40
Acenaphthene	361	500	72	304	500	61	43-113	17	40
Dibenzofuran	371	500	74	310	500	62	43-114	18	40
Fluorene	390	500	78	307	500	61	44-114	24	40
Phenanthrene	375	500	75	331	500	66	44-115	12	40
Anthracene	386	500	77	336	500	67	45-121	14	40
Fluoranthene	415	500	83	375	500	75	47-123	10	40
Pyrene	449	500	90	411	500	82	41-121	9	40
Benz(a)anthracene	444	500	89	400	500	80	42-123	10	40
Chrysene	450	500	90	406	500	81	46-130	10	40
Benzo(b)fluoranthene	458	500	92	419	500	84	46-125	9	40
Benzo(k)fluoranthene	440	500	88	401	500	80	47-125	9	40
Benzo(a)pyrene	426	500	85	380	500	76	45-128	11	40
Indeno(1,2,3-cd)pyrene	414	500	83	357	500	71	45-128	15	40
Dibenz(a,h)anthracene	349	500	70	284	500	57	44-128	20	40
Benzo(g,h,i)perylene	430	500	86	389	500	78	43-125	10	40

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed: 05/31/2017 16:58:37 u:\Stealth\Crystal.rpt\Form3DLC.rpt

SuperSet Reference:

Analytical Results

Client: Golder Associates, Inc. Skagway Tissue/1657231 **Project:**

Sample Matrix: Water Service Request: K1704545 **Date Collected:** 05/15/2017 **Date Received:** 05/16/2017

Polynuclear Aromatic Hydrocarbons

Sample Name: Homog. Blank K1704545-035 Lab Code: **Extraction Method:**

Analysis Method:

EPA 3520C 8270D SIM

Units: ug/L Basis: NA Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
2-Methylnaphthalene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Acenaphthylene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Acenaphthene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Dibenzofuran	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Fluorene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Phenanthrene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Anthracene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Fluoranthene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Pyrene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Benz(a)anthracene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Chrysene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Benzo(b)fluoranthene†	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Benzo(k)fluoranthene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Benzo(a)pyrene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Indeno(1,2,3-cd)pyrene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Dibenz(a,h)anthracene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Benzo(g,h,i)perylene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	104	42-131	05/25/17	Acceptable
Fluoranthene-d10	121	42-133	05/25/17	Acceptable
Terphenyl-d14	103	32-129	05/25/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/31/2017 Form 1A - Organic Page 1 of 18:36:21 SuperSet Reference: RR198699 Page 141 of 144

Merged

Analytical Results

Client: Golder Associates, Inc. **Project:** Skagway Tissue/1657231

Sample Matrix: Water Service Request: K1704545 Date Collected: NA Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name: Method Blank Lab Code: KWG1704109-3 **Extraction Method:**

Analysis Method:

EPA 3520C 8270D SIM

Units: ug/L Basis: NA

Level: Low

1

Analyte Name	Result Q) MRL	Dilutio Facto		Date Analyzed	Extraction Lot	Note
Naphthalene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
2-Methylnaphthalene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Acenaphthylene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Acenaphthene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Dibenzofuran	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Fluorene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Phenanthrene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Anthracene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Fluoranthene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Pyrene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Benz(a)anthracene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Chrysene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Benzo(b)fluoranthene†	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Benzo(k)fluoranthene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Benzo(a)pyrene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Indeno(1,2,3-cd)pyrene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Dibenz(a,h)anthracene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	
Benzo(g,h,i)perylene	ND U	0.019	1	05/22/17	05/25/17	KWG1704109	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	97	42-131	05/25/17	Acceptable
Fluoranthene-d10	115	42-133	05/25/17	Acceptable
Terphenyl-d14	101	32-129	05/25/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Printed: 05/31/2017 Form 1A - Organic Page 1 of 18:36:25 SuperSet Reference: Merged RR198699 Page 142 of 144

QA/QC Report

Client: Golder Associates, Inc. Service Request: K1704545

Project: Skagway Tissue/1657231

Sample Matrix: Water

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Extraction Method:EPA 3520CUnits:PercentAnalysis Method:8270D SIMLevel:Low

Sample Name	Lab Code	Sur1	Sur2	Sur3
Homog. Blank	K1704545-035	104	121	103
Method Blank	KWG1704109-3	97	115	101
Lab Control Sample	KWG1704109-1	100	118	106
Duplicate Lab Control Sample	KWG1704109-2	95	113	101

Surrogate Recovery Control Limits (%)

Sur1	=	Fluorene-d10	42-131
Sur2	=	Fluoranthene-d10	42-133
Sur3	=	Terphenyl-d14	32-129

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

 Printed:
 05/31/2017
 18:36:30
 Form 2A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form2.rpt
 Page 143 of 144
 SuperSet Reference:
 RR198699
 RR198699

QA/QC Report

Client: Golder Associates, Inc.

Project: Skagway Tissue/1657231

Sample Matrix: Water

 Service Request:
 K1704545

 Date Extracted:
 05/22/2017

 Date Analyzed:
 05/25/2017

Lab Control Spike/Duplicate Lab Control Spike Summary Polynuclear Aromatic Hydrocarbons

Extraction Method: EPA 3520C **Analysis Method:** 8270D SIM

Units: ug/L
Basis: NA
Level: Low

Extraction Lot: KWG1704109

Lab Control Sample KWG1704109-1 Lab Control Spike Duplicate Lab Control Sample KWG1704109-2 Duplicate Lab Control Spike

	Control Spike		- Duplicate Lab Control Spike					
Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
1.86	2.50	74	1.81	2.50	72	52-115	3	30
1.97	2.50	79	1.93	2.50	77	48-120	2	30
2.30	2.50	92	2.23	2.50	89	58-124	3	30
2.12	2.50	85	2.06	2.50	82	63-121	3	30
2.32	2.50	93	2.28	2.50	91	56-132	2	30
2.29	2.50	91	2.23	2.50	89	68-121	3	30
2.45	2.50	98	2.42	2.50	97	64-126	1	30
1.97	2.50	79	2.00	2.50	80	68-127	2	30
2.25	2.50	90	2.24	2.50	90	70-127	1	30
2.30	2.50	92	2.27	2.50	91	72-127	1	30
2.42	2.50	97	2.40	2.50	96	74-124	1	30
2.27	2.50	91	2.26	2.50	90	74-132	1	30
2.40	2.50	96	2.41	2.50	96	73-136	0	30
2.37	2.50	95	2.40	2.50	96	74-134	1	30
2.33	2.50	93	2.31	2.50	93	75-131	1	30
2.51	2.50	100	2.46	2.50	98	63-136	2	30
2.31	2.50	93	2.30	2.50	92	59-135	1	30
2.30	2.50	92	2.28	2.50	91	63-127	1	30
	1.86 1.97 2.30 2.12 2.32 2.29 2.45 1.97 2.25 2.30 2.42 2.27 2.40 2.37 2.33 2.51 2.31	Result Amount 1.86 2.50 1.97 2.50 2.30 2.50 2.12 2.50 2.32 2.50 2.29 2.50 2.45 2.50 1.97 2.50 2.25 2.50 2.30 2.50 2.42 2.50 2.27 2.50 2.40 2.50 2.37 2.50 2.33 2.50 2.51 2.50 2.31 2.50	Result Amount %Rec 1.86 2.50 74 1.97 2.50 79 2.30 2.50 92 2.12 2.50 85 2.32 2.50 93 2.29 2.50 91 2.45 2.50 98 1.97 2.50 79 2.25 2.50 90 2.30 2.50 92 2.42 2.50 97 2.27 2.50 91 2.40 2.50 96 2.37 2.50 95 2.33 2.50 93 2.51 2.50 93	Result Amount %Rec Result 1.86 2.50 74 1.81 1.97 2.50 79 1.93 2.30 2.50 92 2.23 2.12 2.50 85 2.06 2.32 2.50 93 2.28 2.29 2.50 91 2.23 2.45 2.50 98 2.42 1.97 2.50 79 2.00 2.25 2.50 90 2.24 2.30 2.50 92 2.27 2.42 2.50 97 2.40 2.27 2.50 91 2.26 2.40 2.50 96 2.41 2.37 2.50 95 2.40 2.33 2.50 93 2.31 2.51 2.50 93 2.31 2.51 2.50 93 2.30	Result Amount %Rec Result Amount 1.86 2.50 74 1.81 2.50 1.97 2.50 79 1.93 2.50 2.30 2.50 92 2.23 2.50 2.12 2.50 85 2.06 2.50 2.32 2.50 93 2.28 2.50 2.29 2.50 91 2.23 2.50 2.45 2.50 98 2.42 2.50 1.97 2.50 79 2.00 2.50 2.25 2.50 90 2.24 2.50 2.30 2.50 92 2.27 2.50 2.42 2.50 97 2.40 2.50 2.42 2.50 91 2.26 2.50 2.40 2.50 96 2.41 2.50 2.37 2.50 95 2.40 2.50 2.33 2.50 93 2.31 2.50	Result Amount %Rec Result Amount %Rec 1.86 2.50 74 1.81 2.50 72 1.97 2.50 79 1.93 2.50 77 2.30 2.50 92 2.23 2.50 89 2.12 2.50 85 2.06 2.50 82 2.32 2.50 93 2.28 2.50 91 2.29 2.50 91 2.23 2.50 89 2.45 2.50 98 2.42 2.50 97 1.97 2.50 79 2.00 2.50 80 2.25 2.50 90 2.24 2.50 90 2.30 2.50 92 2.27 2.50 91 2.42 2.50 97 2.40 2.50 96 2.27 2.50 91 2.26 2.50 90 2.42 2.50 96 2.41 2.50	Result Amount %Rec Result Amount %Rec Limits 1.86 2.50 74 1.81 2.50 72 52-115 1.97 2.50 79 1.93 2.50 77 48-120 2.30 2.50 92 2.23 2.50 89 58-124 2.12 2.50 85 2.06 2.50 82 63-121 2.32 2.50 93 2.28 2.50 91 56-132 2.29 2.50 91 2.23 2.50 89 68-121 2.45 2.50 98 2.42 2.50 97 64-126 1.97 2.50 79 2.00 2.50 80 68-127 2.25 2.50 90 2.24 2.50 90 70-127 2.30 2.50 92 2.27 2.50 91 72-127 2.42 2.50 97 2.40 2.50 96 74	Result Amount %Rec Result Amount %Rec Limits RPD 1.86 2.50 74 1.81 2.50 72 52-115 3 1.97 2.50 79 1.93 2.50 77 48-120 2 2.30 2.50 92 2.23 2.50 89 58-124 3 2.12 2.50 85 2.06 2.50 82 63-121 3 2.32 2.50 93 2.28 2.50 91 56-132 2 2.29 2.50 91 2.23 2.50 89 68-121 3 2.45 2.50 98 2.42 2.50 97 64-126 1 1.97 2.50 79 2.00 2.50 80 68-127 2 2.25 2.50 90 2.24 2.50 90 70-127 1 2.30 2.50 92 2.27 2.50 9

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Printed:
 05/31/2017
 18:36:34
 Form 3C - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form3DLC.rpt
 Page 144 of 144
 SuperSet Reference:
 RR198699

FACTUAL DATA REPORT - ORE BASIN SEDIMENT ASSESSMENT , SKAGWAY, AK

APPENDIX E

Final Toxicity Reports

Echinoderm Larval Development Sediment Test Summary Sheet

Client:	Golder	Start Date: May 26, 2017
Work Order No.:	170469	Set up by: YYL

Sample Information:

Sample ID:

Various - see below

Sample Date:

April 26, 29 & 30; May 1, 2, 4 & 5, 2017

Date Received:

May 15, 2017

Sample Volume: 2 x 4L per sample

Test Organism Information:

Species:

Strongylocentrolus purpuratus

Supplier;

Nautilus - San Diego

Date received;

May 26, 2017

Copper Reference Toxicant Results:

Reference Toxicant ID:

SpD17

Stock Solution ID:

Date Initiated:

17Cu01 May 26, 2017

48-h EC50 Normal Larvae (95% CL);

<u>17.3</u> (16.8 - 17.9) μg/L Cu

48-h EC50 Normal Larvae Reference Toxicant Mean ± 2 SD:

22.4 (14.6 - 34.3) µg/L Cu

CV (%): 24

Test Results:

Sample ID	Survival ± SD (%)	Normal Larvae ± SD (%)	Combined Proportion Normal ± SE (%)
Control SW	86.5 ± 4.4	82.8 ± 1.5	71.6 ± 3.7
SED17-08	65.4 ± 5.3 (*)	0.8 ± 0.7 (*)(a)(b)(c)	0.5 ± 0.4 (*)(a)(b)(c)
SED17-06	77.6 ± 3.9	79.5 ± 2,3 (c)	61.8 ± 4.3 (*)
SED17-09	7.3 ± 6.6 (*)(a)(c)	42.6 ± 39.2 (*)(a)(c)	2.6 ± 3.2 (*)(a)(c)
SED17-13	1.7 ± 0.7 (*)(a)(b)(c)	3.3 ± 7.5 (*)(a)(b)(c)	0.1 ± 0.2 (*)(a)(b)(c)
SED17-17	75.3 ± 10.1	83.7 ± 6.2	62.8 ± 7.8
SED17-20	2.4 ± 1.0 (*)(a)(b)(c)	13.3 ± 29.8 (*)(a)(c)	0.4 ± 1.0 (*)(a)(b)(c)
SED17-18	31.0 ± 17.4 (*)(a)(c)	70.6 ± 16.9 (c)	23.3 ± 16.2 (*)(a)(c)
SED17-19	14.1 ± 9.9 (*)(a)(c)	25.8 ± 29.5 (*)(a)(c)	5.8 ± 8.6 (*)(a)(c)
SED17-24 (A\$)	81 8 ± 9.9	83.5 ± 2.7	68.3 ± 8.5
SED17-12	56.6 567±10.5 (*)(a)	$0.1 \pm 0.3 (^{\circ})(a)(b)(c)$	$0.1 \pm 0.2 (^{*})(e)(b)(c)$
SED17-01	84.4 ± 3.5	83.4 ± 6.0	70.6 ± 7.4
SED17-03	24 4 ± 9.1 (*)(a)(c)	80.6 ± 3.1 (c)	19.6 ± 7.5 (*)(a)(c)
SED17-29 (RS)	20.5 ± 18.6 (*)(a)(c)	67.4 ± 16.8	15.9 ± 17.7 (°)(a)(c)
SED17-27 (R\$)	74.9 ± 4.2 (°)	87.9 ± 2.0	65.8 ± 3.9

(RS) = Reference sediment

- (*) Indicates a significant effect relative to Control SW
- (a) Indicates a significant effect relative to reference sediment SED17-24
- (b) Indicates a significant effect relative to reference sediment SED17-29
- (c) Indicates a significant effect relative to reference addiment SED17-27

Reviewed by:		Date reviewed: July 24, 2017
--------------	--	------------------------------

Echinoderm Larvae Development Toxicity Test Data Sheet - Larval Counts

Client:	<u>Goldir</u>	Start Date/Time:	Mad	26, 2017	@1555h
Work Order#:	170469	End Date/Time:		•	
Test set up by:	446	Test species:	5,	ourpluratus	
		Initial Density/ 10 m	L aliquo	t 2.15	

Sample ID	Rep	No. Normal	No. Abnormal	Comments	Initials
	Α	193	41		yw.
Control	В	200	35		1
SW.	С	ີເອົາ	44		
	D	191	39		
<u>.</u>	E	213	46		
000.00	Α	<u>ې</u>	176		
SEDIT-	В	3	169		
80	C	2	163		
_	D	<u> </u>	202		
	E		183		
~~~:7	A	173	41		
sedij-	В	<u>i13</u>	<u>38</u>		
90	C	<u> 184</u>	36 46 45 48 5		
	<u>D</u>	<u> 167 _</u>	45		
	F I	152- 6	48		
~~~.~	A	<u> </u>	.5		
SEDIT-	В	<u> </u>	4		
90	C_		2_		
- 1	D	22	<u> </u>	2nd cont : 20 7 0	
	E	- 	47	200 cont: 1/480	
SEDIT-	A		S		
	В		4		
13	<u> </u>	<u> </u>	7		
	_ <u>D</u>		2	<u> </u>	
<u> </u>	E	0		<u> </u>	
SEDIT-	A B	<u> 67</u>	50		
	c	<u> 176 </u>	<u></u>		
۱٦	D	208	27		
	E	154	16 28 3 3 5		
·	A	(58) (6)	<u> </u>		
~[1 03 2	B	<u> </u>			
20	C	0	<u>-</u> -		
20	D		- Q		
	E				
(D) 20d (1)	منان ف		10	<u> </u>	Ą

© 2nd count win 10% of 1st count, therefore 1st count used for statistics.

Reviewed by: Date Reviewed: July 21, 2017

Client:		slotis"		: May 26, 2017 PISSSH	
Work Order #:	1701			: May 30, 2017 @ 1625h	
Test set up by:	<u> </u>	L	_ Test species	S. proganatus	
			Initial Density/ 10	mL aliquot: 275	
Sample ID	Rep	No. Normal	No. Abnormal	Comments	Initials
0500	Α	26	33	2nd count: 26/34 0	YUL.
SED17-	В	60	12		
ાર્ટ	_ c	21	14	210 count 19/160	
	<u> </u>	<u> </u>	in		
	E	<u> 131 _</u>	30	2nd cont-125/310	
SEDIT-	A		23		\perp
_	В	<u> </u>	36		<u> </u>
19	C	0	24	<u> </u>	++
	D E	<u> </u>	8	200	- - -
 -	A	<u>57</u> 199	23	2nd count : 64/220	
SEDIT-	В	184	41 26		
_	- 2 +	222	43		
24	Ď	170	42		+ +
	E	164	34		
- Ym.	Α	<u>a</u>	137		
S cii- Seon-	В	Ö	174		
36011-	O	0	196	2nd count: 0/199 0	1 1
12	D.	0	(25		
	E	<u> </u>	146		
E10023	Α	207	37		
SED BIT-	B	209	25		
01	_ <u>c</u>	160	57		_
	D	203	30		
	. E	31	42	24 (50)	
SEDIT-	В	65	14	2nd court: 34 /50	
03	c	44	14	<u> </u>	
~ <i>></i>	D	46	12-		
ľ	E.	84	19	2nd court: 82/190	+
	A		/0	2 0001 02/17	
SED17-	В	10 23	13		+
29	С	43	10		
	D	t S	13		11
	Ε	128		2nd count: 134/16	11
O John com	r Win	(0° b & 18	t count, there	fore 19th count would for	Startist.
eviewed by:	Ø	W	Date Reviewed:	July 21, 2017	

Issued October 6, 2008; Version 1.0

Echinoderm Larvae Development Toxicity Test Data Sheet - Larval Counts

Client:	Golder	Start Date/Time: May 26, 2017 @ ISSSh	_		
Work Order #:	170469	End Date/Time: May 35 , 2017 @ 1625h			
Test set up by:	446	Test species: 5. puravatus			
Initial Density/ 10 mL aliquot: 275					

Sample ID	Rep	No. Normal	No. Abnormal	Comments	Initials
	A	187	26		777
SEDIT-	В	163	24		Ì
27	C	187	18		
<u> </u>	Ð	189	28		
	E	179	29		V
	Α	'	,		
	В				
j	Ç				İ
	D				
	E				
	A				
	В				
1	С		}		
	D				
	E				
	Α				
	В				
	C				
1	D				
·	E				
1	Α				
	В				T
	С				
	D				
	E				
	Α				
	В				
	С				
	D				
	E				
	A				<u> </u>
[В				
[C		-		
	D				
	Е				

Reviewed by:	 Date Reviewed:	July 21, 2017	

	Ecuivoa	erm Development Toxici	ity Test Data Sheet	
Client: Sample ID: Work Order No.:	Golder Verious 170969		Start Date & Time: May 76 End Date & Time: May 30 Test species: S. por	2017 e 16254
Sample ID	Temperature (°C)	Dissolved oxygen (mg/L)	pH (units)	Salinity (ppt)
(UNT/N) SW SED17 - 08 SED17 - 09 SED17 - 13 SED17 - 17 SED17 - 18 SED17 - 18 SED17 - 19 SED17 - 12 SED17 - 12 SED17 - 12 SED17 - 03 SED17 - 03 SED17 - 29	15.0 MS 146 150 150 150 166 166 150 150 150 166 166 150 150 150 166 166 150 150 150 166 166 150 150 150 166 166 150 150 150 166 166 150 150 150 166 166 150 150 150 166 166 150 150 150 166 166 150 150 150 166 166 150 150 150 166 166 150 150 150 166 166 150 150 150 166 166 150 150 150 166 166 150 150 150 166 166 150 150 150 166 166 150 150 150 166 166 150 150 150 166 166 150 150 150 166 166 150 150	8.1 A1 77 17 18 14 7/ 79 75 68 14 76 27 79 75 68 14 76 27 79 75 68 10 26 26 70 66 10 26 26 70 74 67 26 26 70 74 67 26 26 70 74 68 24 26 70 74 68 24 26 70 75 13 25 24 26 70 73 12 26 26 20 70 73 12 26 26 20 70 73 10 26 26 20 70 73 10 26 26 20 70 73 10 26 24 26 70 73 10 26 26 26 26 26 26 26 26 26 26 26 26 26	7.7 2.7 7.6 7.6 7.5 7.4 7.6 2.7 2.7 2.7 7.5 7.4 7.6 2.7 2.7 2.7 7.5 7.4 7.6 2.7 2.7 7.5 7.4 7.6 2.7 2.7 7.5 7.4 7.6 2.7 2.7 7.5 7.4 7.6 2.7 2.7 7.5 7.4 7.7 2.7 2.7 7.5 7.4 7.7 2.7 2.7 7.5 7.5 7.6 2.7 2.7 7.5 7.5 7.1 2.7 2.7 7.5 7.5 7.6 2.7 2.7 7.5 7.5 7.6 2.7 2.7 7.5 7.5 7.6 2.7 2.7 2.7 7.5 7.5 7.6 2.7 2.7 2.7 7.5 7.3 7.6 2.7 2.7 2.7 7.5 7.5 7.6 2.7 2.7 2.7 7.5 7.5 7.6 2.7 2.7 2.7 7.5 7.5 7.6 2.7 2.7 2.7 7.5 7.5 7.6 2.7 2.7 2.7 7.5 7.5 7.6 2.7 2.7 2.7 7.5 7.5 7.6 2.7 2.7 2.7 7.5 7.5 7.6 2.7 2.7 2.7 7.5 7.5 7.6 2.7 2.7 2.7 7.5 7.6 2.7 2.7 2.7 7.5 7.6 2.7 2.7 2.7 7.5 7.6 2.7 2.7 2.7 7.5 7.6 2.7 2.7 2.7 7.5 7.6 2.7 2.7 2.7 7.5 7.6 2.7 2.7 2.7 7.5 7.6 2.7 2.7 2.7 2.7 2.7 7.6 2.7 2.7 2.7 2.7 7.7 2.7 2.7 2.7 2.7 7.8 2.7 2.7 2.7 7.9 2.7 2.7 2.7 7.9 2.7 2.7 2.7 7.0 2.7 2.7 2.7 7.0 2.7 2.7 2.7 7.0 2.7 2.7 2.7 7.0 2.7 2.7 2.7 7.0 2.7 7.0 2.7 7.	27 27 27 27 27 27 27 27
Reviewed by:	EU		Date Reviewed:	July 21 2017

Date Reviewed:

Echinoderm Larvae Development Toxicity Sediment Weight Data Sheet

Client:	<u>Goldiv</u>	Start Date/Time:	May 26, 2017 @ 1855h
Work Order#:	170469	End Date/Time:	May 30, 2017 @ 1625
Test set up by:	446	Test species:	5. perpuratus

	T		1		1 1		
Sample ID	Rep	Weight (g)	Initials	Sample ID	Rep	Weight (g)	Initials
_	A		77L		Ä	18.03	446
SED17-	В	iB(T	_	SEDIJ-	В	18.10	1
ුදු	С	1791		•	С	17-83	
U 05	D	(8.05		24	D	(ጊኝ ካ	
	E	(<u>გ</u> .১೦			Ę	18,60	
	А	1819			Α	18.19	
SED17-	В	18.09		SED17-	В	<u> </u>	
06	С	17.83		12	c	18.09	
060	D	17.49		12	Ď	17.82	11_
	E	18.20			E	17.89	
an ere camb	А	18.10	$\sqcup \sqcup$	0	A	18.21	$\bot \downarrow$
SEDIT-	В	17.97		SEDI7-	В	18.01	$\bot \bot$
ဇ၅	С	(8.23	——	○ (C	17.57	$\bot \bot$
	D	<u> </u>			D	17.81	
·	E	17.42			E	17.95	
-C1017-	A	18, 25		05015	A.	<u> </u>	$\bot \!\!\! \bot$
SED17-	В	17.98		SE017- 03	В	<u> </u>	+
13	C	17.95			Ĉ.	72,31	+
	<u>D</u>	18,00			D	1783	+
-	E	<u>18,05</u>			Ę	<u> </u>	+
C Z (N) 🗆 –	A	<u> </u>		CENT-	A	1/92	+ \
SED17-	В	<u>₹2047</u>	\vdash	SEDIT-	В	18.09	+ +
i 🗍	C	19,19		29	C	18:12	+
·	E	1 <u>8,25</u> 17,98	 	ł	<u>D</u>	17.80	 /-
 .	A	17.90		••••	E A	17.86 17.83	+
SED 17-	В	1 16 1 10	-	Cara	В		+
305.1	C	18.22	H	SEDI)-	С	18.01 18.01	+ {
20	Ď	18.12		27	<u> </u>		+ 1
	E	17.97	+		Ε	17, 94	+\$-
·	A	17.07		·	A	1 16 -1 1	
SEDIT-	В	1733			В		
18	c	18 o C			C	- .	
	D	18 80			D	 _	1
-	E	18.04 18.09 17.86 17.96			E.	••	
	1 A	170/2			A	<u></u>	+
SEDIT -	B	18.13			В		
	C	13.17	 		c		
19	Ď	18.63			D		+
!	E	15-13	─ ₩		E		
	_ <u>_</u> _	10,412			<u> </u>		

19	D (8.13)	D E	
Comments:		·	
Reviewed by:		Date Reviewed:	July 21, 2017

Randomization Chart - Echinoderm Larvae Development Toxicity Test

Client: Goldin wo#: 170469 Start Date/Time: May 26, 2017 @ 1555h

End Date/Time: May 30, 2017 @ 1625h

27	12	20	13	29	24	09	01	24	Cont SW	19	09	06	08	13
B	C	Α	B	C_	Α	В	A	E	0	E	А	1 0 1	В	l c
17	08	09	03	12	0 1	27	68	17	29	18	19	12	13	24
В :	Α	E	Α	<u> </u>	Ε	A	C .	E.		Ξ	В	lвf	D	D
f 06	01	Cont SW	18	Cont SW	20	06	27	27	61	09	17	Cont SW	20	06
С	С	<u> </u>	C	B	E	E	E	l c		С	0		С	A
12	18	19	24	19	03	29	17	29	03	08	13	20	18	03
<u>E</u>	В	A	С	D	D	В	С	A	1 E	Ë	A	1 в 1	A	В
Cont SW	08	06	09	13	17	20	18	19	24	12	D1	03	29	27
<u> </u>	D	B	D	E E	Α	D	D	C.	В	Α	В	c	E	D D

EU July 21, 2017

CETIS Summary Report

Report Date: Test Code:

07 Jun-17 08:38 (p 1 of 4)

170469 | 17-2224-6408

Echinoid Embryo-Larval Survival and Development Test

Nautilus Environmental

Batch ID: Start Date: 08-3704-4652 26 May-17 15:55

Protocol: PSEP (1995)

Test Type: Development-Survival

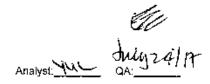
Analyst:

Yvonne Lam Natural seawater

Ending Date: 30 May-17 16:25 Duration:

4d 1h

Species: Source:


Strongylocentrotus purpuratus San Diego Lab

Dituent: Brine:

Age:

Sample Code	Sample ID	Sample Date	Receive Date	Sample Age	Client Name	P	roject
Control SW	19-4378-7830	25 May-17	25 May-17	40h	Golder	••	
SED17-08	10-1003-8381	26 Apr-17 17:00	15 May-17 10:30	29d 23h (7.5 °			
SED17-06	19-4215-8235	26 Apr-17 17:00	15 May-17 10:30	29d 23h (7.5 °			
SED17-09	13-9590-2568	29 Apr-17 17:00	15 May-17 10:30	26d 23h (8.5 °			
SED17-13	02-1258-2667	29 Apr-17 17:00	15 May-17 10:30	26d 23h (7.5 °			
SED17-17	06-5820-5843	30 Apr-17 17:00	15 May-17 10:30	25d 23h (7 °C)			
\$ED17-20	00-0790-7357	01 May-17 17:00	15 May-17 10:30	24d 23h (7°C)			
SED17-18	04-2524-4947	02 May-17 17:00	15 May-17 10:30	23d 23h (4 °C)			
SED17-19	07-6812-4215	02 May-17 17:00) 15 May-17 10:30	23d 23h (5.5°			
\$ED17-24	05-6632-5205	02 May-17 17:00	15 May-17 10:30	23d 23h (6 °C)		•	
SED17-12	01-4413-4098	04 May-17 17:00	15 May-17 10:30	21d 23h (5 °C)			
\$ED17-01	05-6502-2240	04 May-17 17:00	0 15 May-17 10:30	21d 23h (5.8°			
SED17-03	05-1816-3513	04 May-17 17:00	0 15 May-17 10:30	21d 23h (7.2°			
SED17-29	08-4658-3752	04 May-17 17:00	15 May-17 10:30	21d 23h (8.5 °			
SED17-27	15-8574-8565	05 May-17 17:00	0 15 May-17 10:30	20d 23h (5.5 °			
Sample Code	Material Type	Sample Source	1	Station Location	on	Latitude	Longitude

Sample Code	Material Type	Sample Source	Station Location	Latitude	Longitude
Control SW	Control SW	Golder	Control Seawater		
SED17-08	Sediment Sample	Golder	SED17-08		
\$ED17-06	Sediment Sample	Golder	SED17-06		
SED17-09	Sediment Sample	Golder	\$ED17-09		
\$ED17-13	Sediment Sample	Golder	SED17-13		
SED17-17	Sediment Sample	Golder	SED17-17		
SED17-20	Sediment Sample	Golder	\$ED17-20		
SED17-18	Sediment Sample	Golder	SED17-18		
SED17-19	Sediment Sample	Golder	SED17-19		
SED17-24	Sediment Sample	Golder	SED17-24		
SED17-12	Sediment Sample	Golder	SED17-12		
\$ED17-01	Sediment Sample	Golder	SED17-01		
SED17-03	Sediment Sample	Golder	SED17-03		
SED17-29	Sediment Sample	Golder	SED17-29		
SED17-27	Sediment Sample	Golder	\$ED17-27		

Echinoid Embryo-Larval Survival and Development Test

Report Date:

07 Jun-17 08:38 (p 2 of 4) 170469 | 17-2224-6408

Test Code:

Nautilus Environments	a)

Combined Proportion No	ırmal Summan	1								
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
Control SW	5	0.7156	0.6695	0.7617	0.68	0.7745	0.0166	0.03712	5.19%	0.0%
SED17-08	5	0.005091	0	0.01024	0	0.01091	0.001854	0.004146	81.44%	99.29%
SED17-06	5	0.6175	0.5647	0.6702	0.5527	0.6691	0.01901	0.04252	6.89%	13.72%
SED17-09	5	0.02618	0	0.06598	0	80.0	0.01433	0.03205	122.4%	96.34%
SED17-13	5	0.0007273	0	0.002747	0	0.003636	0.0007273	0.001626	223.6%	99.9%
SED17-17	5	0.6276	0.5304	0.7249	0.56	0.7564	0.03502	0.07831	12.48%	12.3%
SED17-20	5	0.004364	0	0.01648	0	0.02182	0.004364	0.009757	223.6%	99.39%
SED17-18	5	0.2327	0.03199	0.4335	0.07636	0.4764	0.0723	0.1617	69.47%	67.48%
SED17-19	5	0.05818	0	0.1649	0	0.2073	0.03843	0.08594	147.7%	91.87%
SED17-24	5	0.6829	0.5772	0.7886	0.5964	0.8073	0.03808	0.08514	12,47%	4.57%
SED17-12	5	0.0007273	0	0.002747	0	0.003636	0.0007273	0.001626	223.6%	99.9%
SED17-01	5	0.7055	0.614	0.7969	0.5818	0.76	0.03293	0.07363	10.44%	1.42%
SED17-03	5	0.1964	0.1029	0.2898	0.1127	0.3055	0.03366	0.07527	38.33%	72.56%
SED17-29	5	0.1593	0	0.3793	0.03636	0.4655	0.07923	0.1772	111.2%	77.74%
SED17-27	5	0.6582	0.6096	0.7068	0.5927	0.6873	0.01752	0.03916	5.95%	8.03%
Proportion Normal Sumn	nary									
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
Control SW	5	0.8276	0.8088	0.8465	0.8095	0.8511	0.006784	0.01517	1.83%	0.0%
\$ED17-08	5	0.007985	0	0.01646	0	0.01744	0.003051	0.006822	85.44%	99.04%
SED17-06	5	0.7952	0.7667	0.8237	0.76	0.8199	0.01025	0.02293	2.88%	3.92%
SED17-09	5	0.426	¢	0.9121	0	0.7857	0.1751	0.3915	91.91%	48.53%
SED17-13	5	0.03333	¢	0.1259	0	0.1667	0.03333	0.07454	223.6%	95.97%
SED17-17	5	0.8371	0.7596	0.9145	0.7696	0.9059	0.02789	0.06237	7.45%	-1.14%
SED17-20	5	0.1333	0	0.5035	Ò	0.6667	0.1333	0.2981	223.6%	83.89%
SED17-18	5	0.7062	0.4964	0.9159	0.459	0.8333	0.07555	0.1689	23.92%	14,68%
SED17-19	5	0.2579	0	0.6238	0	0.7125	0.1318	0.2947	114.3%	68.84%
SED17-24	5	0.8347	0.8013	0.868	0.8019	0.8762	0.012	0.02683	3.21%	-0.85%
SED17-12	5	0.001361	0	0.005138	0	0.006803	0.001361	0.003042	223.6%	99.84%
SED17-01	5	0.834	0 7588	0.9091	0.7373	0.8932	0.02706	0.0605	7.26%	-0.76%
SED17-03	5	0.8056	0.7673	0.8438	0.7586	0.8378	0.01378	0.03081	3.82%	2.67%
SED17-29	5	0.6737	0.465	0.8825	0.5	0.8828	0.07519	0.1681	24.95%	18.6%
SED17-27	5	0.8787	0.8541	0.9032	0.8606	0.9122	0.008833	0.01975	2.25%	-6.17%
Survival Rate Summary						<u> </u>				
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect

Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
Control SW	5	0.8647	0.8104	0.919	0.8364	0.9418	0.01956	0.04374	5.06%	0.0%
SED17-08	5	0.6545	0.5887	0.7204	0.6	0.7382	0.02371	0.05301	8.1%	24.31%
SED17-06	5	0.776	0.7274	0.8246	0.7273	0.8364	0.0175	0.03913	5.04%	10.26%
SED17-09	5	0.07273	Ō	0.1543	0.01455	0.1745	0.02938	0.06571	90.35%	91.59%
SED17-13	5	0.01673	0.007926	0.02553	0.007273	0.02545	0.00317	0.007089	42.38%	98.07%
SED17-17	5	0.7527	0.6272	0.8783	0.6182	0.8545	0.04523	0.1011	13.44%	12,95%
\$ED17-20	5	0.024	0.01099	0.03701	0.01091	0.03636	0.004685	0.01048	43.65%	97.22%
SED17-18	5	0.3098	0.09369	0.5259	0.1273	0.5855	0.07784	0.1741	56.18%	64.17%
SED17-19	5	0.1411	0.01854	0.2636	0.02909	0.2909	0.04414	0.0987	69.95%	83.68%
SED17-24	5	0.8182	0.6956	0.9408	0.72	0.9636	0.04415	0.09872	12.07%	5.38%
SED17-12	5	0.5665	0.4363	0.6968	0.4545	0.7127	0.0469	0.1049	18.51%	34.48%
SED17-01	5	0.6444	0.8007	0.8881	0.7891	0.8873	0.01574	0.0352	4.17%	2.36%
SED17-03	5	0.2436	0.1307	0.3566	0.1345	0.3745	0.04067	0.09095	37.33%	71.83%
SED17-29	5	0.2051	0	0.4354	0.07273	0.5273	0.08296	0.09095	90.45%	76.28%
\$ED17-27	5	0.7491	0.6968	0.8014	0.68	0.7891	0.00290	0.04209	5.62%	13.37%

Analyst 1/2 QAUUJ24/17

000-469-187-1

Report Date: Test Code: 07 Jun-17 08:38 (p 3 of 4) 170469) 17-2224-6408

-

Analysi: Mu arity24/17

Report Date: Test Code: 07 Jun-17 08:38 (p 4 of 4) 170469 [17-2224-6408

Echinoid Embryo-Larval Surv	vival and D	evelopmen	t Teşt			Nautilus Environmental
Combined Proportion Norma	l Binomials	<u> </u>				
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
Control SW	193/275	200/275	187/275	191/275	213/275	
SED17-08	0/275	3/275	2/275	1/275	1/275	
SED17-06	173/ 275	173/275	184/275	167/275	152/275	
SED17-09	6/275	0/275	7/275	22/275	1/275	
SED17-13	1/275	0/275	0/275	0/275	0/275	
SED17-17	167/275	176/275	208/275	154/275	158/275	
SED17-20	6/275	0/275	0/275	0/275	0/275	
SED17-18	28/275	60/275	21/275	80/275	131/275	
SED17-19	12/275	11/275	0/275	0/275	57/275	
SED17-24	199/275	184/275	222/275	170/275	164/275	
SED17-12	0/275	0/275	0/275	0/275	1/275	
SED17-01	207/275	209/275	160/275	203/275	191/275	
SED17-03	31/275	65/275	44/275	46/275	84/275	
SED17-29	10/275	23/275	43/275	15/275	128/275	
SED17-27	187/275	163/275	187/275	189/275	179/275	
Proportion Normal Binomials	_					
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
Control SW	193/234	200/235	187/231	191/230	213/259	
SED17-08	0/176	3/172	2/165	1/203	1/184	
SED17-06	173/214	173/211	184/230	167/212	152/200	
SED17-09	6/11	0/4	7/9	22/28	1/48	
SED17-13	1/6	0/4	0/7	0/4	0/2	
SED17-17	167/217	176/227	208/235	154/170	158/186	
\$ED17-20	6/9	0/3	0/5	0/6	0/10	
SED17-18	28/61	60/72	21/35	80/97	131/161	
SED17-19	12/35	11/47	0/24	0/8	57/80	
SED17-24	199/240	184/210	222/265	170/212	164/198	
SED17-12	0/137	0/174	0/196	0/125	1/147	
SED17-01	207/244	209/234	160/217	203/233		
SED17-03	31/37	65/79	44/58	46/58	191/233 84/103	
\$ED17-29	10/20	23/36				
SED17-27	187/213	163/187	43/53 187/205	15/28	128/145	
Survival Rate Binomials		103/10/	1011205	189/217	179/208	 -
Sample Code	Rep 1	Rep 2	Den 3	Par 4	Bon C	
Control SW	234/275	235/275	Rep 3 231/275	Rep 4 230/275	Rep 5 259/275	
SED17-08	176/275	172/275	165/275	203/275	184/275	
SED17-06	214/275	211/275	230/275	212/275	200/275	
SED17-09	11/275	4/275	9/275	28/275	48/275	
SED17-13	6/275	4/275	7/275	4/275		
SED17-17	217/275	227/275	235/275	170/275	2/275 186/276	
SED17-20	9/275	3/275			186/275	
SED17-18	61/275	72/275	5/275 35/275	6/275	10/275	
SED17-19			35/275	97/275	161/275	
SED17-19 SED17-24	35/275 240/275	47/275	24/275	8/275	80/275	
SED17-12	240/275	210/275	265/275	212/275	198/275	
SED17-01	137/275	174/275	196/275	125/275	147/275	
SED17-01	244/275	234/275	217/275	233/275	233/275	
	37/275	79/275	56/275	58/275	103/275	
SED17-29 SED47-27	20/275	36/275	53/275	28/275	145/275	
SED17-27	213/275	187/275	205/275	217/275	208/275	

Analyst: Mu QA July 24/17

26 May-17 15:55

Start Date:

Report Date: Test Code:

Diluent:

Natural seawater

07 Jun-17 08:39 (p 1 of 4) 170469 | 17-2224-6408

Echinoid Emi	oryo-Larval Survival	and Developn	nent Test		Nautilus Environmental
Analysis ID: Analyzed:	00-2568-7131 07 Jun-17 8:35	•	Survival Rate Nonparametric-Control vs Treatments	CETIS Version: Official Results:	

Batch ID: 08-3704-4652 Test Type: Development-Survival Analyst: Yvonne Lam

PSEP (1995)

Ending Date: 30 May-17 16:25 Species: Strongylocentrotus purpuratus Brine: Duration: 4d 1h Source: San Diego Lab Age:

Protocol;

Sample Code	Sample ID	Sample Date	Receive Date	Sample Age	Client Name	Project
Control SW	19-4378-7830	25 May-17	25 May-17	40h	Golder	•
SED17-08	10-1003-8381	26 Apr-17 17:00	15 May-17 10:30	0 29d 23h (7.5°		
SED17-06	19-4215-8235	26 Apr-17 17:00	15 May-17 10.30	0 29d 23h (7.5°		
SED17-09	13-9590-2568	29 Apr-17 17:00	15 May-17 10:30	0 26d 23h (8.5°		
SED17-13	02-1258-2667		15 May-17 10:30	-		
SED17-17	06-5820-5843		15 May-17 10:30			
SED17-20	00-0790-7357	01 May-17 17:00	15 May-17 10:30	0 24d 23h (7 °C)		
SED17-18	04-2524-4947	02 May-17 17:00	15 May-17 10:30	0 23d 23h (4 °C)		
\$ED17-19	07-6812-4215		15 May-17 10:30			
SED17-24	05-6632-5205	-	15 May-17 10:30	•		
\$ED17-12	01-4413-4098		15 May-17 10:30			
SED17-01	05-6502-2240	04 May-17 17:00	15 May-17 10:30	0 21d 23h (5.8°		
SED17-03	05-1816-3513		15 May-17 10:30	•		
\$ED17-29	08-4658-3752		15 May-17 10:30			
SED17-27	15-8574-8565		15 May-17 10:30			

Sample Code	Material Type	Sample Source	Station Location	Latitude	Longitude
Control SW	Control SW	Golder	Control Seawater		
SED17-08	Sediment Sample	Golger	SED17-08		
SED17-06	Sediment Sample	Golder	\$ED17-06		
\$ED17-09	Sediment Sample	Golder	\$ED17-09		
\$ED17-13	Sediment Sample	Golder	SED17-13		
SED17-17	Sediment Sample	Galder	SED17-17		
\$ED17-20	Sediment Sample	Golder	SED17-20		
SED17-18	Sediment Sample	Golder	SED17-18		
SED17-19	Sediment Sample	Golder	SED17-19		
SED17-24	Sediment Sample	Golder	SED17-24		
SED17-12	Sediment Sample	Golder	SED17-12		
SED17-01	Sediment Sample	Golder	SED17-01		
SED17-03	Sediment Sample	Golder	SED17-03		
SED17-29	Sediment Sample	Golder	SED17-29		
SED17-27	Sediment Sample	Golder	SED17-27		

000-469-187-1

CETIS™ v1.8.7.16

CETIS Analytical Report

Report Date: Tes

07 Jun-17 08:39 (p. 2 of 4) 32

st Code:	170469 ! 17-2224-640
part sate.	a. aa aa.aa (p.z.a.

									Test	Code:		170469 ! 1	7-2224-646
Echinoid Emb	ryo-Larval Sur	vival ar	id Developn	nent Te	st						Na	utilus Env	rironment
nalysis ID: 00-2568-7131			Endpoint: Survival Rale				CETIS Version: CETISv1.8.7						
Analyzed:	07 Jun-17 8:3	5	Analysis:	Nonperametric-Control vs Treatments		Official Results: Yes		: Yes					
Data Transform Zeta Angular (Corrected) NA		Zeta	Alt H	yp Trials		Seed			PMSD	Test Res	ult		
		NA	C>T N/		A	NA			17.0%				
Steel Many-Or	te Rank Sum T	est											
Sample Code	vs Sample	Code	Test 9	Stat Ci	rítical	Ties	DF	P-Value	P-Type	Decision	(a:5%)		
Control SW	SED17-0	08	15	15	5	0	8	0.0424	Asymp	Significan	t Effect		
	SED17-06		15.5	15	5	1	8	0.0550	Asymp	Non-Significant Effect			
	SED17-09		15	15	5	Đ	8	0.0424	Asymp	· Significant Effect			
	SED17-13		15	15	5	D	8	0.0424	Asymp	Significant Effect			
	SED17-17		18.5	15	5	1	8	0.2006	Asymp	Non-Significant Effect			
	SED17-20		15	15	5	0	8	0.0424	Asymp	Significant Effect			
	SED17-18		15	15	5	0	8	0.0424	Asymp	Significant Effect			
	SED17-19		15	15	5	0	8	0.0424	Asymp	Significant Effect			
	SED17-24		24	15	5	0	8	0.7194	Asymp	Non-Significant Effect			
	SED17-12		15	15	5	0	8	0.0424	Asymp	Significant Effect			
	SED17-01		25.5	15	5	1	8	0.8350	Asymp	Non-Significant Effect			
	SED17-(3	15	15	5	0	8	0.0424	Asymp	Significant Effect			
	\$ED17-2	29	15	15	5	0	8	0.0424	Asymp	Significant Effect			
	\$ED17-27		15	15	\$	0	8	0.0424	Asymp	Significant Effect			
ANOVA Table													
Source	Sum Squares		Mean Square		!	DF		F Stat	P-Value	e Decision(a:5%)			
Between	10.91381		0.7795581			14		59.78	<0.0001	Significan	<u> </u>		
Error	0.7824633		0.01304105			60				•			
Total	11.69628					74		-					
Distributional	Tests												
Attribute	Test			Te	st Stat	Critica	a F	P-Value	Value Decision(α:1%)				
Variances	Bartlett B	Equality of Variance 34.26		.26	29.14		0.0019	Unequal Variances					
Distribution	Shapiro-Wilk W		Normality 0.9493		0.9554 0.0046		Non-normal Distribution						
Survival Rate	Summary												
Sample Code		Coun	t Mean	95	% LCL	95% U	ICL	Median	Min	Max	Std Err	CV%	%Effect
Control SW		5	0.864	7 0.8	8104	0.919		0.8509	0.8364	0.9418	0.01956	5.06%	0.0%
SED17-08		5	0.654	5 0.5	5887	0.7204	\$	0.64	0.6	0.7382	0.02371	8.1%	24.31%
SED17-06		5	0.776	0.7	7274	0.8246		0.7709	0.7273	0.8364	0.0175	5.04%	10.26%
SED17-09		5	0.072	73 Q		0.1543		0.04	0.01455	0.1745	0.02938	90.35%	91.59%
SED17-13		5	0.0167	73 0.0	07926	0.0255		0.01455	0.007273	0.02545	0.00317	42.38%	98.07%
SED17-17		5	0.752		5272	0.8783		0.7891	0.6182	0.8545	0.04523	13.44%	12.95%
SED17-20		5	0.024		01099	0.0370		0.02182	0.01091	0.03636	0.004685	43.65%	97.22%
SED17-18		5	Ų 3000		00000	0.6056		0.02.0	0.4000		2.007000	-4-3-0-4 Ag	J1.22 /0

SED17-18

SED17-19

SED17-24

\$ED17-12

SED17-01

SED17-03

SED17-29

SED17-27

5

5

5

5

5

5

5

5

0.3098

0.1411

0.8182

0.5665

0.8444

0.2436

0.2051

0.7491

0.09369

0.01854

0.6956

0.4363

0.8007

0.1307

0.6968

0.5259

0.2636

0.9408

0.6968

0.8881

0.3566

0.4354

0.8014

0.2618

0.1273

0.7709

0.5345

0.8473

0.2109

0.1309

0.7564

0.1273

0.02909

0.72

0.4545

0.7891

0.1345

0.07273

0.68

0.5855

0.2909

0.9636

0.7127

0.8873

0.3745

0.5273

0.7891

0.07784

0.04414

0.04415

0.0469

0.01574

0.04067

0.08296

0.01883

56,18%

69.95%

12.07%

18.51%

4.17%

37.33%

90.45%

5.62%

64.17%

83.68%

5.38%

34.48%

2.36%

71.83%

76.28%

13.37%

CETIS Analytical Report

Report Date: Test Code:

07 Jun-17 08:39 (p 3 of 4) 170469 | 17-2224-6408

Nautilus Environmental

Echinoid Embryo-Larval Survival and Development Test

Analysis (D: 00-2568-7131 Analyzed: 07 Jun-17 8:35

Endpoint: Survival Rate Analysis:

Nonparametric-Control vs Treatments

CETIS Version: Official Results: Yes

CETISV1.8.7

Angular (Corrected) Transformed Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
Control SW	5	1.199	1.109	1.289	1.174	1.154	1.327	0.0324	6.04%	0.0%
SED17-08	5	0.9434	0.873	1.014	0.9273	0.8861	1.034	0.02537	6.01%	21,31%
SED17-06	5	1.079	1,02	1.139	1.072	1.021	1.154	0.02144	4.44%	10.0%
SED17-09	5	0.252	0.0974	0.4066	0.2014	0.1209	0.431	0.05568	49.41%	78.98%
SED17-13	5	0.1271	0.09113	0.1631	0.1209	0.08538	0.1602	0.01297	22.8%	89.4%
SED17-17	5	1.057	0.9114	1.202	1.094	0.9047	1.18	0.05232	11.07%	11.87%
SED17-20	5	0.1524	0.1084	0.1964	0.1483	0.1046	0.1919	0.03232	23.25%	87.29%
SED17-18	5	0.5799	0.3442	0.8156	0.5371	0.3648	0.8713	0.0849	32.74%	51.63%
SED17-19	5	0.3664	0.1829	0.5499	0.3648	0.1714	0.5697	0.06609	40.33%	69.44%
SED17-24	5	1.147	0.9625	1.331	1.072	1.013	1.379	0.06629	12.93%	4.37%
SED17-12	5	0.8537	0.7201	0.9872	0.82	0.7399	1.005	0.04812	12.6%	28.8%
SED17-01	5	1.167	1.107	1,227	1.169	1.094	1.228	0.02147	4,11%	2.66%
\$ED17-03	5	0.5108	0.3785	0.6431	0.4771	0.3756	0.6586	0.02147	20.86%	2.00% 57.39%
SED17-29	5	0.447	0.1801	0.714	0.3702	0.2731	0.8127	0.09614	48.09%	
SE D 17-27	. 5	1.047	0.9879	1.106	1.055	0.9695	1,094	0.09614	48.09%	62.71% 12.66%

Survival Rate Detail

Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
Control SW	0.8509	0.8545	0.84	0.8364	0.9418
SED17-08	0.64	0.6255	0.6	0.7382	0.6691
SED17-06	0.7782	0.7673	0.8364	0.7709	0.7273
SED17-09	0.04	0.01455	0.03273	0.1018	0.1745
SED17-13	0.02182	0.01455	0.02545	0.01455	0.007273
SED17-17	0.7891	0.8255	0.8545	0.6182	0.6764
SED17-20	0.03273	0.01091	0.01818	0.02182	0.03636
SED17-18	0.2218	0.2618	0.1273	0.3527	0.5855
SED17-19	0.1273	0.1709	0.08727	0.02909	0.2909
\$ED17-24	0.8727	0.7636	0.9636	0.7709	0.72
SED17-12	0.4982	0.6327	0.7127	0.4545	0.5345
SED17-01	0.8873	0.8509	0.7891	0.8473	0.8473
SED17-03	0.1345	0.2873	0.2109	0.2109	0.3745
\$ED17-29	0.07273	0.1309	0.1927	0.1018	0.5273
SED17-27	0.7745	0.68	0.7455	0.7891	0.7564

Angular (Corrected) Transformed Detail

Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
Control SW	1.174	1.18	1.159	1.154	1.327
SED17-08	0.9273	0.9122	0.8861	1.034	0.9579
SED17-06	1.08	1.067	1.154	1.072	1.021
SED17-09	0.2014	0.1209	0.1819	0.3248	0.431
SED17-13	0.1483	0.1209	0.1602	0.1209	0.08538
SED17-17	1,094	1 14	1.18	0.9047	0.9656
SED17-20	0.1819	0.1046	0.1353	0.1483	0.1919
SED17-18	0.4904	0.5371	0.3648	0.6359	0.8713
SED17-19	0.3648	0.4262	0.2999	0.0333	0.5697
SED17-24	1.206	1.063	1.379	1.072	1.013
SED17-12	0.7836	0.9197	1.005	0.7399	0.82
SED17-01	1.228	1.174	1.094	1.169	
\$ED17-03	0.3756	0.5657	0.4771		1.169
SED17-29	0.2731	0.3702		0.4771	0.6586
SED17-27	1.076		0.4545	0.3248	0.8127
	1.070	0.9695	1.042	1.094	1.055

Report Date:

07 Jun-17 08:39 (p 4 of 4)

							Test Code:	170469 17-2224-6408
Echinoid Emi	bryo-Larval Şurv	ival and D	evelopme	nt Test				Nautilus Environmental
Analysis ID: Analyzed:	00-2568-7131 07 Jun-17 8:35			iurvival Rate Ionparametric	-Control vs	Treatments	CETIS Version: Official Results:	CETISv1.8.7 Yes
Survival Rate	Binomials						_	
Sample Code	<u> </u>	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Contro! SW		234/275	235/275	231/275	230/275	259/275		
SED17-08		176/275	172/275	165/275	203/275	184/275		
SED17-06		214/275	211/275	230/275	212/275	200/275		
\$ED17-09		11/275	4/275	9/275	28/275	48/275		
SED17-13		6/275	4/275	7/275	4/275	2/275		
SED17-17		217/275	227/275	235/275	170/275	186/275		
SED17-20		9/275	3/275	5/275	6/275	10/275		
SED17-18		61/275	72/275	35/275	97/275	161/275		
SED17-19		35/275	47/275	24/275	8/275	80/275		•
SED17-24		240/275	210/275		212/275	198/275		
SED17-12		137/275	174/275		125/275	147/275		

233/275

58/275

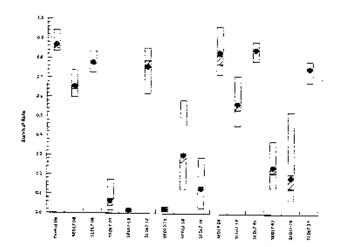
28/275

217/275

233/275

103/275

145/275


208/275

SED17-27 Graphics

SED17-01

SED17-03

SED17-29

244/275

37/275

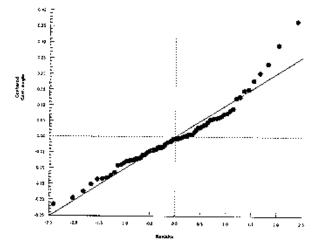
20/275

213/275

234/275

79/275

36/275


187/275

217/275

58/275

53/275

205/275

Report Date:

07 Jun-17 08:42 (p 1 of 4)

						Test Code:	1	70469 17-2224-6408
Echinoid Emb	oryo-Larval Survival ar	nd Develop	nent Test				Nau	tilus Environmental
Analysis ID: Analyzed:	20-0939-8303 07 Jun-17 8:35	Endpoint: Analysis:	•	n Normal netric-Control vs 1	realments	CETIS Version: Official Results	CETISv1.8	3.7
Batch ID: Start Date: Ending Date: Duration:	08-3704-4652 26 May-17 15:55 30 May-17 16:25 4d 1h	Test Type: Protocol: Species: Source:	PSEP (19	centrotus purpura	tus		nne Lam uraì seawater	
Sample Code	Sample ID	Samp	ole Date	Receive Date	Sample Age	Client Name		Project
Control SW SED17-08 SED17-06 SED17-09 SED17-13 SED17-17 SED17-20 SED17-18 SED17-19 SED17-12 SED17-01 SED17-01 SED17-03 SED17-29 SED17-27	19-4378-7830 10-1003-8381 19-4215-8235 13-9590-2568 02-1258-2667 06-5820-5843 00-0790-7357 04-2524-4947 07-6812-4215 05-6632-5205 01-4413-4098 05-6502-2240 05-1816-3513 08-4658-3752 15-8574-8565	25 Ma 26 Ap 26 Ap 29 Ap 29 Ap 30 Ap 01 Ma 02 Ma 02 Ma 04 Ma 04 Ma 04 Ma	ay-17 ir-17 17:00 ir-17 17:00 ir-17 17:00 ir-17 17:00 ir-17 17:00 iy-17 17:00 iy-17 17:00 iy-17 17:00 iy-17 17:00 iy-17 17:00 iy-17 17:00	25 May-17 15 May-17 10:30 15 May-17 10:30 15 May-17 10:30 15 May-17 10:30 15 May-17 10:30 15 May-17 10:30 15 May-17 10:30 15 May-17 10:30 15 May-17 10:30 15 May-17 10:30 15 May-17 10:30 15 May-17 10:30	40h 29d 23h (7.5° 29d 23h (7.5° 26d 23h (7.5° 26d 23h (7°C) 25d 23h (7°C) 24d 23h (7°C) 23d 23h (4°C) 23d 23h (5.5° 23d 23h (5°C) 21d 23h (5°C) 21d 23h (5.8° 21d 23h (5.8° 21d 23h (5.8°	Golder		· ·
Sample Code	Material Type		le Source	- 10 May-17 10.50	<u> </u>		1	
Control SW	Control SW	Golder			Station Location Control Seawate		<u>Lati</u> tude	Longitude
SED17-08	Sediment Samp	le Golder	r		SED17-08	••		
SED17-06	Sediment Samp	le Golder	r		SED17-06			
SED17-09	Sediment Samp	le Golder	Г		SED17-09			
SED17-13	Sediment Sampl		r		SED17-13			
SED17-17	Sediment Sampl	ie Golder	!		SED17-17			
SED17-20	Sediment Sample	le Golder	•		SED17-20			
SED17-18	Sediment Sampl	le Golder	r		SED17-18			
SED17-19	Sediment Sample	ie Golder	•		SED17-19			
SED17-24	Sediment Sampl		-		SED17-24			
SED17-12	Coding A C				→			

SED17-12

SED17-01

SED17-03

SED17-29

SED17-27

Analyst: WW ashugz4/A

SED17-12

SED17-01

SED17-03

SED17-29

SED17-27

Sediment Sample

Sediment Sample

Sediment Sample

Sediment Sample

Sediment Sample

Golden

Golder

Golder

Golder

Golder

Report Date:

07 Jun-17 08:42 (p 2 of 4)

Test Code: 170469 | 17-2224-6408 Echinoid Embryo-Larval Survival and Development Test Nautilus Environmental Analysis ID: 20-0939-8303 Endpoint: Proportion Normal CETIS Version: **CETISV1.8.7** Analyzed: 07 Jun-17 8:35 Analysis: Nonparametric-Control vs Treatments Official Results: Data Transform Zeta Alt Hyp Trials Seed **PMSD** Test Result Angular (Corrected) NΑ C>T NA NΑ 34.5% Steel Many-One Rank Sum Test Sample Code vs Sample Code Test Stat Critical Ties DF P-Value P-Type Decision(a:5%) Control SW SED17-08 15 15 0 8 0.0424 Asymp Significant Effect SED17-06 16 15 0 8 0.0704 Asymp Non-Significant Effect SED17-09 15 15 0.0424 0 8 Asymp Significant Effect SED17-13 15 15 0 8 0.0424 Asymp Significant Effect SED17-17 29 15 0 0.9712 Asymp Non-Significant Effect SED17-20 15 15 0 8 0.0424 Asymp Significant Effect SED17-18 22 15 Ů 0.5241 8 Asymp Non-Significant Effect SED17-19 15 15 0 8 0.0424 Asymp Significant Effect SED17-24 30 15 0 0.9848 8 Asymp. Non-Significant Effect \$ED17-12 15 15 0 8 0.0424 Asymp Significant Effect SED17-01 30 15 0 8 0.9848 Asymp Non-Significant Effect SED17-03 22 15 0 8 0.5241 Asymp Non-Significant Effect SED17-29 21 15 ٥ 8 0.4214 Asymp Non-Significant Effect

ANOV	Α	Ta	ы	e

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	12.84225	0.9173039	14	25.16	<0.0001	Significant Effect
Error	2.187184	0.03645306	60			
Total	15.02944		74			

8

1.0000

Asymp

Non-Significant Effect

¢

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	99.34	29.14	< 0.0001	Unequal Variances
Distribution	Shapiro-Wilk W Normality	0.877	0.9554	< 0.0001	Non-normal Distribution

Proportion Normal Summary

SED17-27

4Ď

15

Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
Control SW	5	0.8276	0.8088	0.8465	0.8248	0.8095	0.8511	0.006784	1.83%	0.0%
SED17-08	5	0.007985	0	0.01646	0.005435	0	0.01744	0.003051	85.44%	99.04%
SED17-06	5	0.7952	0.7667	0.8237	0.8	0.76	0.8199	0.01025	2.88%	3.92%
SED17-09	5	0.426	0	0.9121	0.5455	0	0.7857	0.1751	91.91%	48.53%
SED17-13	5	0.03333	0	0.1259	0	0	0.1667	0.03333	223.6%	95.97%
SED17-17	5	0.8371	0.7596	0.9145	0.8495	0.7696	0.9059	0.02789	7.45%	-1.14%
SED17-20	5	0.1333	D	0.5035	0	Ð	0.6667	0.1333	223.6%	83.89%
SED17-18	5	0.7062	0.4964	0.9159	0.8137	0.459	0.8333	0.07555	23.92%	14.68%
SED17-19	5	0.2579	0	0.6238	0.234	0	0.7125	0.1318	114.3%	68.84%
SED17-24	5	0.8347	0.8013	0.868	0.8292	0.8019	0.6762	0.012	3.21%	-0.85%
SED17-12	5	0.001361	0	0.005138	0	0	0.006803	0.001361	223.6%	99.84%
SED17-01	5	0.834	0.7588	0.9091	0.8484	0.7373	0.8932	0.02706		
SED17-03	5	0.8056	0.7673	0.8438	0.8155	0.7586	0.8378	0.02706	7.26%	-0.76%
SED17-29	5	0.6737	0.465	0.8825	0.6389	0.7500	0.8828	0.07519	3.82%	2.67%
SED17-27	5	0.8787	0.8541	0.9032	0.8717	0.8606	0.9122	0.008833	24.95% 2.25%	18.6% -6.17%

Analyst: YW OA: Duly 29/17

CETIS™ v1.8.7.16 Analyst: <u>MW</u>

Report Date:

07 Jun-17 08:42 (p 3 of 4)

Nautilus Environmental

Test Code: 170469 | 17-2224-6408

CETISv1.8.7

Echinold Embryo-Larval Survival and Development Test

Analysis ID: 20-0939-8303 Endpoint: Proportion Normal CETIS Version: Analyzed: 07 Jun-17 8:35 Analysis: Nonparametric-Control vs Treatments Official Results: Yes

Angular (Corrected) Transformed Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
Control SW	5	1.143	1.118	1.168	1.139	1.119	1.175	0.009073	1.78%	0.0%
SED17-08	5	0.0849	0.03897	0.1308	0.07379	0.0377	0.1325	0.01654	43.57%	92.57%
SED17-06	5	1.102	1.067	1.137	1.107	1.059	1.133	0.01259	2.56%	3.62%
SED17-09	5	0.6796	0.1176	1.242	0.8309	0.1448	1.09	0.2024	66.6%	40.54%
SED17-13	5	0.2955	0.1798	0.4112	0.2527	0.1901	0.4205	0.04168	31.54%	74.15%
SED17-17	5	1,161	1.055	1.267	1,172	1.07	1.259	0.03817	7.35%	-1.55%
SED17-20	5	0.3676	-0.0447	0.7799	0.2255	0.1588	0.9553	0.1485	90.33%	67.84%
SED17-18	5	1.009	0.7805	1.237	1.124	0.7444	1.15	0.08225	18.23%	11.74%
SED17-19	5	0.4831	0.03053	0.9356	0.505	0.1022	1.005	0.163	75.45%	57.74%
SED17-24	5	1,153	1.107	1.199	1.145	1.11	1.211	0.01651	3.2%	-0.88%
SED17-12	5	0.04874	0.02482	0.07265	0.04273	0.03572	0.08257	0.008612	39.52%	95.74%
SED17-01	5	1.155	1.057	1.254	1.171	1.033	1.238	0.03533	6.84%	-1.1%
SED17-03	5	1,115	1.067	1.163	1.127	1.057	1.156	0.03333	3.45%	2,44%
SED17-29	5	0.9751	0.7394	1.211	0.9261	0.7854	1.221	0.08489	19.47%	
SED17-27	5	1.216	1.177	1.255	1.204	1,188	1.27	0.01412	2.6%	14. 6 9% -6.39%

Proportion Normal Detail

Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
Cantrol SW	0.8248	0.8511	0.8095	0.8304	0.8224
SED17-08	0	0.01744	0.01212	0.004926	0.005435
SED17-06	0.8084	0.8199	80	0.7877	0.76
SED17-09	0. 54 55	0	0.7778	0.7857	0.02083
SED17-13	0.1667	Ð	0	0	0
SED17-17	0.7696	0.7753	0.8851	0.9059	0.8495
SED17-20	0.6667	0	0	0	Đ
SED17-18	0.459	0.8333	0.6	0.8247	0.8137
SED17-19	0.3429	0.234	0	0	0.7125
\$ED17-24	0.8292	0.8762	0.8377	0.8019	0.8283
SED17-12	O	O	O.	0	0.006803
\$ED17-01	0.8484	0.8932	0.7373	0.8712	0.8197
SED17-03	0.8378	0.8228	0.7586	0.7931	0.8155
\$ED17-29	0.5	0.6389	0.8113	0.5357	0.8828
\$ED17-27	0.8779	0.8717	0.9122	0.871	0.8606

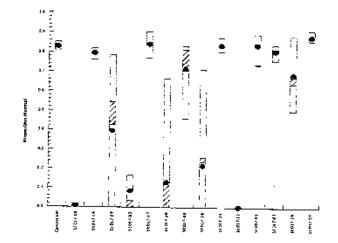
Angular (Corrected) Transformed Detail

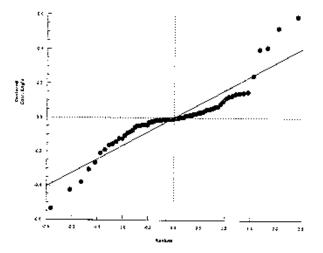
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
Control SW	1.139	1.175	1.119	1.146	1.136
SED17-08	0.0377	0.1325	0.1103	0.07024	0.07379
SED17-06	1.118	1.133	1.107	1.092	1.059
SED17-09	0.8309	0.2527	1.08	1,09	0.1448
SED17-13	0.4205	0.2527	0.1901	0.2527	0.3614
SED17-17	1.07	1.077	1.225	1.259	1.172
SED17-20	0.9553	0.2928	0.2255	0.2056	0.1588
SED17-18	0.7444	1.15	0.8861	1.139	1.124
SED17-19	0.6255	0.505	0.1022	0.1777	
SED17-24	1.145	1.211	1.156		1.005
SED17-12	0.04273	0.03791	-	1.11	1.144
SED17-01	1.171		0.03572	0.04474	0.08257
SED17-03		1.238	1.033	1.204	1.132
	1.156	1.136	1.057	1.099	1,127
SED17-29	0.7854	0.9261	1.121	0.8211	1.221
\$ED17-27	1.214	1.204	1.27	1.203	1.188

Echinoid Embryo-Larval Survival and Development Test

Report Date: Test Code:

07 Jun-17 08:42 (p 4 of 4) 170469 | 17-2224-6408


Nautilus Environmental


Analysis ID:	20-0939-8303	Endpoint:	Proportion Normal	CETIS Version:	CETISv1.8.7
Analyzed:	07 Jun-17 8:35	Analysis:	Nonparametric-Control vs Treatments		

Proportion	Normal	Binomials
------------	--------	-----------

Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
Control SW	193/234	200/235	187/231	191/230	213/259
SED17-08	0/176	3/172	2/165	1/203	1/184
SED17-06	173/214	173/211	184/230	167/212	152/200
SED17-09	6/11	0/4	7/9	22/28	1/48
SED17-13	1/6	0/4	0/7	0/4	0/2
SED17-17	167/217	176/227	208/235	154/170	158/186
SED17-20	6/9	0/3	0/5	0/6	0/10
SED17-18	28/61	60/72	21/35	80/97	131/161
SED17-19	12/35	11/47	0/24	0/8	57/80
SED17-24	199/240	184/210	222/265	170/212	164/198
SED17-12	0/137	0/174	0/196	0/125	1/147
SED17-01	207/244	209/234	160/217	203/233	191/233
SED17-03	31/37	65/79	44/58	46/58	84/103
SED17-29	10/20	23/36	43/53	15/28	128/145
SED17-27	167/213	163/187	187/205	189/217	179/208

Graphics

Report Date:

07 Jun-17 08:42 (p 1 of 4) 170469 | 17-2224-6408

·						Test Code:	170469 ; 17-2224-6408
Echinoid Emb	oryo-Larval Survival a	nd Developr	nent Test				Nautilus Environmental
Analysis ID: Analyzed:	20-0809-4194 07 Jun-17 8:35	Endpoint: Analysis:		d Proportion Norm		CETIS Version: Official Results	
Batch ID: Start Date: Ending Date: Duration:	08-3704-4652 26 May-17 15:55 30 May-17 16:25 4d 1h	Test Type: Protocol: Species: Source:	PSEP (19	centrotus purpura	atus		nne Lam ural seawater
Sample Code	Sample ID	Samp	le Date	Receive Date	Sample Age	Client Name	Project
Control SW	19-4378-7630	25 Ma	ıy-17	25 May-17	40h	Golder	

SED17-08 SED17-06	Sediment Sample Sediment Sample	Golder Golder		SED17-08			
Control SW	Control SW	Golder		Control Seawate	it.		
Sample Code	Material Type	Sample Source		Slation Locatio	n	Latitude	Longitude
SED17-27	15-8574-8 5 65	05 May-17 17:00	15 May-17 10:30 2	20d 23h (5.5°			
\$ED17-29	08-4658-3752	04 May-17 17:00	15 May-17 10:30 2	21d 23h (8.5°			
SED17-03	05-1816-3513	04 May-17 17:00	15 May-17 10:30 2	21d 23h (7.2°			
SED17-01	05-5502-2240	04 May-17 17:00	15 May-17 10:30 :	?1d 23h (5.8 "			
SED17-12	01-4413-4098	04 May-17 17:00	15 May-17 10:30 :	21d 23h (5 °C)			
SED17-24	05-6632-5205	02 May-17 17:00	15 May-17 10:30	23d 23h (6°C)			
SED17-19	07-6812-4215	02 May-17 17:00	15 May-17 10:30	23d 23h (5.5°			
SED17-18	04-2524-4947	02 May-17 17:00	15 May-17 10:30 :	23d 23h (4 °C)			
SED17-20	00-0790-7357	01 May-17 17:00	15 May-17 10:30	24d 23h (7 °C)			
SED17-17	0 5-58 20-5843	30 Apr-17 17:00	15 May-17 10:30 :	25d 23h (7°C)			
SED17-13	02-1258-2667	29 Apr-17 17:00	15 May-17 10:30	26d 23h (7.5 °			
SED17-09	13-9590-2568	29 Apr-17 17:00	15 May-17 10:30 :	26d 23h (8.5 °			
SED17-06	19-4215-8235	26 Apr-17 17:00	15 May-17 10:30 :	29d 23h (7.5 °			
SED17-08	10-1003-8381	26 Apr-17 17:00	15 May-17 10:30 :	29d 23h (7.5°			
		Zo may-17	40 May-17	4011	Golder		

Sample Code	Material Type	Sample Source	Station Location	Latitude	Longitude
Control SW	Control SW	Golder	Control Seawater		
SED17-08	Sediment Sample	Golder	SED17-08		
SED17-06	Sediment Sample	Golder	SED17-06		
\$ED17-09	Sediment Sample	Golder	SED17-09		
SED17-13	Sediment Sample	Golder	SED17-13		
SED17-17	Sediment Sample	Golder	SED17-17		
SED17-20	Sediment Sample	Golder	\$ED17-20		
SED17-18	Sediment Sample	Golder	SED17-18		
SED17-19	Sediment Sample	Golder	SED17-19		
SED17-24	Sediment Sample	Golder	SED17-24		
SED17-12	Sediment Sample	Golder	SED17-12		
SED17-01	Sediment Sample	Golder	SED17-01		
SED17-03	Sediment Sample	Golder	SED17-03		
SED17-29	Sediment Sample	Golder	SED17-29		
SED17-27	Sediment Sample	Golder			
		C dide:	SED17-27		

Analysi: Yw DA DA DA

Report Date: Test Code: 07 Jun-17 08:42 (p 2 of 4) 170469 | 17-2224-6408

		_					162	t Code:	170469 17-2224-6408
Echinoid Em	bryo-Larval Surv	ival ar	nd Developm	nent 1	Test				Nautilus Environmental
Analysis ID: Analyzed:	20-0809-4194 07 Jun-17 8:35					oportion Normal ic-Control vs Treatmen		IIS Version: cial Results:	CETISv1.8.7 Yes
Data Transfor		Zeta	Alt Hy	ур	Trials	Seed	PM\$D	Test Result	<u></u>
Angular (Corre	ected)	NA	C > T		NA	NA	23.6%		

Steel Many-One Rank Sum Test

Sample Code v	/\$	Sample Code	Test Stat	Critical	Ties	DF	P-Value	P-Type	Decision(α:5%)
Control SW		SED17-08	15	15	0	8	0.0424	Asymp	Significant Effect
		SED17-06	15	15	0	8	0.0424	Asymp	Significant Effect
		SED17-09	15	15	٥	8	0.0424	Asymp	Significant Effect
		SED17-13	15	15	0	8	0.0424	Asymp	Significant Effect
		SED17-17	19	15	0	8	0.2382	Asymp	Non-Significant Effect
		SED17-20 .	15	15	0	8	0.0424	Asymp	Significant Effect
		SED17-18	15	15	Ф	8	0.0424	Asymp	Significant Effect
		SED17-19	15	15	0	8	0.0424	Asymp	Significant Effect
		SED17-24	23	15	0	8	0.6256	Asymp	Non-Significant Effect
		SED17-12	15	15	0	8	0.0424	Asymp	Significant Effect
		SED17-01	28.5	15	1	8	0.9613	Asymp	Non-Significant Effect
		SED17-03	15	15	0	8	0.0424	Asymp	Significant Effect
		SED17-29	15	15	0	8	0.0424	Asymp	Significant Effect
		SED17-27	17	15	1	8	0.1112	Asymp	Non-Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	11,66229	0.8330209	14	72.83	<0.0001	Significant Effect
Error _	0.6862382	0.0114373	60			organicant Effect
Total	12.34853		74			

Oistributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Bartlett Equality of Variance	58.55	29.14	<0.0001	Unequal Variances
Distribution	Shapiro-Wilk W Normality	0.898	0.9554	< 0.0001	Non-normal Distribution

Combined Proportion Normal Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
Control SW	5	0.7156	0.6695	0.7617	0.7018	0.68	0.7745	0.0166	5.19%	0.0%
SED17-08	5	0.005091	D	0.01024	0.003636	0	0.01091	0.001854	81.44%	•
SED17-06	5	0.6175	0.5647	0.6702	0.6291	0.5527	0.6691			99.29%
SED17-09	5	0.02618	0	0.06598	0.0231			0.01901	6.89%	13.72%
SED17-13 .	5	0.0007273	-	0.00336		0	80.0	0.01433	122.4%	96.34%
SED17-17	5	0.6276			0	0	0.003636	0.0007273		99.9%
SED17-20	5		0.5304	0.7249	0.6073	0.56	0.7 5 64	0.03502	12.48%	12.3%
SED17-18	•	0.004364	0	0.01648	O	¢	0.02182	0.004364	223.6%	99.39%
SED17-19	5	0.2327	0.03199	0.4335	0.2182	0.07636	0.4764	0.0723	69.47%	67.48%
	5	0.05818	0	0.1649	0.04	0	0.2073	0.03843	147.7%	91.87%
SED17-24	5	0.6829	0.5772	0.7886	0.6691	0.5964	0.8073	0.03808	12,47%	4.57%
SED17-12	5	0.0007273	0	0.002747	0	0	0.003636	0.0007273		99.9%
SED17-01	5	0.7055	0.614	0.7969	0.7382	0.5818	0.76	0.03293	10.44%	1.42%
SED17-03	5	0.1964	0.1029	0.2898	0.1673	0.1127	0.3055	0.03366	38.33%	
SED17-29	5	0.1593	0	0.3793	0.08364	0.03636				72.56%
SED17-27	5	0.6582	0.6096	0.7068	0.68		0.4655	0.07923	111,2%	77.74%
	•	5.55 0	5.000	V.1 000	0.00	0.5927	0.6873	0.01752	5.95%	8.03%

Report Date: Test Code:

07 Jun-17 08:42 (p 3 of 4)

170469 | 17-2224-6408

Nautilus Environmental

Analysis ID:	20-0809-4194	Endpoint:	Combined Proportion Normal	CETIS Version:	CETISv1.8,7
Analyzed:	07 Jun-17 8:35	Analysis:	Nonparametric-Control vs Treatments	Official Results:	Yes

Angular (Corrected	Transformed	Summary
--------------------	-------------	---------

Echinoid Embryo-Larval Survival and Development Test

Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
Control SW	5	1.009	0.957	1.061	0.9931	0.9695	1.076	0.01874	4.15%	0.0%
SED17-08	5	0.06817	0.03308	0.1033	0.06034	0.03016	0.1046	0.01264	41.45%	93.24%
SED17-06	5	0.9043	0.8501	0.9585	0.916	0.8382	0.9579	0.01953	4.83%	10.38%
SED17-09	5	0.1371	0.01238	0.2619	0.1483	0.03016	0.2868	0.04494	73.27%	86.41%
SED17-13	5	0.03619	0.01943	0.05295	0.03016	0.03016	0.06034	0.006037	37.3%	96.41%
SED17-17	5	0.9162	0.8125	1.02	0.8935	0.8455	1.055	0.03736	9.12%	9.2%
SED17-20	5	0.05378	-0.0118	0.1194	0.03016	0.03016	0.1483	0.02362	98.21%	94,67%
SED17-18	5	0.4844	0.2428	0.7261	0.486	0.28	0.7618	0.08703	40.17%	51.99%
SED17-19	5	0.189	-0.03622	0.4141	0.2014	0.03016	0.4727	0.0811	95.97%	81.27%
SED17-24	5	0.9757	0.8586	1.093	0.9579	0.8824	1.116	0.04217	9.66%	3.31%
SED17-12	5	0.03619	0.01943	0.05295	0.03016	0.03016	0.06034	0.006037	37.3%	96.41%
SED17-01	5	0.9991	0.9012	1.097	1.034	0.8676	1.059	0.03527	7.89%	0.98%
\$ED17-03	5	0.4537	0.3367	0.5707	0.4213	0.3424	0.5856	0.04214	20.77%	55.04%
SED17-29	5	0.3757	0.09676	0.6546	0.2934	0.1919	0.7508	0.1005	59.79%	62.77%
SED17-27	5	0.9468	0.896	0.9975	0.9695	0.8787	0.9774	0.01827	4.32%	6.17%

Combined Proportion Normal Detail

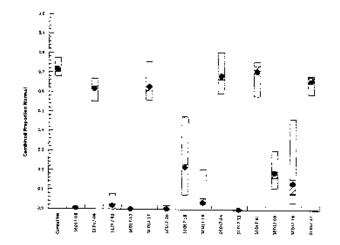
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
Control SW	0.7018	0.7273	0.68	0.6945	0.7745
SED17-08	0	0.01091	0.007273	0.003636	0.003636
SED17-06	0.6291	0.6291	0.6691	0.6073	0.5527
SED17-09	0.02182	0	0.02545	0.08	0.003636
SED17-13	0.003636	0	0	0	0
SED17-17	0.6073	0.64	0.7564	0.56	0.5745
SED17-20	0.02182	Đ	0	Q.	0
SED17-18	0.1018	0.2182	0.07636	0.2909	0.4764
SED17-19	0.04364	0.04	0	0	0.2073
\$ED17-24	0.7236	0.6691	0.8073	0.6182	0.5964
SED17-12	0	0	0	0	0.003636
\$ED17-01	0.7527	0.76	0.5818	0.7382	0.6945
SED17-03	0.1127	0.2364	0.16	0.1673	0.3055
SED17-29	0.03636	0.08364	0.1564	0.05455	0.4655
SED17-27	0.68	0.5927	0.68	0.6873	0.6509

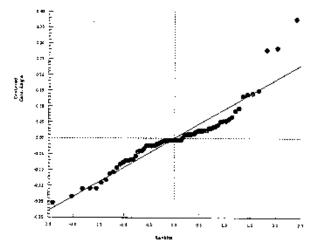
Angular (Corrected) Transformed Detail

Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
Control SW	0.9931	1.021	0.9695	0.9852	1.076
SED17-08	0.03016	0.1046	0.08538	0.06034	0.06034
SED17-06	0.916	0.916	0.9579	0.8935	0.8382
SED17-09	0.1483	0.03016	0.1602	0 2868	0.06034
SED17-13	0.06034	0.03016	0.03016	0.03016	0.03016
SED17-17	0.8935	0.9273	1.055	0.8455	0.8602
SED17-20	0.1483	0.03016	0.03016	0.03016	0.03016
SED17-18	0.3248	0.486	0.28	0.5697	0.7618
SED17-19	0.2104	0.2014	0.03016	0.03016	0.4727
SED17-24	1.017	0.9579	1.116	0.9047	0.8824
SED17-12	0.03016	0.03016	0.03016	0.03016	0.06034
SED17-01	1.05	1.059	0.8676	1.034	0.9852
SED17-03	0.3424	0.5077	0.4115	0.4213	0.5856
SED17-29	0.1919	0.2934	0.4065	0.2357	0.7508
SED17-27	0.9695	0.8787	0.9695	0.9774	0.9387

Report Date: Test Code: 07 Jun-17 08:42 (p 4 of 4)

170469 | 17-2224-6408


Echinoid Embryo-Larval Survival and	Development Test
-------------------------------------	------------------


Mautilus Environmental

Analysis ID:	20-0809-4194	Endpoint:	Combined Proportion Normal	CETIS Version:	CETIŞv1.8.7
Analyzed:	07 Jun-17 8:35	Analysis:	Nonparametric-Control vs Treatments	Official Results:	Yes

Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
Control SW	193/275	200/275	187/275	191/275	213/275	_
SED17-08	0/275	3/275	2/275	1/275	1/275	
SED17-06	173/275	173/275	184/275	167/275	152/275	
SED17-09	6/275	0/275	7/275	22/275	1/275	
\$ED17-13	1/275	0/275	0/275	0/275	0/275	
SED17-17	167/275	176/275	208/275	154/275	158/275	
SED17-20	6/2 75	0/275	0/275	0/275	0/275	
SED17-18	28/275	60/275	21/275	80/275	131/275	
SED17-19	12/275	11/275	0/275	0/275	57/275	
SED17-24	199/275	184/275	222/275	170/275	164/275	
SED17-12	0/275	0/275	0/275	0/275	1/275	
SED17-01	207/275	209/275	160/275	203/275	191/275	
SED17-03	31/275	65/275	44/275	46/275	84/275	
SED17-29	10/275	23/275	43/275	15/275	128/275	
SED17-27	187/275	163/275	187/275	189/275	179/275	

Graphics

Analyst: 4m 0A:____

Ending Date: 30 May-17 16:25

4d 1h

Analysis ID:

Analyzed:

Batch ID:

Start Date:

Duration:

Echinoid Embryo-Larval Survival and Development Test

Endpoint: Survival Rate

PSEP (1995)

Analysis:

Protocol:

Species:

Source:

18-6879-5250

07 Jul-17 8:10

02-2903-0499

26 May-17 15:55

Report Date:

Diluent:

07 Jul-17 08:11 (p 1 of 4)

Test Code: 170469a | 12-6446-3501 Nautilus Environmental CETIS Version: CETISv1.8.7 Nonparametric-Control vs Treatments Official Results: Yes Test Type: Development-Survival Analyst: Yvonne Lam

Natural seawater

Strongylocentrotus purpuratus Brine: San Diego Lab Age:

Sample Code	Sample ID	Sample Date	Receive Date	Sample Age	Client Name	Project
\$ED17-24	05-6632-5205	02 May-17 17:00	15 May-17 10:30	23d 23h (6 °C)	Golder	
SED17-08	10-1003-8381	26 Apr-17 17:00	15 May-17 10:30	29d 23h (7.5°		
SED17-06	19-4215-8235	26 Apr-17 17:00	15 May-17 10:30	29d 23h (7.5 °		
SED17-09	13-9590-2568		15 May-17 10:30	•		
SED17-13	02-1258-2667		15 May-17 10:30	•		
SED17-17	06-5820-5843		15 May-17 10:30	•		
\$ED17-20	00-0790-7357		15 May-17 10:30			
SED17-18	04-2524-4947		15 May-17 10:30			
SED17-19	07-6812-4215		15 May-17 10:30			
SED17-12	01-4413-4098		15 May-17 10:30	•		
SED17-01	05-6502-2240	04 May-17 17:00	15 May-17 10:30	21d 23h (5.8°		
\$ED17-03	05-1816-3513		15 May-17 10:30	,		
SED17-29	08-4658-3752		15 May-17 10:30			
SED17-27	15-8574-8565	05 May-17 17:00	-	•		

Sample Code	Material Type	Sample Source	Station Location	Latitude	Longitude
SED17-24	Sediment Sample	Golder	SED17-24		==
SED17-08	Sediment Sample	Golder	SED17-08		
SED17-06	Sediment Sample	Golder	SED17-06		
SED17-09	Sediment Sample	Golder	SED17-09		
SED17-13	Sediment Sample	Golder	SED17-13		
SED17-17	Sediment Sample	Golder	SED17-17		
SED17-20	Sediment Sample	Golder	SED17-20		
SED17-18	Sediment Sample	Golder	SED17-18		
SED17-19	Sediment Sample	Golder	SED17-19		
SED17-12	Sediment Sample	Golder	SED17-12		
SED17-01	Sediment Sample	Golder	SED17-01		
SED17-03	Sediment Sample	Golder	SED17-03		
SED17-29	Sediment Sample	Golder	SED17-29		
\$ED17-27	Sediment Sample	Golder	SED17-27		
Note Transfers			 -	-	

Data Transform	Zeta	Alt Hyp	Trials	Seed	PMSD Test Result
Angular (Corrected)	NA	C>T	NΑ	NA	18.5%

Steel Many-One Rank Sum Test

Sample Code v	s Sample Code	Test Stat	Critical	Ties	DF	P-Value	P-Type	Decision(α:5%)
SED17-24	SED17-08	16	15		6	0.0670	Asymp	Non-Significant Effect
	SED17-06	26.5	15	1	8	0.8853	Asymp	Non-Significant Effect
	SED17-09	15	15	0	8	0.0402	Asymp	Significant Effect
	\$ED17-13	15	15	0	8	0.0402	Asymp	Significant Effect
	SED17-17	24	15	0	8	0.7082	Asymp	Non-Significant Effect
	SED17-20	15	15	0	8	0.0402	Asymp	Significant Effect
	SED17-18	15	15	0	8	0.0402	Asymp	Significant Effect
	SED17-19	15	15	O.	8	0.0402	Asymp	Significant Effect
	SED17-12	15	15	0	8	0.0402	Asymp	Significant Effect
	SED17-01	31	15	0	8	0.9916	Asymp	Non-Significant Effect
	SED17-03	15	15	0	8	0.0402	Asymp	Significant Effect
	SED17-29	15	15	٥	8	0.0402	Asymp	Significant Effect
	SED17-27	23	15	0	8	0.6133	Asymp	Non-Significant Effect

Analyst: MW QAJULY 24/7

Report Date:

07 Jul-17 08:11 (p 2 of 4)

								170469a 12-6448-3501			
Echinoid Emb	oryo-Larval Survival a	nd Develop	ment Test					Na	utilus Env	rironmenta	
Analysis ID:	18-6879-5250	Endpoint	Survival Rate			CETI	S Version:	CETISv1	.8.7		
Analyzed:	07 Jul-17 8:10	Analysis:	Nonparametrio	-Control vs 1	Treatments	Offic	ial Results:	Yes			
ANOVA Table											
Source	Sum Squares	Mear	Square	DF	F Stat	P-Value	Decision(a:5%)			
Between	9.728428	0.748	3406	13	55.03	<0.0001	Significant				
Error	0.7614732	0.013	59774	56			5				
Total	10.4899		· 	69							
Distributional	Tests										
Attribute	Test		Test Stat	Critical	P-Value	Decision(a:1%)				
Variances	Bartlett Equality	of Variance		27.69	0.0017	Unequal V	· ·				
Distribution	Shapiro-Wilk W		0.9501	0.9526	0.0073	-	al Distributio	ρFI			
Survival Rate	Summary							<u>-</u>			
Sample Code	Cou	nt Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	cv%	%Effect	
SED17-24	5	0.818	2 0.6956	0.9408	0.7709	0.72	0.9636	0.04415	12.07%	0.0%	
SED17-08	5	0.654	6 0.5887	0.7204	0.64	0.6	0.7382	0.02371	8.1%	20.0%	
SED17-06	5	0.776	0.7274	0.8246	0.7709	0.7273	0.8364	0.0175	5.04%	5.16%	
SED17-09	5	0.072	.73 O	0.1543	0.04	0.01455	0.1745	0.02938	90.35%	91.11%	
SED17-13	5	0.016	73 0.007926	0.02553	0.01455	0.007273	0.02545	0.00317	42.38%	97.96%	
\$ED17-17	5	0.752		0.8783	0.7891	0.6182	0.8545	0.04523	13.44%	8.0%	
SED17-20	5	0.024		0.03701	0.02182	0.01091	0.03636	0.004685	43.65%	97.07%	
SED17-18	5	0.309		0.5259	0.2618	0.1273	0.5855	0.07764	56.18%	62.13%	
SED17-19	5	0.141		0.2636	0.1273	0.02909	0.2909	0.04414	69 95%	82.76%	
SED17-12	5	0.566		0.6968	0.5345	0.4545	0.7127	0.0469	18.51%	30.76%	
SED17-01	5	0.844		0.8881	0.8473	0.7891	0.8873	0.01574	4.17%	-3.2%	
\$ED17-03	5	0.243	-	0.3566	0.2109	0.1345	0.3745	0.04067	37.33%	70.22%	
SED17-29	5	0.205		0.4354	0.1309	0.07273	0.5273	0.08296	90.45%	74.93%	
SED17-27	5	0.749	-	0.8014	0.7564	0.68	0.7891	0.01883	5.62%	8.44%	
Angular (Corre	ected) Transformed S	ummary		···							
Sample Code	Cou	nt Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
SED17-24	5	1.147	0.9625	1.331	1.072	1.013	1.379	0.06629	12.93%	0.0%	
SED17-08	5	0.943	4 0.873	1.014	0.9273	0.8861	1.034	0.02537	6.01%	17.72%	
SED17-06	5	1.079	1.02	1.139	1.072	1.021	1,154	0.02144	4.44%	5.89%	
SED17-09	5	0.252	0.0974	0.4066	0.2014	0.1209	0.431	0.05568	49.41%	78.02%	
SED17-13	5	0.127	1 0.09113	0.1631	0.1209	0.08538	0.1602	0.01297	22.8%	88.91%	
SED17-17	5	1.057		1.202	1.094	0.9047	1.18	0.05232	11.07%	7.84%	
SED17-20	5	0.152		0.1964	0.1483	0.1048	0.1919	0.01584	23.25%	86.71%	
SED17-18	5	0.579		0.8156	0.5371	0.3648	0.8713	0.0849	32.74%	49.42%	
SED17-19	5	0.366		0.5499	0.3648	0.1714	0.5697	0.06609	40.33%	68.04%	
SED17-12	5	0.853		0.9872	0.82	0.7399	1.005	0.04812	12.6%	25.55%	
SED17-01	-	4.467		1.0012		0.7000	1.000	0.04012	12.U70	49.9970	

Analyst yw QA Myz4/17

000-469-187-1

SED17-01

SED17-03

SEO17-29

SED17-27

5

5

5

1.167

0.447

1.047

0.5108

1,107

0.3785

0.1801

0.9879

1.227

0.6431

0.714

1.106

1.169

0.4771

0.3702

1.055

1.094

0.3756

0.2731

0.9695

1.228

0.6586

0.8127

1.094

0.02147

0.04765

0.09614

0.02133

4.11%

20.86%

48.09%

4.56%

-1.78%

55.45%

61.01%

8.67%

CETIS™ v1.8.7.16

07 Jul-17 08:11 (p 3 of 4) 170469a | 12-6448-3501

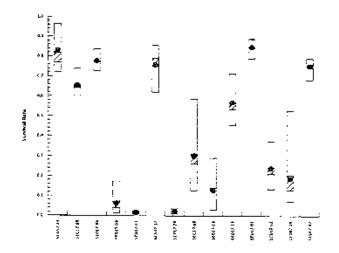
							rest coue.	1704030 12-0440-330
Echinoid Emb	ryo-Larval Surv	rival and De	evelopn	nent Test		•		Nautilus Environmenta
Analysis ID: Analyzed:	18-6879-5250 07 Jul-17 8:10		point: lysis:	Survival Rate Nonparametri	c-Control vs	Treatments	CETIS Version: Official Results:	CETISv1.8.7 Yes
Survival Rate	Detail	-	·	<u> </u>				
Sample Code		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-24		0.8727	0.763		0.7709	0.72		
SED17-08		0.64	0.625		0.7382	0.6691		
SED17-08		0.7782	0.767		0.7709	0.7273		
SED17-09		0.04	0.014		0.1018	0.1745		
SED17-13		0.02182	0.014		0.01455	0.007273		
SED17-17		0.7891	0.825		0.6182	0.6764		
SED17-20		0.03273	0.010		0.02182	0.03636		
SED17-18		0.2218	0.261		0.3527	0.5855		
SED17-19		0.1273	0.170		0.02909	0.2909		
SED17-12		0.4982	0.632		0.4545	0.5345		
SED17-01		0.4802	0.850		0.4545	0.8473		
SED17-03		0.1345	0.287		0.2109	0.3745		
SED17-29		0.07273	0.130		0.1018	0.5273		
SED17-23		0.07273	0.130					
			0.00	0 7455	0.7891	0.7564		
	ected) Transfor							
Sample Code		Rep 1	Rep 2	 -	Rep 4	Rep 5		
SED17-24		1.206	1.063		1.072	1.013		
SED17-08		0.9273	0.912		1.034	0.9579		
SED17-06		1.08	1.057		1.072	1.021		
SED17-09		0.2014	0.1209		0.3248	0.431		
SED17-13		0.1483	0.1209		0.1209	0.08538		
SED17-17		1.094	1.14	1.18	0.9047	0.965 6		
SED17-20		0.1819	0.1046		0.1483	0.1919		
SED17-18		0.4904	0.537		0.6359	0.8713		
SED17-19		0.3648	0.4262		0,1714	0.5697		
SED17-12		0.7836	0.9197		0.7399	0.82		
SED17-01		1.228	1.174		1.169	1.169		
SED17-03		0.3756	0.5657		0.4771	0.6586		
SED17-29		0.2731	0.3702		0.3248	0.8127		
SED17-27		1.076	0.9698	5 1 .042	1.094	1.055		
Survival Rate	Binomials							
Sample Code		Rep 1	Rep 2		Rep 4	Rep 5	•••	
ED17-24		240/275	210/27		212/275	198/275		
SED17-08		176/275	172/27		203/275	184/275		
SED17-06		214/275	211/27		212/275	200/275		
SED17-09		11/275	4/275		28/275	48/275		
SED17-13		6/275	4/275		4/275	2/275		
SED17-17		217/275	227/27		170/275	186/275		
SED17-20		9/275	3/275	5/275	6/275	10/275		
SED17-18		61/275	72/275		97/2 7 5	161/275		
SED17-19		35/275	47/275	24/275	8/275	80/275		
SED17-12		137/275	174/27	75 196/275	125/275	147/275		
SED17-01		244/275	234/27	75 217/275	233/275	233/275		
SED17-03		37/275	79/275	5 58/275	58/275	103/275		
SED17-29 SED17-27		20/275	36/275	5 53/275	28/275	145/275		

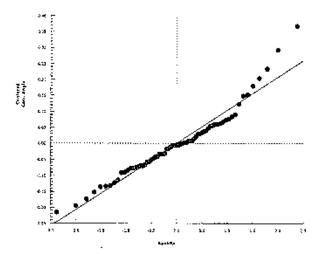
Report Date:

07 Jul-17 08:11 (p 4 of 4) 170469a | 12-6448-3501

Test Code: Nautilus Environmental

Analysis ID: Analyzed:


18-6879-5250 07 Jul-17 8:10 Endpoint: Survival Rate Analysis:


Nonparametric-Control vs Treatments

CETIS Version: Official Results:

CETISv1.8.7 Yes

Graphics

Report Date: Test Code:

07 Jul-17 08:11 (p 1 of 4) 170469a j 12-6448-3501

	· · · · · · · · · · · · · · · · · · ·			7001 40001	1.01000 12 0110 000.
Echinoid Em	bryo-Larval Surviva	al and Develop		Nautilus Environmental	
Analysis ID: Analyzed:	04-6069-7708 07 Jul-17 8:11	,	Proportion Normal Nonparametric-Control vs Treatments	CETIS Version: Official Results:	
Batch ID:	02-2903-0499	Test Type:	Development-Survival	Analyst: Yvon	ine Lam

Start Date: 26 May-17 15:55 Protocol: PSEP (1995) Diluent: Natural seawater Ending Date: 30 May-17 16:25 Species: Strongylocentrotus purpuratus Brine:

Duration: 4đ 1h Source: San Diego Lab Age:

Sample Code	Sample ID	Sample Date	Receive Date	Sample Age	Client Name	Project
SED17-24	05-6632-5205	02 May-17 17:00	15 May-17 10.30	23d 23h (6 °C)	Golder	<u> </u>
\$ED17-08	10-1003-8381	26 Apr-17 17:00	15 May-17 10:30	29d 23h (7.5°		
SED17-06	19-4215-8235	26 Apr-17 17:00	15 May-17 10:30	29d 23h (7.5 °		
\$ED17-09	13-9590-2568	29 Apr-17 17:00	15 May-17 10:30	26d 23h (8.5°		
SED17-13	02-1258-2667		15 May-17 10:30	-		
SED17-17	06-5820-5843		15 May-17 10:30			
SED17-20	00-0790-7357		15 May-17 10:30			
SED17-18	04-2524-4947		15 May-17 10:30			
SED17-19	07-6812-4215		15 May-17 10:30			
\$ED17-12	01-4413-4098		15 May-17 10:30			
SED17-01	05-6502-2240		15 May-17 10:30			
SED17-03	05-1816-3513		15 May-17 10:30			
SED17-29	08-4658-3752	_	15 May-17 10:30	,		
\$ED17-27	15-8574 -85 65		15 May-17 10:30	•		

Sample Code	Material Type	Sample Source	Station Location	Latitude	Longitude
SED17-24	Sediment Sample	Golder	SED17-24		==9
SED17-08	Sediment Sample	Golder	SED17-08		
SED17-06	Sediment Sample	Golder	SED17-06		
SED17-09	Sediment Sample	Golder	SED17-09		
SED17-13	Sediment Sample	Golder	SED17-13		
SED17-17	Sediment Sample	Golder	SED17-17		
SED17-20	Sediment Sample	Golder	SED17-20		
SED17-18	Sediment Sample	Golder	SED17-18		
SED17-19	Sediment Sample	Golder	\$ED17-19		
SED17-12	Sediment Sample	Golder	SED17-12		
SED17-01	Sediment Sample	Golder	SED17-01		
\$ED17-03	Sediment Sample	Golder	SED17-03		
SED17-29	Sediment Sample	Golder	SED17-29		
\$ED17-27	Sediment Sample	Golder	SED17-27		

Data Transform	Zeta	Alt Hyp	Trials	Seed	PMSD Test Result	
Angular (Corrected)	NA T	C>T	NA	NA	34.9%	

Steel Many-One Rank Sum Test

Sample Code	٧S	Sample Code	Test Stat	Critical	Ties	DF	P-Value	P-Type	Decision(a:5%)
SED17-24		SED17-08	15	15	0	8	0.0402	Asymp	Significant Effect
		SED17-06	17	15	0	8	0.1062	Asymp	Non-Significant Effect
		SED17-09	15	15	0	8	0.0402	Asymp	Significant Effect
		SED17-13	15	15	0	8	0.0402	A\$ymp	Significant Effect
		SED17-17	29	15	0	8	0.9687	Asymp	Non-Significant Effect
		SED17-20	15	15	0	8	0.0402	Asymp	Significant Effect
		SED17-18	20	15	0	8	0.3138	Asymp	Non-Significant Effect
		SED17-19	15	15	0	8	0.0402	Asymp	Significant Effect
		SED17-12	15	15	0	8	0.0402	Asymp	Significant Effect
		SED17-01	29	15	0	8	0.9687	Asymp	Non-Significant Effect
		SED17-03	21	15	0	8	0.4096	Asymp	Non-Significant Effect
		SED17-29	21	15	0	8	0.4096	Asymp	Non-Significant Effect
		SED17-27	37	15	0	8	1.0000	Asymp	Noл-Significant Effect

2.185537

14.39474

0.03902745

Report Date: Test Code: 07 Jul-17 08:11 (p 2 of 4) 170469a | 12-6448-3501

Echinoid Em	bryo-Larval Şurvival a	Nautilus Environ	nmental					
Analysis ID: Analyzed:	04-6069-7708 07 Jul-17 8:11	Endpoint Analysis:	Proportion i		s Treatments		IS Version: CET/Sv1.8.7	
ANOVA Table	· · · · · · · · · · · · · · · · · · ·				_			
Source	Sum Squares	Меаг	Square	OF	F Stat	P-Value	Decision(a:5%)	
Between	12.2092	0.939	1692	13	24.06	<0.0001	Significant Effect	

Distributional Tests

Error

Total

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Bartlett Equality of Variance	86.35	27.69	<0.0001	Unequal Variances
Distribution	Shapiro-Wilk W Normality	0.8924	0.9526	<0.0001	Non-normal Distribution

Proportion Normal Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-24	5	0.8347	0.8013	0.868	0.8292	0.8019	0 8762	0.012	3.21%	0.0%
SED17-08	5	0.007985	0	0.01646	0.005435	0	0.01744	0.003051	85.44%	99.04%
SED17-06	5	0.7952	0.7667	0.8237	0.8	0.76	0.8199	0.01025	2.88%	4.73%
SED17-09	5	0.426	Q	0.9121	0.5455	0	0.7857	0.1751	91.91%	48.97%
SED17-13	5	0.03333	O	0.1259	Ò	0	0.1667	0.03333	223.6%	96.01%
SED17-17	5	0.8371	0.7596	0.9145	0.8495	0.7696	0.9059	0.02789	7.45%	-0.29%
SED17-20	5	0.1333	0	0.5035	0	Ō	0.6667	0.1333	223.6%	84.03%
SED17-18	5	0.7062	0.4964	0.9159	0.8137	0.459	0.8333	0.07555	23.92%	15.4%
SED17-19	5	0.2579	0	0.6238	0.234	0	0.7125	0.1318	114.3%	69.1%
SED17-12	5	0.001361	0	0.005138	0	0	0.006803	0.001361	223.6%	99.84%
SED17-01	5	0.834	0.7588	0.9091	0.8484	0.7373	0.8932	0.02706	7.26%	0.08%
SED17-03	5	0.8056	0.7673	0.8438	0.8155	0.7586	0.8378	0.01378	3.82%	3.48%
SED17-29	5	0.6737	0.465	0.8825	0.6389	0.5	0.8828	0.07519	24.95%	19.28%
\$ED17-27	5	0.8787	0.8541	0.9032	0.8717	0.8606	0.9122	0.008833	2.25%	-5.27%

Angular (Corrected) Transformed Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-24	5	1.153	1.107	1.199	1.145	1.11	1,211	0.01651	3.2%	0.0%
SED17-08	5	0.0849	0.03897	0.1308	0.07379	0.0377	0.1325	0.01654	43.57%	92.64%
SED17-06	5	1.102	1.067	1.137	1,107	1.059	1,133	0.01259	2.56%	4.46%
\$ED17-09	5	0.8796	0.1176	1.242	0.8309	0.1448	1.09	0.2024	66.6%	41.06%
SED17-13	5	0.2955	0.1798	0.4112	0.2527	0.1901	0.4205	0.04168	31.54%	74.37%
SED17-17	5	1.161	1.055	1.267	1 172	1.07	1.259	0.03817	7.35%	-0.66%
SED17-20	5	0.3676	-0.0447	0.7799	0.2255	0.1588	0.9553	0.1485	90.33%	68.12%
SED17-18	5	1.009	0.7805	1.237	1.124	0.7444	1.15	0.08225	18.23%	12.51%
SED17-19	5	0.4831	0.03053	0.9356	0.505	0.1022	1.005	0.163	75.45%	58.1%
SED17-12	5	0.04874	0.02482	0.07265	0.04273	0.03572	0.08257	0.008612	39.52%	95.77%
SED17-01	5	1,155	1.057	1.254	1.171	1.033	1.238	0.03533	6.84%	-0.21%
SED17-03	5	1.115	1.067	1.163	1.127	1.057	1.156	0.01719	3.45%	3.29%
SED17-29	5	0.9751	0.7394	1.211	0.9261	0.7854	1.221	0.08489	19.47%	15.43%
SED17-27	5	1.216	1.177	1.255	1.204	1.188	1.27	0.01412	2.6%	-5.46%

Analyst: Vill QA July 24/17

Report Date: Test Code: 07 Jul-17 08:12 (p 3 of 4) 170469a | 12-6448-3501

Ameliania IS							*****
•		•	roportion Nor onparametric		Freatments	CETIS Version: Official Results:	CETISv1.8.7 Yes
Proportion Normal D	etail	·					
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-24	0.8292	0.8762	0.8377	0.8019	0.8283		
SED17-08	0	0.01744	0.01212	0.004926	0.005435		
SED17-08	0.8084	0.8199	8.0	0.7877	0.76		
SE D 17-09	0.5455	0	0.7778	0.7857	0.02083		
SED17-13	0.1667	0	0	0	0		
SED17-17	0.7696	0.7753	0.8851	0.9059	0.8495		
SED17-20	0.6667	0	0	0	0 '		
SED17-18	0.459	0.8333	0.6	0.8247	0.8137		
SED17-19	0.3429	0.234	0	0	0.7125		
SED17-12	0	0	0	0	0.006803		
SED17-01	0.8484	0.8932	0.7373	0.8712	0.8197		
SED17-03	0.8378	0.8228	0.7586	0.7931	0.8155		
SED17-29	0.5	0.6389	0.7500	0.7931	0.8828		
SED17-27	0.8779	0.8717	0.9122	0.871	0.8606		
Ingular (Corrected)	Transformed Detail	il,					
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
ED17-24	1.145	1.211	1.156	1.11	1,144		
ED17-08	0.0377	0.1325	0.1103	0.07024	0.07379		
SED17-06	1.118	1.133	1.107	1.092	1.059		
ED17-09	0.8309	0.2527	1.08	1.09	0.1448		
SED17-13	0.4205	0.2527	0.1901	0.2527	0.3614		
ED17-17	1.07	1.077	1.225	1.259	1.172		
SED17-20	0.9553	0.2928	0.2255	0.2056	0.1588		
SED17-18	0.7444	1.15	0.8861	1.139	1.124		
SED17-19	0.6255	0.505	0.1022	0.1777	1.005		
ED17-12	0.04273	0.03791	0.03572	0.04474	0.08257		
ED17-01	1.171	1.238	1.033	1.204	1.132		
SED17-03	1.156	1.136	1.057	1.099	1.127		
ED17-29	0.7854	0.9261	1.121	0.8211	1.221		
SED 17-2 7	1.214	1.204	1.27	1.203	1.188		
Proportion Normal B	inomials					•	
ample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
ED17-24	199/240	184/210	222/265	170/212	164/198	•••	
SED17-08	0/176	3/172	2/165	1/203	1/184		
ED17-06	173 /2 14	173/211	184/230	167/212	152/200		
6ED17-09	6/11	0/4	7/9	22/28	1/48		
ED17-13	1/6	0/4	0/7	0/4	0/2		
ED17-17	167/217	176/227	208/235	154/170	158/186		
ED17-20	6/9	0/3	0/5	0/6	0/10		
ED17-18	28/61	60/72	21/35	80/97	131/161		
ED17-19	12/35	11/47	0/24	0/8	57/80		
ED17-12	0/137	0/174	0/198	0/125	1/147		
CD47.04	207/244	209/234	160/217	203/233	191/233		
ED17-01							
	31/37	65/79	44/58	46/58	84/103		
ED17-01 ED17-03 ED17-29	31/37 10/20	65/79 23/36	44/58 43/53	46/58 15/28	84/103 128/145		

Analyst: W QA: Wy 24/07

000-469-187-1

CETIS^{TIA} v1.8.7.16

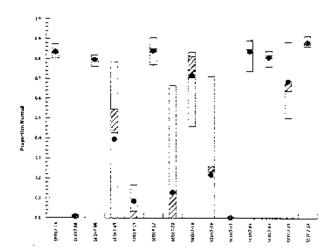
Report Date: Test Code:

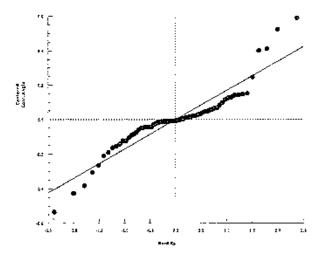
07 Jul-17 08:12 (p 4 of 4) 170469a | 12-6448-35**01**

EchinoId Embryo-Larval Survival and Development Test

Nautilus Environmental

Analysis ID: Analyzed:


04-6069-7708 07 Jul-17 8:11 Endpoint: Proportion Normai Analysis:


Nonparametric-Control vs Treatments

CETIS Version: Official Results: Yes

CETISv1.8.7

Graphics

Ending Date: 30 May-17 16:25

4d 1h

Analysis ID:

Analyzed:

Batch ID:

Start Date:

Duration:

Echinoid Embryo-Larval Survival and Development Test

Analysis:

Protocol:

Species:

Source:

02-7724-8816

07 Jul-17 8:11

02-2903-0499

26 May-17 15:55

Report Date: Test Code:

07 Jul-17 08:12 (p 1 of 4) 170469a | 12-6448-3501

Nautilus Environmental **CETISV1.8.7** CETIS Version: Nonparametric-Control vs Treatments Official Results: Yes

Analyst: Yvonne Lam

> Diluent: Natural seawater Brine:

Strongylocentrotus purpuratus Age:

Sample Code	Sample ID	Sample Date	Receive Date	Sample Age	Client Name	Project
SED17-24	05-6632-5205	02 May-17 17:00	15 May-17 10:30	23d 23h (6 °C)	Golder	<u></u>
SED17-08	10-1003-8381	26 Apr-17 17:00	15 May-17 10:30	29d 23h (7.5°		
\$ED17-06	19-4215-8235	26 Apr-17 17:00	15 May-17 10:30	29d 23h (7.5 °		
SED17-09	13-9590-2568	29 Apr-17 17:00	15 May-17 10:30	26d 23h (8.5°		
SED17-13	02-1258-2667	29 Apr-17 17:00	15 May-17 10:30	26d 23h (7.5 °		
SED17-17	06-5820-5843	30 Apr-17 17:00	15 May-17 10:30	25d 23h (7 °C)		
SED17-20	00-0790-7357	01 May-17 17:00	15 May-17 10:30	24d 23h (7 °C)		
SED17-18	04-2524-4947	02 May-17 17:00) 15 May-17 10:30	23d 23h (4 °C)		
SED17-19	07-6812-4215	02 May-17 17:00	15 May-17 10:30	23d 23h (5.5 °		
SED17-12	01-4413-4098	04 May-17 17:00	15 May-17 10:30	21d 23h (5 °C)		
SED17-01	05-6502-2240	04 May-17 17:00	15 May-17 10:30	21d 23h (5.8 °		
SED17-03	05-1816-3513	04 May-17 17:00	15 May-17 10:30	21d 23h (7.2°		
SED17-29	08-4658-3752	04 May-17 17:00) 15 May-17 10:30	21d .23h (8.5 °		
\$ED17-27	15 - 8574-8565	05 May-17 17:00	15 May-17 10:30	20d 23h (5.5°		

Endpoint: Combined Proportion Normal

Test Type: Development-Survival

PSEP (1995)

San Diego Lab

Sample Code	Material Type	Sample Source	Station Location	Latitude	Longitude
SED17-24	Sediment Sample	Golder	\$ED17-24		
SED17-08	Sediment Sample	Golder	SED17-08		
SED17-06	Sediment Sample	Golder	SED17-06		
SED17-09	Sediment Sample	Golder	SED17-09		
SED17-13	Sediment Sample	Golder	SED17-13		
\$ED17-17	Sediment Sample	Golder	SED17-17		
\$ED17-20	Sediment Sample	Golder	SED17-20		
SED17-18	Sediment Sample	Golder	SED17-18		
SED17-19	Sediment Sample	Golder	SED17-19		
\$ED17-12	Sediment Sample	Golder	\$ED17-12		
SED17-01	Sediment Sample	Golder	SED17-01		
SED17-03	Sediment Sample	Golder	SED17-03		
SED17-29	Sediment Sample	Golder	SED17-29		
SED17-27	Sediment Sample	Golder	SED17-27		

Data Transform	Zeta	Alt Hyp	Trials	Seed	PMSD Test Result	
Angular (Corrected)	NA	C > T	NÄ	NA	25.4%	

Stool	Many-One	Dank	0	*
Steel	many-une	Kank	Sum	lest

Sample Code	٧Ş	Sample Code	Test Stat	Critical	Ties	DF	P-Value	P-Type	Decision(a:5%)	
SED17-24		SED17-08	15	15	0	8	0.0402	Asymp	Significant Effect	
		SED17-06	22.5	15	1	8	0.5630	Asymp	Non-Significant Effect	
		SED17-09	15	15	0	8	0.0402	Asymp	Significant Effect	
		SED17-13	15	15	O.	8	0.0402	Asymp	Significant Effect	
		SED17-17	22	15	0	8	0.5116	Asymp	Non-Significant Effect	
		\$ED17-20	15	15	۵	8	0.0402	Asymp	Significant Effect	
		SED17-18	15	15	D	8	0.0402	Asymp	Significant Effect	
		SED17-19	15	15	Ð	8	0.0402	Asymp	Significant Effect	
		SED17-12	15	15	0	8	0.0402	Asymp	Significant Effect	
		SED17-01	30	15	Ď.	8	0.9833	Asymp	Non-Significant Effect	
		SED17-03	15	15	0	8	0.0402	Asymp	Significant Effect	
		SED17-29	15	15	0	8	0.0402	Asymp	Significant Effect	
		SED17-27	26	15	0	8	0.8579	Asymp	Non-Significant Effect	

Analyst: Your QA: 17 24/13

000-469-187-1

Report Date:

07 Jul-17 08:12 (p 2 of 4)

170469a | 12-6448-3501 Test Code: Nautilus Environmental

Echinoid	Embryo-Larva	l Survivat an-	d Development	Test
----------	--------------	----------------	---------------	------

Analysis ID:	
Analyzed:	

02-7724-8816 07 Jul-17 8:11 Endpoint: Combined Proportion Normal

Analysis: Nonparametric-Control vs Treatments

CETIS Version: Official Results: Yes

CETISv1 8.7

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)	
Between	10.30497	0.7926897	13	65.36	< 0.0001	Significant Effect	
Error	0.6792176	0.01212889	56			-	
Total	10.98418		69				

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variançes	Bartlett Equality of Variance	54.66	27.69	<0.0001	Unequal Variances
Distribution	Shapiro-Wilk W Normality	0.9013	0.9526	< 0.0001	Non-normal Distribution

Combined Proportion Normal Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-24	5	0.6829	0.5772	0.7886	0.6691	0.5964	0.8073	0.03808	12.47%	0.0%
SED17-08	5	0.005091	Ò	0.01024	0.003636	0	0.01091	0.001854	81.44%	99.25%
SED17-06	5	0.6175	0.5647	0.6702	0.6291	0.5527	0.6691	0.01901	6.89%	9.59%
SED17-09	5	0.02618	0	0.06598	0.02182	0	0.08	0.01433	122.4%	96.17%
SED17-13	5	0.0007273	0	0.002747	0	0	0.003636	0.0007273	223.6%	99.89%
\$ED17-17	5	0.6276	0.5304	0.7249	0.6073	0.56	0.7564	0.03502	12.48%	8.09%
SED17-20	5	0.004364	0	0.01648	0	D.	0.02182	0.004364	223.6%	99.36%
SED17-18	5	0.2327	0.03199	0.4335	0.2182	0.07636	0.4764	0.0723	69.47%	65.92%
SED17-19	5	0.05818	0	0.1649	0.04	0	0.2073	0.03843	147.7%	91,48%
SED17-12	5	0.0007273	0	0.002747	0	0	0.003636	0.0007273	223.6%	99.89%
SED17-01	5	0.7055	0 614	0.7969	0.7382	0.5818	0.76	0.03293	10.44%	-3.3%
SED17-03	5	0.1964	0.1029	0.2898	0.1673	0.1127	0.3055	0.03366	38.33%	71.25%
SED17-29	5	0.1593	0	0.3793	0.08364	0.03636	0.4655	0.07923	111.2%	76.68%
SED17-27	5	0.6582	0.6096	0.7068	0.68	0.5927	0.6873	0.01752	5.95%	3.62%

Angular (Corrected) Transformed Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-24	5	0 9757	0.8586	1.093	0.9579	0.8824	1.116	0.04217	9.66%	0.0%
SED17-08	5	0.06817	0.03308	0.1033	0.06034	0.03016	0.1046	0.01264	41.45%	93.01%
SED17-06	5	0.9043	0.8501	0.9585	0.916	0.8382	0.9579	0.01953	4.83%	7.32%
SED17-09	5	0.1371	0.01238	0.2619	0.1483	0.03016	0.2868	0.04494	73.27%	85.94%
SED17-13	5	0.03619	0.01943	0.05295	0.03016	0.03016	0.06034	0.006037	37.3%	96.29%
SED17-17	5	0.9162	0.8125	1.02	0.8935	0.8455	1.055	0.03736	9.12%	6.1%
SED17-20	5	0.05378	-0.0118	0.1194	0.03016	0.03016	0.1483	0.02362	98.21%	94.49%
SED17-18	5	0.4844	0.2428	0.7261	0.486	0.28	0.7618	0.08703	40.17%	50.35%
SED17-19	5	0.189	-0.03622	0.4141	0.2014	0.03016	0.4727	0.0811	95.97%	80,63%
SED17-12	5	0.03619	0.01943	0.05295	0.03016	0.03016	0.06034	0.006037	37.3%	96.29%
SED17-01	5	0.9991	0.9012	1.097	1.034	0.8676	1.059	0.03527	7.89%	-2.4%
SED17-03	5	0.4537	0.3367	0.5707	0.4213	0.3424	0.5856	0.04214	20.77%	53.5%
SED17-29	5	0.3757	0.09676	0.6546	0.2934	0.1919	0.7508	0.1005	59.79%	61.5%
SED17-27	5	0.9468	0.896	0.9975	0.9695	0.8787	0.9774	0.01827	4.32%	2.97%

000-469-187-1

CETIS™ v1.8.7.16

Report Date: Test Code: 07 Jul-17 08:12 (p 3 of 4)

170469a | 12-6448-3501

Analysis ID:	02-7724-8816		point:	Combined Pres	odina Nass	<u> </u>	CETIC Vaccions	CETICAL 0.7
Analyzed:	07 Jul-17 8:11			Combined Prop Nonparametric			CETIS Version: Official Results:	CETISv1.8.7 Yes
Combined Pro	portion Normal	Detail						
Sample Code		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-24		0.7236	0.6691	0.8073	0.6182	0.5964		<u> </u>
SED17-08		0	0.0109	1 0.007273	0.003636	0.003636		
SED17-06		0.6291	0.6291	0.6691	0 6073	0.5527		
SED17-09		0.02182	0	0.02545	0.08	0.003636		
SED17-13		0.003636	0	0	0	0		
\$ED17-17		0.6073	0.64	0 7564	0.56	0.5745		
SED17-20		0.02182	0	0	0	0		
SED17-18		0.1018	0.2182		0.2909	0.4764		
SED17-19		0.04364	0.04	0	0	0.2073		
SED17-12		0	0	ō	0	0.003636		
SED17-01		0.7527	0.76	0.5818	0.7382	0.6945		
SED17-03	,	0.1127	0.2364		0.1673	0.3055		
SED17-29		0.03636	0.0836		0.05455	0.4655		
SED17-27		0.68	0.5927		0.6873	0.6509		
Ingular (Corr	ected) Transfort	ned Detail	-					·
Sample Code	,	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-24		1.017	0.9579	1.116	0.9047	0.8824		
ED17-08		0.03016	0.1046		0.06034	0.06034		
SED17-06		0.916	0.916	0.9579	0.8935	0.8382	•	
SED17-09		0.1483	0.03016		0.2868	0.06034		
ED17-13		0.06034	0.03016		0.03016	0.03016		
SED17-17		0.8935	0.9273		0.8455	0.8602		
ED17-20		0.1483	0.03016		0.03016	0.03016		
SED17-18		0.3248	0.485	0.28	0.5697	0.7618		
SED17-19		0.2104	0.2014		0.03016	0.4727		
ED17-12		0.03016	0.03018		0.03016			
SED17-01		1.05	1.059	0.8676	1.034	0.06034		
ED17-03		0.3424	0.5077	0.4115		0.9852		
ED17-29		0.1919	0.2934		0.4213	0.5856		
ED17-27		0.9695	0.8787	0.9695	0.2357 0.9774	0.7508 0.9387		
Combined Pro	portion Normal					*		·
ample Code	,	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
ED17-24		199/275	184/275		170/275	164/275		
ED17-08		0/275	3/275	2/275	1/275	1/275		
ED17-06		173/275	173/278		167/275	152/275		
ED17-09		6/275	0/275	7/275	22/275	1/275		
ED17-13		1/275	0/275	0/275	0/275	0/275		
ED17-17		167/275	176/275		154/275	158/275		
ED17-20		6/275	0/275	0/275	0/275	0/275		•
ED17-18		28/275	60/275	21/275	80/275	131/275		
ED17-19		12/275	11/275	0/275	0/275			
ED17-12		0/275	0/275	0/275		57/275		
ED17-01		207/275	209/275		0/275	1/275		
ED17-03		31/275	65/275		203/275	191/275		
ED17-29		10/275		44/275	46/275	84/275		
ED17-23		10/2/0	23/275	43/275	15/275	128/275		

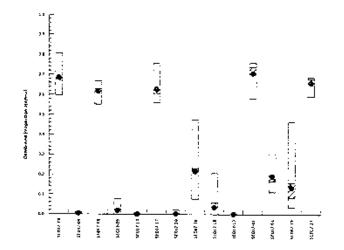
Analyst Mu July 24/17

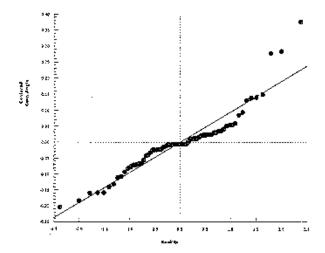
Report Date:

07 Jul-17 08:12 (p 4 of 4) 170469a | 12-6448-3501

Test Code: Echinoid Embryo-Larval Survival and Development Test Nautilus Environmental

Analysis ID: 02-7724-8816 Analyzed:


Endpoint: Combined Proportion Normal


CETIS Version: Official Results: Yes

CETISv1.8.7

07 Jul-17 8:11 Analysis: Nonparametric-Control vs Treatments

Graphics

11 Jul-17 09:12 (p 1 of 4) 170469b | 11-0911-3856

	ryo-Larval Survival at	nd Dévelobit	icut i est							nau (ilus Enviror	
Analysis ID: Analyzed:	20-6984-3357 11 Jul-17 9:12	Endpoint: Analysis:	Survival Rate Nonparamel		vs T	reatments		CETIS Vers Official Res		CETISv1.8 Yes	.7	
Batch ID:	13-9688-8689	Test Type:	Developmen	t-Survival				Analyst:	Yvon	ne Lam		
Start Date:	26 May-17 15:55	Protocol:	PSEP (1995)				Diluent:	Natur	al seawater		
Ending Date:	30 May-17 16:25	Species:	Strongylocer	trotus pur	purat	lu\$		Brine:				
Duration:	4d 1h	Source:	San Diego L	a b				Age:				
Sample Code	Sample ID	Samp	le Date R	eceive Da	le .	Sample /	\ge	Client Nam	e		Project	
SED17-29	08-4658-3752		y-17 17:00 1:	•				Golder				
SED17-08	10-1003-8381	-	r-17 17:00 1:	-								
\$ED17-06	19-4215-8235	_	r-17 17:00 1:	_								
SED17-09	13-9590-2568	-	r-17 17:00 1:	•								
SED17-13	02-1258-2667		(-17 17:00 1									
SED17-17	06-5820-5843		r-17 17:00 1	•								
SED17-20	00-0790-7357		y-17 17:00 1	•								
\$ED17-18	04-2524-4947		y-17 17:00 1									
SED17-19	07-6812-4215		y-17 17:00 1	•			•					
SED17-24	05-6632-5205		y-17 17:00 1									
SED17-12	01-4413-4098		y-17 17:00 1	-								
SED17-01	05-6502-2240		y-17 17:00 1	•								
SED17-03	05-1816-3513		y-17 17:00 1	-								
SED17-27	15-8574-8565	05 Ma	y-17 17:00 1	5 May-17 1	10:30	20d 23h	(5.5 °					
Sample Code	Material Type		le Source			Station L		n		Latitude	Longit	ude
\$ED17-29	Sediment Sam	•				\$ED17-2						
SED17-08	Sediment Sam	•				SED17-0						
SED17-06	Sediment Sam	•				SED17-0						
SED17-09	Sediment Sam	•				SED17-0						
SED17-13	Sediment Sam	-				SED17-1						
SED17-17	Sediment Sam	•				SED17-1						
SED17-20	Sediment Sam	-				SED17-2						
SED17-18	Sediment Sam	-				SED17-1						
\$ED17-19	Sediment Sam	•				SED17-1						
SED17-24	Sediment Sam	•				SED17-2						
SED17-12	Sediment Sam					SED17-1						
\$ED17-01	Sediment Sam					\$ED17-0						
SED17-03	Sediment Sam	•				SED17-0						
SED17-27	Sediment Sam	ple Golde	r			SED17-2	7					<u> </u>
Data Transfor				Sead			PMS		Resu	lt		
Angular (Corre	· · · · · · · · · · · · · · · · · · ·	C > T	NA NA	NA			68.8	%				
•	ne Rank Sum Test											
Sample Code SED17-29	vs Sample Code SED17-08	Test 3	Stat Critica 15	Ties O	DF 8	1.0000	P-Ty Asyr	<u> </u>	sion(c Signifi	cant Effect		
	\$ED17-06	40	15	0	8	1.0000 1.0000	Asyr	•	-	cant Effect		
	SED17-09	19.5	15	1	8	0.2699	Asyr		_	cant Effect		
	\$ED17-13	15	15	ò	8	0.0402	Asyr	-	_	Effect		
	SED17-17	40	15	· ŏ	8	1.0000	Asyr			cant Effect		
	SED17-20	15	15	0	8	0.0402	Asyr			Effect		
	SED17-18	34	15	0	8	0.9993	Asyr	-		cant Effect		
	SED17-19	25	15	Ò	8	0.7907	Aşyr		-	cant Effect		
	SED17-24	40	15	0	8	1.0000	Asyr			icant Effect		
	\$ED17-12	38	15	0	8	1.0000	Asyr			cant Effect		
	SED17-01	40	15	Ō	8	1.0000	Азул	np Non-	Signifi	icant Effect		
	SED17-03	34	15	0	8	0.9993	Asyr	np Non-	Signifi	cant Effect		
	SED17-27	40	15	0	8	1.0000	Asyr			icant Effect		c# 1

Analyst: 4W QA JULY 24/17

000-469-167-1 CETIS™ v1.8.7.16

11 Jul-17 09:12 (p 2 of 4) 170469b (11-0911-3856

								170469b (11-0911-3856		
Echinoid Emb	ryo-Larval Survival a	and Develop	ment Test					Na	utilus Env	ironmental
Analysis ID:	20-6984-3357	Endpoint:	Survival Rate			CET	\$ Version:	CETISv1.	8.7	
Analyzed:	11 Jul-17 9:12	Analysis:	Nonparametric	-Control vs	Freatments		ial Results:	Yes		
ANOVA Table										
Source	Sum Squares	Mea	n Square	DF	F Stat	P-Value	Decision(r:5%)		
Between	9.728428		83406	13	55.03	<0.0001	Significant	Effect		
Error	0.7614732	0.013	359774	56			-			
Total	10,4899			69	_					
Distributional	Tests							•		
Attribute	Test		Test Stat	Critical	P-Value	Decision(a:1%)			
Variances	Bartlett Equalit	y of Variance	33.05	27.69	0.0017	Unequal V				
Distribution	Shapiro-Wilk V	_	0.9501	0.9526	0.0073	•	al Distributio	n		
Survival Rate	Summary			•						
Sample Code	Cou	unt Mear	n 95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
\$ED17-29	5	0.20:	51 0	0.4354	0.1309	0.07273	0.5273	0.08296	90.45%	0.0%
SED17-08	5	0.65	45 0.5887	0.7204	0.64	0.6	0.7382	0.02371	8.1%	-219.1%
SED17-06	5	0.77	6 0.7274	0.8246	0.7709	0.7273	0.8384	0.0175	5.04%	-278.4%
SED17-09	5	0.073	273 0	0.1543	0.04	0.01455	0 1745	0.02938	90,35%	64.54%
SED17-13	5	0.010	673 0.007926	0.02553	0.01455	0.007273	0.02545	0.00317	42.38%	91.84%
SED17-17	5	0.75	27 0.6272	0.8783	0.7891	0.6182	0.8545	0.04523	13.44%	-267.0%
\$ED17-20	5	0.02	4 0.01099	0.03701	0.02182	0.01091	0.03636	0.004685	43.65%	88.3%
SED17-18	. 2	0.309	98 0.09369	0.5259	0.2618	0.1273	0.5855	0.07784	56.18%	-51.06%
SED17-19	5	0.14	11 0.01854	0.2636	0.1273	0.02909	0.2909	0.04414	69.95%	31.21%
SED17-24	5	0.81	82 0.6956	0.9408	0.7709	0.72	0.9636	0.04415	12.07%	-298.9%
SED17-12	5	0.56		0.6968	0.5345	0.4545	0.7127	0.0469	18,51%	-176.2%
SED17-01	5	0.84	44 0.8007	0.8881	0.8473	0.7891	0.8873	0.01574	4.17%	-311.7%
SED17-03	5	0.24	36 0.1307	0.3566	0.2109	0.1345	0.3745	0.04067	37.33%	-18.79%
SED17-27	5	0.749		0.8014	0.7564	0.68	0.7891	0.01883	5.62%	-265.2%
Angular (Corr	ected) Transformed :	Summary								
Sample Code	Cou	unt M ear	n 95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-29	5	0.44	7 0.1801	0.714	0.3702	0.2731	0.8127	0.09614	48.09%	0.0%
\$≅D17-08	5	0.943	34 0.873	1.014	0.9273	0.8861	1.034	0.02537	6.01%	-111.0%
SED17-06	5	1.07		1.139	1.072	1.021	1.154	0.02144	4.44%	-141.4%
SED17-09	5	0.25		0.4066	0.2014	0.1209	0.431	0.05568	49.41%	43.63%
SED17-13	5	0.12		0.1631	0.1209	0.08538	0.1602	0.01297	22.8%	71.56%
SED17-17	5	1.05		1.202	1.094	0.9047	1.18	0.05232	11.07%	-136.4%
SED17-20	5	0.15		0.1964	0.1483	0.1046	0.1919	0.01584	23.25%	65.91%
SED17-18	5	0.579		0.8156	0.5371	0.3648	0.8713	0.0849	32.74%	-29.72%
SED17-19	5	0.366		0.5499	0.3648	0.1714	0.5697	0.06609	40.33%	18.04%
SED17-24	5	1.14		1.331	1.072	1.013	1.379	0.06629	12.93%	-156.5%
SED17-12	5	0.85		0.9872	0.82	0.7399	1.005	0.04812	12.6%	-90.96%
SED17-01	5	1.16		1.227	1.169	1.094	1.228	0.02147	4.11%	-161.0%
SED17-03	E .	0.64/		0.6494	0.1354	* ****	0.0500	0.02141	7.1170	-101.070

Analysi: 4M QA: My 24/17

20.86%

4.56%

-14.27%

-134.2%

SED17-03

SED17-27

0.5108

1.047

0.3785

0.9879

0.6431

1.106

0.4771

1.055

0.3756

0.9695

0.6586

1.094

0.04765

0.02133

11 Jul-17 09:12 (p 3 of 4) 170469b | 11-0911-3856

ECNINOIS EMB	ryo-Larval Surv	rival and De	velopme	ent Test				Nautilus Environmenta
Analysis ID: Analyzed:	20-6984-3357 11 Jul-17 9:12			Survival Rate Nonparametric	-Cantrol vs	Treatments	CETIS Version: Official Results:	CETISv1.8.7 Yes
Survival Rate	Detail			•				
Sample Code		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-29		0.07273	0.1309	0.1927	0.1018	0.5273		
SED17-08		0.64	0.6255	0.6	0.7382	0.6691		
SED17-06		0.7782	0.7673	0.8364	0.7709	0.7273		
SED17-09		0.04	0.01455		0.1018	0.1745		
SED17-13		0.02182	0.01455		0.01455	0.007273		
SED17-17		0.7891	0.8255	0.8545	0.6182	0.6764		
SED17-20		0.03273	0.01091		0.02182	0.03636		
SED17-18		0.2218	0.2618	0.1273	0.3527	0.5855		
SED17-19		0.1273	0.1709	0.08727	0.02909	0.2909		
SED17-24		0.8727	0.7636	0.9636	0.7709	0.72		
SED17-12		0.4982	0.6327	0.7127	0.4545	0.5345		
SED17-01		0.8873	0.8509	0.7891	0.8473	0.8473		
SED17-03		0.1345	0.2873	0.2109	0.2109	0.3745		
SED17-27		0.7745	0.68	0.7455	0.7891	0.7564		
Angular (Corn	ected) Transfor	med Detail						
Sample Code		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-29		0.2731	0.3702	0.4545	0.3248	0.8127		· ·
SED17-08		0.9273	0.9122	0.6861	1.034	0.9579		
SED17-06		1.08	1.067	1.354	1.072	1,021		
SED17-09		0.2014	0.1209	0.1819	0.3248	0.431		
SED17-13		0.1483	0.1209	0.1602	0.1209	0.08538		
SED17-17		1.094	1.14	1.18	0.9047	0.9656		
SED17-20		0.1819	0.1046	0.1353	0.1483	0.1919		
\$ED17-18		0.4904	0.5371	0.3648	0.6359	0.8713		
SED17-19		0.3648	0.4262	0.2999	0.1714	0.5697		
SED17-24		1.206	1.063	1.379	1.072	1,013		
SED17-12		0.7836	0.9197	1.005	0.7399	0.82		
SED17-01		1.228	1.174	1.094	1.169	1.169		
SED17-03		0.3756	0.5657	0.4771	0.4771	0.6586		
SED17-27		1.076	0.9695	1.042	1.094	1.055		
Survival Rate	Binomials							· · · · · · · · · · · · · · · · · · ·
Sample Code		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-29		20/275	36/275	53/275	28/275	145/275		
SED17-08		176/275	172/275	165/275	203/275	184/275		
SED17-06		214/275	211/275	230/275	212/275	200/275		
SED17-09		11/275	4/275	9/275	28/275	48/275		
SED17-13		6/275	4/275	7/275	4/275	2/275		
SED17-17		217/275	227/275	235/275	170/275	186/275		
SED17-20		9/275	3/275	5/275	6/275	10/275		
SED17-18		61/275	72/275	35/275	97/275	161/275		
\$ED17-19		35/275	47/275	24/275	8/275	80/275		
SED17-24		240/275	210/275		212/275	198/275		
SED17-12		137/275	174/275		125/275	147/275		
SED17-01		244/275	234/275		233/275	233/275		
SED17-03		37/275	79/275	58/275	58/275	103/275		

Analyst: yw gatuu 24/17

000-469-187-1

Report Date: Test Code:

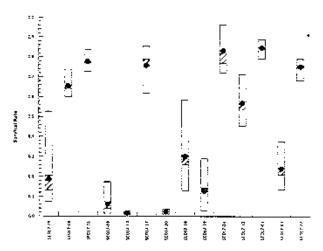
11 Jul-17 09:12 (p 4 of 4) 170469b | 11-0911-3856

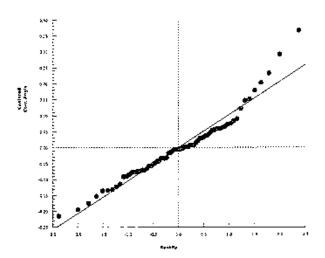
Echinoid Embryo-Larval Survival and Development Test

Nautilus Environmental

Analysis ID: Analyzed:

20-6984-3357 11 Jul-17 9:12 Endpoint: Survival Rate Analysis:


Nonparametric-Control vs Treatments


CETIS Version:

CETISv1.8.7

Official Results: Yes

Graphics

11 Jul-17 09:12 (p 1 of 4) 1704695 | 11-0911-3856

Echinoid Embr	yo-Larval Survival a	nd Developm	ent Test							Naut	tilus Environmental
•	08-4455-1105			n Normal				CETIS Ve		CETISv1.8	.7
Analyzed:	11 Jul-17 9:12	Analysis:	Nonparar	netric-Contri	ol vs T	Freatments		Official R	esuits:	Yes	<u> </u>
Batch ID:	13-9688-8889	Test Type:	Developn	nent-Surviva	I			Analyst:	Yvon	ne Lam	
Start Date:	26 May-17 15:55	Protocol:	PSEP (19	995)				Diluent:	Natur	al seawater	
Ending Date:	30 May-17 16:25	Species:	Strongylo	centrotus pu	трига	ıtuş		Brine:			
Duration:	4d 1h	Source:	San Dieg	o Lab				Age:			
Sample Code	Sample ID	Sample	e Date	Receive D	ate	Sample A	Age	Client Na	me		Project
SED17-29	08-4658-3752	04 May	r-17 17:00	3 15 May-17	10:30	0 21d 23h	° 8.8)	Golder			
SED17-08	10-1003-8381			15 May-17							
SED17-06	19-4215-8235	26 Apr-	-17 17:00	15 May-17	10:30	0 2 9 d 23h	(7.5 °				
\$ED17-09	13-9590-2568	29 Apr	-17 17:00	15 May-17	10:30	0 26d 23h	(8.5°				
SED17-13	02-1258-2667	29 Apr	-17 17:00	15 May-17	10-3	0 26 d 23h	(7.5 °				
SED17-17	06-5820-5843	30 Apr	17 17:00	15 May-17	10:30	0 25d 23h	(7 °C)				
SED17-20	00-0790-7357	01 May	-17 17:00	0 15 May-17	10:30	0 24d 23h	(7 °C)				
SED17-18	04-2524-4947	02 May	-17 17:00	0 15 May-17	10:30	0 23d 23h	(4 °C)				
SED17-19	07-6812-4215	02 M ay	-17 17:00	0 15 May-17	10:30	0 23d 23h	(5.5 °				
SED17-24	05-6632-5205			0 15 May-17			•				
SED17-12	01-4413-4098	04 May	- 1 7 17;00	0 15 May-17	10:30	0 21d 23h	(5 °C)				
SED17-01	05-8502-2240	04 Ma)	- 1 7 17:00	0 15 May-17	10:3	0 21d 23h	(5.8°				
SED17-03	05-1816-3513	04 May	-17 17:00	0 15 May-17	10:3	0 21d 23h	(7.2°				
SED17-27	15-8574-8 5 65			0 15 May-17							
Sample Code	Material Type	Sampl	e Source	,		Station L	.ocatio	n		Latitude	Longitude
SED17-29	Sediment Sam	ple Golder			•	SED17-2	9	·			
SED17-08	Sediment Sam	ple Golder				SED17-0	8				
SED17-06	Sediment Sam	ple Golder				\$ED17-0	6				
SED17-09	Sediment Sam	ple Golder				SED17-0	9				
SED17-13	Sediment Sam	ple Golder				\$ED17-1	3				
SED17-17	Sediment Sam	ple Golder				SED17-1	7				
SED17-20	Sediment Sam	pl e Golder				SED17-2	0				
SED17-18	Sediment Sam	ple Golder				SED17-1	8				
SED17-19	Sediment Sam	ple Golder				SED17-1	9				
SED17-24	Sediment \$am	ple Golder				SED17-2	4				
SED17-12	Sediment Sam	ple Golder				SED17-1:	2				
SED17-01	Sediment Sam	ple Golder				SED17-0	1				
SED17-03	Sediment Sam	ple Golder				SED17-0	3				
SED17-27	Sediment Sam	-				SED17-2					
Data Transform	n Zela	Alt Hy	p Tria	ls Seed	d d		PMS	D Te	st Reşul	ŧ	<u> </u>
Angular (Correc	ted) NA	C>T	NA	NA			45.5	%			
Steel Many-On	e Rank Sum Test										
	vs Sample Code	Test S			DF	P-Value	Р-Ту	pe De	cision(a	::5%)	
SED17-29	\$ED17-08	15	15	0	8	0.0402	Asyr	np Sig	nificant	Effect	
	SED17-06	31	15	0	8	0.9916	Asyn	•	_	cant Effect	
	SED17-09	23	15	0	8	0.6133	Asyr	-		cant Effect	
	SED17-13	15	15	0	8	0.0402	Asyn	_	nificant		
	SED17-17 SED17-20	35 48	15	0	8	0.9997	Aşyı		-	cant Effect	
	SED17-20 SED17-18	18	15 15	0	8	0.1600	Asyn		-	cant Effect	
	SED17-18	29 18	15 15	0	8 8	0.9687	Asyn			cant Effect	
	SED17-19	34	15	0	8 8	0.1600 0.9993	Asyn	•		cant Effect	
	SED17-12	15	15	0	8	0.9993	Asyr Asyr		-	cant Effect	
	SED17-01	35	15	0	8	0.9997	Asyn		niticant : a-Sidaiti	enect cant Effect	
	SED17-03	33	15	0	8	0.9983	Asyr		-	cant Effect	
	SED17-27	36	15	0	8	0.9999	Asyr		_	cant Effect	111.
				-	-		. 10 11		4.9		W

Analyst: www oatury 24

Report Date:

11 Jul-17 09:12 (p 2 of 4) 170469b | 11-0911-3856

						Test	Code:	1	70469b 1	1-0911-3856
Echinoid Emi	bryo-Larval Survival	and Develop	ment Test					Na	utilus Env	ironmental
Analysis ID:	08-4455-1105	Endpoint:	Proportion Nor	mai		CET	S Version:	ÇETIŞv1.	8.7	
Analyzed:	11 Jul-17 9:12	Analysis:	Nonparametric		reatments		ial Results:	Yes		
ANOVA Table	<u> </u>		<u> </u>							
Source	Sum Squares	Mean	Square	DF	F Stat	P-Value	Decision(a:5%)		
Between	12.2092	0.939	1692	13	24.06	<0.0001	Significant	Effect		
Error	2.185537	0.039	02745	56			~			
Total	14.39474			69	•					
Distributiona	l Tests									
Attribute	Test		Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Bartlett Equal	ity of Variance	86.35	27.69	<0.0001	Unequal \	/ariances			<u>.</u>
Distribution	· · ·			0.9526	<0.0001	Non-norm	al Distributio	òn		
Proportion N	ormal Summary							<u>-</u> -		
Sample Code	e Go	unt M ear	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-29	5	0.673	7 0.465	0.8825	0.6389	0.5	0.8828	0.07519	24.95%	0.0%
SED17-08	5	0.007	985 0	0.01646	0.005435	0	0.01744	0.003051	85.44%	98.81%
SED17-06	5	0.795	0.7 6 67	0.8237	0.8	0.76	0.8199	0.01025	2.88%	-18.03%
SED17-09	5	0.426	0	0.9121	0.5455	0	0.7857	0.1751	91,91%	36.78%
SED17-13	5	0.033	33 0	0.1259	0	0	0.1667	0.03333	223.6%	95.05%
SED17-17	5	0.837	1 0.7596	0.9145	0.8495	0.7696	0.9059	0.02789	7.45%	-24.24%
SED17-20	5	0.133	3 0	0.5035	Q.	0	0.6667	0.1333	223,6%	80.21%
SED17-18	5	0.706	0.4964	0.9159	0.8137	0.459	0.8333	0.07555	23.92%	-4.81%
SED17-19	5	0.257	'9 ()	0.6238	0.234	0	0.7125	0.1318	114.3%	61.72%
SED17-24	5	0.834	7 0.8013	0.868	0.8292	0.8019	0.8762	0.012	3.21%	-23.88%
SED17-12	5	0.001	1361 0	0.005138	0	Ð	0.006803	0.001361	223.6%	99.8%
SED17-01	5	0.834	0.7588	0.9091	0.8484	0.7373	0.8932	0.02706	7.26%	-23.78%
\$ED17-03	5	0.809	6 0.7673	0.8438	0.8155	0.7586	0.8378	0.01378	3.82%	-19.57%
\$ED17-27	5	0.878	0.8541	0.9032	0.8717	0.8606	0.9122	0.008833	2.25%	-30.42%
Angular (Core	rected) Transformed	Summary								
Sample Code	Co	unt Mear		95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-29	5	0.975	0.7394	1.211	0.9261	0.7854	1.221	0.08489	19.47%	0.0%
SED17-08	5	0.084	9 0.03897	0.1308	0.07379	0.0377	0.1325	0.01654	43.57%	91.29%
SED17-06	5	1.102	1.067	1.137	1.107	1.059	1,133	0.01259	2.56%	-12.98%
SED17-09	5	0.679	96 0.117 6	1.242	0.8309	0.1448	1.09	0.2024	66.6%	30.31%
SED17-13	5	0.295	55 0.1798	0.4112	0.2527	0.1901	0.4205	0.04168	31.54%	69.7%
SED17-17	5	1.161	1.055	1.267	1.172	1.07	1.259	0.03817	7.35%	-19.03%
\$ED17-20	5	0.367	6 -0.0447	0.7799	0.2255	0.1588	0.9553	0.1485	90.33%	62.3%
SED17-18	5	1.009	0.7805	1.237	1.124	0.7444	1.15	0.08225	18.23%	-3.46%
SED17-19	5	0.483	0.03053	0.9356	0.505	0.1022	1.005	0.163	75.45%	50.46%

Analyst: Jui QA July 2 4/13

000-469-187-1

SED17-24

SED17-12

SED17-01

SED17-03

SED17-27

5

5

5

5

5

1.153

1.155

1.115

1.216

0.04874

1.107

1.057

1.067

1.177

0.02482

1.199

1.254

1.163

1.255

0.07265

1.145

1.171

1,127

1.204

0.04273

1.11

1.033

1.057

1.188

0.03572

1.211

1.238

1.156

1.27

0.08257

0.01651

0.03533

0.01719

0.01412

3.2%

0.008612 39.52% 95.0%

6.84%

3.45%

2.6%

-18.25%

-18.5%

-24.7%

-14.35%

CETIS™ v1.8.7.16

Report Date: Test Code: 11 Jul-17 09:12 (p 3 of 4) 1704695 | 11-0911-3856

	ryo-Larval Surv	-	- Creiopine	ant reat					Environmen
Analysis ID: Analyzed:	08-4455-1105 11 Jul-17 9:12		-	Proportion Nort Nonparametric		Freatments	CETIS Version: Official Results:	CETISv1.8.7 Yes	
roportion No	· · · · · · · · · · · · · · · · · · ·	•		<u> </u>					
Sample Code		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5			
ED17-29		0.5	0.6389	0.8113	0.5357	0.8828			
ED17-08		0	0.01744		0.004926	0.005435			
ED17-06		0.8084	0.8199	0.8	0.7877	0.76			
ED17-09		0.5455	0	0.7778	0.7857	0.02083			
SED17-13		0.1667	0	0.1778	0.1557	0.02000			
ED17-17		0.7696	0.7753	0.8851		0 8495			
SED17-20		0.6667			0.9059				
SED17-20			0 0000	0	0	0			
		0.459	0.8333	0.6	0.8247	0.8137			
SED17-19		0.3429	0.234	0	0	0.7125			
SED17-24		0.8292	0.8762	0.8377	0.8019	0.8283			
SED17-12		0	0	0	0	0.006803			
SED17-01		0.8464	0.8932	0.7373	0.8712	0.8197			
SED17-03		0.8378	0.8228	0.7586	0.7931	0.8155			
SED17-27		0.8779	0.8717	0.9122	0.871	0.8606			
Ingular (Corn	ected) Transfor	med Detai	ı						
Sample Code		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5			
SED17-29		0.7854	0.9261	1.121	0.8211	1.221			
SED17-08		0.0377	0.1325	0.1103	0.07024	0.07379			
SED17-06		1.118	1.133	1.107	1.092	1.059			
SED17-09		0.8309	0.2527	1.08	1.09	0.1448			
ED17-13		0.4205	0.2527	0.1901	0.2527	0.3614			
ED17-17		1.07	1.077	1.225	1.259	1.172			
SED17-20		0.9553	0.2928	0.2255	0.2056	0.1588			
SED17-18		0.7444	1.15	0.8861	1.139	1.124			
SED17-19		0.6255	0.505	0.1022	0.1777	1.005			
SED17-24		1.145	1.211	1.156	1.11	1,144			
SED17-12		0.04273	0.03791		0.04474	0.08257			
SED17-01		1.171	1.238	1.033	1.204	1.132			
SED17-03		1.156	1.136	1.057	1.099	1.127			
SED17-27		1.214	1.204	1.27	1.203	1.188			
Proportion No	rmal Binomials		· · ·						
ample Code		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5			
ED17-29		10/20	23/36	43/53	15/28	128/145	.		
ED17-08		0/176	3/172	2/165	1/203	1/184			
ED17-06		173/214	173/211		167/212	152/200			
ED17-09		6/11	0/4	7/9	22/28	1/48			
ED17-13		1/6	0/4	0/7	0/4	0/2			
ED17-17		167/217	176/227						
ED17-20		6/9	0/3	206/235 0/5	154/170	158/186			
ED17-18		28/61	60/72		0/6	0/10			
ED17-19				21/35	80/97	131/161			
ED17-19		12/35	11/47	0/24	0/8	57/80			
		199/240	184/210		170/212	164/198			
ED17-12		0/137	0/174	0/196	0/125	1/147			
ED17-01		207/244	209/234		203/233	191/233			
ED17-03		31/37	65/79	44/58	46/58	84/103			
SED17-27		187/213	163/187	187/205	189/217	179/208			

Analyst: Yww QA MW 74/P

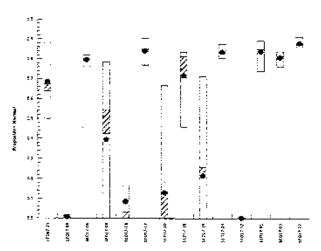
Report Date: Test Code:

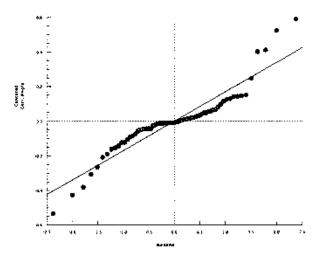
11 Jul-17 09:12 (p 4 of 4) 170469b | 11-0911-3856

Echinoid Embryo-Larval Survival and Development Test

Nautilus Environmental

Analysis ID: Analyzed:


08-4455-1105 11 Jul-17 9:12


Analysis:

Endpoint: Proportion Normal Nonparametric-Control vs Treatments CETIS Version: Official Results:

CETISv1.8.7 Yes

Graphics

Report Date:

11 Jul-17 09:12 (p 1 of 4)

	nytical (teport							Test C	ode:	17	04696 11-091	1-3856
Echinoid Emb	ryo-Larval Survival ar	nd Developm	ent Test		•••					Nau	itilus Environi	nentaí
Analysis ID:	11-7006-2971	Endpoint;	Combined	d Proportion	Norn	12		CETIE	Version:	CETISv1.	2 7	
Analyzed:	11 Jul-17 9:12	Analysis:		netric-Contro			nents		Results:	Yes	2.4	
Batch (D:	13-9688-8889	Test Type:	Developm	ent-Survival				Analys	t: Yvon	ne Lam		•
Start Date:	26 May-17 15:55	Protocol:	PSEP (19	95)				Diluen	t: Natur	al seawater		
Ending Date:	30 May-17 18:25	Species:	Strongyla	centrotus pu	rpura	atus		Brine:				
Duration:	4d 1h	Source:	San Diego	o L a b				Age:				
Sample Code	Sample (O	Samp	le Date	Receive Da	ate	Şan	nple Age	Client	Name		Project	
SED17-29	08-4658-3752	04 Ma	y-17 17:00) 15 May-17	10:3	0 21đ	23h (8.5°	° Golder		•	*	
SED17-08	10-1003-8381	26 Apr	r-17 17:00	15 May-17	10:3	0 29d	23h (7.5°	•				
SED17-06	19-4215-8235	26 Apr	-17 17:00	15 May-17	10:3	0 29d	23h (7.5 °	•				
SED17-09	13-9590-2568	29 Apr	r-17 17:00	15 May-17	10:3	0 26d	23h (8.5 °					
SED17-13	02-1258-2667	29 Apr	-17 17:00	15 May-17	10:3	0 26d	23h (7.5 °					
SED17-17	06-5820-5843	30 Apr	-17 17:00	15 May-17	10:3	0 25d	23h (7 °C)				
SED17-20	00-0790-7357	01 Ma	y-17 17:00	15 May-17	10:3	0 2 4 d	23h (7°C	;)				
\$ED17-18	04-2524-4947	02 Ma	y-17 17:00	15 May-17	10:3	0 23d	23h (4 °C)				
SED17-19	07-6812-4215	02 Ma	y-17 17:00	15 May-17	10:3	0 23d	23h (5.5 °	•				
SED17-24	05-6632-5205	02 Ma	y-17 17:00	15 May-17	10:3	0 23d	23h (6 °C	3)				
SED17-12	01-4413-4098	04 Ma	y-17 1 7:00	15 May-17	10:3	0 21d	23h (5 °C	-}				
SED17-01	05-6502-2240	04 Mar	y-17 17:00	15 May-17	10:3	0 21d	23h (5.8°	,				
SED17-03	05-1816-3513	04 Mar	y-17 17:00	15 May-17	10:3	0 21 d	23h (7.2°	•				
SED17-27	15-8574-8565	05 Mar	y-17 17:00	15 May-17	10:3	0 20đ	23h (5.5 °	,				
Sample Code	Material Type		le Source	-		Stat	ion Locati	ion		Latitude	Longitud	le
SED17-29	Sediment Samp	ole Golder	•			SED	17-29					
SED17-08	Sediment \$amp	-	•			SED	17-08					
SED17-06	Sediment Samp					SED	17-06					
SED17-09	Sediment Samp					SED	17-09					
SED17-13	Sediment Samp	ole Golder	•			SED	17-13					
SED17-17	Sediment Samp	ole Golder				SED	17-17					
SED17-20	Sediment Samp	ole Golder	•			SED	17-20					
SED17-18	Sediment Samp		•			SED	17-18					
SED17-19	Sediment Samp					SED	17-19					
SED17-24	Sediment Samp					SED	17-24					
SED17-12	Sediment Samp					SEC	17-12					
SED17-01	Sediment Samp					SED	17-01					
SED17-03	Sediment Samp					SED	17-03					
SED17-27	Sediment Samp	ile Golder				\$ED	17-27					
Data Transford		Ait Hy	p Trial:	s Seed			. РМ	ISD :	Fest Result	···		
Angular (Correc	ted) NA	C>T	NA	NA		·	76.	4%				
	ie Rank Sum Test									-		•
Sample Code SED17-29		Test S				P-Va			Decision(a			
OCD 17-29	SED17-08 SED17-06	15	15	0	8	0.040			Significant 6			
	SED17-08 SED17-09	40 17	15 16	0	8	1.000	•		Non-Signific			
	SED17-09	15	15 15	0	8	0.10			Non-Signific			
	SED17-17	40	15	0	8	0.040	•		Significant E			
	SED17-20	15	15	0	8	1,000 0.040			Von-Signific			
	SED17-18	33	15	0	8	0.040	·		Significant Ε Voπ-Signific			
	SED17-19	21	15	o o	8	0.409	,		von-Signitio			
	SED17-24	40	15	ō	8	1.000			von-Signific			
	SED17-12	15	15	Ö	8	0.040			Significant E			
	SED17-01	40	15	ā	8	1.000	,		Non-Signific			
	SED17-03	34	15	0	8	0.999	•		≀on-Signific			_
	SED17-27	40	15	0	8	1.000			on-Signific		(G	U

Analyst: Www astury 74/17

Echinoid Embryo-Larval Survival and Development Test

Report Date: Test Code:

11 Jul-17 09:12 (p 2 of 4) 1704696 | 11-0911-3856

- I 4*I	E
Nautinis	Environmental:
11000000000	

Analysis ID: 11-7006-2971 Analyzed: 11 Jul-17 9:12

Endpoint: Combined Proportion Normal Analysis: Nonparametric-Control vs Treatments

CETIS Version: CETISv1.8.7 Official Results: Yes

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	10.30497	0.7926897	13	65.36	< 0.0001	Significant Effect
Error	0.6792176	0.01212889	56			
Total	10.98418		69			

Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Sartlett Equality of Variance	54.66	27.69	<0.0001	Unequal Variances
Distribution	Shaptro-Wilk W Normality	0.9013	0.9526	< 0.0001	Non-normal Distribution

Combined Proportion Normal Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-29	5	0.1593	0	0.3793	0.08364	0.03636	0.4655	0.07923	111.2%	0.0%
SED17-08	5	0.005091	0	0.01024	0.003636	0	0.01091	0.001854	81.44%	96.8%
SED17-06	5	0.6175	0.5647	0.6702	0.6291	0.5527	0.6691	0.01901	6.89%	-287.7%
\$ED17-09	5	0.02618	0	0.06598	0.02182	0	0.08	0.01433	122.4%	83.56%
SED17-13	5	0.0007273	0	0.002747	0	0	0.003636	0.0007273	223.6%	99.54%
\$ED17-17	5	0.6276	0.5304	0.7249	0.6073	0.56	0.7564	0.03502	12.48%	-294.1%
SED17-20 .	5	0.004364	0	0.01648	0	0	0.02182	0.004364	223.6%	97.26%
SED17-18	5	0.2327	0.03199	0.4335	0.2182	0.07636	0.4764	0.0723	69.47%	-46.12%
SED17-19	5	0.05818	Q	0.1649	0.04	O	0.2073	0.03843	147.7%	63.47%
SED17-24	5	0.6829	0.5772	0.7886	0.6691	0.5964	0.8073	0.03808	12.47%	-328.8%
SED17-12	5	0.0007273	0	0.002747	0	0	0.003636	0.0007273	223.6%	99.54%
SED17-01	5	0.7055	D.614	0.7969	0.7382	0.5818	0.76	0.03293	10.44%	-342.9%
SED17-03	5	0.1964	0.1029	0.2898	0.1673	0.1127	0.3055	0.03366	38.33%	-23,29%
SED17-27	5	0.6582	0.6096	0.7068	0.68	0.5927	0.6873	0.01752	5.95%	-313.2%

Angular (Corrected) Transformed Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-29	5	0.3757	0.09676	0.6546	0.2934	0.1919	0.7508	0.1005	59.79%	0.0%
SED17-08	5	0.06817	0.03308	0.1033	0.06034	0.03016	0.1046	0.01264	41.45%	81.85%
\$ED17-06	5	0.9043	0.8501	0.9585	0.916	0.8382	0.9579	0.01953	4.83%	-140.7%
SED17-09	5	0.1371	0.01238	0.2619	0.1483	0.03016	0.2868	0.04494	73.27%	63.49%
\$ED17-13	5	0.03619	0.01943	0.05295	0.03016	0.03016	0.06034	0.006037	37.3%	90.37%
SED17-17	5	0.9162	0.8125	1.02	0.8935	0.8455	1.055	0.03736	9.12%	-143.9%
SED17-20	5	0.05378	-0.0118	0.1194	0.03016	0.03016	0.1483	0.02362	98.21%	85.69%
\$ED17-18	5	0.4844	0.2428	0.7261	0.486	0.28	0.7618	0.08703	40.17%	-28.95%
SED17-19	· 5	0.189	-0.03622	0.4141	0.2014	0.03016	0.4727	0.0811	95.97%	49.7%
SED17-24	5	0.9757	0.8586	1.093	0.9579	0.8824	1.116	0.04217	9.66%	-159.7%
SED17-12	5	0.03619	0.01943	0.05295	0.03016	0.03016	0.06034	0.006037	37.3%	90.37%
SED17-01	5	0.9991	0.9012	1.097	1.034	0.8676	1.059	0.03527	7.89%	-166.0%
\$ED17-03	5	0.4537	0.3367	0.5707	0.4213	0.3424	0.5856	0.03321	20.77%	-20.77%
\$ED17-27	5	0.9468	0.896	0.9975	0.9695	0.8787	0.9774	0.01827	4.32%	-152.0%

Analyst: UM QA Myz4187

000-469-187-1

CETI\$™ v1.8.7.16

11 Jul-17 09:13 (p 3 of 4) 170469b (11-0911-3856

Analyze 1 Juli-17 9-12 Analyze 2 Analyze 3 Noppremetric Control vs Treatments Official Results : Yes Combined Proportion Normal Detail Sample Code	Echinoid Emb	bryo-Larval Surv	rival and De	velopm	ent Test				Nautilus Environmenta
Sample Code	Analysis ID: Analyzed:								
SED17-28 0,08836 0,08836 0,08836 0,08836 0,009373 0,009366 0,009373 0,009366 0,009373 0,009366 0,009373 0,009366 0,009373 0,009366 0,009373 0,009366 0,009373 0,009366 0,009366 0,0093666 0,009373 0,009366 0,009366 0,0093666 0,009373 0,009366 0,009366 0,009373 0,009366 0,009366 0,009373 0,009366 0,0	Combined Pro	oportion Norma	l Detail						
SED17-08	Sample Code		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-06 0 0.6281 0.8291 0.8691 0.6097 0.56527 SED17-109 0.02182 0 0.02485 0.08 0.000636 SED17-17 0.003636 0 0 0 0 0 SED17-17 0.8073 0.04 0.7664 0.56 0.5745 SED17-18 0.0018 0.2182 0.07636 0.2909 0.4764 SED17-19 0.04364 0.04 0 0 0 0.2073 SED17-19 0.04364 0.04 0 0 0 0.2073 SED17-12 0 0 0 0 0 0.000636 SED17-10 0.7226 0.6991 0.8073 0.8182 0.5964 SED17-10 0.7226 0.6991 0.8073 0.8182 0.5964 SED17-10 0.7227 0.76 0.5818 0.7382 0.5964 SED17-03 0.1127 0.2364 0.16 0.1673 0.8055 SED17-03 0.1127 0.2364 0.16 0.1673 0.8055 SED17-03 0.1127 0.2364 0.16 0.1673 0.8055 SED17-08 0.8016 0.8927 0.68 0.6873 0.6809 SED17-09 0.1819 0.2934 0.4065 0.2357 0.7608 SED17-09 0.1483 0.03016 0.1062 0.2888 0.68034 SED17-09 0.1483 0.03016 0.30	SED17-29		0.03636	0.0836	4 0.1564	0.05455	0.4655		
SED17-09	\$ED17-08		0	0.0109	1 0.007273	0.003636	0.003636		
SED17-13	SED17-06		0.6291	0.6291	0.6691	0.6073	0.5527		
SED17-17	SED17-09		0.02182	0	0.02545	0.08	0.003636		
SED17-20	\$ED17-13		0.003636	0	0	0	0		
SED17-18	SED17-17		0.6073	0.64	0.7564	0.56	0.5745		
SED17-19	SED17-20		0.02182	0	¢	O.	c		
SED17-19	SED17-18		0.1018	0.2182	0.07636	0.2909	0.4764		
SED17-24 0.7236 0.6691 0.8073 0.6182 0.5964 SED17-12 0 0 0 0 0 0.003636 SED17-12 0.750 0.7527 0.76 0.5818 0.7392 0.6845 SED17-03 0.1127 0.2864 0.16 0.1673 0.3055 SED17-27 0.68 0.9927 0.58 0.6873 0.5509 SED17-27 0.68 0.9927 0.58 0.6873 0.5509 SED17-29 0.1919 0.2894 0.4065 0.2357 0.7608 SED17-29 0.1919 0.2894 0.4065 0.2357 0.7608 SED17-08 0.03016 0.1046 0.08538 0.06034 0.06034 SED17-08 0.0916 0.1916 0.9879 0.9893 0.6332 0.5809 SED17-09 0.1483 0.03016 0	SED17-19		0.04364						
SED17-12	SED17-24		0.7236		0.8073	0.6182			
SED17-01 0.7527 0.76 0.5818 0.7382 0.6945 SED17-03 0.1127 0.2364 0.16 0.1673 0.3055 SED17-27 0.68 0.5927 0.68 0.6873 0.6509 Angular (Corrected) Transformed Detail Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 SED17-29 0.1919 0.2934 0.4065 0.2357 0.7508 SED17-08 0.0916 0.1046 0.9858 0.08033 0.08034 SED17-09 0.1463 0.03016 0.1062 0.2888 0.06034 SED17-09 0.1483 0.03016 0.03016 0.03016 0.03016 0.03016 0.03016 SED17-17 0.8935 0.9273 1.055 0.4845 0.8602 SED17-18 0.3248 0.488 0.28 0.5967 0.7618 SED17-19 0.2104 0.2014 0.03016 0.03016 0.03016 0.4727 SED17-24 1.017 0.9679 1.116 0.9947 0.8824 SED17-01 1.05 1.095 0.8676 1.034 0.9852 0.8034 SED17-03 0.3424 0.5077 0.4115 0.4213 0.5856 SED17-07 0.9695 0.9774 0.9387 SED17-09 0.3424 0.5077 0.4115 0.4213 0.5856 SED17-07 0.9695 0.9774 0.9387 SED17-10 1.05 1.059 0.8676 1.034 0.9852 0.9387 SED17-10 1.05 1.059 0.8676 1.034 0.9852 0.9387 SED17-10 1.05 1.059 0.8676 1.034 0.9852 0.9387 SED17-09 0.3424 0.5077 0.4115 0.4213 0.5856 SED17-09 0.9595 0.9774 0.9387 Combined Proportion Normal Binomials Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 SED17-09 0.1275 0.275 7/275 0.275 12/75	SED17-12		0						
SED17-27 0.58 0.1127 0.2364 0.16 0.1673 0.3055 SED17-27 0.68 0.5927 0.68 0.6873 0.6509 Angular (Corrected) Transformed Detail Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 SED17-28 0.1919 0.2934 0.4065 0.2357 0.7508 SED17-08 0.03016 0.1046 0.08538 0.06034 0.06034 SED17-06 0.916 0.916 0.9579 0.8935 0.8382 SED17-09 0.1463 0.03016 0.03016 0.03016 0.03016 0.03016 0.05034 SED17-13 0.06034 0.03016 0.03016 0.03016 0.03016 0.03016 SED17-17 0.8935 0.9273 1.055 0.8455 0.8602 SED17-18 0.3248 0.486 0.28 0.5697 0.7618 SED17-19 0.1104 0.2014 0.03016 0.03016 0.03016 0.03016 SED17-19 0.2104 0.2014 0.03016 0.03016 0.03016 0.03016 SED17-19 0.2104 0.03016 0.03016 0.03016 0.03016 SED17-19 0.2104 0.03016 0.03016 0.03016 0.03016 0.03016 SED17-19 0.2104 0.03016 0.03016 0.03016 0.03016 0.03016 SED17-19 0.2104 0.03016 0.03016 0.03016 0.03016 0.05014 SED17-19 0.03016 0.03016 0.03016 0.03016 0.03016 0.03016 SED17-19 0.03016 0.03016 0.03016 0.03016 0.03016 0.03016 0.03016 SED17-19 0.03016 0.03016 0.03016 0.03016 0.03016 0.05014 SED17-01 1.05 1.059 0.8679 1.116 0.03016 0.05034 SED17-02 0.03016 0.03016 0.03016 0.03016 0.05034 SED17-01 1.05 1.059 0.8676 1.034 0.9852 SED17-02 0.9665 0.3767 0.9695 0.9774 0.9937 0.9937 Combined Proportion Normal Binomials SED17-09 0.0000 0.00000 0.00000 0.00000000000	SED17-01		0.7527		0.5818	0.7382			
SED17-27 0.68 0.5927 0.68 0.8873 0.8509 Angular (Corrected) Transformed Detail Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 SED17-29 0.1919 0.2934 0.4085 0.2357 0.7508 SED17-08 0.03016 0.1046 0.08538 0.06034 0.06034 SED17-06 0.916 0.916 0.9579 0.8935 0.8382 SED17-09 0.1483 0.03016 0.03016 0.03016 0.03016 SED17-17 0.8935 0.9273 1.055 0.8455 0.8602 SED17-17 0.8935 0.9273 1.055 0.8455 0.8602 SED17-18 0.3248 0.486 0.28 0.5697 0.7618 SED17-19 0.2104 0.2014 0.03016 0.03016 0.03016 SED17-19 0.2104 0.2014 0.03016 0.03016 0.03016 SED17-19 0.2104 0.2014 0.03016 0.03016 0.03016 0.03016 SED17-19 0.3248 0.486 0.28 0.5697 0.7618 SED17-19 0.3248 0.486 0.28 0.5697 0.7618 SED17-19 0.3240 0.3016 0.03016 0.03016 0.03016 0.03016 SED17-19 0.3240 0.3016 0.03016 0.03016 0.03016 0.03016 SED17-19 0.3240 0.3016 0.03016 0.03016 0.03016 0.03016 SED17-20 0.33016 0.3016 0.03016 0.03016 0.03016 0.03016 SED17-21 0.03016 0.3016 0.03016 0	SED17-03								
Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 SED17-29 0.1919 0.2934 0.4065 0.2357 0.7508 SED17-06 0.916 0.916 0.9859 0.8935 0.8322 SED17-09 0.1483 0.03016 0.03016 0.03016 0.03016 0.03016 SED17-13 0.69034 0.03016 0.03016 0.03016 0.03016 0.03016 SED17-17 0.8935 0.9273 1.055 0.8455 0.8602 SED17-18 0.3483 0.03016 0.03016 0.03016 0.03016 SED17-19 0.2104 0.2014 0.03016 0.03016 0.4727 SED17-24 1.017 0.9579 1.116 0.9047 0.8824 SED17-21 0.03016 0.03016 0.03016 0.06034 SED17-22 0.03016 0.03016 0.06034 SED17-30 0.3424 0.9077 0.4115 0.4213 0.5866 SED17-01 1.05 1.	SED17-27								
SED17-29 0.1919 0.2934 0.4065 0.2357 0.7508 SED17-08 0.03016 0.1046 0.06538 0.06034 0.06034 SED17-09 0.1483 0.03016 0.1602 0.2868 0.06034 SED17-13 0.06034 0.03016 0.03016 0.03016 0.03016 0.03016 SED17-17 0.8935 0.8332 SED17-19 0.1483 0.03016 0.03016 0.03016 0.03016 0.03016 SED17-17 0.8935 0.9273 1.055 0.8455 0.8602 SED17-18 0.3248 0.486 0.28 0.5697 0.7618 SED17-19 0.2104 0.2014 0.03016 0.03016 0.4727 SED17-19 0.2104 0.2014 0.03016 0.03016 0.4727 SED17-24 1.017 0.9679 1.116 0.9047 0.8824 SED17-10 1.05 1.059 0.8676 1.034 0.9852 SED17-01 1.05 1.059 0.8676 1.034 0.9852 SED17-03 0.3424 0.5077 0.4115 0.4213 0.5866 SED17-03 0.3424 0.5077 0.4115 0.4213 0.5866 SED17-29 10:275 23:275 43:275 15:275 128:275 SED17-29 10:275 3:275 15:275 128:275 SED17-08 0:275 7:275 128:275 15:275 SED17-09 6:275 0:275 0:275 0:275 0:275 SED17-11 1:275 184:275 15:275 15:275 SED17-19 1:275 17:275 164:275 15:275 SED17-19 1:275 17:275 164:275 15:275 SED17-19 1:275 17:275 164:275 15:275 SED17-19 1:275 17:275 164:275 15:275 SED17-19 1:275 17:275 164:275 15:275 SED17-19 1:275 17:275 164:275 15:275 SED17-19 1:275 16:275 0:275 0:275 0:275 SED17-19 1:275 18:275 16:275 15:275 SED17-19 1:275 16:275 0:275 0:275 0:275 SED17-19 1:275 18:275 16:275 16:275 SED17-19 1:275 18:275 16:275 16:275 SED17-19 1:275 18:275 16:275 16:275 SED17-19 1:275 18:275 16:275 16:275 SED17-19 1:275 18:275 16:275 16:275 SED17-19 1:275 16:275 0:275 0:275 0:275 SED17-19 1:275 16:275 0:275 0:275 0:275 SED17-19 1:275 16:275 0:275 0:275 0:275 SED17-19 1:275 16:275 0:275 0:275 0:275 SED17-19 1:275 16:275 16:275 16:275 16:275 SED17-19 1:275 16:275 16:275 16:275 16:275 SED17-19 1:275 16:275 16:275 16:275 16:275 SED17-19 1:275 16:275 16:275 16:275 16:275 SED17-19 1:275 16:275 0:275 0:275 0:275 0:275 SED17-19 1:275 0:275 0:275 0:275 0:275 0:275 SED17-19 1:275 0:275 0:275 0:275 0:275 0:275 SED17-19 1:275 0:275 0:275 0:275 0:275 0:275 0:275 SED17-10 1:275 0:	Angular (Corr	 rected) Transfon	med Detail						
SED17-08	Sample Code		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-06	SED17-29		0.1919	0.2934	0.4065	0.2357	0.7508		
SED17-09 0.1483 0.03016 0.1602 0.2868 0.06034 SED17-13 0.06034 0.03016 0.03016 0.03016 0.03016 SED17-17 0.8935 0.9273 1.055 0.8455 0.8602 SED17-20 0.1483 0.03016 0.03016 0.03016 0.03016 SED17-18 0.3248 0.486 0.28 0.5697 0.7618 SED17-19 0.2104 0.2014 0.03016 0.03016 0.4727 SED17-24 1.017 0.9679 1.116 0.9047 0.8824 SED17-12 0.03016 0.03016 0.03016 0.03016 0.06034 SED17-13 0.3424 0.5077 0.4115 0.4213 0.6866 SED17-01 1.05 1.059 0.8676 1.034 0.9852 SED17-03 0.3424 0.5077 0.4115 0.4213 0.6866 SED17-27 0.9695 0.8767 0.9695 0.9774 0.9387 Combined Proportion Normal Binomials Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 SED17-09 10/275 23/275 12/275 12/275 SED17-09 6/275 0/275 7/275 22/275 1/275 SED17-09 6/275 0/275 7/275 22/275 1/275 SED17-13 1/275 176/275 0/275 0/275 0/275 0/275 SED17-17 167/275 176/275 0/275 0/275 0/275 SED17-19 1/275 176/275 0/275 0/275 0/275 SED17-19 1/275 18/4/275 18/4/275 18/4/275 SED17-19 1/275 18/4/275 1/275 1/275 SED17-19 1/275 1/275 1/275 0/275 0/275 0/275 SED17-19 1/275 1/275 1/275 1/275 1/275 SED17-19 1/275 1/275 1/275 0/275 0/275 0/275 SED17-19 1/275 1/275 1/275 1/275 1/275 SED17-10 1/275 1/275 1/275 1/275 1/275 SED17-10 1/275 1/275 1/275 1/275 1/275	\$ED17-08		0.03016	0.1046	0.08538	0.06034	0.06034		
SED17-13	SED17-06		0.916	0.916	0.9579	0.893\$	0.8382		
SED17-17	SED17-09		0.1483	0.0301	6 0.1602	0.2868	0.06034		
SED17-20 0.1483 0.03016 0.03016 0.03016 0.03016 0.03016 SED17-18 0.3248 0.486 0.28 0.5697 0.7618 SED17-19 0.2104 0.2014 0.03016 0.03016 0.4727 SED17-24 1.017 0.9679 1.116 0.9047 0.8624 SED17-12 0.03016 0.03016 0.03016 0.03016 0.06034 SED17-01 1.05 1.059 0.8676 1.034 0.9852 SED17-03 0.3424 0.5077 0.4115 0.4213 0.5856 SED17-27 0.9696 0.8787 0.9695 0.9774 0.9387 SED17-27 0.9696 0.8787 0.9695 0.9774 0.9387 SED17-29 10/275 23/276 43/275 15/275 128/275 SED17-08 0/275 3/275 2/275 1/275 15/275 15/275 SED17-09 6/275 0/275 0/275 0/275 0/275 0/275 SED17-17 167/275 176/275 0/275 0/275 0/275 0/275 SED17-17 167/275 16/275 0/275 0/275 0/275 0/275 SED17-18 28/275 18/275 15/275 SED17-19 12/275 16/275 0/275 0/275 0/275 0/275 0/275 SED17-18 28/275 14/275 15/275 SED17-19 12/275 16/275 0/275 0/275 0/275 0/275 SED17-18 28/275 18/275 18/275 SED17-18 28/275 18/275 18/275 18/275 SED17-19 12/275 1/275 0/275 0/275 0/275 0/275 0/275 SED17-18 28/275 18/275 18/275 18/275 18/275 SED17-19 12/275 1/275 0/275 0/275 0/275 0/275 0/275 SED17-18 28/275 18/275 18/275 18/275 SED17-19 12/275 18/275 18/275 SED17-19 12/275 18/275 18/275 18/275 SED17-19 12/275 18/275 18/275 SED17-19 12/275 18/275 18/275 SED17-19 12/275 18/275 18/275 SED17-19 12/275 18/275 18/275 SED17-19 12/275 18/275 18/275 SED17-19 12/275 0/275 0/275 0/275 0/275 0/275 SED17-19 12/275 0/275 0/275 0/275 0/275 18/275 SED17-19 12/275 0/275 0/275 0/275 0/275 0/275 SED17-19 12/275 0/275 0/275 0/275 0/275 0/275 SED17-19 12/275 0/275 0/275 0/275 0/275 0/275 0/275 SED17-19 12/275 0/	\$ED17-13		0.05034	0.0301	6 0.03016	0.03016	0.03016		
SED17-18	SED17-17		0.8935	0.9273	1.05\$	0.8455	0.8602		
SED17-19	SED17-20		0.1483	0.0301	6 0.03016	0.03016	0.03016		
SED17-24 1.017 0.9579 1.116 0.9047 0.8824 SED17-12 0.03016 0.03016 0.03016 0.03016 0.06034 SED17-01 1.05 1.059 0.8676 1.034 0.9852 SED17-03 0.3424 0.5077 0.4115 0.4213 0.5856 SED17-27 0.9695 0.8767 0.9695 0.9774 0.9387 Combined Proportion Normal Binomials Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 SED17-08 0/275 3/275 1/275 1/275 1/275 SED17-09 6/275 0/275 1/275 1/275 1/275 SED17-13 1/275 0/276 0/275 0/275 0/275 0/275 SED17-17 167/275 176/275 0/275 0/275 0/275 SED17-18 28/275 16/275 15/275 15/275 SED17-19 1/275 1/275 1/275 1/275 SED17-19 1/275 1/275 1/275 1/275 SED17-19 1/275 1/275 1/275 1/275 SED17-19 1/275 1/275 1/275 1/275 1/275 SED17-19 1/275 1/275 1/275 1/275 1/275 SED17-19 1/275 1/275 1/275 1/275 1/275 SED17-19 1/275 1/275 1/275 1/275 1/275 SED17-19 1/275 1/275 1/275 1/275 SED17-19 1/275 1/275 1/275 1/275 1/275 SED17-19 1/275 1/275 1/275 1/275 1/275 SED17-19 1/275 1/275 1/275 1/275 1/275 SED17-19 1/275 1/275 1/275 1/275 1/275 SED17-19 1/275 1/275 1/275 1/275 1/275	SED17-18		0.3248	0.486	0.28	0.5697	0.7618		
SED17-12 0.03016 0.03016 0.03016 0.03016 0.03016 0.06034 SED17-01 1.05 1.059 0.8676 1.034 0.9852 SED17-03 0.3424 0.5077 0.4115 0.4213 0.5856 SED17-27 0.9695 0.8787 0.9695 0.9774 0.9387 Combined Proportion Normal Binomials Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 SED17-29 10/275 29/275 43/275 15/275 128/275 SED17-08 0/275 3/275 2/275 1/275 128/275 SED17-08 173/275 173/275 184/275 167/275 152/275 SED17-09 6/275 0/275 0/275 0/275 0/275 SED17-17 167/275 176/276 208/275 154/275 158/275 SED17-17 167/275 176/276 208/275 164/275 158/275 SED17-18 28/275 60/275 0/275 0/275 0/275 SED17-19 12/275 11/275 176/275 0/275 0/275 1/275 SED17-19 12/275 11/275 11/275 1/275 1/275 SED17-19 12/275 11/275 0/275 0/275 0/275 SED17-19 12/275 11/275 0/275 0/275 0/275 154/275 SED17-19 12/275 11/275 0/275 0/275 1/275 SED17-19 12/275 11/275 0/275 0/275 1/275 SED17-19 12/275 11/275 0/275 0/275 1/275 SED17-19 12/275 11/275 0/275 0/275 1/275 SED17-19 12/275 11/275 0/275 0/275 1/275 SED17-10 12/275 11/275 0/275 0/275 1/275 SED17-10 12/275 11/275 0/275 0/275 1/275 SED17-10 12/275 11/275 0/275 0/275 1/275 SED17-10 12/275 11/275 0/275 0/275 1/275 SED17-10 12/275 11/275 0/275 0/275 1/275 SED17-10 12/275 1/275 0/275 0/275 1/275 SED17-10 12/275 1/275 0/275 0/275 1/275 SED17-10 12/275 1/275 0/275 0/275 1/275 SED17-10 12/275 1/275 0/275 0/275 1/275 SED17-03 31/275 65/275 44/275 46/275 84/275	SED17-19		0.2104	0.2014	0.03016	0.03016	0.4727		
SED17-01 1.05 1.059 0.8676 1.034 0.9852 SED17-03 0.3424 0.5077 0.4115 0.4213 0.5856 SED17-27 0.9685 0.8787 0.9685 0.9774 0.9387 Combined Proportion Normal Binomials Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 SED17-29 10/275 23/276 43/275 15/275 128/275 SED17-08 0/275 3/275 1/275 1/275 152/275 SED17-09 6/275 0/275 1/275 22/275 1/275 SED17-13 1/275 0/275 0/275 0/275 0/275 0/275 SED17-17 167/275 176/275 268/275 154/275 158/275 SED17-18 28/275 60/275 0/275 0/275 0/275 0/275 SED17-19 12/275 11/275 0/275 0/275 0/275 0/275 SED17-19 12/275 11/275 0/275 0/275 0/275 131/275 SED17-19 12/275 11/275 0/275 0/275 1/275 SED17-19 12/275 184/275 22/2/275 170/275 164/275 SED17-19 12/275 184/275 22/2/275 170/275 164/275 SED17-19 12/275 184/275 22/2/275 170/275 164/275 SED17-10 19/275 184/275 22/2/275 170/275 164/275 SED17-19 12/275 11/275 0/275 0/275 1/275 SED17-19 12/275 184/275 22/2/275 170/275 164/275 SED17-10 12/275 184/275 22/2/275 170/275 164/275 SED17-19 12/275 184/275 22/2/275 170/275 164/275 SED17-19 12/275 184/275 22/2/275 170/275 164/275 SED17-10 12/275 184/275 22/2/275 170/275 1/275 SED17-10 12/275 0/275 0/275 0/275 1/275 SED17-03 31/275 65/275 44/275 46/275 84/275	SED17-24		1.017	0.9579	1.116	0.9047	0.8824		
SED17-03 0.3424 0.5077 0.4115 0.4213 0.5856 SED17-27 0.9696 0.8767 0.9695 0.9774 0.9387 Combined Proportion Normal Binomials Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 SED17-29 10/275 23/275 43/275 15/275 128/275 SED17-08 0/275 3/275 2/275 1/275 152/275 SED17-09 6/275 0/275 7/275 22/275 1/275 SED17-13 1/275 0/276 0/275 0/275 0/275 SED17-17 167/275 176/275 208/275 154/275 158/275 SED17-20 6/275 0/275 0/275 0/275 0/275 SED17-18 28/275 60/275 21/275 80/275 131/275 SED17-19 12/275 11/275 0/275 0/275 0/275 SED17-19 12/275 11/275 0/275 0/275 0/275 SED17-19 12/275 184/275 22/275 170/275 184/275 SED17-10 12/275 184/275 22/275 170/275 184/275 SED17-19 12/275 1/275 0/275 0/275 0/275 SED17-19 12/275 1/275 0/275 0/275 1/275 SED17-10 12/275 1/275 0/275 1/275 SED17-10 12/275 1/275 0/275 1/275 SED17-10 12/275 1/275 0/275 1/275 SED17-10 12/275 1/275 0/275 1/275 SED17-10 12/275 0/275 0/275 1/275 SED17-01 207/275 209/275 160/275 203/275 191/275 SED17-03 31/275 65/275 44/275 46/275 84/275	SED17-12		0.03016	0.0301	6 0.03016	0.03016	0.06034		
SED17-27 0.9696 0.8787 0.9695 0.9774 0.9387 Combined Proportion Normal Binomials Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 SED17-29 10/275 23/275 43/275 15/275 128/275 SED17-08 0/275 3/275 2/275 1/275 152/275 SED17-09 6/275 0/275 7/275 22/275 1/275 SED17-13 1/275 0/275 0/275 0/275 0/275 SED17-17 167/275 176/275 208/275 158/275 SED17-20 6/275 0/275 0/275 0/275 0/275 SED17-18 28/275 60/275 21/275 80/275 131/275 SED17-19 12/275 11/275 0/275 0/275 57/275 SED17-24 199/275 184/275 22/275 170/275 184/275 SED17-01 207/275 209/275 0/275 0/275 170/275 184/275 SED17-19 12/275 184/275 22/275 170/275 184/275 SED17-10 12/275 184/275 170/275 184/275 SED17-10 12/275 184/275 22/275 170/275 184/275 SED17-01 207/275 209/275 160/275 203/275 191/275 SED17-03 31/275 65/275 44/275 86/275 84/275	\$ED17-01		1.05	1.059	0.8676	1.034	0.9852		
Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 SED17-29 10/275 23/275 15/275 128/275 SED17-08 0/275 3/275 2/275 1/275 128/275 SED17-06 173/275 173/275 184/275 167/275 152/275 SED17-09 6/275 0/275 7/275 22/275 1/275 SED17-13 1/275 0/275 0/275 0/275 0/275 SED17-17 167/275 176/275 208/275 154/275 158/275 SED17-19 6/275 0/275 0/275 0/275 0/275 SED17-19 12/275 176/275 21/275 80/275 0/275 SED17-19 12/275 11/275 0/275 0/275 0/275 SED17-19 12/275 11/275 0/275 0/275 0/275 SED17-19 12/275 11/275 0/275 0/275 0/275 SED17-19 12/275 184/275 222/275 170/275 184/275 SED17-19 12/275 184/275 222/275 170/275 184/275 SED17-10 199/275 184/275 222/275 170/275 184/275 SED17-10 199/275 184/275 222/275 170/275 184/275 SED17-10 199/275 184/275 209/275 1/275 SED17-01 199/275 209/275 160/275 203/275 191/275 SED17-03 31/275 65/275 44/275 46/275 84/275	SED17-03		0.3424	0.5077	0.4115	0.4213	0.5856		
Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 SED17-29 10/275 23/275 43/275 15/275 128/275 SED17-08 0/275 3/275 2/275 1/275 1/275 SED17-06 173/275 173/275 184/275 167/275 152/275 SED17-09 6/275 0/275 7/275 22/275 1/275 SED17-13 1/275 0/276 0/275 0/275 0/275 SED17-17 167/275 176/275 208/275 154/275 158/275 SED17-20 6/275 0/275 0/275 0/275 0/275 SED17-18 28/275 60/275 21/275 80/275 131/275 SED17-19 12/275 11/275 0/275 0/275 57/275 SED17-24 199/275 184/275 222/275 170/275 164/275 SED17-01 207/275 0/275 0/275 0/275 1/275 SED17-03 31/275 65	SED17-27		0.9695	0.8787	0.9695	0.9774	0.9387		
SED17-29 10/275 23/276 43/275 15/275 128/275 SED17-08 0/275 3/275 2/275 1/275 162/275 SED17-06 173/275 173/275 184/275 167/275 152/275 SED17-09 6/275 0/275 7/275 22/275 1/275 SED17-13 1/275 0/276 0/275 0/275 0/275 SED17-17 167/275 176/275 208/275 154/275 158/275 SED17-20 6/275 0/275 0/275 0/275 0/275 SED17-18 28/275 60/275 21/275 80/275 131/275 SED17-19 12/275 11/275 0/275 0/275 57/275 SED17-24 199/275 184/275 22/2/25 170/275 164/275 SED17-12 0/275 0/275 0/275 0/276 1/275 SED17-01 207/275 209/275 160/275 203/275 191/275 SED17-03 31/275 65/275 44/275 46/275 84/275	Combined Pro	oportion Normal	Binomia(s						
SED17-08 0/275 3/275 2/275 1/275 1/275 SED17-08 173/275 173/275 184/275 167/275 152/275 SED17-09 6/275 0/275 7/275 22/275 1/275 SED17-13 1/275 0/275 0/275 0/275 0/275 SED17-17 167/275 176/275 208/275 154/275 158/275 SED17-20 6/275 0/275 0/275 0/275 0/275 SED17-18 28/275 60/275 21/275 80/275 131/275 SED17-19 12/275 11/275 0/275 0/275 57/275 SED17-24 199/275 184/275 222/275 170/275 164/275 SED17-01 207/275 209/275 160/275 203/275 191/275 SED17-01 31/275 65/275 44/275 46/275 84/275					····				
SED17-06 173/275 173/275 184/275 167/275 152/275 SED17-09 6/275 0/275 7/275 22/275 1/275 SED17-13 1/275 0/275 0/275 0/275 0/275 SED17-17 167/275 176/275 208/275 154/275 158/275 SED17-20 6/275 0/275 0/275 0/275 0/275 SED17-18 28/275 60/275 21/275 80/275 131/275 SED17-19 12/275 11/275 0/275 0/275 57/275 SED17-24 199/275 184/275 222/275 170/275 164/275 SED17-12 0/275 0/275 0/275 0/275 1/275 SED17-01 207/275 209/275 160/275 203/275 191/275 SED17-03 31/275 65/275 44/275 46/275 84/275							128/275		
SED17-09 6/275 0/275 7/275 22/275 1/275 SED17-13 1/275 0/275 0/275 0/275 0/275 SED17-17 167/275 176/275 208/275 154/275 158/275 SED17-20 6/275 0/275 0/275 0/275 0/275 SED17-18 28/275 60/275 21/275 80/275 131/275 SED17-19 12/275 11/275 0/275 0/275 57/275 SED17-24 199/275 184/275 222/275 170/275 164/275 SED17-12 0/275 0/275 0/275 0/275 1/275 SED17-01 207/275 209/275 160/275 203/275 191/275 SED17-03 31/275 65/275 44/275 46/275 84/275							1/275		
GED17-13 1/275 0/275 0/275 0/275 0/275 GED17-17 167/275 176/275 208/275 154/275 158/275 GED17-20 6/275 0/275 0/275 0/275 0/275 GED17-18 28/275 60/275 21/275 80/275 131/275 GED17-19 12/275 11/275 0/275 0/275 57/275 GED17-24 199/275 184/275 222/275 170/275 164/275 GED17-12 0/275 0/275 0/275 1/275 GED17-01 207/275 209/275 160/275 203/275 191/275 GED17-03 31/275 65/275 44/275 46/275 84/275					-		152/275		
SED17-17 167/275 176/275 208/275 154/275 158/275 SED17-20 6/275 0/275 0/275 0/275 0/275 SED17-18 28/275 60/275 21/275 80/275 131/275 SED17-19 12/275 11/275 0/275 0/275 57/275 SED17-24 199/275 184/275 222/275 170/275 164/275 SED17-12 0/275 0/275 0/275 0/275 1/275 SED17-01 207/275 209/275 160/275 203/275 191/275 SED17-03 31/275 65/275 44/275 46/275 84/275						22/275	1/275		
SED17-20 6/275 0/275 0/275 0/275 0/275 SED17-18 28/275 60/275 21/275 80/275 131/275 SED17-19 12/275 11/275 0/275 0/275 57/275 SED17-24 199/275 184/275 222/275 170/275 164/275 SED17-12 0/275 0/275 0/275 0/276 1/275 SED17-01 207/275 209/275 160/275 203/275 191/275 SED17-03 31/275 65/275 44/275 46/275 84/275			1/275	0/275	0/275	Q/275	0/275		
SED17-18 28/275 60/275 21/275 80/275 131/275 SED17-19 12/275 11/275 0/275 0/276 57/275 SED17-24 199/275 184/275 222/275 170/275 164/275 SED17-12 0/275 0/275 0/275 0/276 1/275 SED17-01 207/275 209/275 160/275 203/275 191/275 SED17-03 31/275 65/275 44/275 46/275 84/275			167/275		5 208/275	154/275	158/275		
SED17-19 12/275 11/275 0/275 0/275 57/275 SED17-24 199/275 184/275 222/275 170/275 164/275 SED17-12 0/275 0/275 0/275 1/275 SED17-01 207/275 209/275 160/275 203/275 191/275 SED17-03 31/275 65/275 44/275 46/275 84/275			6/275	0/275	0/275	0/275	0/275		
SED17-24 199/275 184/275 222/275 170/275 164/275 SED17-12 0/275 0/275 0/275 1/275 SED17-01 207/275 209/275 160/275 203/275 191/275 SED17-03 31/275 65/275 44/275 46/275 84/275	SED17-18		28/275	60/275	21/275	80/275	131/275		
SED17-12 0/275 0/275 0/275 1/275 SED17-01 207/275 209/275 160/275 203/275 191/275 SED17-03 31/275 65/275 44/275 46/275 84/275	SED17-19		12/275	11/275	0/275	0/275	57/275		
SED17-01 207/275 209/275 160/275 203/275 191/275 SED17-03 31/275 65/275 44/275 46/275 84/275	SED17-24		199/275	184/279	5 222/275	170/275	164/275		
SED17-03 31/275 65/275 44/275 46/275 84/275	SED17-12		0/275	0/275	0/275	0/275	1/275		
SED17-03 31/275 65/275 44/275 46/275 84/275	SED17-01		207/275	209/275	5 160/275	203/275			
NED 43 07	SED17-03		31/275	65/275	44/275	46/275			
	SED17-27		187/275	163/278	5 187/275	189/275			

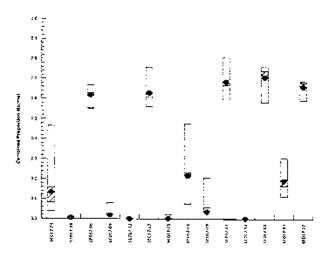
Analyst: WW GANG 24/A

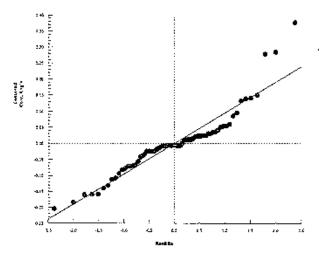
000-469-187-1

CETIS™ v1.8.7.16

Report Date: Test Code:

11 Jul-17 09:13 (p 4 of 4) 1704696 | 11-0911-3856


Echinoid Embryo-Larval Survival and Development Test Nautilus Environmental Analysis ID: 11-7006-2971 Endpoint: Combined Proportion Normal **CETISv1,8.7**


Analyzed: 11 Jul-17 9:12 Analysis:

Nonparametric-Control vs Treatments

CETIS Version: Official Results: Yes

Graphics

Report Date:

11 Jul-17 09:22 (p 1 of 4)

170469c | 21-0570-0078 Test Code:

·							<u>T</u>	est Code	<u>:</u>	17	/04690 ; 21-05	/O-OU
Echinoid Emb	ryo-Larval Developm	ent Test								Nac	ıtilus Environ	menta
Analysis ID:	02-3422-1085	Endpoint	Survival Rate					ETIS Ver	sion:	CETISv1.	8.7	
Analyzed:	11 Jul-17 9:21	-	Nonparametri	c-Control	l vs T	reatments		fficial Re		Yes	0.1	
atch IO:	12-0901-2008	·-	· ·									
Start Date:	26 May-17 15:55		Development-	Survivai				nalyst:		ne L am al seguiator	-	
Ending Date:	-		PSEP (1995) Strongylocent	ratur aus		h		iluent: rine:	Mater	al seawater		
Chaing Date. Duration:	4d 1h	-	San Diego La		рига	tus						
 -		30uica.	San Diego Ca					ge:				
Sample Code	Sample ID			çeive Da		Sample /		lient Nan	10		Project	
SED17-27	15-8574-8565		y-17 17:00 15	-			-	olđer				
SED17-08	10-1003-8381	-	-17 17:00 15	•			•					
SED17-06	19-4215-8235		-17 17:00 15	•								
SED17-09	13-9590-2568		-17 17:00 15	-			•					
SED17-13	02-1258-2667		-17 17:00 15									
SED17-17	06-5820-5843		-17 17:00 15	-								
SED17-20	00-0790-7357	01 Mag	y-17 17:00 15	May-17	10:30) 24d 23h	(7 °C)					
SED17-18	04-2524-4947	02 Ma ₃	y-17 17: 00 15	May-17	10:30	23d 23h	(4 °C)					
\$ED 1 7-19	07-6812-4215	02 Ma ₃	y-17 17:00 15	May-17	10:30) 23d 23h	(5.5 °					
SED17-24	05-6632-5205	02 Mag	y-17 17:00 15	May-17	10:30	23d 23h	(6 °C)					
SED17-12	01-4413-4098	04 Mag	y-17 17:00 15	M ay-17	10:30	21d 23h	(5 °C)					
SED17-01	05-6502-2240	04 Ma ₃	y-17 17:00 15	May-17	10:30	21d 23h	(5.8°					
SED17-03	05-1816-3513	04 Ma	y-17 17:00 15	May-17	10:30	3 21d 23h	(7.2 °					
SED17-29	08-4658-3752	04 Mag	y-17 17:00 15	M ay-17	10:30	21d 23h	(8.5 °					
Sample Code	Material Type	Sampl	e Source	_		Station L	ocation			Latitude	Longitu	de
SED17-27	Sediment Sam	ple Golder				\$ED17-2	7					
SED17-08	Sediment Sam	ple Golder	•			SED17-0	8					
\$ED17-06	Sediment Sam	ple Galder				SED17-0	6					
SED17-09	Sediment Sam	pie Golder				SED17-0	9					
SED17-13	Sediment Sam	pie Golder				SED17-1	3					
SED17-17	Sediment Sam	ple Golder				SED17-1	7					
SED17-20	Sediment Sam	ple Golder				SED17-2	0					
\$ED17-18	Sediment Sam	ple Golder				SED17-1	8					
SED17-19	Sediment Sam	pte Golder				SED17-1	9					
SED17-24	Sediment Sam	ple Golder				SE D17-2	4					
SED17-12	Sediment Sam	ple Golder				SED17-1	2					
SED17-01	Sediment Sam	ple Golder				SED17-0	t					
\$ED17-03	Sediment Sam	pie Go!der				SED17-0						
SED17-29	Sediment Sam	ple Golder				SED17-2						
Data Transform	m Zeta	Alt Hy	p Trials	Seed			PMSD	Tool	Daniel			
Angular (Correc		C > T	NA NA	NA NA			23.9%	1621	Resul			
	e Rank Sum Test									-		
Sample Code		Test S	tat Critical	Ties	ΩE	P-Value	Р-Туре	Doc	ieian!~	·604)		
SED17-27	SED17-08	16	15	0	8	0.0670	Asymp		ision(æ -Signifir	ant Effect		
	SED17-06	31	15	ō.	8	0.9916	Asymp		_	ant Effect		
	SED17-09	15	15	Ġ	8	0.0402	Asymp		ificant l			
	SED17-13	15	15	0	8	0.0402	Asymp	•	ificant E			
	SED17-17	29.5	15	1	8	0.9769	Asymp			ant Effect		
	SED17-20	15	15	0	8	0.0402	Asymp		ificant 6			
	SED17-18	15	15	0	8	0.0402	Asymp		ificant 6			
	SED17-19	15	15	0	8	0.0402	Asymp		ificant E			
	SED17-24	32	15	0	8	0.9961	Asymp			ant Effect		
	CCD47.45	1 6	15	0	8	0.0670	Asymp			ant Effect		
	SED17-12											
	SED17-01	39.5	15	1	8	1.0000	Asymp	Non-	-Signific	ant Effect		
			15 15 15	1 0 0	8 8	1.0000 0.0402 0.0402	Asymp Asymp		-Signific ificant E			Ü

Analyst: 4m QA July 24/PT

Report Date: Test Code:

11 Jul-17 09:22 (p 2 of 4) 170469c | 21-0570-0078

Echinoid Em	bryo-Larval Developm	ent Test	•					Na	utilus Env	vironmental
Analysis ID:	02-3422-1085	Endpoint	Survival Rate	- ·		CETI	S Version:	CETI\$v1	.8.7	
Analyzed:	11 Jul-17 9:21	Analysis:	Nonparametric	Control vs Treatments		Offic	Yes			
ANOVA Table	ļ								•	
Source	Sum Squares	Mean	Square	DF	F Stat	P-Value	Decision(c	n: 5%)		
Between	9.728428	0.748		13	55.03	<0.0001	Significant			
Error	0.7614732		59774	56	20.00	40.0001	Orginioana	Cilett		
Total	10.4899			69	•					
Distributional	l Tests		· · · · · · · · · · · · · · · · · · ·							
Attribute	Test		Test Stat	Critical	P-Value	Decision(a:1%)			
Variances	Bartlett Equality	of Variance	33.05	27.69	0.0017	Unequal V				
Distribution	Shapiro-Wilk W		0.9501	0.9526	0.0073		al Distributio	ก		
Survival Rate	Summary			···	-					
Sample Code	-	nt M ean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-27	5	0.749		0.8014	0.7564	0.68	0.7891	0.01883	5.62%	0.0%
SED17-08	5	0.654		0.7204	0.7304	0.6	0.7382	0.02371	8.1%	12.62%
SED17-06	5	0.776		0.8246	0.7709	0.7273	0.8364	0.0175	5.04%	-3.59%
SED17-09	5	0.072		0.1543	0.04	0.01455	0.1745	0.02938	90.35%	90.29%
SED17-13	5	0.016		0.02553	0.01455	0.007273	0.02545	0.00317	42.38%	97.77%
SED17-17	5	0.752		0.8783	0.7891	0.6182	0.8545	0.04523	13.44%	-D,4 9 %
SED17-20	5	0.024		0.03701	0.02182	0.01091	0.03636	0.004685	43.65%	96.8%
SED17-18	5	0.309		0.5259	0.2618	0.1273	0.5855	0.07784	56.18%	58.64%
SED17-19	5	0.141		0.2636	0.1273	0.02909	0.2909	0.04414	69.95%	81.17%
SED17-24	5	0.818		0.9408	0.7709	0.72	0.9636	0.04415	12.07%	-9.22%
SED17-12	5	0.566		0.6968	0.5345	0.4545	0.7127	0.0469	18.51%	24.37%
SED17-01	5.	0.844	4 0.8007	0.8881	0.8473	0.7891	0.8873	0.01574	4.17%	-12.72%
SED17-03	5	0.243		0.3566	0.2109	0.1345	0.3745	0.04067	37.33%	67.48%
SED17-29	5	0.205	1 0	0.4354	0.1309	0.07273	0.5273	0.08296	90.45%	72.62%
Angular (Corr	rected) Transformed S	ummary	_ .		 -					
Sample Code	Cou	nt Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-27	5	1.047	0.9879	1.106	1.055	0.9695	1.094	0.02133	4.56%	0.0%
SED17-08	5	0.943	4 0.873	1.014	0.9273	0.8861	1.034	0.02537	6.01%	9.91%
SED17-06	5	1.079	1.02	1.139	1.072	1,021	1.154	0.02144	4,44%	-3.04%
SED17-09	5	0.252	0.0974	0.4066	0.2014	0.1209	0.431	0.05568	49.41%	75.94%
SED17-13	5	0.127	1 0.09113	0.1631	0.1209	0.08538	0.1602	0.01297	22.8%	87.86%
SED17-17	5	1.057	0.9114	1.202	1.094	0.9047	1.18	0.05232	11.07%	-0.91%
SED17-20	5	0.152	4 0.1084	0.1964	0.1483	0.1046	0.1919	0.01584	23.25%	85.45%
SED17-18	5	0.579	9 0.3442	0.8156	0.5371	0.3648	0.8713	0.0849	32.74%	44.62%
SED17-19	5	0.366	4 0.1829	0.5499	0.3648	0.1714	0.5697	0.06509	40.33%	65.01%
\$ED17-24	5	1.147	0.9625	1.331	1.072	1.013	1.379	0.06629	12.93%	-9.5%
SED17-12	5	0.853	7 0.7201	0.9872	0.82	0.7399	1.005	0.04812	12.6%	18.48%
SED17-01	5	1.167	1.107	1.227	1.169	1.094	1.228	0.02147	4.11%	-11,45%
SED17-03	5	0.510	8 0.3785	0.6431	0.4771	0.3756	0.6586	0.04765	20.86%	51.22%
SED17-29	5	0.447	0.1801	0.714	0.3702	0.2731	0.8127	0.09614	48.09%	57.31%

11 Jul-17 09:22 (p 3 of 4) 170469c | 21-0570-0078

Echinoid Embryo-Larval Development Test								Nautilus Environment			
Analysis ID: Analyzed:	02-3422-1085 11 Jul-17 9:21			rvival Rate nparametric	-Centrol vs	Treatments	CETIS Version: Official Results:	CETISv1.8.7 Yes			
Survival Rate	Detail										
Sample Code		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
SED17-27		0.7745	0.68	0.7455	0.7891	0.7564					
SED17-08		0.64	0.6255	0.6	0.7382	0.6691					
SED17-06		0.7782	0.7673	0.8364	0.7709	0.7273					
SED17-09		0.04	0.01455	0.03273	0.1018	0.1745					
SED17-13		0.02182	0.01455	0.02545	0.01455	0.007273					
SED17-17		0.7891	0.8255	0.8545	0.6182	0.6764					
SED17-20		0.03273	0.01091	0.01818	0.02182	0.03636					
SED17-18		0.2218	0.2618	0.1273	0.3527	0.5855					
SED17-19		0.1273	0.1709	0.08727	0.02909	0.2909					
SED17-24		0.8727	0.7636	0.9636	0.7709	0.72					
SED17-12		0.4982	0.6327	0.7127	0.4545	0.5345					
SED17-01		0.8873	0.8509	0.7891	0.8473	0.8473					
SED17-03		0.1345	0.0303 0.2873	0.2109	0.2109	0.3745					
SED17-29		0.07273	0.1309	0.1927	0.2103	0.5273		•			
 ·	and ad \ Transfer		0.1550	0.1021	0.1010						
	ected) Transform		Don 1	F 3	Day 4	Day 5					
Sample Code SED17-27	 -	Rep 1 1.076	Rep 2	Rep 3	Rep 4	Rep 5					
SED17-21			0.9695	1.042	1.094	1.055					
SED17-06		0.9273	0.9122	0.8861	1,034	0.9579					
\$ED17-08		1.08	1.067	1.154	1.072	1.021					
SED17-09		0.2014	0.1209	0.1819	0.3248	0.431					
		0.1483	0.1209	0.1602	0.1209	0.08538					
SED17-17		1.094	1.14	1.18	0.9047	0.9656					
SED17-20		0.1819	0.1046	0.1353	0.1483	0.1919					
SED17-18		0.4904	0.5371	0,3648	0.6359	0.8713		•			
SED17-19		0.3648	0.4262	0.2999	0.1714	0.5697					
SED17-24		1.206	1.063	1.379	1,072	1.013					
SED17-12		0.7836	0.9197	1,005	0.7399	0.82					
SED17-01		1.228	1.174	1.094	1.169	1.169					
SED17-03		0.3756	0.5657	0.4771	0.4771	0.6586					
SED17-29		0.2731	0.3702	0.4545	0.3248	0.8127					
Survival Rate	Binomials										
Sample Code		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
SED17-27		213/275	187/275	205/275	217/275	208/275		· ·			
SED17-08		176/275	172/275	165/275	203/275	184/275					
SED17-06		214/275	211/275	230/275	212/275	200/275					
SED17-09		11/275	4/275	9/275	28/275	48/275					
SED17-13		6/275	4/275	7/275	4/275	2/275					
SED17-17		217/275	227/275	235/275	170/275	186/275					
SED17-20		9/275	3/275	5/275	6/275	10/275					
SED17-18		61/275	72/275	35/275	97/275	161/275					
SED17-19		35/275	47/275	24/275	8/275	80/275					
SED17-24		240/275	210/275	265/275	212/275	198/275					
SED17-12		137/275	174/275	196/275	125/275	147/275					
SED17-01		244/275	234/275	217/275	233/275	233/275					
SED17-03		37/ 27 5	79/275	58/275	58/275	103/275					
SED17-29		20/275	36/275	53/275	28/275	145/275					

Analysi: yul aduly 24/97

Report Date:

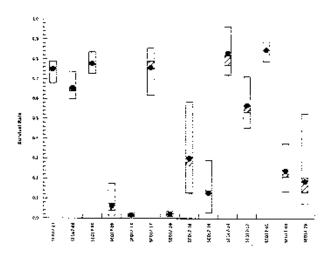
11 Jul-17 09:22 (p 4 of 4)

Test Code: 170469c | 21-0570-0078

Echinoid	Embryo-Larval I	Development Test
----------	-----------------	------------------

Nautifus Environmental

Analysis ID: Analyzed:


02-3422-1085 11 Jul-17 9;21 Endpoint: Survival Rate Analysis:

Nonparametric-Control vs Treatments

CETIS Version: Official Results: Yes

CETISV1.8.7

Graphics

Report Date: Test Code: 11 Jul-17 09:22 (p 1 of 4) 170469c | 21-0570-0078

Echinoid Emb	ryo-L	arval Developm	ent Test	!									Nac	utilus Environi	mentai
Analysis ID:	14-4	425-7852	Endpo	int: Pro	portion	Normal					CETIS	Version:	CETISv1.	8.7	•
Analyzed:	11 J	ul-17 9:21	Analys	is: No	nparam	etric-Co	ntrol	vs T	reatments		Official	Results:	Yes		
Batch IO:	12-0	901-2008	Test Ty	/pe: De	vėlopme	ent-Surv	rival				Analyst	: Үүөл	ne Lam		
Start Date:	26 N	fay-17 15:55	Protoc		EP (199						Diluent		al seawate	r	
Ending Date:		lay-17 16:25	Specie	s: Str	ongyloc	entrotus	purp	oural	us		Brine:				
Duration:	4d 1		Source		n Diego						Age:				
Sample Code		Sample ID	s	ample D	late	Receiv	e Dat	te.	Sample /	Lae	Client N	Name	•	Project	
SED17-27		15-8574-8565							20d 23h		Golder				
SED17-08		10-1003-8381		-		-			29d 23h						
SED17-06		19-4215-8235							29d 23h						
SED17-09		13-9590-2568				_			26d 23h						
SED17-13		02-1258-2667							26d 23h						
SED17-17		06-5820-5843				_			25d 23h						
SED17-20		00-0790-7357				_			24d 23h						
SED17-18		04-2524-4947		•					23d 23h	,					
SED17-19		07-6812-4215				,			23d 23h						
\$ED17-24		05-6632-5205		-					23d 23h	-					
SED17-12		01-4413-4098		•		*			23d 23h	,					
\$ED17-01		05-6502-2240				-			21d 23h						
SED17-03		05-1816-3513				_			21d 23h	•					
SED17-29		08-4658-3752				-			21d 23h	•					
	-			4 May 17	17.00	to Iviay	-17 1	0.50	210 2311	(0.0					
Sample Code		Material Type	S	ample S	ource				Station L	ocatio	n		Latitude	Longitud	de
SED17-27		Sediment Sam	ple G	older					SED17-2	7					
\$ED17-08		Sediment Sam	ple G	older					\$ED17-0	8					
SED17-06		Sediment Sam	ple G	iolder					SED17-0	6					
SED17-09		Sediment Sam	ple G	older					SED17-0	9					
SED17-13		Sediment Sam	ple G	older					SED17-1	3					
SED17-17		Sediment \$am	ple G	older					SED17-1	7					
SED17-20		Sediment Sam	ple G	iolder					SED17-2	0					
SED17-18		Sediment Sam	ple G	iolder					SED17-1	8					
SED17-19		Sediment Sam	ple G	iolder					SED17-1	9					
SED17-24		Sediment Sam	ple G	older					SED17-2	4					
SED17-12		Sediment \$am	ple G	older					\$ED17-1;	2					
SED17-01		Sediment Sam	ple G	older					SED17-0	1					
SED17-03		Sediment Sam	ple G	older					SED17-0	3					
\$ED17-29		Sediment Sam	ple G	older					\$ED17-2	9					
Data Transford	л	Zeta	Α	It Hyp	Trials	S	eed			PMS	SD T	est Resul	t		
Angular (Correc	cted)	NA	C	> T	NA	N	A			31.1					·· · · · · ·
Steel Many-On	e Ra	nk Sum Test												••••	
Sample Code	YS	Sample Code	Т	est Stat	Critic	al Ti	ies	DF	P-Value	P-Ty	me F	eclsion(a	- 5%)		
SED17-27		SED17-08	1:		15	0		8	0.0402	Asyr		ignificant l			
		SED17-06	1		15	o		8	0.0402	Asyr		lignificant (
		SED17-09	1:		15	0		8	0.0402	Asyr	-	ignificant (
		SED17-13	1		15	0		8	0.0402	Asyr		lignificant f			
		SED17-17	2		15	0		8	0.6133	Asyr			ant Effect		
		SED17-20	1.		15	0		8	0.0402	Asyr		ignificant l			
		SED17-18	1:	5	15	0		8	0.0402	Asyr		ignificant I			
		SED17-19	1,	5	15	0		8	0.0402	Asyr		ignificant l			
		SED17-24	1.		15	Q.		8	0.1600	Asyr		lon-Signific	ant Effect		
		SED17-12	1:		15	0		8	0.0402	Asyr		ignificant (
		SED17-01	2		15	0		8	0.4096	Asyr	mp N	lon-Signific	ant Effect		
		\$ED17-03	1:		15	O		8	0.0402	Asyr		ignificant i			/.
		SED17-29	19	¥	15	0		8	0.2295	Asy	np N	lon-\$ignific	ant Effect	E	

Analyst you of why 24/17

Analyst: 🛶

Report Date: Test Code:

11 Jul-17 09:22 (p 2 of 4) 170469c | 21-0570-0078

						Tes	t Code:	1	70469c 2	1-0570-0078
Echinoid Emb	ryo-Larval Develop	ment Test						Na	utilus Env	rironmental
Analysis ID:	14-4425-7852	Endpoint:	Proportion No	rmal		CET	1S Version:	CETISv1	8.7	
Analyzed:	11 Jui-17 9:21	Analysis:	Nonparametric		Treatments		cial Results:			
ANOVA Table			•					•		
Source	Sum Squares	. Mea	n Square	DΕ	F Stat	P-Value	Decision(a:5%)		
Between	12.2092		31692	13	24.06	<0.0001	Significant			
Error	2.185537		902745	56	-1100	0.000	• • • • • • • • • • • • • • • • • • • •			
Total	14.39474			69	-					
Distributional	Tests						•		•	
Attribute	Test		Test Sta	t Critical	P-Value	Decision	(c :1%)			
Variances	Bartlett Equal	lity of Variance	86.35	27.69	<0.0001		Variances			
Distribution	Shapiro-Wilk	-	0.8924	0.9526	< 0.0001		nal Distributio	n		
Proportion No	ormal Summary				•					
Sample Code	•	ount Mear	n 95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
\$ED17-27	5	0.878	37 0.8541	0.9032	0.8717	0.8606	0.9122	0.008833	2.25%	0.0%
SED17-08	5	0.003	7985 0	0.01646	0.005435	0	0.01744	0.003051	85.44%	99.09%
SED17-06	5	0.79	52 0.7667	0.8237	0.8	0.76	0.8199	0.01025	2.88%	9.5%
SED17-09	5	0.426	3 0	0.9121	0.5455	0	0.7857	0.1751	91,91%	51.52%
SED17-13	5	0.033	333 0	0.1259	0	0	0.1667	0.03333	223.6%	96.21%
SED17-17	5	0.837	71 0.7596	0.9145	0.8495	0.7696	0.9059	0.02789	7.45%	4.73%
\$ED17-20	5	0.133	33 O	0.5035	0	0	0.6667	0.1333	223.6%	84.83%
SED17-18	5	0.706	52 0,4964	0.9159	0.8137	0.459	0.8333	0.07555	23.92%	19.63%
SED17-19	5	0.25	79 0	0.6238	0.234	0	0.7125	0.1318	114.3%	70.65%
SED17-24	5	0.834	47 0.8013	0.868	0.8292	0.8019	0.8762	0.012	3.21%	5.01%
SED17-12	5	0.00	1361 0	0.005138	0	0	0.006803	0.001361	223.6%	99.85%
SED17-01	5	0.83	0.7588	0.9091	0.8484	0.7373	0.8932	0.02706	7.26%	5 09%
SED17-03	5	0.809	56 0.7673	0.8438	0.8155	0.7586	0.8378	0.01378	3.82%	8.32%
\$ED17-29	5	0.673	37 0.465	0.8825	0.6389	0.5	0.8828	0.07519	24.95%	23.32%
Angular (Corr	ected) Transformed	Summary								
Sample Code		ount Mear	n 95% LCL	. 95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-27	5	1.216	5 1.177	1,255	1.204	1.188	1.27	0.01412	2.6%	0.0%
SED17-08	. 5	0.084	49 0.03897	0.1308	0.07379	0.0377	0.1325	0.01654	43.57%	93.02%
SED17-06	5	1.102	1.067	1.137	1.107	1.059	1.133	0.01259	2.56%	9.4%
SED17-09	5	0.679	96 0.1176	1.242	0.8309	0.1448	1.09	0.2024	66.6%	44,11%
SED17-13	5	0.29	55 0.1798	0.4112	0.2527	0.1901	0.4205	0.04168	31.54%	75.7%
SED17-17	5	1.161	1 1 .055	1.267	1.172	1.07	1.259	0.03817	7,35%	4.55%
SED17-20	5	0.363	76 -0.0447	0.7799	0.2255	0.1588	0.9553	0.1485	90.33%	69.77%
SED17-18	5	1,009	0.7805	1.237	1.124	0.7444	1.15	0.08225	18.23%	17.04%
SED17-19	5	0.483	0.03053	0.9356	0.505	0.1022	1.005	0.163	75.45%	60.27%
SED17-24	5	1.153	3 1.107	1.199	1.145	1.11	1.211	0.01651	3.2%	5.17%
PED47 40	_								-	-

Analyst: www oxtug 24/17

SED17-12

\$ED17-01

SED17-03

SED17-29

1.155

1.115

0.9751

0.04874

5

5

5

5

1.057

1.067

0.7394

0.02482

1.254

1.163

1.211

0.07265

1,171

1,127

0.9261

0.04273

1.033

1.057

0.7854

0.03572

1.238

1.156

1.221

0.08257

0.03533

0.01719

0.08489

6.84%

3.45%

19.47%

0.008612 39.52%

95.99%

4.97%

8.3%

19.81%

Report Date: Test Code: 11 Jul-17 09:22 (p 3 of 4) 170469c | 21-0570-0078

							rest Code:	1704690 Z1-0570-007
Echinoid Emi	bryo-Larval Dev	elopment i	Test					Nautilus Environmenta
Analysis ID:	14-4425-7852		•	roportion Nor			CETIS Version:	ÇETIŞv1.8.7
Analyzed:	11 Jul-17 9:21	An:	alysis: N	onparametric	-Control vs	Freatments	Official Results:	Yes
Proportion No	ormal Detail							
Sample Code	·	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-27		0.8779	0.8717	0.9122	0.871	9088.0		
SED17-08		0	0,01744	0.01212	0.004926	0.005435		
SED17-06		0.8084	0.8199	8.0	0.7877	0.76		
\$ED17-09		0.5455	0	0.7778	0.7857	0.02083		
SED17-13		0.1667	0	0	0	0		
SED17-17		0.7696	0.7753	0.8851	0.9059	0.8495		
SED17-20		0.6667	0	0	Đ	C C		
SED17-18		0.459	0.8333	0.6	0.8247	0.8137		
SED17-19		0.3429	0.234	0	0	0.7125		
SED17-24		0.8292	0.8762	0.8377	0.8019	0.8283		
SED17-12		0	0	0	0	0.006803		
SED17-01		0.8484	0.8932	0.7373	0.8712	0.8197		
SED17-03		0.8378	0.8228	0.7586	0.7931	0.8155		
SED17-29		0.5	0.6389	0.8113	0.5357	0.8828		
 Angular (Corr	rected) Transfor	med Detail	··					
Sample Code	!	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
\$ E D17-27		1.214	1.204	1.27	1.203	1,188		
SED17-08		0.0377	0.1325	0.1103	0.07024	0.07379		
SED17-06		1.118	1.133	1.107	1.092	1.059		
SED17-09		0.8309	0.2527	1.08	1.09	0.1448		
SED17-13		0.4205	0.2527	0.1901	0.2527	0.3614		
SED17-17		1.07	1.077	1.225	1.259	1.172		
SED17-20		0.9553	0.2928	0.2255	0.2058	0.1588		
SED17-18		0.7444	1.15	0.8861	1.139	1.124		
SED17-19		0.6255	0.505	0.1022	0.1777	1,005		
SED17-24		1.145	1.211	1.158	1.11	1 144		
SED17-12		0.04273	0.03791	0.03572	0.04474	0.08257		
SED17-01		1.171	1.238	1.033	1.204	1.132		
SED17-03		1.156	1.136	1.057	1.099	1.127		
ED17-29		0.7854	0.9261	1,121	0.8211	1,221		
Proportion No	ormal Binomials	_ _						
Sample Code		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-27		187/213	163/187	187/205	189/217	179/208		
SED17-08		0/176	3/172	2/165	1/203	1/184		
SED17-06		173/214	173/211	184/230	167/212	152/200		
SED17-09		6/11	0/4	7/9	22/28	1/48		
SED17-13		1/6	0/4	0/7	0/4	0/2		
SED17-17		167/217	176/227	208/235	154/170	158/186		
SED17-20		6/9	0/3	0/5	0/6	0/10		
SED17-18		28/61	60/72	21/35	80/97	131/161		
SED17-19		12/35	11/47	0/24	0/8	57/80		
SED17-24		199/240	184/210	222/265	170/212	164/198		
SED17-12		0/137	0/174	0/196	0/125	1/147		
ED17-01		207/244	209/234	160/217	203/233	191/233		
ED17-03		31/37	65/79	44/58	46/58	84/103		
SED17-29		10/20	23/36	43/53	15/28	128/145		
				•	-			

Analyst: yw July24/17

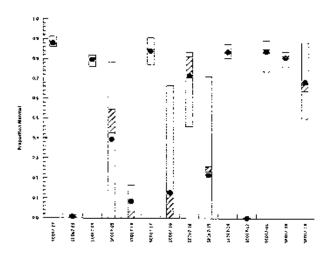
Report Date: Test Code:

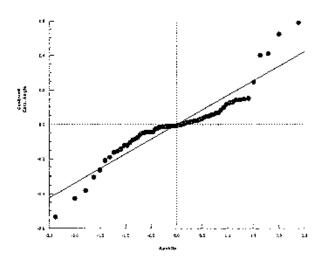
11 Jul-17 09:22 (p.4 of 4) 170469c [21-0570-0078

Echinoid Embryo-Larval Development Test

Nautilus Environmental

Analysis ID: Analyzed:


14-4425-7852 11 Jul-17 9:21 Endpoint: Proportion Normal Analysis:


Nonparametric-Control vs Treatments

CETIS Version: Official Results: Yes

CETISv1.8.7

Graphics

Test

oπ υατε: t Code:	170469c 21-0570-007
t Gode.	1104030[21-0010-001

Echinoid Embry	o-Larval Developme	ent Test								Nac	ıtiluş Er	nvironmental
Analysis ID: 0	5-3689-4693	Endpoint: (Combined	Proportion N	lorm	nal		CETIS Ver	sion;	CETISv1.	8.7	
Analyzed:	l 1 Jul-17 9;22	Analysis: N	lonparam	etric-Control	vs 1	Freatments		Official Re	esults:	Yes		
Batch ID: 1	2-0901-2008	Test Type: [evelopme	ent-Survival				Analyst:	Yvon	ne Lam		
Start Date: 2	6 May-17 15:55		SEP (199					Diluent:	Natur	al seawater	r	
Ending Date: 3	0 May-17 16:25	Species: S	Strongyloo	entrolus purp	оига	tus		Brine:				
Duration: 4	id 1h	Source: S	an Diego	Lab				Age:				
Sample Code	Sample ID	Sample	Date	Receive Dat		Sample A		Client Nar			Project	
SED17-27	15-8574-8565			15 May-17 1			_	Golder	iie		Frojeci	
SED17-08	10-1003-8381	_		15 May-17 1			•	Colder				
SED17-06	19-4215-8235	•		15 May-17 1			•					
SED17-09	13-9590-2568			15 May-17 1								
SED17-13	02-1258-2667			15 May-17 1								
SED17-17	06-5820-5843			15 May-17 1								
SED17-20	00-0790-7357			15 May-17 1								
SED17-18	04-2524-4947	-		15 May-17 1								
SED17-19	07-6812-4215			15 May-17 1								
\$ED17-24	05-6632-5205			15 May-17 1								
SED17-12	01-4413-4098			15 May-17 1								
SED17-01	05-6502-2240	04 May-	17 17:00	15 May-17 1	0:30	21d 23h ((5.8°					
SED17-03	05-1816-3513	04 May-	17 17:00	15 May-17 1	0:30	0 21d 23h ((7.2°					
SED17-29	08-4658-3752	04 M ay-	17 17:00	15 May-17 1	0:30	21d 23h ((8.5 *					
Sample Code	Material Type	Sample	Source			Station Le	ocatio	n		Latitude	17	ongitude
SED17-27	Sediment Sam					SED17-27		··				ingitude .
SED17-08	Sediment Sam					SED17-08						
SED17-06	Sediment Sam	ple Golder				SED17-06						
SED17-09	Sediment Sam	ple Golder				SED17-09	•					
SED17-13	Sediment Sam	ple Golder				SED17-13	3					
SED17-17	Sediment Sam	ple Golder				SED17-17	7					
SED17-20	Sediment Sam	ple Golder				SED17-20)					
SED17-18	Sediment Şəm					SED17-18	3					
SED17-19	Sediment Sam					SED17-19)					
\$ED17-24	Sediment Sam					SED17-24	1					
SED17-12	Sediment Sam					SED17-12	2					
SED17-01	Sediment Sam					\$ED17-01						
SED17-03 SED17-29	Sediment Samp					SED17-03						
\$EU17-29	Sediment Samp	ple Golder				\$ED17-29)					
Data Transform	Zeta	Alt_Hyp	Trials	Seed			PMS	D Test	Resul	t		
Angular (Correcte	ed) NA	C > T	NA	NA			27.09	*		•		
Steel Many-One	Rank Sum Test											
	vs Sample Code	Test St	t Critic	al Tics	DF	P-Value	Р-Ту	pe Dec	ision(a	:5%)		
SED17-27	SED17-08	15	15	0	8	0.0402	Asym		ificant 6			
	SED17-06	20	15	0	8	0.3138	Аѕуп	-		ant Effect		
	SED17-09	15	15	0	8	0.0402	Asyn	np Sign	ificant 6	Effect		
	SED17-13	15	15	0	8	0.0402	Аѕуп	np Sign	ificant E	Effect		
	SED17-17	22	1 5	0	8	0.5116	Asyn		_	ant Effect		
	SED17-20 SED17-18	15 1 5	15 15	0	8	0.0402	Asym		ificant E			
	SED17-19	15	15 15	0	8 8	0.0402 0.0402	Asym		ificant f			
	SED17-24	29	15	٥	8	0.0402	Asym Asym	_	ificant 8 Signific	≘mect ant Effect		
	SED17-12	15	15	0	8	0.0402	Asym		ningio: 3 toepin			
	SED17-01	35	15	ō	8	0.9997	Asym	_		ant Effect		
	SED17-03	15	15	0	8	0.0402	Asym	-	ificant (
	SED17-29	15	15	Q.	8	0.0402	Asym		ificant E			W

CETIC Analysisas Danas

Paged Date:

11 July 17 (19:22 to 2 of 4)

CETIS Ana	alytical Report					•	ort Date: t Code:			22 (p 2 of 4) 1-0570-0078
Echinoid Em	bryo-Larval Developr	ment Test						Nac	ıtilus Env	rironmental
Analysis ID: Analyzed:	05-3689-4693 11 Jul-17 9:22	Endpoint: Analysis:	Combined Prop Nonparametric				IS Version: cial Results:	CETISv1.	8.7	
ANOVA Table	 .									
Source	Sum Squares	Mear	Square	QF	F Stat	P-Value	Decision(a:5%)		
Between	10.30497	0.792	6897	13	65.36	<0.0001	Significant	Effect		
Error	0.6792176	0.012	12889	56			•			
Total	10.98418			69	_					
Distributiona	l Tests	<u> </u>			-					
Attribute	Test		Test Stat	Critical	P-Value	Decision	(0:1%)			
Variances	Bartlett Equali	ly of Variance	54.66	27.69	<0.0001	Unequal '	Variances			
Distribution	Shapiro-Wilk V	V Normality	0.9013	0.9526	< 0.0001		nal Distributio	on		
Combined Pr	oportion Normal Sun	omary								
Sample Code	Con	unt Mear	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-27	5	0.658	2 0.6096	0.7068	0.68	0.5927	0.6873	0.01752	5.95%	0.0%
\$ED17-08	5	0.005	091 0	0.01024	0.003636	0	0.01091	0.001854	81.44%	99.23%
SED17-06	5	0.617	5 0.5647	0.6702	0.6291	0.5527	0.6691	0.01901	6.89%	6.19%
SED17-09	5	0.026	518 0	0.06598	0.02182	0	80.0	0.01433	122.4%	96.02%
SED17-13	5	0.000	7273 0	0.002747	0	0	0.003636	0.0007273	223.6%	99.89%
~=										

0.7249

0.01648

0.4335

0.1649

0.7886

0.7969

0.2898

0.3793

0.002747

0.6073

0.2182

0.6691

0.7382

0.1673

0.08364

0.04

Q

0

0.56

0.07636

0.5964

0.5818

0.1127

0.03636

0

0

0.7564

0.02182

0.4764

0.2073

0.8073

0.76

0.3055

0.4655

0.003636

0.03502

0.0723

0.03843

0.03808

0.03293

0.03366

0.07923

0.0007273 223.6%

0.004364

12.48%

223.6%

69.47%

147.7%

12.47%

10.44%

38.33%

111.2%

4.64%

99.34%

64.64%

91.16%

-3.76%

99.89%

-7.18%

70.17%

75.8%

American (Donner of only)	
Angular (Corrected) 1	Fransformed Summary

5

5

5

5

5

5

5

5

5

0.6276

0.2327

0.05818

0.6829

0.7055

0.1964

0.1593

0.004364 0

0.0007273 0

0.5304

0.03199

0.5772

0.614

0.1029

0

\$ED17-17

SED17-20

SED17-18

SED17-19

\$ED17-24

SED17-12

SED17-01

SED17-03

SED17-29

Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-27	5	0.9468	0.896	0.9975	0.9695	0.8787	0.9774	0.01827	4.32%	0.0%
SED17-08	5	0.06817	0.03308	0.1033	0.06034	0.03016	0.1046	0.01264	41.45%	92.8%
SED17-06	5	0.9043	0.8501	0.9585	0.916	0.8382	0.9579	0.01953	4.83%	4.48%
\$ED17-09	5	0.1371	0.01238	0.2619	0.1483	0.03016	0.2668	0.04494	73.27%	85.51%
SED17-13	5	0.03619	0.01943	0.05295	0.03016	0.03016	0.06034	0.006037	37.3%	96.18%
SED17-17	5	0.9162	0.8125	1.02	0.8935	0.8455	1.055	0.03736	9.12%	3.22%
SED17-20	5	0.05378	-0.0118	0.1194	0.03016	0.03016	0.1483	0.02352	98.21%	94.32%
SED17-18	5	0.4844	0.2428	0.7261	0.486	0.28	0.7618	0.08703	40.17%	48.83%
SED17-19	5	0.189	-0.03622	0.4141	0.2014	0.03016	0.4727	0.0811	95.97%	80.04%
SED17-24	5	0.9757	0.8586	1.093	0.9579	0.8824	1.116	0.04217	9.66%	-3,06%
\$ED17-12	5	0.03619	0.01943	0.05295	0.03016	0.03016	0.06034	0.006037	37.3%	96.18%
SED17-01	5	0.9991	0.9012	1.097	1.034	0.8676	1.059	0.03527	7.89%	-5.53%
SED17-03	5	0.4537	0.3367	0.5707	0.4213	0.3424	0.5856	0.04214	20.77%	52.08%
\$ED17-29	5	0.3757	0.09676	0.6546	0.2934	0.1919	0.7508	0.1005	59.79%	60.32%

Analyst: 44 QAJUG24/17

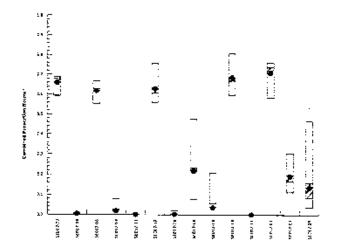
Report Date: Test Code: 11 Jul-17 09:23 (p 3 of 4) 170469c ; 21-0570-0078

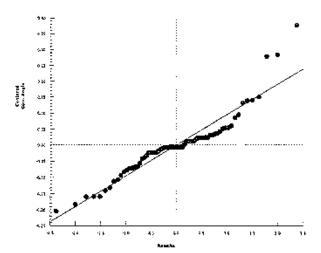
							lest Code:	170469¢ 21-0570-0078
Echinoid Emb	ryo-Larval Deve	elopment T	est					Nautilus Environmental
Analysis ID: Analyzed:	05-3689-4693 11 Jul-17 9:22		-	ombined Prop onparametric			CETIS Version: Official Results:	CETISv1.8.7 Yes
Combined Pro	oportion Norma	Detail						
Sample Code		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
\$ED17-27	<u></u>	0.68	0.5927	0.68	0.6873	0.6509		
SED17-08		0	0.01091	0.007273	0.003636	0.003636		
SED17-06		0.6291	0.6291	0.6691	0.6073	0.5527		
\$ED17-09		0.02182	0	0.02545	0.08	0.003636		
\$ED17-13		0.003636	0	0	Ō	Ů.		
SED17-17		0.6073	0.64	0.7564	0.56	0.5745		
SED17-20		0.02182	0	0	0	0		
SED17-18		0.1018	0.2182	0.07636	0.2909	0.4764		
\$ED17-19		0.04364	0.04	0	0	0.2073		
\$ED17-24		0.7236	0.6691	0.8073	0.6182	0.5964		
SED17-12		0	0	0	0.0102	0.003636		
\$ED17-01		0.7527	0.76	0.5818	0.7382	0.6945		
SED17-03		0.1127	0.2364	0.16	0.1673	0.3055		
SED17-29		0.03636	0.08364		0.05455	0.4655		
Angular (Corr	ected) Transfor	med Detail	-					
Sample Code		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-27		0.9595	0.8787	0.9695	0.9774	0.9387		
SED17-08		0.03016	0.1046	0.08538	0.06034	0.06034		
SED17-06		0.916	0.916	0.9579	0.8935	0.8382		
SED17-09		0.1483	0.03016		0.2868	0.06034		
SED17-13		0.06034	0.03016	0.03016	0.03016	0.03016		
SED17-17		0.8935	0.9273	1.055	0.8455	0.8602		
SED17-20		0.1483	0.03016		0.03016	0.03016		
SED17-18		0.3248	0.486	0.28	0.5697	0.7618		
SED17-19		0.2104	0.2014	0.03016	0.03016	0.4727		
SED17-24		1.017	0.9579	1.116	0.9047	0.8824		
SED17-12		0.03016	0.03016		0.03016	0.06034		
SED17-01		1.05	1.059	0.8676	1.034	0.9852		
SED17-03		0.3424	0.5077	0.4115	0.4213	0.5856		
SED17-29		0.1919	0.2934	0.4065	0.2357	0.7508		
Combined Pro	portion Normai	Binomials						, <u>, , , , , , , , , , , , , , , , , , </u>
Sample Code		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-27		187/275	163/275	187/2 75	189/275	179/275		· -
SED17-08		0/275	3/275	2/275	1/275	1/275		
\$ED17-06		173/275	173/275	184/275	167 /2 75	152/275		
SED17-09		6/275	0/275	7/275	22/275	1/275		
SED17-13		1/275	0/275	0/275	0/275	0/275		
SEQ17-17		167/275	176/275	208/275	154/275	158/275		
SED17-20		6/275	0/275	0/275	0/275	0/275		
\$ED17-18		28/275	60/275	21/275	80/275	131/275		
SED17-19		12/275	11/275	0/275	0/275	57/275		
SED17-24		199/275	184/275	222/275	170/275	164/275		
SED17-12		0/275	0/275	0/275	0/275	1/275		
SED17-01		207/275	209/275	160/275	203/275	191/275		
SED17-03		31/275	65/275	44/275	46/275	84/275		
SED17-29		10/275	23/275	43/275	15/275	128/275		

Analyst: 400 QA: 24/17

000-469-187-1

CETIS™ v1.8.7.16


Report Date: Test Code: 11 Jul-17 09:23 (p 4 of 4) 170469c | 21-0570-0078


Echinoid Embryo-Larvai Development Test Nautilus Environmental

Analysis ID: 05-3689-4693 Endpoint: Combined Proportion Normal CETIS Version: CETISv1.8.7

Analyzed: 11 Jul-17 9:22 Analysis: Nonparametric-Control vs Treatments Official Results: Yes

Graphics

Analyst: in oduly 24/17

NAUTILUS ENVIRONMENTAL

ATTN: Yvonne Lam 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 01-JUN-17

Report Date: 08-JUN-17 13:31 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1936147
Project P.O. #: NOT SUBMITTED

Job Reference: C of C Numbers: Legal Site Desc:

Heather McKenzie Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L1936147 CONTD.... PAGE 2 of 14

08-JUN-17 13:31 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time	26-MAY-17	L1936147-2 26-MAY-17	L1936147-3 26-MAY-17	L1936147-4 26-MAY-17	L1936147-5 26-MAY-17
	Client ID	CONT-OAM-0	08-OAM-0	06-OAM-0	09-OAM-0	13-OAM-0
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.0767	0.239	0.246	0.187	0.147
	Sulphide as S (mg/L)					

L1936147 CONTD.... PAGE 3 of 14

ALS ENVIRONMENTAL ANALYTICAL REPORT

08-JUN-17 13:31 (MT) Version: FINAL

	Sample ID Description	L1936147-6	L1936147-7	L1936147-8	L1936147-9	L1936147-1
	Sampled Date Sampled Time	26-MAY-17	26-MAY-17	26-MAY-17	26-MAY-17	26-MAY-17
	Client ID	17-OAM-0	20-OAM-0	18-OAM-0	19-OAM-0	24-OAM-0
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.328	0.254	0.264	0.372	0.240
	Sulphide as S (mg/L)					

L1936147 CONTD.... PAGE 4 of 14

PAGE 4 of 14 08-JUN-17 13:31 (MT)

Version: FINAL

	Sample ID	L1936147-11	L1936147-12	L1936147-13	L1936147-14	L1936147-15
	Description Sampled Date	26-MAY-17	26-MAY-17	26-MAY-17	26-MAY-17	26-MAY-17
	Sampled Time Client ID		01-OAM-0	03-OAM-0	29-OAM-0	27-OAM-0
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.139	0.215	0.287	0.215	0.0792
	Sulphide as S (mg/L)					

L1936147 CONTD.... PAGE 5 of 14

ALS ENVIRONMENTAL ANALYTICAL REPORT

08-JUN-17 13:31 (MT) Version: FINAL

		Sample ID Description Sampled Date Sampled Time	L1936147-16 26-MAY-17	L1936147-17 26-MAY-17	L1936147-18 26-MAY-17	L1936147-19 26-MAY-17	L1936147-20 26-MAY-17
		Client ID	CONT-OS-0	08-OS-0	06-OS-0	09-OS-0	13-OS-0
Grouping	Analyte						
WATER							
Anions and Nutrients	Ammonia, Total (as N) (mg/L)						
	Sulphide as S (mg/L)		<0.018	<0.018	<0.018	<0.018	<0.018

L1936147 CONTD.... PAGE 6 of 14

ALS ENVIRONMENTAL ANALYTICAL REPORT

08-JUN-17 13:31 (MT) Version: FINAL

		Sample ID Description	L1936147-21	L1936147-22	L1936147-23	L1936147-24	L1936147-2
		Sampled Date Sampled Time	26-MAY-17	26-MAY-17	26-MAY-17	26-MAY-17	26-MAY-17
		Client ID	17-OS-0	20-OS-0	18-OS-0	19-OS-0	24-OS-0
Grouping	Analyte						
WATER							
Anions and Nutrients	Ammonia, Total (as N) (mg/L)						
	Sulphide as S (mg/L)		<0.018	<0.018	<0.018	<0.018	<0.018

L1936147 CONTD.... PAGE 7 of 14

08-JUN-17 13:31 (MT) Version: FINAL

		Sample ID Description	L1936147-26	L1936147-27	L1936147-28	L1936147-29	L1936147-30
	S Si	ampled Date	26-MAY-17	26-MAY-17	26-MAY-17	26-MAY-17	26-MAY-17
		Client ID	12-OS-0	01-OS-0	03-OS-0	29-OS-0	27-OS-0
Grouping	Analyte						
WATER							
Anions and Nutrients	Ammonia, Total (as N) (mg/L)						
	Sulphide as S (mg/L)		<0.018	<0.018	<0.018	<0.018	<0.018

L1936147 CONTD.... PAGE 8 of 14

08-JUN-17 13:31 (MT) Version: FINAL

	Sample		L1936147-32	L1936147-33	L1936147-34	L1936147-35
	Descrip Sampled I	Date 30-MAY-17	30-MAY-17	30-MAY-17	30-MAY-17	30-MAY-17
	Sampled 1 Clier	ime -	08-OAM-96	06-OAM-96	09-OAM-96	13-OAM-96
	Cher	it iD				
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.0173	0.0573	0.0771	0.169	0.155
	Sulphide as S (mg/L)					

L1936147 CONTD.... PAGE 9 of 14

08-JUN-17 13:31 (MT) Version: FINAL

	Sample ID Description	L1936147-36	L1936147-37	L1936147-38	L1936147-39	L1936147-40
	Sampled Date Sampled Time	30-MAY-17	30-MAY-17	30-MAY-17	30-MAY-17	30-MAY-17 24-OAM-96
	Client ID	17-OAM-96	20-OAM-96	18-OAM-96	19-OAM-96	24-UAM-96
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.235	0.258	0.152	0.314	0.0603
	Sulphide as S (mg/L)					

L1936147 CONTD.... PAGE 10 of 14 08-JUN-17 13:31 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

	Sample ID Description	L1936147-41	L1936147-42	L1936147-43	L1936147-44	L1936147-4
	Sampled Date Sampled Time	30-MAY-17	30-MAY-17	30-MAY-17	30-MAY-17	30-MAY-17
	Client ID	12-OAM-96	01-OAM-96	03-OAM-96	29-OAM-96	27-OAM-96
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.0415	0.0702	0.222	0.135	0.0070
	Sulphide as S (mg/L)					

L1936147 CONTD.... PAGE 11 of 14 08-JUN-17 13:31 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL

	Samp Descri Sampled	ption	L1936147-47 30-MAY-17	L1936147-48 30-MAY-17	L1936147-49 30-MAY-17	L1936147-50 30-MAY-17
	Sampled		08-OS-96	06-OS-96	09-OS-96	13-OS-96
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L)					
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018

L1936147 CONTD.... PAGE 12 of 14

08-JUN-17 13:31 (MT) Version: FINAL

		Sample ID	L1936147-51	L1936147-52	L1936147-53	L1936147-54	L1936147-55
	Sam	escription	30-MAY-17	30-MAY-17	30-MAY-17	30-MAY-17	30-MAY-17
	Sam	pled Time Client ID	17-OS-96	20-OS-96	18-OS-96	19-OS-96	24-OS-96
Grouping	Analyte						
WATER							
Anions and Nutrients	Ammonia, Total (as N) (mg/L)						
	Sulphide as S (mg/L)		<0.018	<0.018	<0.018	<0.018	<0.018

L1936147 CONTD.... PAGE 13 of 14

08-JUN-17 13:31 (MT) Version: FINAL

		Sample ID Description Sampled Date Sampled Time	L1936147-56 30-MAY-17	L1936147-57	L1936147-58 30-MAY-17	L1936147-59 30-MAY-17	L1936147-60 30-MAY-17
		Client ID	12-OS-96	01-OS-96	03-OS-96	29-OS-96	27-OS-96
Grouping	Analyte						
WATER							
Anions and Nutrients	Ammonia, Total (as N) (mg/l	L)					
	Sulphide as S (mg/L)		<0.018	<0.018	<0.018	<0.018	<0.018

Reference Information

L1936147 CONTD....

PAGE 14 of 14

08-JUN-17 13:31 (MT)

Version: FINAL

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**								
NH3-F-VA	Water	Ammonia in Water by Fluorescence	APHA 4500 NH3-NITROGEN (AMMONIA)								
NH3-F-VA	Water	Ammonia in Water by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC								
		cid preserved samples, using procedures modified from th fluorescence detection for the determination of trace le									
S2-T-COL-VA	Water	Total Sulphide by Colorimetric	APHA 4500-S2 Sulphide								
This analysis is carried out colourimetric method.	using proced	ures adapted from APHA Method 4500-S2 "Sulphide". S	ulphide is determined using the methlyene blue								
** ALS test methods may inco	rporate modi	fications from specified reference methods to improve pe	erformance.								
The last two letters of the ab	The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:										
Laboratory Definition Code	e Labora	tory Location									

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

VA

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

HAUTILUS ENVIRONMENTAL

TESTING LOCATION (Please Circle)

Burnaby 8664 Commerce Court Burnaby, British Columbia, Canada V5A 4N7 #4, 6125 12 Street SE Calgary, Alberta, Canada T2H 2K1

L1936147-COFC

Date_____Page_of

				Phone 604 420.6773			Phone 403.253.7	121						Date		_Page_	_o1_'
Report to:				Invoice To:							ANAL	YSES R	L EQ W!RE	0			
Company	Nautilus Enviror	imantal		Сотрапу	(same)			1									
Address	8664 Commerce			Address								1					G
City/Prov/PC	Burnaby, BC			City/Prov/PC									ĺ				믿
Contact	Yvonne Lam			Contact			_	·			1	-		İ	1]]	ate
Phone	604-420-8773	_		Phone				<u>.es</u>		' 1			- 1				ğ
Email	yvonne@nautifu	senvironme	ental.ca	Email	Email							- 1					₹.
				PO No.			Ammonia	i								Receipt Temperature ("C)	
Sample Collection By:				Sample Type: Grab	O 0	R Composite	: O	_		ĺ	- 1						Rec
SAMPLE ID	DATE (DD/MM/YY)	TIME	MATRIX	# OF CONTAINERS AP VOLUME (e.g. 1 x 20		сомме	ENTS	Fotal									127°
CONT-OAM-0	26/05/17		_	1x125mL contains				17		\Box	┌┈┑╢	7	-	╬	ļ T		. '
08-OAM-0	26/05/17	<u> </u>		1x125mL contains	èr			17		┞╼ ╢		═╢┼	╼╫┝╴	╫┽	╁═╅╵	╟═╣	
06-OAM-0	26/05/17			1x125mL contains	er e	·	·	۱Ż	╄╾╢	┢═╣	┝═╣╏	╢	╍┩╢╍╸	╢┯┥	╎┝╼╡ ╵	╬══╅╏	_
09-OAM-0	26/05/17			1x125mL containe	er				H	┝╼╣		╼╅╂╊	╼╢╼	╢	╟╼╢	╟━╣╏	<u> </u>
13-OAM-0	26/05/17			1x125mL containe	er -				┝═╣	H	┝═╣╁	╼╣┾	╼╢┝╾	╬┷┥	╫╼╣	╟═╏	· ·
17-OAM-0	26/05/17			1x125mL contains	st.			17	H	╆╣		▝	╢╴	╫╾	╽╞╼┩ ╿	│ ── ┤╂	
20-OAM-0	26/05/17			1x125mL containe	er e			忉	H	텎		╗	╗	卌	#=#	1	
18-OAM-0	26/05/17	·		1×125mL containe	er .			M	Ħ	Ħ		ᆌ	┪┝	╫┈┪			
19-OAM-0	26/05/17			1x125mL containe	er		_	7					7		怈		
24-OAM-0	26/05/17			1x125mL containe	ır .			V							H	目	
SPECIAL INSTRI	UCTIONS/COMME	NTS (CLIE)	NT)	SAMPLE R	ECEIPT DE	TAILS (LABORAT	rory)	SAMPLE DESCRIPTION AND COMMENTS (LABORATO							RY)		
Samples have be	en preserve	d.		1. Total No. of Containers	1.	4. Ice Present in Cooler?	Y/N		9	, (J	•				1,1	
Thanks!				2. Courier	'	5. Seal Present?	Y/N		•				:	· .			
				3. Good Condition?	Y/N	6. Initials Present on Seal?	Y/N	ij	:	. '			yee.	11	grija. Prija		ı ·
RELINQUISHED 8Y (CLIENT)			RECEIVED BY (LABORATORY)				٠.				٠.						
Trooped Name) (Signature)				(Signorus) (Signorus)			Only re	late to	the san	nple as	receive	the test d. No lia	bility in t	whole o	or in par		
Mouthus Env	1108 EN 01/06/17 e16021 ALS 11/16/17 app												g, or tran test data				
Additional costs may be r	equired for sampl	e disposal	or storage. (Payment not 30 unless of	otherwise o	contracted.	18100)	-				Form OZ	0, Version	I Z. Rev	ised by (CC 2016	/10/0G

TESTING LOCATION (Please Circle)

Burnaby (8664 Commerce Court Calgary (#4. 6125 12 Street SE Calgary, Alberta, Canada

L1936147-COFC

Burnaby, British Columbia, Canada **VSA 4N7**

T2H 2K1 Phone 403 253 7121

				Phone 604.420.8773		1	Phone 403.253.7	7121						Date_		Page	0
Report to:				Invoice To:							ANA	LYSES F	EQUIR!	Ð		_	Γ
Company	Nautilus Environ	mental		Company	(same)			l i	i]
Address	8664 Commerce			Address	<u>,,</u>			۱ ا								1	١
City/Prov/PC	Bumaby, BC			City/Prov/PC						ı	ĺ	' !				1	
Contact	Yvonne Lam			Contact				·	'Ι								L
Phone	604-420-8773	·		Phone				_		ļ		ł		Ī	1	1	L
Email	yvonne@nautiju	senvir on me	ntal.ca	Email				Ē									L
				PO No.				ĪĒ	ľ								ı
ample Collection By:				Sample Type: Grab	OR	Composite (Ö	Ammonía		ļ							l
SAMPLE ID	DATE (DD/MM/YY)	TIME	MATRIX	# OF CONTAINERS AND VOLUME (e.g. 1 x 20 L	-	COMMEN	TS	Total	!		ĺ						ľ
12-QAM-0	26/05/17			1x125mL container					\Box	\Box	┌┪			7	Π	П	r
01-OAM-0	26/05/17			1x125mL container	г			17						╡╫		П	r
03-OAM-0	26/05/17			1x125mL container	-			7						╗╢╴			r
29-OAM-0	26/05/17		•	1x125mL container	- 1			17						1			r
27-OAM-0	26/05/17			1x125mL container	-			17			\Box		╣	┪╟╴	ऻऻऻऻ		r
_				<u></u>					П		H		_	┪╁	╫━		r
								╂			Ħ		╢	┪╟═	₩		r
	1		_		1		<u></u>	╫	Ħ	H			╡	十	╫┤	H	ŀ
•				 	+	·- ·- ·- ·	<u> </u>	╂═╣	H				═╢┾	╢╴	╫∺	H	H
	- -				 			╂═╢		Ħ	┝═╢	╫	 -	╣	╫═┥	H	ŀ
SPECIAL INSTA	UCTIONS/COMME	NTS (CLIE	NT)	SAMPLE RE	CEIPT DET	AILS (LABORATO	RY)	SAN	APLE C	ESCR	LIPTIC	N ANI	COM	MENTS	<u> Л.Ц)</u> 5 (LABÇ)RAT(L. OR
Samples have be	een preserve	d.		1. Total No. of Containers		4. Ice Present in Cooler?	Y/N	:								•	
hanks!				2. Courier (a)		5 Seal Present?	Y/N] ·	<i>a</i> ,	: :	. i.	9 	·	·1	1914		
				3. Good Condition?	Y/N	6. Initials Present on Seal?	Y/N		7 4							-	
	IQUISHED BY (CLIE	NT)		RECE	IVED BY (L	ABORATORY)		<u>. </u>					f:	. ; .	eg _{ere} .		
Yward Com		$\searrow \Delta$	(Signature)	James Momes			(Signetive	only re	late to	the sar	nple a	s receive	ed. Na li	ability ir	ted. The whole i	pr in pa	
Moutel	us Env.		izelbook	ALS		01/06/		Ropplica							of the sa ults in p		п
ditional costs may be	required for samp			Payment net 30 unless of	therwise co		, . (*****************************	+				torm Di	tt. Versio	n 12 Re	wised by	CC 201	- 64

6 NAUTILUS ENVIRONMENTAL

TESTING LOCATION (Please Circle)

Burnaby 0 8664 Commerce Court Burnaby, British Columbia, Canada V5A 4N7

Phone 604.420.8773

Calgary O #4, 6125 12 Street SE Calgary, Alberta, Canada T2H 2K1

Phone 403.253,7121

Date______Page____6f____

Report to:				Invoice To:				ANALYSES REQUIRED						_			
Company	Nautilus Environ			-	(same)		_	.									_
Address	8664 Commerce	Court		Address		-		.		.						{	7
City/Prov/PC	Burnaby, BC			City/Prov/PC				.									ž
Contact Phone	Yvonne Lam			Contact				. _					ļ	1 1			
Email	604-420-8773 yvonne@nautilu:	nonvisoosus		Phone Email				<u>&</u>	1		1						L ä :
L Man	Monnie	Servinonina	entar.ca	PO No.		-		Ţ <u>i</u> ξ		- {						1 7	
Sample Collection By:				Sample Type: Grab (OR	Composite (Sulphides								Decolar Years area	
SAMPLE ID	DATE (DD/MM/YY)	TIME	MATRIX	# OF CONTAINERS AND VOLUME (e.g. 1 x 20 L)		COMMEN	TS	Total									
CONT-OS-0	26/05/17	-		1x125mL container				17			7		$1 \square$			- -	
08-OS-0	26/05/17			1x125mL container				17	H		-		#		╗	╗	\dashv
06-OS-0	26/05/17			1x125mL container				17		┪	┪	╼╢┞═	╫┯	┟═┩╂	┪╟╴	┪	7
09-OS-0	26/05/17			1x125mL container		·=		17			- 		╢Ħ	┟═╍┥┼	╣	1	\neg
13-OS-0	26/05/17			1x125mL container						- †				╣	╗	\neg	
17-OS-0	26/05/17			1x125mL container				17								7	\dashv
20-OS-0	26/05/17	_		1x125mL container				17			-		₩		╗	=	
18-OS-0	26/05/17			1x125mL container	T			1171			T T				-#-	╡┣═	$\overline{}$
19-OS-0	26/05/17			1x125mL container				17			٦					= -	_
24-OS-0	26/05/17			1x125mL container						٦	 ∏					1	
SPECIAL INSTR	UCTIONS/COMME	NTS (СЦЕ	NT)	SAMPLE REC	CEIPT DETA	AILS (LABORATO	IRY)	SAM	IPLE D	ESCRI	PTION	AND	COMMI	NTS (L	ABOR/	ATORY,	$, \neg$
Samples have be	een preserve	d.	_	1. Total No. of Containers		4. Ice Present in Cooler?	Y/N					4.					
Thanks!				2. Courier		5. Seel Present?	ÝZN _{SS}		en en en en en en en en en en en en en e	##. ₁	<u> </u>		(1), 10 m (e)	4 - A	likiji Skiji	ign Ogn	
			3. Good Condition?	Y/N.	6. Initials Present on Seal?	Y/N] a	a.c									
RELIN	RELINQUISHED BY (CLIENT)				RECEIVED BY (LABORATORY)												
timed Name) (Signatu				(Printed Name)			(Signature	Our liability is limited to the cost of the test requested. The test results only relate to the sample as received. No liability in whole or in part is assumed for the collection, handling, or transport of the sample.									
Nowfile's Gave all delig elboth (Company)						01/06	60/MM/NY and Time	A abalica				•	or transp est data c				
Additional costs may be	required for sampl				herwise co					_		Form 020:	: Version 1	2: Revise	d hu (C	2016/10	106

HAUTILUS ENVIRONMENTAL

TESTING LOCATION (Please Circle)

8664 Commerce Court Burnaby, British Columbia, Canada V5A 4N7 Calgary O #4, 6125 12 Street SE Calgary, Alberta, Canada T2H 2K1 Phone 403.253.7121

L1936147-COFC

te Page of

				Phone 604.420.8773			Phone 403.253.7	121					Oate	>	_Page	<u>'0</u>
Report to:				Invoice To:				T			ANALY	SES REQ	UIRED		\Box	. "
Company	Nauhjus Environ	mental		Сотрапу	(same)			1						- 1	1 1	· ·
Address	8664 Commerce		-	Address	(•					ļ					õ
City/Prov/PC	Sumaby, BC			City/Prov/PC							1					ē
Contact	Yvonne Lam			Contact							i	- 1	1 1			. ₹
Phone	604-420-8773			Phone			·	တ္က	ĺΙ	Į						퉏
Email	yvonne@nautilu:	senvironme	ental.ca	Email				ğ		ſ						ě
				PO No.				Sulphides								Receipt Temperature
Sample Collection By:			•	Sample Type: Grab	O OR	Composite	0									* # *
SAMPLE ID	DATE (DD/MM/YY)	TIME	MATRIX	# OF CONTAINERS AN VOLUME (e.g. 1 x 20		COMME	NTS	Total								
12-08-0	26/05/17			1x125mL containe	÷r			1								
01-OS-0	26/05/17	-		1x125mL containe	≱r			V								
03-OS-0	26/05/17			1x125mL containe	} Γ			7								
2 9 -OS-0	26/05/17			1x125mL containe	ar			V								•
27-OS-0	26/05/17		<u>"</u>	1x125mL containe	er .			V								
-																
							•				[L					
								\Box			$\rfloor \rfloor \lfloor$					NI.
SPECIAL INST	RUCTIONS/COMME	NTS (CUE	NT)	SAMPLE RI	ECEIPT DET	AILS (LABORAT	ORY)	SAI	MPTE (ESCR	10TION	(AŅD C	OMMEN	NTS (LAB	ORATO	RY)
Samples have b	een preserve	d.		1. Total No. of Containers		4. Ice Present in Coolor?	Y/N									
Thanks!				2. Courier		5, Seal Present?	*** Y/N ****	lip .		. " .		1.		la di		, , , , , , , , , , , , , , , , , , , ,
				3. Good Condition?	Y/N	6. Initials Present on Seaf?	Y/N :] . (4							
RELI	NQUISHED BY (CLIE	NT)		REC	EIVED BY (L	ABORATORY)		1	. :			ji se			٠.	
YWAR Con	<u> </u>	کسِا	(Signature	Printed Nimes	· · · · · ·		(Signatur	only re	elate to	the san	nple as	received.	No liabilit	uested. They in whole	e or in pa	
Stan Wouthlu	5 Env. c	1/06/1 (Date 00	7 elloch Mymand lime	KLOMPARY)		01%	06/17 the DOMMAN and Time	assum applic	ation or			_		ort of the s results in	•	1
Additional costs may be	required for sample	e disposal	or storage.	Payment net 30 unless of	otherwise co		8100				,	arm 020;1	Version 1.7	. Revised b	y CC 2016)/10/06

3 NAUTILUS ENVIRONMENTAL

TESTING LOCATION (Please Circle)

Burnaby () 8664 Commerce Court Burnaby, British Columbia, Canada V5A 4N7

Calgary (#4, 6125 12 Street SE Calgary, Alberta, Canada T2H 2K1

L1936147-COFC

5.8

				Phone 604.420.8773			Phone 403.253.7	121					Dar	te	Page	- <u>}</u>
Report to:				Invaice To:	•			<u> </u>			ANAL	YSES RE	QUIRED	_ -		丁
Company	Nautilus Environ	mental		Company ((same)					}						1
Address	8664 Commerce	Court		Address	<u></u>			1								Įρ
City/Prov/PC	Sumaby, BC			Chy/Prov/PC												, <u>e</u>
Contact	Yvonne Lam			Contact				1			!					₽
Phone	604-420-8773			Phone				<u>.e</u> .			1			- 1		1 4
Email	yvonne@nautilus	senvironme	intal,ça	Email				등		- 1]			Į,
				PO Na.		_	 ·	Ammonia				1	1			Receipt Temperature (°C)
Sample Collection By:				Sample Type: Grab () OR	Composite	Ō	-				i				ĕ
SAMPLE ID	DATE (DD/MM/YY)	TIME	MATRIX	# OF CONTAINERS AND VOLUME (e.g. 1 x 20 L)		сомме	NTS	Total								
CONT-OAM-96	30/05/17			1x125mL container											╗	<u> </u>
08-OAM-96	30/05/17			1x125mL container				17	П			7 -				
06-OAM-96	30/05/17			1x125mL container				7								
09-OAM-96	30/05/17		-	1x125mL container		•		7							╗	1
13-OAM-96	30/05/17			1x125mL container				7								17
17-OAM-96	30/05/17			1x125mL container				M								
20-OAM-96	30/05/17			1x125mL container]											
18-OAM-96	30/05/17			1x125mL container				V								
19-OAM-96	30/05/17			1x125mL container												dij.
24-OAM-96	30/05/17	-		1x125mL container				$ \mathbf{V} $								
SPECIAL INSTRI	UCTIONS/COMME	NTS (CLIEF	NT)	SAMPLE REC	EIPT DET	AILS (LABORAT	ORY)	SAN	IPLE D	DESCR	IPTIO	ONA P	COMME	NTS (LA	BORAT	ORY)
Samples have be	en preserve	t.		1. Total No. of Containers		4. Ice Present in Cooker?	Y/N				٠.			٠.	. :	
Thanks!	inks!			2. Courter	<u>, 198</u> .	5. Scal Present?	Y/N _{iaj}		``	- ij		4	i (1.00	
				3. Good Condition?	Y/N	6, Initials Present on Seal?	Y/N		9°0							
RELIN	RELINQUISHED BY (CLIENT)				RECEIVED BY (LABORATORY)											
Typona Con Sulf Bigging Change				Printed Name Devery	. 1 '		Signatine	contracte	Our liability is limited to the cost of the test requested. The test results cody-celate to the sample as received. No liability in whole or in part is							ant is
Nouthus Ermi ol/oblit elbooh				(Kornbany)	<u> </u>	01/06	/ 17 (18; 01 + DO/MAN/MODIFIED		ssyrified for the collection, handling, or transport of the sample, pplication or interpretation of the test data or results in part or in those							
dditional costs may be r	equired for sample	e disposal	or storage.	Payment net 30 unless oth	ierwise co	ntracted.		Γ				orm 020:	: Version 1	2. Revisor	by CC 201	16/10/06

3 NAUTILUS ENVIRONMENTAL

TESTING LOCATION (Please Circle)

Burnaby (8664 Commerce Court Burnaby, British Columbia, Canada V5A 4N7

Calgary (#4, G125 12 Street SE Calgary, Alberta, Canada T2H 2K1 Phone 403.253.7121

L1936147-COFC

				Phone 604.420.8773		Phone 403,253,7	121					Da	te	Page	e <u>~</u> ∾_'
Report to:	" " " " " " " " " " " " " " " " " " " "		<u> </u>	Invoice To:			丅			ANAI	YSES RI	EQUIRED		<u> </u>	丁
Company	Nautilus Environ	nmental		Company (sa	ame)					i			.		1
Address	8664 Commerce	_		Address	, , , , , , , , , , , , , , , , , , ,	<u> </u>		'				'			ا و ا
City/Prov/PC	Bumaby, BC			City/Prov/PC							ŀ	'			<u>ئ</u>
Contact	Yvonne Lam			Contact			1					'			Į
Phone	604-420-8773			Phone			10					'	,		<u> </u>
Email	yvonne@nautitu	6enviranm	ental.ca	Email			l ĝ	'		.	-	!	,]]
				PO No.			Ammonia						.		Receipt Temperature (*C)
Sample Collection By:				Sample Type: Grab) OR Composite	· O						'	ı İ		لإ
SAMPLE ID	OATE (DD/MM/YY)	TIME	MATRIX	# OF CONTAINERS AND VOLUME (e.g. 1 x 20 L)	COMME	INTS	Total								(0.)
12-OAM-96	30/05/17			1x125mL container	·				\prod						
01-OAM-96	30/05/17			1x125mL container			7								1
03-OAM-96	30/05/17		1	1x125mL container									├ ─ -		1
29-OAM-96	30/05/17		<u> </u>	1x125mL container			17								
27-OAM-96	30/05/17			1x125mL container											
															1
				·											1
				,											il —
SPECIAL INSTI	RUCTIONS/COMME	NTS (CLIE	NT)	SAMPLE RECE	IPT DETAILS (LABORAT	rory)	SAF	MPLE	OESCR	UPTIO	N AND	СОММЕ	NTS (LA	BORAT	(ORY)
Samples have be	een preserve	d.		1. Total No. of Conteiners	4. Ice Present in Coaler?	y Yyn, i .,		SAMPLE DESCRIPTION AND COMMENTS (LABORA							d .
Thanks!	Thanks!			2. Courier	5. Seal Present?	Y/N]	æ	ے ہ		, ·		. '		
				i los	Y / N 6. Initials Present on Scale	Y/N		The state of the s							h
RELIA	RELINQUISHED BY (CLIENT)			RECEIVED BY (LABORATORY)											
Trans Com Set (Signature)				Janes (Printed Name)		(Signature	only re	Our liability is limited to the cost of the test requested. The test results only relate to the sample as received. No liability in whole or in part is assumed for the collection, handling, or transport of the sample.						part is	
Moutilus Ent.	اات -		16/6001	Company	Ol	166/17	applica	ation o			-	g, or transp test data o			
Additional costs may be	required for samp	le disposa	or storage.	Payment net 30 unless othe		18:00					Farm 02	D. Version 1.	Z. Havised	by CC 20)16/10/0£

NAUTILUS

TESTING LOCATION (Please Circle)

Burnaby () 8664 Commerce Court Burnaby, British Columbia, Canada V5A 4N7

Phone 604.420.8773

Calgary () #4, 6125 12 Street SE Calgary, Alberta, Canada T2H 2K1

Phone 403-253,7121

Report to:				Invoice To:				ANALYSES REQUIRED						\prod		
Сотралу	Nautilus Environi	imental		Company	(same)			1 1	<u> </u>]	-				.
Address	8684 Commerce	Court		Address				1	Ì						1	្រ
City/Prov/PC	Burnaby, BC			City/Prov/PC				1		- 1						2
Contact	Yvonne Lam			Contact				l		- [att
Phone	604-420-8773			Phone				စ္က								
Emall	yvonne@nautilus	senvironme	intal.ca	Email				ğ	ļ	-				-		4
				PO No.				Sulphides	1		i	- 1				Receipt Temperature (*C)
Sample Collection By:				Sample Type: Grab (OR OR	Composite (0	4 1								. ž
SAMPLE ID	DATE (DD/MM/YY)	TIME	MATRIX	# OF CONTAINERS AND VOLUME (e.g. 1 x 20 L)		COMMEN	TS.	Total		İ						s:
CONT-OS-96	30/05/17	1		1x125mL container						╌╢Г			╬			
08-OS-96	30/05/17			1x125mL container						- 	1	╢	╫┺═╢		│ ┃ 	-,.
06-OS-96	30/05/17			1x125mL container	. [- -	 		╎┞═ ╅╵	
09-O\$-96	30/05/17			1x125mL container		. <u></u>										
13-OS-96	30/05/17			1x125mL container	.			17			7	ᆘ	₽		╫╼╅	-
17-OS-96	30/05/17			1x125mL container				7					╫╼╫			
20-OS-96	30/05/17			1x125mL container												
18-OS-96	30/05/17			1x125mL container				Z								
19-OS-96	30/05/17			1x125mL container	· [
24-OS-96	30/05/17			1x125mL container												
SPECIAL INSTRU	ICTIONS/COMME	NTS (CLIE	רוא	SAMPLE REC	CEIPT DET/	AILS (LABORATO	DRY)	SAN	PLE D	ESCRII	PTION	AND C	OMME	NTS (LAB	ORATO	RY) :
Samples have been	en preserved	d.		1. Total No. of Cantainers	.:	4. Ice Present in Cooler?	Y/N					. :				·
Thanks!				2. Courier	i;	5. Seel Present?	Y/Nij		100		ji nji	! !	તું. તું. કું કે ક	٠, .		$[x_0]$
			_	3. Good Condition?	Y/N	6. Initials Present on Seal?	Y/N	l	document the same							
RELINQUISHED BY (CLIENT)				RECEI	IVED BY (L	ABORATORY)			1.	113.		1111		flight.	<u> </u>	٠.
Triang Con (Signature				(Printed Name)	(1	(Signature)	Our hability is limited to the cost of the test requested. The test results only relate to the sample as received. No liability in whole or in part is								
Noutilus Enu. SIJObi 1781602L				L :: 241.5		- 01/0	6/17 DEMMANY and Time)	assumed for the collection, handling, or transport of the sample, application or interpretation of the test data or results in part or in whole.								
Additional costs may be re	onal costs may be required for sample disposal or storage. Payment not 30 violess otherwise contracted.															

G NAUTILUS ENVIRONMENTAL

TESTING LOCATION (Please Circle)

8urnaby 0 8684 Commerce Court Burnaby, British Columbia, Canada VSA 4N7

Phone 604,420,8773

Calgary
#4, 6125 12 Street SE
Calgary, Alberta, Canada
T2H 2K1
Phone 403.253.7121

L1936147-COFC

ate_____Page_of_G

Report to:				Invoice To:		<u> </u>		ANALYSES REQUIRED										
Company Address City/Prov/PC Contact Phone Email	Naulilus Environ 8664 Commerce Bumaby, BC Yvonne Lam 604-420-8773 yvonne@nautilus	e Court	ental.ca	Company Address City/Prov/PC Contact Phone Email PO No. Sample Type: Grab	(same)	Composite		Sulphides										Receipt Temperature ('C)
SAMPLE ID	DATE (DD/MM/YY)	TIME	MATRIX	# OF CONTAINERS AN	10	сомме		Total 8										
12-OS- (P) 6	30/05/17			1x125mL containe				7				\prod						. 1219
01-OS- % 95	30/05/17			1x125mL containe	<u>÷</u> г													
03-OS -4 76	30/05/17			1x125mL containe	er .		_	7										:
29-OS-Q 96	30/05/17			1x125mL containe	er													
27-OS-¥ 96	30/05/17			1x125mL containe	er				Ħ			\square	П	│	П			
	T -	1						╽┝ ╼┩	Ħ			Ħ	╟╼┪	┟ ┝══ ┩╢	H		\vdash	
<u></u>	1				 		<u>-</u>	╂═╣	鬥			 	H				7	•
	† †	$\overline{}$			+			╁├┤╢	H	H		H	H	╠═╫	H		H	
	 			†	\dashv		·-	╟╫	H	╫╼╅	╂╼╡	H	H	╠╼╣	H	┝	H	
	 	-	 		 			╂├─╢	Ħ	┝╼		┾╼╣	H	╠═╣	┝┤	╁╼╅	╫	7
SPECIAL INSTRU	UCTIONS/COMME	NTS (CLIE)	מא.	SAMPLE RI	ECEPT DETA	AILS (LABORAT	TORY)	SAN	4PLE	DESC	RIPTIO	ON AI	<u> </u>	DMME!	NTS ((LASO	PATO	PΥ
Samples have be Thanks!				1. Total No. of Containers		4. Ice Present in Coole? 5. Seal Present? 6. Initials	^с х/N : :		: Ч П	ے''د	1							
RELINQUISHED BY (CLIENT)				956	<u></u>	Present on Seal?			7	ٺ			•			•		. ;
				(Printed Name)	HAEDBLID	BURATURI	" (Signature	only re	Our liability is limited to the cost of the test requested. The test results only relate to the sample as received. No liability in whole or in part is									
Mouralus Env.	المواد	00.06 MM/YY and Time)	(Corpusally)		01/0	C 15	applica	assumed for the collection, handling, or transport of the sample, application or interpretation of the test data or results in part or in whole.						1				
ditional costs may be required for sample disposal or storage. Payment net 30 unless otherwise contracted.												Form	020; V	ersion 1.	Z, Revi	sed by (3C 2016	5/10/06

Marine Amphipod Sediment Test Summary Sheet

Client:	Golder	Start Date: 26-May-17	
Work Order No.:	170470	Set up by: AWD/EC/JW	
Sample Information:			
Sample ID:	Various - See Below		
Sample Date:	April, 2017: 26, 26, 26, 29, 30		
	May, 2017: 1, 2, 4, 5		
Date Received:	15-May-17		
Sample Volume:	2 x 4L per sample		
Test Organism Inform Species:	ation: E.estuarius		
Supplier:	Northwestern Aquatic Sciences, OR		
Date received:	24-May-17		
Age or size (Day 0):	3-5 mm	· · · · · · · · · · · · · · · · · · ·	
Cadmium Reference I	oxicant Results:		
Reference Toxicant ID:	EE60		
Stock Solution ID:	16Cd01		
Date Initiated:	26-May-17		
96-h LC50 (95% CL):	6.2 (4.0 - 7.8) mg/L Cd		
96-h LC50 Reference T	oxicant Mean and Range: 7.9 (4.8 - 12	2.8) mg/L Cd	

Test Resulter

Sample ID	Survival ± SD (%)	Avoidance ± SD (# amphipods/jar/day)	Reburial (%)
Control Sediment	97.0 ± 4.5	0.0 ± 0.0	100
SED17-08	94.0 ± 2.2	0.0 ± 0.0	100
SED17-06	94.0 ± 4.2	0.0 ± 0.0	100
SED17-09	35.0 ± 7.9*(a)(b)(c)	0.0 ± 0.0	100
SED17-13	40.0 ± 12.8 ^(a) (b)(c)	0.02 ± 0.04	100
SED1 7 -17	92.0 ± 7.6	0.0 ± 0.0	100

SED17-20	62.0 ± 15.6*(a)	0.0 ± 0.0	98
SED17-18	91.0 ± 4.2	0.0 ± 0.0	100
SED17-19	57.0 ± 6.7*(a)(c)	0.0 ± 0.0	100
SED17-24	89.0 ± 11.4	0.0 ± 0.0	100
SED17-12	83.0 ± 11.5*	0.0 ± 0.0	100
SED17-01	77.0 ± 7.6*	0.0 ± 0.0	90
SED17-03	96.0 ± 4.2	0.0 ± 0.0	100
SED17-29	67.0 ± 15.2*(a)	0.0 ± 0.0	100
SED17-27	78.0 ± 13.5*	0.0 ± 0.0	87

^{*} Asterics indicate sample(s) that is significantly different from the control sediment.

Reviewed by:	<u> </u>	Date reviewed:	July 4, 2017
			•

⁽a) indicates sample(s) that is significantly different from reference sediment SED17-24

⁽b) indicates sample(s) that is significantly different from reference sediment SED17-29

⁽c) indicates sample(s) that is significantly different from reference sediment SED17-27

10-d Amphipod Sediment Toxicity Test Data Sheet

Marine Sediment 10-d Water Quality

Client:
Work Order No.:

Golder Associates 170470 Start Date: 26-May-17

Termination Date: 5-Jun-17

Test Organism: E. estuarius

Temperature (°C)

Sample tD	L					Day					
Cample to	O.	1	2	3	4	5	6	7	8	9	10
Control Sediment	145	14.5	145	15.0	15-0	14.5	15- C	IS O	ஞ்	୍ୟରୀ ଦ	į\$
SED17-08	146	195	145	19-0	(S-0	i4.5	iS-D	. i5-0	16/0	150	_
SED17-06	145	145	146	15.0	15-0	14.5	15.0	iS-D	(4)0	<i>1</i> 50 ≥	jt
SED17-09	14.5	146	146	i\$-0	15.0	15.0	15-0	15-0	1513	1510	Į.
SED17-13	19/5	146	(45	15.0	150	15.0	iS-0	15.0	1572	4500	j
SED17-17	145	146	145	15.0	iŞ-¢	19.0	15-0	15.0	1200	15,0	j۱
SED17-20	146	14%	19/5	(5.0	lS-io	15.0	15-D	15:0	1500	/S) o	15
SED17-18	145	14%	(4.5	ŧ\$-0	15.0	15·0	15:0	15.0	1572	1600	(5
SED17-19	14/5	145	14.4	is o	i5-0	1 5 +0	i5-0	§5-0	150	10)=	įξ
SED17-24	146	146	14/5	15.0	15.0	15.0	15.6	15-D	150	<i>(-</i> 5) 6	jç
SED17-12	(45	14.5	14/2	150	IS-D	15.0	iS-0	15·0	1572	16/0	į
SED17-01	145	140	14.5	iso	15·0	15.0	15-0	15.0	16.0	15/2	į S
SED17-03	145	14%	145	is-p	iS-0	15.0	!S.0	iS-O	15.4	1500	į
SED17-29	(46	146	14/5	i5∙≎	iS-D	きらい	19.0	i5:0	1512	16/ a	i,c
SED17-27	145	1455	14.5	15.0	i\$-D	iS-0	19.0	15:0	1000	13/12	15
Technician Initials		<i>b</i> -	F	Oka	UiC	ોંહ	JW	JW.	A	Λ_	ju)

Salinity (ppt)

Sample ID						Day					
- Compic is	0	1	2	3	4	5	6	7	8	9	10
Control Sediment	1-8	28	28	23	23	24	-13	27	28	27	ฉร
SED17-08	28	28	24	24	29 Jiu	2829	29	29	2.7	20	29
SED17-06	2-9	2,F	29	29	29	2629		20	25	23	29
\$ED17-09	2-2	2.7	2.9	20	29	34	29	29	1_9	23	29
SED17-13	28	23	29	38	29	29	29	29	2-9	29	24
SED17-17	28	2.5	20	হণ	29	29	29	29	25	ندن	29
SED17-20	28	2-7	29	28	38	29	29	29	23	2-7	20
SED17-18	28	29	27	39	29	24	29	29	29	11.1	29
SED17-19	28	25	21	3,13	29	24	29	29	24	1-1	29
SED17-24	29	29	25	29	29	24	29	29	29	2-7	29
SED17-12	28	28	23	₹4	રૂવ	29	29	29	29	23	- × -
SED17-01	28	29	28	29	39	29	29	29	2.7	22	29
SED17-03	28	28	28	38	29	28,	28	28	21	2.42	্রণ
SED17-29	28	25	28	ર્ગ્ય	28	28	29	29	2-3	1_1	29
SED17-27	2+	28	24	વર્ષ્ટ	28	2%	228	28	25	2.5	23
Technician Initials	-9	o	~	JN	JAN	Jiv .	310	Jivs	A		MIG

Thermometer:	UZ	#2	DO meter: 1/.2	pH; 1/ 2	Salinity meter: 1/2
Comments:					
		<u> </u>			
Reviewed by:		CA .	Date Revis	ewed: Ju	ne 28, 2017

10-d Amphipod Sediment Toxicity Test Data Sheet Marine Sediment 10-d Water Quality

Client:	Golder Associates	Start Date: 26-May-17	
Work Order No.:	170470	Termination Date: 5-Jun-17	
		Test Organism: E. estuarius	

Dissolved oxygen (mg/L)

Sample 1D		•				Day					
Sample 10	0	1	2	3	4	5	6	7	8	9	10
Control Sediment	7-8	80	60	8.3	8.0	F- L	₹.₽	8.1	ايكو	<u>}</u> ?	71.S
SED17-08	29	ji,O	7.9	8.3	₹.0	8-1	₹-1°8	8.0	20	دت	73
SED17-06	79	8,1	ದ್ದಿ	8.7	8- i	3.1	7.8	8.0	أبرع	λc	7.18
SED17-09	78	5.0	جري	8-3	8-1	8.1	4.8	7.6	3-9	7.8	7.3
SED17-13	79	انع	S.I	8-2	8.0	8.1	9.8	₹-₹	تہ≟و	مے	71.3
SED17-17	7.9	80	50	8.2	8.0	8.1	7-9	7.8	ج <u>.</u> ٥	79	7.8
SED17-20	2.9	اجع	8-1	8.2	₹. T	8.2	3.8	3.8	3-9	9-,0	7.7
SED17-18	79	£1	F:1	8.7	8-0	8.2	7.8	₹.१	40	_E S	7.8
SED17-19	7-9	ديو	5-1	8-2	8.0	8.2	7.8	7.8	الثؤ	74	7.9
SED17-24	78	₩,	الح	8.2	3.0	8-1	7.8	7.8	مے	£."	39
SED17-12	7-9	8.1	£,0	8.3	8-1	₹.1	₹-\$	₹.%	F-1	79	7.9
SED17-01	1.5	80	<i>⊊</i> _	8.3	₹- Z	8.1	8.0	∃-₹	مبو	60	7.9
SED17-03	79	1,0	3-1	8.2	8.1	8.1	7.8	म्.५	80	8,0	7.9
SED17-29	77	g,o	و ۾	8.2	<i>§</i> -1	° €-1	8-0	4.8	حر کے	7-9	79
SED17-27	79	داع	<i>5</i> ≟1	8-2	8-1	8.1	7.9	વે.દે	حب	7-5	निश
Technician Initials	4	A-	2	JW.	3W	3:0	ΟM	Div	_A_	Λ-	WC

ρН

Sample ID				·		Day					
Gample 18	0	1	2	3	. 4	5	6	7	8	9	10
Control Sediment	ሕን	ふそ	78	76	7.6	71.65	3.6	∄/S	<i>"</i> }}}	76	4.7
SED17-08	22	7.6	7.3	₹.8	3.8	4. 8	7.7	73.7	73	ት ት	7.9
SED17-06	28	. 7.2	47	7.8	9.F	7.8	3.8	4.4	2.8	7.7	4.4
SED17-09	711	ኋን	78	7.6	7.6	4.6	7.7	7.6	<u>ጌ</u> ት	78	8.5
SED17-13	27	38	7-3	7.6	7.7	74.7	₹.₹	7.6	78	7.8	39
SED17-17	7.8	7-7	78	71.8	7.8	7.8	7.8	7.4	28	2.7	3.9
SED17-20	3-7	チン	3.8	7.4	7.7	₹.8	₹.₽	4-4)-'}	71	8.0
SED17-18	7-8	7,3	78	₹.8	₹.8	₹-8	3.8	7.8	77	7.7	8.0
SED17-19	75	7.4	ኊ፞፞	3.5	7.9	₹.९	7-9	₹-8	29	7-8	8.0
SED17-24	7.8	28	* *	3.8	3.₽	7.8	4.8	3, 4	عربد	7-8	8.0
SED17-12	7.4	7.8	7	7.7	7.7	3.8	7-4	구-구	2,5	えみ	7.9
\$ED17-01	78	7.4	23	₹.8	२ .शॅ३	7.8	₹.₹	4.4	عجر	ሕን	49
\$ED17-03	78	28	28	7.9	子9 浮	7.9	7.7	7.6	7-7-	28	7.9
SED17-29	75	78	7.8	₹-₹	₹. ३ :	7.8	7.8	7.8	28	2,8	7.8
SED17-27	1.8	} S	7.8	7-6	- F-F	₹.₹	7.6	ች .6	7-18	37	4.8
Technician Initials	۵	<u> </u>	_^_	JAVI	3M	30	30	JW	Į	A	MI

Thermometer:	GR	#2	_	DO meter: 1/2	pH:_	1/a	Salinity met	er: 1/2
Comments;				·····				
							<u></u>	
Reviewed by:				Date Revi	ewed:	Ju	Ne 28	2017

10-d Amphipod Sediment Toxicity Test Data Sheet

Marine Sediment 10-d Emergence and Final Survival

Client:

Golder Associates

Start Date: 26-May-17

Work Order No.:

170470

Termination Date: 5-Jun-17
Test Organism: E. estuarius

Sample ID:

Control Sediment

Bon	Day											Day 10	No.	No.	No.		Day 10 W	ater Quality	
Rep	1		2	3	4	5	6	7	8	9	10	survival	. Halling to H	đead	missing	Temp (°C)	Sal (ppt)	DO (mg/L)	Hq
Α	Ĵ	2	٥	6	Ö	Û	0	0	Ð	O	О	20	. 0	0	O	15,0	28	7.8	7.7
В	L		;	٥	o	0	0	٥	.		c	26	٥	Ú	ರ	15.0	J ₈	79	7.8
С				Û	0	0	0	٥	i		0	(લ	٥	į	O	15.0	მგ	79	7-8
D				O	0	0	0	٥			O	3M ₹	С	0	10 g 2	16,5	23	7.9	7.8
Ę	لم ا		Ŀ	Ċ	0	0	0	0			٥	მხ	0	c	O	15,0	38	7.9	7.8
Initials	<i>h</i> -		٠,	J.N	Ĵŧ∖ì	Sŧ√	11/0	CUC	بد	۵.	OW	W.C	3 (3)	ĈίΝ	SNo	N/Cl	MÜ	MU	Mr.

Comments:

Sample ID:

SED17- 08

Pan	Rep Day									_ Day 10 I _{faili}		No.	Day 10 Water Quality					
Кер	1	2	3	4	5	6	7	8	9	10	• • • • • • • • • • • • • • • • • • • •	dead	missing	Temp (°C)	Sal (ppt)	DO (mg/L)	рΗ	
Α	D	0	42	Ü	O	Ö	0	Ø.	Ø.	Ó	ı٩	С	O	Ł	15,0	30	7.7	8.0
В			C	Ð	٥	0	0			O	90	U	-4	į	(5,5	3c	7.3	7.9
c		ļ	0	Ü	Ü	C	O		·.	0	14	0	С	i	18.0	રૂવ	7.8	ن, ع
D			Ċ	c	0	0	O		·-·	0	19	0	0	Į	\ \$,১	. ચેવ	7.8	7.9
Е	1	1	O	0	c	0	0		į	0	19	0	0	i	Įb _i o	<i>3</i> 6	7.9	7.9
Initials	·}-	₽~	73	ÄÄ	ាស	JW.	ЗN	<i>∗</i>	¥	O(N)	Ði⁄a	0%	OW	Jivi	เปเม	MLJ	MP	ML7

Thermometer:_	.ceb #.5	DO meter:1	ρH: <u>'</u>	Salinity meter:	1
Comments:					
Reviewed by: _	OV		Date Reviewed:	June 28, 2017	
_					

Issued July 4, 2007; Ver. 1.0

Nautilus Environmental

Marine Sediment 10-d Emergence and Final Survival

Test Organism: E. estvarius

Client:	Golder Associates	Start Date: 26-May-17
Work Order No.:	170470	Termination Date: 5-Jun-17

Sample ID: SED17- %

Rep					Ð	ay					Day 10	No. failing to	No.	No.		Day 10 Wa	ater Quality	
- Kep	1	2	3	4	5	6	7	8	9	10	survival	rebury	đead	missing	Temp (°C)	Sal (ppt)	DO (mg/L)	pН
Α	0	3	O	0	û	O	0	0	0	o	20	0	Ç	Ü	15.0	રૂવ	7.8	8.0
В	L		o	0	0	٥	0	İ	: :	0	ાવ	D	1 0 w	0	15.0	ગ્રુષ	7.8	8.0
С			O	О	0	0	O			0	18	6	{	i	\$5.0	J9	₹.₿	გ.ა
D			O	0	Ó	0	0		ĺ	0	18	O	Ü	3.07 2	15.0	એવ :	7.8	გ.ა
E	1	上	٥	٥	O.	٥	Q	-		Đ	iq	0	į	٥	15.0	ୃପ	7-8	8.0
Initials	c- :	D	7,0	TAN	Q 29	70	QΝ	ል	مر	Tiy	Diβ	ວີເນ	JW	3w	MET	ME	MU	MUT

Comments:

Sample ID: SED17- ©9

Rep					D	ay					Day 10	No.	No.	No.	- ·· · · · · · · · · · · · · · · · · ·	Day 10 W	ater Quality	
I TOP	1	2	3	4	5	6	7	8	9	10	survival	failing to rebury	dead	missing	Temp (°C)	Sal (ppt)	DO (mg/L)	pН
A	S	၁	Ö	٥	6	0	О	0	ن	υ	40	0	Ţ	i2	15.0	30	7.7	8.1
В	1	ļ	Ċ.	O	٥	b	0	·	Ļ	٥	ရစ	D	i	10	15,0	39	7.6	8.1
С			0	٥	0	Ö	٥			U	5	ο	į	15	15.0	30	7.7	1.8
D	<u> </u>		Č	6	0	0	O	Ţ.	!	0	8	0	0	12	15.0	30	7.7	1,8
E	_	1	0	٥	0	0	0		i	ð	e 4	O	Ç	13	15.0	ર્ગ	7.6	8.9
Initials	سه		no.	'JiN	3N	Oίλ	J(yi	ζ.	ڔ	Эw	Эvi	DM	ĴίΝ	ЭW	MH	MET	MCT	WP

Thermometer: CGR # 2	DO meter: 1	pH: 1	Salinity meter:	
Comments: O Checked by MLT	3 Checked by KL	oily green on water		
Reviewed by:		I Date Reviewed: _	June 28 2017	
Issued July 4, 2007; Ver. 1.0			/ Nautilus l	Environmental

Marine Sediment 10-d Emergence and Final Survival

Client	

Golder Associates

Start Date: 26-May-17

Work Order No.:

170470

Termination Date: 5-Jun-17 Test Organism: E. estuarius

Sample ID:

SED17- 3

Rep					D	ay					Day 10	No.	No.	No.		Day 10 Wa	ater Quality	
IXED	1	2	3	4	5	6	7	8	9	10	survival	failing to a rebury	dead	missing	Temp (°C)	Sal (ppt)	DO (mg/L)	рН
Α	0	<u></u> ၁	Ò	6	6	0	0	0	0	Ü	50	0	0	เร	15.0	અવ	74,6	8.0
В		!	0	to_	٥	0	Ļ		Ļį	Ó	10	Ç	0	O	<u> </u> 5,5	ୡ୳	7.5	8.1
С		LL	0	0	0	¢	¢	: 		0	8	ر د	Ó	12	ξ ς.ο	ଅବ	7.5	8.1
D	}	į	ن	ō	O	υ	٥		·	0	60	ð.	2_	12	15,0	વ્રવ	7.6	8.j
E		1	0	O	Ü	0	ð	i	\ \	0	_ [[↓	Û	٥	9	5,0	ચ વ	J.b	8.2
Initials	Æ	A	สเบ	DW	ીએ	310	ĴιΝ	<i>3</i>	ŕ	32	DIN	ЭW	Jįγ	Jiw	MLJ	MI	Wit:	MΩ

Comments:

1) checked by KL

city sneen on myser (2) checked by KJL

Sample ID:

SED17- 13

Rep					D	ay					Day 10	No.	No.	No.		Day 10 Wa	ater Quality	
Пер	1	2	3	4	5	6	7	8	9	10	survival	failing to rebury	dead	missing	Temp (°C)	Sal (ppt)	DO (mg/L)	pН
Α	0	ာ	Õ	¢	Ü	j j	O	,	0	Ü	17	٥	O	3	ر <u>آ</u>	્ર સ્વ	7.S	8.0
В	\	ļ	ΰ	0	U	0	0			၃	17	٥	İ	a	jS,O	ગ્રવ	7.8	8.0
C			0	Ü	0	0	٥		, ·	0	30	0	၁	0	4.0	<i>ର</i> ୁ	7.9	7.9
٥			0	٥	S	D	O		-	0	18	٥	1	1	15.0	જ્ઞવ	79	7.9
E	1	1	ΰ	0	٥	0	O			0	8	0	٥	Ú	\ <u>S</u> .0	ଅ ବ	7.9	7.8
Initials	βh	۵~	OW	7 k N	ЭМ	Jeo	SM	ķ	<u></u>	ÜМ	ាស្ត	-3M	OM	าพ	ולא	MG	MLT	MPI

Thermometer: CER # 2	DO meter:l	рН: <u>1</u>	Salinity meter:	
Comments:				
Reviewed by:	Wy	Date Reviewed:	June 28, 2017	
Issued July 4, 2007; Ver. 1.0			Nautilus E	nvironmental

Marine Sediment 10-d Emergence and Final Survival

Golder Associates

Start Date: 26-May-17

Work Order No.:

170470

Termination Date: 5-Jun-17
Test Organism: E. estuarius

Sample ID:

SED17- 20

Rep					D	ау					Day 10	No.	No.	No.	-	Day 10 W	ater Quality	
I (Cp	1	2	3	4	5	6	7	8	9	10	survival	failing to rebury	dead	missing	Temp (°C)	Sal (ppt)	DO (mg/L)	pН
Α	0	٥	ΰ	O	O	0	٥	Ö	υ	0	17	Ü	Ü	3	j5,0	გვ	٥.٢	8.1
В	1	Ц	0	υ	O	0	0	\	į	٥	l1 [©]	G	1	8	5 ,0	эΥ	7.6	8.1
C			D	Ú	0	δ	0			O.	14 ja[2]	೧೦	0	المنتشر في المناسبة	15,0	ગુવ	7.6	8:3
D			0	O	ō.	0	0			0	90	G	0	ìŀ	الهره	રૂવ	7. b	ð.j
E	1	1	0	0	U	0	Ò	در	-: -	Ü	il	Õ	ð	9	15.0	ર ુ	7.6	8. I
Initials	بغ	g.	W	TiM	O _E N	Jan.	Jiw	Ÿ	<i>}-</i> -	วเผ	ivLi	MUT	1461	NIT	MUT	ML	MU	MD

Comme	nts:
-------	------

Sample ID:

SED17- 18

Rep					D	ay					Day 10	No.	No.	No.	•	Day 10 Wa	ater Quality	
ПСР	1	2	3	4	5	6	7	8	9	10	survival	failing to rebury	dead	missing	Temp (°C)	Sal (ppt)	DO (mg/L)	рН
A	a	ؽ	٥	0	Ċ	0	O	0	၁	0	19	O	ಲ		(৮,০	ર્	7.S	8.1
В	\	1/4	Ü	O	5	þ	0	i	į i	0	17	C	٥	3	15.0	ગ્રવ	7.8	8.1
_ C	j		0	0	ر:	0	0	 		0	18	٥	٥	ъ	5,v	၁၁	8-F	8,1
D		_{	٥	C	С	0	0			0	95	Ċ	ð	}	15.0	ત્રુવ	3.5	8.0
Е	_ل_	J	0	0	ာ	O	٥	<u> </u>		O	ĮQ	0	ō	i	15.0	ချ	7.9	8.3
Initials	р-	Æ	Jiv	JW	IJΝ	3M	βļŅ	4	سب	ЭW	194	শঙ্গ	<i>0</i> 0	1)II	MŢ	MC	MET	MED

Comments: © checket by KL © checket, by Two Reviewed by: Date Reviewed: Summer 28, 2017	thermometer: CER # 3	<i>→</i> 00 meter: 1	pH: _ <u>-</u>	Salinity meter:	<u>.</u>
Reviewed by: Bate Reviewed: Sure 28, 2017	Comments: 🖟 ८९१८/६७	DA KL & Checked by Tw			
	Reviewed by:	eu	Date Reviewed:	June 28, 2017	

Issued July 4, 2007; Ver. 1.0

Nautilus Environmental

Marine Sediment 10-d Emergence and Final Survival

Client:

Golder Associates

Start Date: 26-May-17

Work Order No.:

170470

Termination Date: 5-Jun-17

Sample ID:

SED17- PQ

rest	Organis	sm: <u>E.</u>	estuanu	5

Rep						D	ay					Day 10	No.	No.	No.		Day 10 W	ater Quality	
rtep	1		2	3	4	5	6	7	8	9	10	survival	failing to rebury	dead	missing	Temp (°C)	Sal (ppt)	DO (mg/L)	pН
Α	0		0	ů	٥	0	0	С	D.	0	0	& O	0	O,	10	الخ.۷	<u> </u>	3.7.	ે.8
В			\perp	0	С	O	0	٥	 	<u> </u>	D	ეა0	٥	O	10	<u> 1</u> 5.0	ત્રવ	3.7	7.9
С				0	0	O	C	0			0	¹² TQ(<u>0</u>	ن	O	\$ \frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac}\fint{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}{\fin}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}}}}}}{\frac}\fir}{\fir}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\fra	jt s .u	રૂવ	7.3	8.1
D				ō.	0	ũ	0	c			O	130	D	7	5	15,3	ର ୍ବ	₹. F	1.8
E		<u> </u> .	<u> </u>	0	0	O	D	0	j		С	<u>(2</u> 9	U	1	7	I 5,0	ગ્રવ	7.8	8,1
Initials	ــــــــــــــــــــــــــــــــــــــ		9	J(3)	Jiv	ાહ	DIN.	Jiv.	ρ.	ģ.	7,0	YJ.	(con	KX	KJU	MUT	NO	MET	MET

Comments:

Ochecked by you

Sample ID:

SED17- 24

Rep					D	ay					Day 10	No.	No.	No.		Day 10 Wa	ater Quality	
тер	1	2	3	4	5	6	7	80	9	10	survival	failing to rebury	dead	missing	Temp (°C)	Sal (ppt)	DO (mg/L)	pН
Α	0	0	Ü	Ç	C	0	٥	ø	0	Õ	0°31	0	Û	ų.	15.>	29	7.8	7.S
В		Li.	0	ø	0	อ	٥	į		0/5	150	3.0	4	1	15.0	.૨૧	7.9	7.9
С]		0	0	C)	0	٥.			0	18	Ó	0	2	15.0	29	7.8	7.9
D			Ο,	Ċ	ΰ	ຽ	5		: i i i	0	20	0	0	Ü	19.0	୍ଦ୍ରବ	8. F .	7.4
E	٠	7	Q	C	ບ	٥	٥	İ	i	0	20	٥	0	0	35.0	29	7.9	7.9
Initials	ہے۔	_بسفى	DW	J.Vi	ЭМ	JW	JN.	ب	Ŋ-	OM	3W/	2W/	Jw/	Jw/	MO	Mb	Mbj	MO
	_					-					Ki	KJL	K3i-	KJU				

CER #3

DO meter: 1

pH:

Salinity meter:

Comments:

Reviewed by:

Date Reviewed:

June 28

Issued July 4, 2007; Ver. 1.0

Nautilus Environmental

Marine Sediment 10-d Emergence and Final Survival

Client:

Golder Associates

Start Date: 26-May-17

Work Order No.:

170470

Termination Date: 5-Jun-17
Test Organism: E. estuarius

Sample ID:

SED17- 12

Rep					D	ay					Day 10	No. failing to	No.	No.	•	Day 10 W	ater Quality	
. 106	1	2	3	4	5	6	7	8	9	10	survival	rebury	dead	missing	Temp (°C)	Sal (ppt)	DO (mg/L)	рН
A	0	0	٥	0	t	0	0	٥	Ō	0	19	υ	Ō	i	15,0	29	7.8	43
В	1		O	0	υ	0	٥	i	Ш.	0	ط!	o .	j	3	15.0	9q	1%	7.8
С			٥.	U	Ø	0	0			5	17	0	Ò	3	الارن	29	7.3	7.8
D	_		0	Ö	b	0	٥			O	130	0	ð	7	15.0	ĮЦ	7.9	7.9
Ε :	<u> </u>	<u> </u>	b	Ü	C	0	0			0	18	t	0	7	15,0	જુવ	7.9	78
Initials	Ą	in	Div	UN	30	1Jiyi	JW	٨	٨	Jini	MUI	MUi	加力	MΩ	īķ\Lq	MLJ	גאוע	MÜ

Comments:

) chacked by KL

Sample ID:

SED17- 01

Rep				•	D	ау					Day 10	No.	No.	No.		Day 10 W	ater Quality	
1,00	1	2	3	4	5	6	7	8	9	10	survival	failing to rebury	dead	missing	Temp (°C)	Sal (ppt)	DO (mg/L)	рН
_ A	٥	0	Û	0	С	0	٥	o	ن	0	क्षेत्र ।५	3	0	3 10 4	! 5 ,₽	ವಿ9	7.9	₹.}
В			0	0	٥	0	C	l	Ĺ	С	[↓] ի կ	,	6	C	15.0	29	7.}	न.१
Ç			D	٥	С	0	0	:-		၁	ι Դ	l	0	3	15,0	રુવ	7.8	귀. 》
D			ΰ	٥	0	5	C			0	ા હ	2	3	3	j5.0	૨૧	7.9	7.8
Ë		上	b	٥	0	٥	0	!		0	17	Ó	ı	2	15,>	ୣ୕ୣ୷	7.9	ㅋ.§
Initials	<u> </u>	<u>پر</u>	7,0	BW	JW	Civ .	์ ไม่	įک	4	JW	K.	K	к	K	MQ	MP	តាក្	Mbη

Thermometer: CER # 2	DO meter:i	pH: 1	Salinity meter:
Comments: Ochkare by France			
Reviewed by:		Date Reviewed:	June 28, 2017
Issued July 4, 2007; Ver. 1.0			Nautilus Environmental

10-d Amphipod Sediment Toxicity Test Data Sheet Marine Sediment 10-d Emergence and Final Survival

Golder Associates

Start Date: 26-May-17

Work Order No.:

170470

Termination Date: 5-Jun-17

Test Organism: E. estuarius

Sample ID;

SED17- 03

Rep	L	Day									Day 10	No. failing to	No.	No.	-	Day 10 W	ater Quality	
	1	2	3	4	5	6	7	8	9	10	survival	rebury	dead	missing	Temp (°C)	Sal (ppt)	DO (mg/L)	pН
<u>A</u>	0	0	o.	C	Û	Ô	0	O	0	0	ĮĠ	0	0	ı]9,0	ચવ	7.8	8.0
В			0	C	Ú	٥	0	\	ĹĹ.	6	્રે	C	٥	0	j5,0	29	7.8	8,5
С			O	C	Ü	0	٥			D	19	0	٥	Į	ા ંદુ, હ	୍ଦ୍ରବ୍	7.8	8.0
D	Ц		0	, 0	Ð	0	O		.	0	r'à	0	Ç	٥	[৪,৮	- સવ	7.8	8,5
E		<u> </u>	Ð	٥	ô	0	0		. :	Ó	18	0	٥	7	15,2	.૨૧	7.8	7.9
Initials	A	β···	วเง	J.W	ગાંપે	30	JW	2-	<u>۵</u>	JW	MUI	かけ	IJŬ	孙切	MID	NI	MET	MD

Comments:

Sample ID:

SED17- 29,

Rep					D	ay					Day 10	No. failing to	No.	No.		Day 10 Wa	ater Quality	
	1	2	3	4	5	6	7	8	9	10	survival	rebury	dead	missing	Temp (°C)	Sal (ppt)	DO (mg/L)	рН
Α	O	٥	ũ	c	Ò	0	ŭ	2	٥	Ù	iŦ	0	٥	3	15,0	રુલ	7.8	8.0
В		l i	0	0	O	Ü	D	,	_j	0		0	O	9	15.0	રવ	3.9	7.9
С			0	C	0	0	0			0	6	0	Ι	3	15.0	રુવ	7.9	8.0
D			O	0	C	Û	0			0	130	o :	. 0	7	15.0	ಇಳ	7.8	8. i
E	J		0	c	C	0	0	!	_	٥	<u>S</u>	0	O	10	¦5,0	રુવ	7.9	8,0
Initials		B	Divi	31/4	IJeł	U(N	WD	~	ہ	jw	NLI	MD	ልኒኒ	MU	พ๖	WILL	MD	לויא

Thermometer:	CER # 2	DO meter:1	pH:	Salinity meter:	1
Comments:	Octed by KL	We shecked by KJ2			
Reviewed by:			Date Reviewed:	June 28, 2017	
				· · · · · · · · · · · · · · · · · · ·	

Marine Sediment 10-d Emergence and Final Survival

Client: Work Or	der N	0.1	Gold- 1704		sociate	5					- -		Terminat	tion Date:	26-May-17 5-Jun-17			
Sample	ID:		SED	17- 2:	7						-		l est C)rganism:	E. estuarius	·	 -	
Rep					D	ау		_			Day 10	No. failing to	No.	No.		Day 10 W	ater Quality	
	1	2	3	4	5	6	7	8	9	10	survival	rebury	dead	missing	Temp (°C)	Sal (ppt)	DO (mg/L)	рН
Α	0	٥	O	0	0	0	D	0	୍	0	MXX	0%	0 X"	o De	15.0	ર્ય	7.7	7.8
В	1		Ð	0	0	0	0	<u> </u>	l i	0	13 1	5	2	200	19.0	ગ્રવ	7.8	7.8
С			D.	0	0	0	0		<u> </u> 	0	14	2	Lij	2	(ŋ, ɔ	રેવ	7.8	7.8
D	1		Ö	0	C	0	0			٥	12.	2	5	C	ોઉ.ગ	જુવ	7.9	7,8
Е	_		O	0	Ç	0	O		\ 	0	ط)	υ	i	3	د.۶]	.ફવ	7.8	7.8
Initials	4	A	٦V	JiN	ЭM	" J Į _N i	σM	Δ.	سن ا	JIN	Kr.	K	K.	KL.	MÜ	MG	MALT	MLJ
Commen			Check			M			····									
Sample (ID:		SED1	 7 3	<u></u>			<u></u>			-							
Rep					D	ay					Day 10	No.	No.	No.		Day 10 Wa	ater Quality	
ПСР	1	2	3	4	5	6	7	8	9	10	survival	failing to rebury	dead	missing	Temp (°C)	Sal (ppt)	DO (mg/L)	pH
Α	,.																	
В																		
С																		
D																		
E																		
Initials]										_				
Thermom	neter:	Ċ€	የ ‡ጋ	<u>!</u>				DO m	eter:	7	<u>.</u>		рН:	1		Salinity met	ter:	1.
Commen	ts:																	
Reviewed	l by:				(d		·- ··						Date Re	eviewed:	Jun	e 28,	2017	

Issued July 4, 2007; Ver. 1.0

Nautilus Environmental

10-d Amphipod Test - Summary of Daily Emergence

Client: Golder WO #: 170470

Sample ID	Rep	1	2	3	4	5	ę	7	6	9	10	Mean Daily Emergence	Kçan Emergence	Ştandarı Devlatio
Control Sediment	A	0	0	0	0	C	5	0	C	0	5	5.c	0.00	5.00
	B	0	0	0	0	0	5	0	0	0	0	0		
	6	ŏ	Ď	Ó	Ċ	ŏ	5	Ġ	ŏ	Ġ	Š	š		
	1 6	ő	D	Č	ŏ	ě	o o	Ğ	ŏ	Ğ	Ď	5		
SED17-08	A	.0		Ċ.	Ċ	. 0		c	. 9			0.0	0.00	0.66
95011-00	1 B	0	0	G	Ċ	٥	ð	Ċ	٥	Ċ	٥	3		
	0	٥		G	Ç	٥	D	Ç	þ	Ç	5	0		
	<u> </u>	Ð	0	C	Ç	0	0	0	0	C	9	0		
	ļ E	0	0	C	0	0	Ď	C	9	C	0	3		• • • •
SED17-06	l A	ე ე	0	C	ò	Ď.	Ď	Ç	ō	Ç	5	co	D.CC	0.00
	İčl	ó	0	Ç	0	0	0	Ç.	0 D	C	0	0		
	6	0	Ö	č	0	Ď	ŏ	ŏ	ŏ	č	Ö	Ö		
	ΪĚΙ	ŏ	č	č	ŏ	5	ŏ	ŏ	Ď	ě	Ö	ŏ		
0.004 : 55	1 A	D	ā	0	-5	-5	0	ō	- C	ō	0	C.0	0.00	0,00
\$E017- Q9	B	0	c	Ó	Ó	ō	ō	ō	ō	ō	G	0		
	C	0	С	0	0	D	a	Φ	0	0	Ç	0		
	C	c	Ç	0	o	0	0	0	C	0	C	0		
	5	0	c	0	0	0	Ċ	3	0	0	С	a		
SED17-13	A	Ö	C	0	0	D	С	Q.	۵	Ģ	Ç	Q O	0.02	C. 34
	8	0	C	0	D	Ď	q	:	0	0	Ç	0,1		
	C	0	C C	0	5	0	C	0	0	0	C	C C		
	- F:	ő	č	0	0	0	c	0	0	0	c	C		
*	- Ä	ő	č	- ŏ	5	Ö	č	2	a	2	Č	00	0.00	0 00
SEC47-17	9	č	č	õ	Ď	Ď	Č	5	ā	õ	Č	Ĉ	3.55	3 35
	Ċ	Ö	Ċ	5	5	ō	ç	5	ō	ò	Č	ř		
	0	0	С	0	Q.	0	Ċ	9	ō	5	C	c		
	E	. 0	C	3	0	0	Ċ	5	Ò	Э	Ċ	c c		
SED17-20	'A-	0	Û	٥	¢	0	Ç	3	C	3	c	0.0	0.00	0.00
0.00	3	C	Ç	,	0	0	c	9	С	0	G	С		
	C	0	O	3	Ó	0	G	þ	Ç	0	Ç	c		
	5	0	G	þ	D	0	¢	9	c	9	¢	<u> </u>		
	E A	0		3	0	0	C		C	2	0	c		
SED17-18	9	ő	Ö	2	0	å g	c c))	Ç O	0	0	0,0	0.00	0.00
	l å	ő	ő	þ	Ö	Ö	č	5	Ċ	5	0	c c		
	اما	ŏ	ŏ	ž	ŏ	ŏ	č	0	Č	ä	č	č		
	E	Ö	Ŏ	5	Ď	ō	ō	ō	ē	ä	ŏ	č		
SED17-19	A	0	Ċ	5	D	0	C		- c	- 0	Ö	5.C	0.00	0.00
320.71.5	9	0	0	э	D	a	c	Ð	c	υ	٥	c		
	C	0	٥	Э	D	a	O.	э	С	9	0	G		
	0	0	0	ō	0	0	0	٥	C	Э	C	¢		
	. Ē	0	<u>.</u>		<u> </u>	0	C	2	C	<u> 5</u>	0	Ç		
SED:7-24	A	ď	0	0	0	0	C C	5	C	á	¢	0.0	0.00	0.00
	Ī	Č	ě	5	D	ā	Ç	5	0	ე ე	0	C C		
	Ď	ŏ	ě	5	5	ņ	č	ž	C	5	Ö	Ç		
	Ę	lõ	ō	ō	ō	ŏ	Č	Ď	č	5	ō	č		
SEC17-12	A		Ç	5	Ö	-	Ğ	5	Ç	0	···ò	0.0	0.00	0.03
444.7	a	0	c	0	o	Ð	Ç	9	c	9	Ċ	G		
	C	0	C	0	Э	0	C	0	0	0	С	G		
	D C	0	С	ō	0	0	C	Э	a	0	c	c		
	٤ ا	0	<u>c</u>	<u> </u>	- 5	0	C	<u> </u>	<u>0</u>	<u>ə</u> .	<u> </u>	· c		
SF017-01	A B	0	Ç.	0	0	D	C	3	0	0	Ċ	, oa	0.00	0.00
	C	Ö	å	Ö	0	0	C	0	0	0	Ç	6		
	Ď	ő	ç	Ö	ŏ	9	a	Ş	G 0	0	C C	C C		
	E		Č	ŏ	ő	5	g	ŏ	0	0	G	C .		
SED17.03	Ä	ō	−č −	-č	ō	5	- č-	ŏ	9	ō	<u> </u>	Č.	0.50	0 30
SED17-03	6 1	0	Ċ	ō	ō	ő	ă	õ	ç	ŏ	Ğ	ă	3.50	0.00
	c j	ð	0	C	0	5	۵	ò	ŏ	ō	Ğ	ō		
	0	Ð	0	0	0	Đ	0	e	0	Ç	0	ŏ		
	=	0	0	С	o	0	0	C	0	0	0	o		
	┿╌┤													
SED17-29	A B	0	0	C	0	ò	0	¢	b	0	0	0	0,00	0.00
	0	0	0	C	0	Ş	0	C	Ď	c	0	0		
		0	0	C	0	0	D	C	3	ç	Ď	0		
	E	0	D	Ċ	° c	c	3 3	G	0	Ċ	þ	2		
	-		,	•	v	•	J	G	U	ü	Ų	ງ		
SSD17-27	1 4	C	0	0	Ċ	0	-j-	С	ō	Ç		5	0.00	0.00
OCU II-EI	В	0	э	ŏ	ā	ō	ž	Ğ	ě	Ğ	Š	5	0.00	0.66
	9	С	0	0	a	C	ð	Ğ	ŏ	č	5	ŏ		
	0	C	þ	C	С	0	0	G	Ç	C	3	þ		
	5	C	Ó	а	0	Ċ	э	C	٥					

Moan daily emergence is the average number of amphipods emerging from the sectment per replicate periday.

Marine amphipod Sediment Test - Ammonia

Client: Golder Associates

W.O.: 170470

Start Date: 26-May-17 End Date: 5-Jun-17

Species: E. estuarius

Overlying Ammonia

	Overlying Ammonia										
	Sample (D	Temperature	ρН	Salinity (ppt)	Fotal Ammonia as	ρ K a	Unionized Ammonia				
	38/11pie 10	(°C)	μ-	Samuely (ppg)	Nitrogen (mg/2)	bka	(ma/L)				
Day 0							[
.	Control Sediment	15	7.6	29	0.0282	9.737	0.000				
	SED17-08	15	7.7	29	0.747	9.737	0.507				
i i	SED17-06	15	7.6	29	0.773	9.737	0.006				
	SED17-09	15	7,7	29	0.219	9.737	0.002				
	SED17-13	15	7.7	29	0.120	9.737	100.0				
· .	SED17-17	15	7.7	29	0.545	9.737	0.005				
1	SED17-20	15	7.7	29	0.295	9.737	0.003				
. }	SED17-18	15	7.7	29	0.446	9.737	0.004				
	SED17-19	15 -	7.8	29	0.477	9.737	0.005				
	SED17-24	15	7.7	29	0.497	9.737	0.005				
	SED17-12	15	7.7	28	0.377	9.737	0.003				
	SED17-01	15	7.7	28	0.421	9.737	0.004				
	SED17-03	15	7.6	28	1.480	9.737	0.013				
	SED17-29	15	7.8	29	0.581	9.737	0.007				
	SED17-27	15	7.6	29	0.271	9.737	0.002				
Day 10							1				
	Control Sediment	35	7,7	28	0.0282	9.737	0.000				
	SED17-08	15	79	30	0.478	9.737	0.007				
	SED17-06	15	8.0	29	0.762	9.737	0.014				
	SED17-09	15	8.1	29	0.983	9.737	0.022				
	SED17-13	15	8.1	29	0.726	9,737	0.016				
	SED17-17	15	8.1	29	0.518	9.737	0.012				
	SED17-20	15	8.2	29	1.890	9.737	0.053				
	SED17-18	15	8.1	29	0.443	9.737	0.010				
	SED17-19	15	8,1	29	6.390	9.737	0.144				
	SED17-24	15	8	29	6.890 -	9.737	0,124				
	SED17-12	15	7.8	29	0.0588	9.737	0.001				
	SED17-01	15	7.9	29	0.368	9.737	0.005				
	SED17-03	15	8.0	29	3.41	9.737	0,061				
- 1	SED17-29	15	8.0	29	0.949	9.737	0.017				
<u> </u>	SED17-27	15	7.8	29	0.613	9.737	0.007				

Table of PKa values

		Table Of	rita values				
Temperature (°C)	· ·	TDS (mg/c)		Salinity (g/kg)			
· ciripciatare (c)	0	250	2000	10	20	30	
12	9.662	9.699	9,754	9.788	9.819	9.837	
15	9.564	9.601	9.655	9.688	9,719	9.737	
18	9.465	9.502	9.557	9.588	9.619	9.636	
20	9.401	9.438	9.492	9.523	9.554	9.571	
22		9,391					
23	9.307	9.344	9.398	9.426	9.459	9.476	
25	9.246	9.283	9.337	9.366	9,397	9.454	

El July 4, 2017

Marine amphipod Sediment Test - Ammonía

Client: Golder Associates

W.O.; 170470

Start Date: 26-May-17 End Date: 5-Jun-17

Species: E. estuarius

Interstitial Ammonia

<u> </u>	•	Temperature	iterstidal Al		Total Ammonia as		Unionized Ammonia	
!	Sample ID	(°C)	ρН	Salinity (pot)	Nitrogen (mg/L)	рКа	(mg/L)	
Day 0		<u> </u>			(Microdest (mg/L)	· · · · · · · · · · · · · · · · · · ·	(ing/c/	
-,,	Control Sediment	15	7.3	29	2.93	9.737	0.011	
	SED17-08	15	7.0	29	9.18	9.737	0.017	
1	SED17-06	1\$	7,2	29	2.69	9.737	800.0	
]	SED17-09	15	7.5	29	1.09	9.737	0.006	
	SED17-13	15	7.7	29	1.12	9.737	0.010	
	SED17-17	15	7.2	29	4.01	9.737	0.012	
	SED17-20	15	7.5	29	2.04	9.737	0.012	
	SED17-18	15	7,4	29	2.44	9.737	0.011	
l i	SED17-19	15	7.5	29	3.43	9.737	0.020	
	SED17-24	15	7.3	29	2.42	9.737	0.009	
	SED17-12	15	7.4	29	1.25	9,737	0.005	
	SED17-01	15	7.2	29	2.26	9.737	0.007	
	SED17-03	15	7.2	29	4.83	9.737	0.014	
	SED17-29	15	7.5	29	2.74	9.737	0.016	
l i	SED17-27	15	7.1	29	0.885	9.737	0.002	
Day 10								
l L	Control Sediment	15	8.0	27	0.117	9.737	0.002	
	SED17-08	15	7.2	29	1.43	9.737	0.004	
	SED17-06	15	7,4	29	2.25	9.737	0.010	
	SED17-09	15	7.2	29	4.06	9.737	0.012	
	SED17-13	15	7.2	29	2.31	9.737	0.007	
	SED17-17	15	7.2	29	2.78	9.737	0.008	
	SED17-20	15	7.2	30	5.81	9.737	0.017	
	SED17-18	15	6.9	30	4.18	9.737	0.006	
	SED17-19	15	7.1	29	13.1	9.737	0.030	
	SED17-24	15	7.1	29	3,91	9.737	0.009	
	SED17-12	15	7.1	79	1.96	9.737	0.005	
	SED17-01	15	7.0	29	2.05	9.737	0.004	
	SED17-03	15	7.5	29	6.38	9.737	0.037	
	SED17-29	15	7.2	29	3.41	9.737	0.010	
L	SED 17-27	15	6.9	29	0.835	9.737	0.001	

Table of PKa values

·		100.00,	ING TAIGES				
Temperature (°C)		TDS (mg/L)		Salinity (g/kg)			
Temperature (C)	0	250	2000	10	20	30	
12 ·	9.662	9.699	9.754	9.788	9.819	9.837	
15	9.564	9.601	9.655	9.638	9.719	9.737	
18	9.465	9.502	9.557	9.588	9.619	9.636	
20	9.401	9.438	9.492	9.523	9.554	9.571	
22	•	9.391					
23	9.307	9.344	9.398	9.426	9,459	9.476	
25	9.246	9.283	9.337	9.366	9,397	9.414	

Nautilus Environmental Sediment Toxicity Test - Water Quality Data For Ammonia

Client:

Golder Associates

Species:

E. estuarius / N. arenaceodentata

Work Order No: 140470 - 140471

Sample Type:

Ammonia - Oversging

Date Measured: 26-May-17

autor er et et bestrefen		NEVE NEW YORK		Unionized	18 18 18 18 18 18 18 18 18 18 18 18 18 1
Sample ID	Salinity (ppt)	pH	Ammonia (mg/L)	Ammonia (mg/L)	Tech
Control Sediment	29	7.6	0.0282	0.000	EC
\$E017- 08	29	7.7	0.447	6 . CO7	ί
SE017- 0%	7.4	7.6	O. 11 3	0.006	
3 SED17- 04	29	7.7	० :३१९	0.002	
4 SED17- 13	29	7.7	0 - 120	100.0	
5 SED17- 17	29	7,7	0.545	0.005	
6 SED17- _{වට}	2 7	7.7	0.395	0.003	
SED17- (2	29	11	0.446	0.004	
SED17- (A	29	7.8	o. भन्न	0.005	
sED17- <u>⊃</u> 4	29	77	p. 497	0.005	
SED17- (2	28	لب	0.317	0.003	
SED17- OI	26		0.42	0.004	
SED17- 03	28	7.6	1.48	0.011	
3 SED17- 2⁄9	21	7.8	0.581	F00.0	
4 SE017- 234	29	7.6	0.271	0.009	V
5			· -		-

Comments: 1. pH and satisfity values were obtained from composites of all replicates.

a. Total Ammonia measurements were done by ALS. Results were enclosed in the data package.

Reviewed by:

Date Reviewed: June 25, 2017

Nautilus Environmental Water Quality Data For Ammonia

Client :	Golder Associates	Species : E.estuarius
Work Order No:	140470	Sample Type: Ammonia - overlying
		Date Measured: June 5/17

Date	Sample ID	Temperature °C	Salinity (ppt)	pH	Total Ammonia as N (mg/L)		Tech:
DUNE 5/17	Control Sealment	เร. 0	28	₹-₹	0.0213	0.000	WC
<u> </u>	80 - F1 032		30	7.9	o. 478	6.007	
	06		29	8. O	0.462	0.014	
	09		29	8.1	0.983	0.022	
	13		29	8-1	0.726	0. OIB	
	17		29	8.1	0.518	0.012	
	20		ત્રવ	8.⊐	1.89	0. 053	
	(8)		29	8.1	0.443	0.00	1
	19		29	8.1	6.39	٥. ١٤٠٠	
	24		29	8.0	6.89	0.124	
	12		29	₹.%	0.0588	0.001	
	Ol		29	7.9	0.368	0.005	
	03		29	8.0	3.41	0.06\	
	29		29	8.0	0.949	FIQ.0	
1	√ 27 .	<u> </u>	29	₹.%	0.613	0.007.	4

Ammonia Salicylate Lot #:	n/a
Ammonía Cyanurate Lot #:	<u>n/a</u>
Comments:	① Total ammonia measurements were done by ALS. Results are enclosed
	in the data package.
	3 PH and salinity values were obtained from composite of all replicates
Reviewd by:	Date Reviewed: July 4, 2017

Nautilus Environmental Water Quality Data For Ammonia

Client :	Goider Associates	Species: £ estuarius
Work Order No:	огрон	Sample Type: Ammonia - Interstitial.

Date Measured: 3GNe 5/17

Carried and Laboratory Countries	Sample ID	Asmperature (C	24/2017 (2017)		Tetal Ammonia as N (mg/L)	a Ammonia	Tech
JUNE 5/19	Control Sealment	1	<u>1</u> 7	8-D	F11.0	0.002	MC
<u></u>	80 - F1 032		29	₹.₽	1.43	0.004	1
	06		29	ન-પ્	a. 45	0.00	
	9		29	4.2	т Ф	0.012	
	13		59	न	2.31	F00 . 0	
· .	(7		29	7.2	a. 78	ં.૦%	
	20		29.	₹·⊋	5.81	0.017	
	i8		29	6.9	4.18	o.00%	
	19	<u> </u>	29	7-1	i3.1	0.030	
	24		29	7.1	3.91	p. 009	
<u> </u>	12		29	₹·1	1.96	0.005	
_	01		29	ص.F 	2.05	0.004	
	03		29	,4; C)	6.38	O. 037	
	29		29	4.2	<u> 3. ių (</u>	0.010	
	→ 27 -	-	29	6.9	0.835	0.001	1

Ammonia Salicylate Lot#:	n/Q	_		
Ammonia Cyanurate Lot #:	Na			
Comments:	(1) Total ammonia measurements w	pere done by ALS	. Results are endo)Sed
	in the data package.	pere done by ALS	Kostills are end	-
Reviewd by:		Date Reviewed:	July 4, 201	n

Ending Date: 05 Jun-17

Batch ID:

Start Date:

Report Date: Test Code:

21 Jun-17 11:40 (p 1 of 3) 170470 | 17-4459-1101

Nautilus Environmental

Echaustorius 10-d Survival and Reburial Sediment Test

20-2186-1230 26 May-17

Test Type: Survival-Reburial Protocol: EC/EP\$ 1/RM/35 Species:

Echaustorius estuarius

Analyst: Diluent:

Jeslin Wijaya Natural seawater

Brine: Age:

Duration:	10d Oh	Source:	Northwestern Aquatic Science, OR

Sample Code	Sample IO	Sample Date	Receive Date	Sample Age	Client Name	Project
Control Sed	01-7363-8469	26 May-17	26 May-17	NA	Golder	
SED17-08	10-1003-8381	26 Apr-17 17:00	15 May-17 10:30	29d 7h (7.5 °C)		
SED17-06	19-4215-8235		15 May-17 10:30			
SED17-09	13-9590-2568		15 May-17 10:30	-		
SED17-13	02-1258-2667		15 May-17 10:30			
\$ED17-17	06-5820-5843		15 May-17 10:30			
SED17-20	00-0790-7357) 15 May-17 10:30			
SED17-18	04-2524-4947) 15 May-17 10:30			
SED17-19	07-6812-4215) 15 May-17 10:30			
SED17-24	05-6632-5205) 15 May-17 10:30			
SED17-12	01-4413-4098		15 May-17 10:30			
\$ED17-01	05-6502-2240		1 15 May-17 10:30			
SED17-03	05-1816-3513		15 May-17 10:30			
SED17-29	08-4658-3752) 15 May-17 10:30			
SED17-27	15-8574-8565		15 May-17 10:30			
Sample Code	Material Tons					

Sample Code	Material Type	Sample Source	Station Location	Latitude	Longitude
Control Sed	Sediment Sample	Golder	Control Sediment	Editobe	Longitude
SED17-08	Sediment Sample	Golder	SED17-08		
SED17-06	Sediment Sample	Golder	SED17-06		
SED17-09	Sediment Sample	Golder	SED17-09		
SED17-13	Sediment Sample	Golder	SED17-13		
SED17-17	Sediment Sample	Golder	SED17-17		
SED17-20	Sediment Sample	Golder	SED17-20		
SED17-18	Sediment Sample	Golder	SED17-18		
SED17-19	Sediment Sample	Golder	SED17-19		
SED17-24	Sediment Sample	Golder	SED17-24		
SED17-12	Sediment Sample	Golder	SED17-12		
SED17-01	Sediment Sample	Golder	SED17-12		
SED17-03	Sediment Sample	Golder	SED17-03		
SED17-29	Sediment Sample	Golder	SED17-03		
SED17-27	Sediment Sample	Golder	SED17-27		

June 28/17 Analyst:_ ブい

000-469-187-2

CETIS™ v1.8.7.16

Echaustorius 10-d Survival and Reburial Sediment Test

Report Date: Test Code: 21 Jun-17 11:40 (p 2 of 3) 170470 | 17-4459-1101

Nautilus Environmental

Reburial Rate Summary										
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	cv%	%Effect
Control Sed	5	1	1	1	1	1	0	0	0.0%	0.0%
\$ED17-08	5	1	1	1	1	1	Õ	n	0.0%	0.0%
SED17-06	5	1	1	1	1	1	ō	n	0.0%	0.0%
SED17-09	5	1	1	1	•	4	^	•		
SED17-13	5	1	1	4	,		0	0	0.0%	0.0%
SED17-17	5	1	,	1	1	1	Ü	Ó	0.0%	0.0%
	5	1	1	1	1	1	0	0	0.0%	0.0%
\$ED17-20	5	0.9818	0.9313	1.032	0.9091	1	0.01818	0.04066	4.14%	1.82%
SED17-18	5	1	1	1	1	1	0	0	0.0%	0.0%
\$ED17-19	5	1	1	1	1	1	0	٥	0.0%	0.0%
SED17-24	5	1	1	1	· +	1	٥	0	0.0%	0.0%
SED17-12	5	i	1	1	•	:	0	•		
SED17-01	Ě	0.9044	0.8032	4 000	,	ι.	0	0	0.0%	0.0%
SED17-03	~	0.8044	0.8032	1.006	0.7857	1	0.03646	0.08153	9.01%	9.56%
	5	1	1	1	1	1	Ð	0	0.0%	0.0%
SED17-29	5	1	1	1	1	1	0	0	0.0%	0.0%
SED17-27	5	0.8678	0.6727	1.063	0.6154	1	0.07028	0.1571	18.11%	13.22%

Survival Rate Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
Control Sed	5	0.97	0.9145	1	0.9	1	0.02	0.04472	4.61%	
SED17-08	5	0.94	0.9122	0.9678	0.9	0.95	0.02			0.0%
SED17-06	5	0.94	0.8881	0.9919	0.9			0.02236	2.38%	3.09%
SED17-09	5	0.35	0.2518			1	0.01871	0.04183	4.45%	3.09%
SED17-13	5	0.4		0.4482	0.25	0.45	0.03536	0.07906	22.59%	63.92%
SED17-17	_		0.2417	0.5583	0.25	0.55	0.05701	0.1275	31.87%	58.76%
SED17-20	5	0.92	0.8258	†	0.85	1	0.03391	0.07583	8.24%	5.16%
	5	0.62	0.4256	0.8144	0.45	0.85	0.07	0.1565	25.25%	36.08%
\$ED17-18	5	0.91	0.8581	0.9619	0.85	0.95	0.01871	0.04183	4.6%	6.19%
SED17-19	5	0.57	0.4867	0.6533	0.5	0.65	0.03	0.06708	11.77%	41.24%
SED17-24	5	0.89	0.7484	1	0.75	1	0.05099	0.114		
SED17-12	5	0.83	0.6871	0.9729	0.65	0.06			12.81%	8.25%
SED17-01	5	0.77	0.6758			0.95	0.05148	0.1151	13.87%	14.43%
SED17-03	5			0.8642	0.7	0.85	0.03391	0.07583	9.85%	20.62%
SED17-29		0.96	0.9081	1	0.9	1	0.01871	0.04183	4.36%	1.03%
	5	0.67	0.4807	0.8593	0.5	0.85	0.06819	0.1525	22.76%	30.93%
SED17-27	5	0.78	0.6123	0.9477	0.65	1	0.06042	0.1351	17.32%	19.59%

June 28/17

Analyst:_ JW ____ QA;

Report Date: Test Code: 21 Jun-17 11:40 (p 3 of 3) 170470 | 17-4459-1101

#						rest Code:	370470 17-4459-110
Eohaustorius 10-d Surviv.	al and Rebui	rial Sedime.	nt Test				Nautilus Environmental
Reburial Rate Detail							
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Control Sed	1	1	1	1	1		
SED17-08	1	1	1	1	1		
SED17-06	1	1	1	1	1		
SED17-09	1	1	1	1	1		
SED17-13	1	1	1	1	1		
SED17-17	1	1	1	1	1		
SED17-20	1	0.9091	1	1	1		
SED17-18	1	1	1	1	1		
SED17-19	1	1	1	1	1		
SED17-24	1	1	1	1	1		
SED17-12	1	1	1	1	1		
SED17-01	0.7857	0.9286	0.9412	0.8667	1		
SED17-03	f	1	1	1	;		
\$ED17-29	1	1	1	1	1		
\$ED17-27	1	0.6154	0.8571	0.8667	1		
Survival Rate Detail	·				.'		
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Control Sed	1	1	0.95	0.9	1	 	
SED17-08	0.95	0.9	0.95	0.95	0.95		
SED17-06	1	0.95	0.9	0.9	0.95		
SED17-09	0.35	0.45	0.25	0.4	0.3		
SED17-13	0.25	0.5	0.4	0.3	0.55		
SED17-17	0.85	0.85	1	0.9	1		
SED17-20	0.85	0.55	0.7	0.45			
SED17-18	0.95	0.85	0.9	0.9	0.55 0.95		
SE017-19	0.5	0.5	0.6	0.65			
SED17-24	0.8	0.75	0.9	1	0.6 1		
SED17-12	0.95	0.8	0.85	0.65	0.9		
\$ED17-01	0.7	0.7	0.85	0.75			
SED17-03	0.95	1	0.95		0.85		
SED17-29	0.85	0.55	0.8	1	0.9		
SED17-27	1	0.65	0.6	0.65 0.75	0.5		
Survival Rate Binomials	<u> </u>			0.75	0.8		
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Control Sed	20/20	20/20	19/20	18/20	20/20		<u></u>
SED17-08	19/20	18/20	19/20	19/20	19/20		
SED17-06	20/20	19/20	18/20	18/20	19/20		
SED17-09	7/20	9/20	5/20				
SED17-13	5/20	10/20	8/20	8/20	6/20		
SED17-17	17/20	17/20		6/20	11/20		
SED17-20	17/20	11/20	20/20	18/20	20/20		
SED17-18	19/20		14/20	9/20	11/20		
SED17-19		17/20	18/20	18/20	19/20		
SED17-24	10/20 16/20	10/20	12/20	13/20	12/20		
BED17-12	16/20	15/20	18/20	20/20	20/20		
SED17-01	19/20	16/20	17/20	13/20	18/20		
SED†7-03	14/20	14/20	17/20	15/20	17/20		
ED17-03	19/20	20/20	19/20	20/20	18/20		
SED17-29	17/20	11/20	16/20	13/20	10/20		
T-D 1+21	20/20	13/20	14/20	15/20	16/20		W

June 28/13

Analyst:_JN

Sediment Sample

Sediment Sample

Golder

Golder

Report Date:

21 Jun-17 11:40 (p 1 of 3)

- 					Test Code:	17	70470 17-4459-1101
Echaustorius	10-d Survival and Reb	ourial Sediment Test			•	Nau	tilus Environmental
Analysis ID: Analyzed:	10-8689-9857 21 Jun-17 1 1:39	Endpoint: Survival Analysis: STP 2x2	Rate Contingency Tabl	es	CETIS Version: Official Results		.7
Batch ID: Start Date: Ending Date: Duration:	26 May-17 05 Jun-17			nce, OR	Analyst: Jes	in Wijaya ural seawater	, , , ,,, ,,,
Sample Code	Sample ID	Sample Date	Receive Date	Sample Age	Client Name	· · · · · · · · · · · · · · · · · · ·	Project
Control Sed	01-7363-8469	26 May-17	26 May-17	NA.	Golder	·	roject
SED17-08	10-1003-8381	26 Apr-17 17:00	15 May-17 10:30				
SED17-06	19-4215-8235		15 May-17 10:30				
SED17-09	13-9590-2568) 15 May-17 10:30				
SED17-13	02-1258-2667		15 May-17 10:30				
SED17-17	06-5820-5843		15 May-17 10:30				
SED17-20	00-0790-7357		0 15 May-17 10:30				
SED17-18	04-2524-4947		0 15 May-17 10:30				
SED17-19	07-6812-4215		0 15 May-17 10:30				
SED17-24	05-6632-5205		0 15 May-17 10:30				
SED17-12	01-4413-4098		0 15 May-17 10:30				
SED17-01	05-6502-2240		0 15 May-17 10:30				
SED17-03	05-1816-3513		0 15 May-17 10:30				
SED17-29	08-4658-3752) 15 May-17 10:30				
SED17-27	15-8574-8565	05 May-17 17:00) 15 May-17 10:30	20d 7h (5.5°C)			
Sample Code	Material Type	Sample Source		Station Location		Latitude	Longitude
Control Sed	Sediment Sampl			Control Sedimen			Foulditable
\$ED17-08	Sediment Sampl			SED17-08			
SED17-06	Sediment Sampl	e Golder		SED17-06			
SED17-09	Sediment Sampl	e Golder		SED17-09			
SED17-13	Sediment Sampl	e Golder		SED17-13			
SED17-17	Sediment Sampi			SED17-17			
SED17-20	Sediment Sample			SED17-20			
SED17-18	Sediment Sample	e Golder		SED17-18			
SED17-19	Sediment Sample	e Golder		SED17-19			
SED17-24	Sediment Sample			SED17-24			
SED17-12	Sediment Sample			SED17-12			
ED17-01	Sediment Sample			SED17-01			
SED17-03	Sediment Sample	e Golder		SED17-03			

SED17-03

SED17-29

SED17-27

SED17-29

SED17-27

Report Date:

21 Jun-17 11:40 (p 2 of 3)

Test Code: 170470 | 17-4459-1101 Echaustorius 10-d Survival and Reburial Sediment Test Nautilus Environmental Analysis ID: 10-8689-9857 Endpoint: Survival Rate CETIS Version: CETISv1.8.7 Analyzed: 21 Jun-17 11:39 Analysis: STP 2x2 Contingency Tables Official Results: Yes Data Transform Zeta Alt Hyp Trials Seed **Test Result** Untransformed Ç > T NA NA Fisher Exact/Bonferroni-Holm Test Sample Sample Test Stat P-Value P-Type Decision(α:5%) Control Sed SED17-08 0.2488 0.7465 Exact Non-Significant Effect Control Sed SED17-06 0.2488 0.7465 Exact Non-Significant Effect Control Sed SED17-09 0 < 0.0001 Exact Significant Effect Control Sed SED17-13 0 < 0.0001 Exact Significant Effect Control Sed SED17-17 0.1067 0.4268 Exact Non-Significant Effect Control Sed SED17-20 0 < 0.0001 Exact Significant Effect Control Sed SED17-18 0.06688 0.3344 Exact Non-Significant Effect Control Sed \$ED17-19 0 <0.0001 Exact Significant Effect Control Sed SED17-24 0.02446 0.1468 Exact Non-Significant Effect Control Sed SED17-12 0.000769 0.0054 Exact Significant Effect Control Sed SED17-01 1.459E-05 0.0001 Exact Significant Effect Control Sed SED17-03 0.5 0.5000Exact Non-Significant Effect Control Sed SED17-29 0 < 0.0001 Exact Significant Effect Control Sed SED17-27 2.912E-05 0.0002 Exact Significant Effect Data Summary Sample Code NR R NR+R Prop NR Prop R %Effect Control Sed Control Sed 97 3 100 0.97 0.03 0.0% SED17-08 94 6 100 0.94 0.06 3.09% SED17-06 94 6 100 0.940.06 3.09% SED17-09 35 65 100 0.35 0.65 63.92% SED17-13 40 60 100 0.4 0.6 58.76% SED17-17 92 8 100 0.92 0.08 5.16% SED17-20 62 38 100 0.62 0.38 36.08% SED17-18 91 9 100 0.91 0.09 6.19% SED17-19 57 43 100 0.57 0.43 41.24% SED17-24 89 11 100 0.89 0.11 8.25% SED17-12 83 17 100 0.83 0,17 14.43% SED17-01 77 23 100 0.770.23 20.62% SED17-03 96 4 100 0.96 0.04 1.03% SED17-29 67 33 100 0.67 0.3330.93% SED17-27 78 22 100 0.78 0.2219.59% Survival Rate Detail Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Control Sed 1 1 0.95 0.9 SED17-08 0.95 0.9 0.95 0.950.95 SED17-06 1 0.950.90.9 0.95 SED17-09 0.35 0.450.25 0.4 0.3 SED17-13 0.25 0.5 0.4 0.3 0.55SED17-17 0.850.85 í 0.9 1 SED17-20 0.85 0.550.7 0.45 0.55 SED17-18 0.950.85 0.9 0.9 0.95 SED17-19 0.5 0.5 0.6 0.65 0.6 SED17-24 8.0 0.75 0.9 1 1 SED17-12 0.95 0.8 0.85 0.65 0.9SED17-01 0.7 0,7 0.85 0.75 0.85 SED17-03 0.95 1 0.95 1 0.9 SED17-29 0.85 0.55 0.8 0.65 0.5 dune 28/17 SED17-27 1 0.65 0.7 0.75 0.8

Analyst:_つい

Report Date:

21 Jun-17 11:40 (p 3 of 3)

						Test Code:	170470 17-4459-1101
Echaustorius	10-d Survival and Re	burial Sedin	nent Test				Nautilus Environmental
Analysis ID: Analyzed:	10-8689-9857 21 Jun-17 11:39	Endpoint: Analysis:	Survival Rate STP 2x2 Con		bles	CETIS Version: Official Results:	CETI\$v1.8.7 Yes
Survival Rate	Binomials						
Sample Code	Rep	1 Rep	Rep 3	Rep 4	Rep 5		
Control Sed	20/2			18/20	20/20		· · · · · · · · · · · · · · · · · · ·
SED17-08	19/2	0 18/20	19/20	19/20	19/20		
SED17-06	20/2	0 19/20	18/20	18/20	19/20		
SED17-09	7/20	9/20	5/20	8/20	6/20		
SED17-13	5/20	10/20	8/20	6/20	11/20		
SED17-17	17/2	0 17/20	20/20	18/20	20/20		
SED17-20	17/2	0 11/20	14/20	9/20	11/20		
+ · - ·							

18/20

13/20

20/20

13/20

15/20

20/20

13/20

15/20

19/20

12/20

20/20

18/20

17/20

18/20

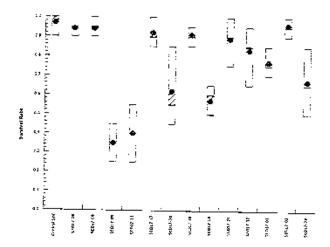
10/20

16/20

SED17-27 Graphics

SED17-18

SED17-19


SED17-24

SED17-12

SED17-01

SED17-03

SED17-29

19/20

10/20

16/20

19/20

14/20

19/20

17/20

20/20

17/20

10/20

15/20

16/20

14/20

20/20

11/20

13/20

18/20

12/20

18/20

17/20

17/20

19/20

16/20

14/20

MC_:laykanA

CETIS Analytical Report Report Date: 21 Jun-17 11:46 (p 1 of 3) Test Code: 170470a | 02-0337-8486 Echaustorius 10-d Survival and Reburial Sediment Test Nautilus Environmental Analysis ID: 11-1812-3463 Endpoint: Survival Rate CETIS Version: **CETISV1.8.7** Analyzed: 21 Jun-17 10:25 Analysis: STP 2x2 Contingency Tables Official Results: Yes Batch ID: 17-4415-3617 Test Type: Survival-Reburial Analyst: Jesfin Wijaya Start Date: 26 May-17 Protocol: EC/EP\$ 1/RM/35 Diluent: Natural seawater Ending Date: 05 Jun-17 Species: Echaustorius estuarius Brine: Duration: 10d 0h Northwestern Aquatic Science, OR Source: Age; Sample Code Sample ID Sample Date Receive Date Sample Age Client Name Project SED17-24 05-6632-5205 02 May-17 17:00 15 May-17 10:30 23d 7h (6 °C) Golder SED17-08 10-1003-8381 26 Apr-17 17:00 15 May-17 10:30 29d 7h (7.5 °C) SED17-06 19-4215-8235 26 Apr-17 17:00 15 May-17 10:30 29d 7h (7.5 °C) SED17-09 13-9590-2568 29 Apr-17 17:00 15 May-17 10:30 26d 7h (8.5 °C) SED17-13 02-1258-2667 29 Apr-17 17:00 15 May-17 10:30 26d 7h (7.5 °C) SED17-17 06-5820-5843 30 Apr-17 17:00 15 May-17 10:30 25d 7h (7 °C) SED17-20 00-0790-7357 01 May-17 17:00 15 May-17 10:30 24d 7h (7 °C) SED17-18 04-2524-4947 02 May-17 17:00 15 May-17 10:30 23d 7h (4 °C) SED17-19 07-6812-4215 02 May-17 17:00 15 May-17 10:30 23d 7h (5.5 °C) SED17-12 01-4413-4098 04 May-17 17:00 15 May-17 10:30 21d 7h (5 °C) SED17-01 05-6502-2240 04 May-17 17:00 15 May-17 10:30 21d 7h (5.8 °C) SED17-03 05-1816-3513 04 May-17 17:00 15 May-17 10:30 21d 7h (7.2 °C) SED17-29 08-4658-3752 04 May-17 17:00 15 May-17 10:30 21d 7h (8.5 °C) SED17-27 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (5.5 °C)

Sample Code	Material Type	Sample Source	Station Location	Latitude	
SED17-24	Sediment Sample	Golder	SED17-24	Latitude	Longitude
SED17-08	Sediment Sample	Golder	SED17-08		
SED17-06	Sediment Sample	Golder	SED17-06		
SED17-09	Sediment Sample	Golder	SED17-09		
SED17-13	Sediment Sample	Golder	SED17-09 SED17-13		
SED17-17	Sediment Sample	Golder	SED17-13		
SED17-20	Sediment Sample	Golder	\$ED17-20		
SED17-18	Sediment Sample	Golder	SED17-20 SED17-18		
SED17-19	Sediment Sample	Golder	SED17-19		
SED17-12	Sediment Sample	Golder			
SED17-01	Sediment Sample	Golder	SED17-12		
ED17-03	Sediment Sample	Golder	SED17-01		
SED17-29	Sediment Sample	Golder	SED17-03		
SED17-27	Sediment Sample	Golder	SED17-29 SED17-27		
Data Transfer	- Seamon Semple	Golder	\$ED17-27		

 Data Transform
 Zeta
 Alt Hyp
 Trials
 Seed
 Test Result

 Untransformed
 C > T
 NA
 NA

hisher	Exact/Bon	ferroni	-Holm	Test
--------	-----------	---------	-------	------

Sample	٧s	Sampl e	Test Stat	P.Valma	P. Tyma	Decision (co. Co.)
SED17-24 SED17-24 SED17-24 SED17-24 SED17-24 SED17-24 SED17-24 SED17-24 SED17-24 SED17-24	VS	SED17-08 SED17-06 SED17-09 SED17-13 SED17-17 SED17-20 SED17-18 SED17-19 SED17-12 SED17-01	Test Stat 1 1 0 0 1 6.584E-06 1 2.196E-07 0.1541 0.01865	1.0000 1.0000 <0.0001 <0.0001 1.0000 <0.0001 1.0000	P-Type Exact Exact Exact Exact Exact Exact Exact Exact Exact Exact Exact Exact Exact	Decision(a:5%) Non-Significant Effect Non-Significant Effect Significant Effect Significant Effect Non-Significant Effect Significant Effect Non-Significant Effect Non-Significant Effect Non-Significant Effect Non-Significant Effect Non-Significant Effect
SED17-24 SED17-24 SED17-24 SED17-24				0.1492 1.0000		Non-Significant Effect Non-Significant Effect Non-Significant Effect Significant Effect Non-Significant Effect

Sure 28/17

WC_:teylanA

Report Date:

21 Jun-17 11:46 (p 2 of 3)

SED17-24 Reference Sed 89 11 100 0.89 SED17-08 94 6 100 0.94 SED17-06 94 6 100 0.94 SED17-09 35 65 100 0.35 SED17-13 40 60 100 0.4 SED17-20 62 38 100 0.62	Prop R 0.11 0.06 0.06 0.65 0.6	CETIS Version: Difficial Results: %Effect 0.0% -5.62%	Nautilus Environmental CETISv1.8.7 Yes
Analyzed: 21 Jun-17 10:25 Analysis: STP 2x2 Contingency Table Data Summary Sample Code NR R NR + R Prop NR SED17-24 Reference Sed 89 11 100 0.69 SED17-08 94 6 100 0.94 SED17-06 94 6 100 0.94 SED17-09 35 65 100 0.35 SED17-13 40 60 100 0.4 SED17-17 92 8 100 0.92 SED17-20 62 38 100 0.62	Prop R 0.11 0.06 0.06 0.65	Official Results: %Effect 0.0%	
Data Summary Sample Code NR R NR + R Prop NR SED17-24 Reference Sed 89 11 100 0.69 SED17-08 94 6 100 0.94 SED17-06 94 6 100 0.94 SED17-09 35 65 100 0.35 SED17-13 40 60 100 0.4 SED17-17 92 8 100 0.92 SED17-20 62 38 100 0.62	Prop R 0.11 0.06 0.06 0.65	Official Results: %Effect 0.0%	
Sample Code NR R NR + R Prop NR SED17-24 Reference Sed 89 11 100 0.69 SED17-08 94 6 100 0.94 SED17-06 94 6 100 0.94 SED17-09 35 65 100 0.35 SED17-13 40 60 100 0.4 SED17-17 92 8 100 0.92 SED17-20 62 38 100 0.62	0.11 0.06 0.06 0.65	0.0%	
SED17-24 Reference Sed 89 11 100 0.69 SED17-08 94 6 100 0.94 SED17-06 94 6 100 0.94 SED17-09 35 65 100 0.35 SED17-13 40 60 100 0.4 SED17-17 92 8 100 0.92 SED17-20 62 38 100 0.62	0.11 0.06 0.06 0.65	0.0%	 .
SED17-08 94 6 100 0.94 SED17-06 94 6 100 0.94 SED17-09 35 65 100 0.35 SED17-13 40 60 100 0.4 SED17-17 92 8 100 0.92 SED17-20 62 38 100 0.62	0.06 0.06 0.65		
SED17-06 94 6 100 0.94 SED17-09 35 65 100 0.35 SED17-13 40 60 100 0.4 SED17-17 92 8 100 0.92 SED17-20 62 38 100 0.62	0.06 0.65	-5.62%	
SED17-09 35 65 100 0.35 SED17-13 40 60 100 0.4 SED17-17 92 8 100 0.92 SED17-20 62 38 100 0.62	0.65		
SED17-13 40 60 100 0.4 SED17-17 92 8 100 0.92 SED17-20 62 38 100 0.62		-5.62%	
SED17-17 92 8 100 0.92 SED17-20 62 38 100 0.62	0.6	60.67%	
SED17-20 62 38 100 0.62		55.06%	
CED42.40	90.0	-3.37%	
381117-18 04 6	0.38	30.34%	
SED17-10	0.09	-2.25%	
CED47 40	0.43	35.96%	
SED17.01	0.17	6.74%	
SED17-03	0.23	13.48%	
SED17 70	0.04	-7.87%	
SE017 07	0.33	24.72%	
Survival Rate Detail	0.22	12,35%	 <u>-</u> -
Sample Code			
CEDITOR TOP OF TREE OF	Rep 5		
SED17.09	1		
SED47 06	0.95		
CED17.00	0.95		
SED17.42	0.3		
CED47.47	0.55		
SED47-20	1		
SED17.18	0.55		
\$ED17.10	0.95		
SED17-12	0.6		
SED17-01 07 05 0.05 0.05	0.9		
SED17 03 A G C	0.85		
SED17.20).9		
SED17 27	3.5		
).8 		
Survival Rate Binomials		· <u>-</u>	
SED17-24	Rep 5		
PED47.00	20/20		
	9/20		
	9/20		
SED17-09 7/20 9/20 5/20 8/20 6	/20		
SED17-13 5/20 10/20 8/20 6/20 t	1/20		
SED17-17 17/20 17/20 20/20 18/20 20	0/20		
SED17-20 17/20 11/20 14/20 9/20 1	1/20		
GED17-18 19/20 17/20 18/20 18/20 19	9/20		
ED17-19 10/20 10/20 12/20 13/20 13	2/20		
ED17-12 19/20 16/20 17/20 13/20 18	8/20		
ED17-01 14/20 14/20 17/20 15/20 1	7/20		
ED17-03	8/20		
ED17-29	0/20		
FD17-27	6/20		

Analyst: JW

Report Date:

21 Jun-17 11:46 (p 3 of 3)

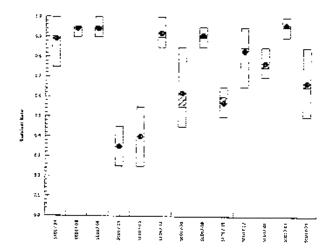
Test Code:

170470a | 02-0337-8486

Echaustorius 10-d Survival and Reburial Sediment Test

Nautitus Environmental

Analysis ID; Analyzed:


11-1812-3463 21 Jun-17 10:25 Endpoint: Survival Rate

Analysis: STP 2x2 Contingency Tables

CETIS Version: Official Results: Yes

CET/Sv1.8.7

Graphics

Report Date: Test Code: 21 Jun-17 11:47 (p.1 of 3) 1704705 | 03-8185-0450

1704705 | 03-8185-0459

P** • · ·				7651 COUB. 1704	700 03-8 (85-0459
Echaustorius	10-d Survival and I	Reburial Sedin	nent Test	Nautili	us Environmental
Analysis ID: Analyzed:	02-9216-2478 21 Jun-17 10:30		Survival Rate STP 2x2 Contingency Tables	CETIS Version: CETISv1.8.7 Official Results: Yes	
Batch ID: Start Date:	13-2541-3912 26 May-17		Survival-Reburial EC/EPS 1/RM/35	Analyst: Jeslin Wijaya Diluent: Natural seawater	

Ending Date: 15 Jun-17 Species: Echaustorius esluarius Brine:
Duration: 20d 0h Source: Northwestern Aquatic Science, OR Age:

Sample Code	Sample (D	Sample Date	Receive Date	Sample Age	Client Name	Draines
SED17-29	08-4658-3752	<u>-</u>) 15 May-17 10:30			Project
\$ED17-08	10-1003-8361		15 May-17 10:30			
SED17-06	19-4215-8235		15 May-17 10:30			
SED17-09	13-9590-2568		15 May-17 10:30			
SED17-13	02-1258-2667		15 May-17 10:30			
\$ED17-17	06-5820-5843		15 May-17 10:30			
SED17-20	00-0790-7357		15 May-17 10:30			
SED17-18	04-2524-4947		15 May-17 10:30			
SED17-19	07-6812-4215		15 May-17 10:30			
SED17-24	05-6632-5205		15 May-17 10:30			
SED17-12	01-4413-4098		15 May-17 10:30			
SED17-01	05-6502-2240		15 May-17 10:30			
SED17-03	05-1816-3513		15 May-17 10:30			
SED17-27	15-8574-8565		15 May-17 10:30			

Sample Code	Material Type	Sample Source	Station Location	Latitude	1 45-56-44
SED17-29	Sediment Sample	Golder	\$ED17-29	Latitude	Longitude
SED17-08	Sediment Sample	Golder	\$ED17-08		
\$ED17-06	Sediment Sample	Golder	SED17-06		
SED17-09	Sediment Sample	Golder	SED17-08		
SED17-13	Sediment Sample	Golder	- ·		
SED17-17	Sediment Sample	Golder	\$ED17-13		
SED17-20	Sediment Sample	Golder	SED17-17		
SED17-18	Sediment Sample	Golder	SED17-20		
SED17-19	Sediment Sample	Golder	\$ED17-18		
SED17-24	Sediment Sample	Golder	SED17-19		
SED17-12	Sediment Sample	Golder	SED17-24		
SED17-01	Sediment Sample	Golder	SED17-12		
SED17-03	Sediment Sample	Golder	SED17-01		
SED17-27	Sediment Sample		SED17-03		
		Golder	SED17-27		
Data Transform	Zeta	Alt Hyp Trials Se	ed Tag	t Decut	

 Data Transform
 Zeta
 Alt Hyp
 Triats
 Seed
 Test Result

 Untransformed
 C > T
 NA
 NA

Fisher	Exact/Bonferroni-Holm Test	
--------	----------------------------	--

Sample	V\$	Sample	Test Stat	P-Value	P-Type	Decision(a:5%)
SED17-29		SED17-08	1	1.0000	Exact	
SED17-29		SED17-06	1	1.0000		Non-Significant Effect
SED17-29		SED17-09	4.947E-06		Exact	Non-Significant Effect
SED17-29		SED17-13		<0.0001	Exact	Significant Effect
SED17-29			0.0001052	0.0013	Exact	Significant Effect
		SED17-17	1	1.0000	Exact	Non-Significant Effect
SED17-29		SED17-20	0.2773	1.0000	Exact	Non-Significant Effect
\$ED17-29		SED17-18	1	1.0000	Exact	Non-Significant Effect
SED17-29		SED17-19	0.09483	1.0000	Exact	
SED17-29		SED17-24	1	1.0000		Non-Significant Effect
SED17-29		SED17-12	,		Exact	Non-Significant Effect
SED17-29			1	1.0000	Exact	Non-Significant Effect
SED17-29		SE D 17-01	1	1.0000	Exact	Non-Significant Effect
		\$ED17-03	1	1.0000	Exact	Non-Significant Effect
SED17-29		SED17-27	1	1.0000	Exact	Non-Significant Effect

Analyst: DW QA: ____

Report Date: Test Code: 21 Jun-17 11:47 (p 2 of 3) 170470b | 03-8185-0459

							Test Code:	1704705 03-8185-0459
Eohaustoriu:	s 10-d Survival a	nd Rel	burial Sedim	ent Test				Nautilus Environmental
Analysis IO;	02-9216-2478		Endpoint:	Survival Rate			CETIS Version:	CETISv1.8.7
Analyzed:	21 Jun-17 10:3	30	Analysis:	STP 2x2 Con	tingency Tab	les	Official Results:	
Data Summa	iry			•			·	
Sample Code	<u> </u>	NR	R	NR + R	Prop NR	Prop R	%Effect	
SED17-29	Reference Sed	67	33	100	0.67	0.33	0.0%	
SED17-08		94	6	100	0.94	0.06	-40.3%	
SED17-06		94	6	100	0.94	0.06	-40.3%	
\$ED17-09		35	65	100	0.35	0.65	47.76%	
SED17-13		40	60	100	0.4	0.6	40.3%	
\$ED17-17		92	8	100	0.92	0.08	-37.31%	
SED17-20		62	38	100	0.62	0.38	7.46%	
SED17-18		91	9	100	0.91	0.09	-35.82%	
SED17-19		57	43	100	0.57	0.43	14.93%	
SED17-24		89	11	100	0.89	0.11	-32.84%	
SED17-12		83	17	100	0.83	0.17	-23.88%	
SED17-01		77	23	100	0.77	0.23	-14,93%	
SED17-03		96	4	100	0.96	0.04	-43.28%	
SED17-27		78	22	100	0.78	0.22	-16.42%	
Survival Rate	Detail	_					. <u>.</u> .	
Sample Code	!	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-29		0.85	0.55	0.8	0.65	0.5		·
SED17-08		0.95	0.9	0.95	0.95	0.95		
SED17-06		1	0.95	0.9	0.9	0.95		
SED17-09		0.35	0.45	0.25	0.4	0.3		
SED17-13		0.25	0.5	0.4	0.3	0.55		
\$ED17-17		0.85	0.85	1	0.9	1		
SED17-20		0.85	0.55	0.7	0.45	0.55		
SED17-18		0.95	0.85	0.9	0.9	0.95		
SED17-19		0.5	0.5	0.6	0.65			
SED17-24		0.8	0.75			0.6		
SED17-12		0.95		0.9	1	1		
SED17-01			0.8	0.85	0.65	0.9		
SED17-03		0.7	0.7	0.85	0.75	0.85		
SED17-27		0.95	1	0.95	1	0.9		
		1	0.65	0.7	0.75	0.8		
Survival Rate	Binomials							
Sample Code SED17-29		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
		17/20	11/20	16/20	13/20	10/20		·· -
SED17-08		19/20	18/20	19/20	19/20	19/20		
SED17-06		20/20	19/20	18/20	18/20	19/20		
\$ED17-09		7/20	9/20	5/20	8/20	6/20		
\$ED17-13		5/20	10/20	8/20	6/20	11/20		
\$ED17-17		17/20	17/20	20/20	18/20	20/20		
SED17-20		17/20	11/20	14/20	9/20	11/20		
SED17-18		19/20	17/20	18/20	16/20	19/20		
SED17-19		10/20	10/20	12/20	13/20	12/20		
SED17-24		16/20	15/20	18/20	20/20			
SED17-12		19/20	16/20	17/20		20/20		
SED17-01		14/20	14/20		13/20	18/20		
SED17-03		19/20	20/20	17/20	15/20	17/20		
SED17-27		20/20		19/20	20/20	18/20		
		20120	13/20	14/20	15/20	16/20		

Analyst: JW QA: _______

Report Date:

21 Jun-17 11:47 (p 3 of 3)

Test Code:

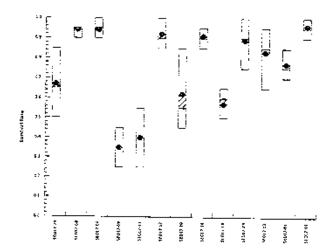
170470b J 03-8185-0459

Echaustorius 10-d Survival and Reburial Sediment Test

Nautilus Environmental

Analysis ID: Analyzed:

02-9216-2478 21 Jun-17 10:30 Endpoint: Survival Rate


Analysis: STP 2x2 Contingency Tables

CETIS Version:

CETISV1.8.7

Official Results: Yes

Analyst:_**J**[N

Batch ID:

Start Date:

Ouration:

Ending Date: 05 Jun-17

Report Date: Test Code:

21 Jun-17 11:47 (p 1 of 3)

1704700	08-6646-1775
Nautilus I	Environmental

Echaustorius 10-d Survival and Reburial Sediment Test

Analysis ID; 19-8985-2781 Analyzed: 21 Jun-17 10:33

15-0037-5148

26 May-17

Endpoint: Survival Rate Analysis:

Species:

Test Type: Survival-Reburial

Protocol: EC/EP\$ 1/RM/35

STP 2x2 Contingency Tables

Echaustorius estuarius

CETIS Version:

CET(\$v1,8.7

Official Results: Yes

Analyst:

Jeslin Wijaya

Diluent:

Natural seawater

Brine:

Ouration:	10d Oh	Source:	Northwes	lers Aquatic Scie	nce, OR	Age:	
Sample Code	Sample ID	Sam	ple Date	Receive Date	Sample Age	Client Name	Project
SED17-27	15-8574-8565	05 N	lay-17 17:00	15 May-17 10:36			Fiolect
SED17-08	10-1003-8381			15 May-17 10:30			
SED17-06	19-4215-8235			15 May-17 10:30			
SED17-09	13-9590-2568			15 May-17 10:30			
SED17-13	02-1258-2667			15 May-17 10:30			
SED17-17	06-5820-5843			15 May-17 10:30		,	
SED17-20	00-0790-7357			1 15 May-17 10:30			
SED17-18	04-2524-4947			15 May-17 10:30			
SED17-19	07-6812-4215			15 May-17 10:30			
SED17-24	05-6632-5205			15 May-17 10.30		1	
SED17-12	01-4413-4098			15 May-17 10:30			
SED17-01	05-6502-2240			15 May-17 10:30			
SED17-03	05-1816-3513			15 May-17 10:30			
SED17-29	08-4658-3752			15 May-17 10:30			
Comple Code					<u> </u>		

Sample Code	Material Type	Sample Source	Station Location	l atituda	
SED17-27	Sediment Sample	Golder	\$ED17-27	Latitude	Longitude
SED17-08	Sediment Sample	Golder	SED17-08		
SED17-06	Sediment Sample	Golder	SED17-06		
SED17-09	Sediment Sample	Golder	SED17-09		
SED17-13	Sediment Sample	Golder	\$ED17-09 \$ED17-13		
SED17-17	Sediment Sample	Golder	SED17-13 SED17-17		
SED17-20	Sediment Sample	Golder	SED17-17 SED17-20		
SED17-18	Sediment Sample	Golder			
ED17-19	Sediment Sample	Golder	SED17-18		
SED17-24	Sediment Sample	Golder	\$ED17-19		
SED17-12	Sediment Sample	Golder	SED17-24		
ED17-01	Sediment Sample	Golder	SED17-12		
SED17-03	Sediment Sample	Golder	\$ED17-01		
SED17-29	Sediment Sample	Golder	\$ED17-03		
3-1-5			SED17-29		
ata Transform	Zeta	Alt Hyp Trials So	end —	4.5	

Data Transform	Zela	Alt Hyp	Trials	Seed	Test Result
Untransformed		C > T	NA	NA	

Fisher Exact/Bonferroni-Holm Test

Sample	VS	Sample	Test Stat	P-Value	P-Type	Decision(a:5%)
SED17-27		SED17-08	1	1.0000		
SED17-27		\$ED17-06			Exact	Non-Significant Effect
SED17-27		SED17-09	1	1.0000	Exact	Non-Significant Effect
SED17-27			0	<0.0001	Exact	Significant Effect
		SED17-13	0	<0.0001	Exact	Significant Effect
SED17-27		SED17-17	1	1.0000	Exact	Non-Significant Effect
SED17-27		\$ED17-20	0.01011	0.1011	Exact	
SED17-27		SED17-18	1	1.0000		Non-Significant Effect
SED17-27		SED17-19	0.0012		Exact	Non-Significant Effect
SED17-27		SED17-24	0.0012	0 0132	Exact	Significant Effect
SED17-27			1	1.0000	Exact	Non-Significant Effect
		SED17-12	1	1.0000	Exact	Non-Significant Effect
SED17-27		SED17-01	0.5	1.0000	Exact	Non-Significant Effect
SED17-27		SED17-03	1	1.0000	Exact	
SED17-27		SED17-29	0.05642	0.5077		Non-Significant Effect
			2.00042	0.0077	Exact	Non-Significant Effect

Analyst: 그i시

Report Date: Test Code: 21 Jun-17 11:47 (p 2 of 3) 170470c | 08-6646-1775

Enhausterin	e 10 d Sumini						rest code.	1704100 00-0040-1773
	\$ 10-d Survival a	ına Rel	burial Sedin	nent Test			·	Nautilus Environmental
Analysis ID: Analyzed:	19-8985-2781 21 Jun-17 10:3	33	Endpoint: Analysis:	Survival Rate STP 2x2 Con		les	CETIS Version: Official Results:	CETI\$v1,8,7 Yes
Data Summa	ry							
Sample Code	e	NR	R	NR+R	Prop NR	Prop R	%Effect	
SED17-27	Reference Sed	78	22	100	0.78	0.22	0.0%	- · · · · · · · - · · · - ·
SED17-08		94	6	100	0.94	0.06	-20.51%	
SED17-06		94	6	100	0.94	0.06	-20.51%	
SED17-09		3 5	65	100	0.35	0.65	55.13%	
SED17-13		40	60	100	0.4	0.6	48.72%	
SED17-17		92	8	100	0.92	0.08	-17.95%	
SED17-20		62	38	. 100	0.62	0.38	20.51%	
SED17-18		91	9	100	0.91	0.09	-16.67%	
\$ED17-19		57	43	100	0.57	0.43	26.92%	
SED17-24		89	11	100	0.89	0.11	-14.1%	
SED17-12		83	17	100	0.83	0.17	-6.41%	
SED17-01		77	23	100	0.77	0.23	1.28%	
SED17-03		96	4	100	0.96	0.04	-23.08%	
\$ED17-29		67	33	100	0.67	0.33	14.1%	
Survival Rate	Detail		•					
Sample Code	<u> </u>	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-27		1	0.65	0.7	0.75	0.8		
SED17-08		0.95	0.9	0.95	0.95	0.95		
\$ED17-06		1	0.95	0.9	0.9	. 0.95		
SED17-09		0.35	0.45	0.25	0.4	0.3		
SED17-13		0.25	0.5	0.4	0.3	0.55		
SED17-17		0.85	0.85	1	0.9	1		
SED17-20		0.85	0.55	0.7	0.45	0.55		
SED17-18		0.95	0.85	0.9	0.9	0.95		
SED17-19		0.5	0.5	0.6	0.65	0.6		
SED17-24		8.0	0.75	0.9	1	1		
SED17-12		0.95	0.8	0.85	0.65	0.9		
\$ED17-01		0.7	0.7	0.85	0.75	0.85		
SED17-03		0.95	1	0.95	1	0.9		
SED17-29		0.85	0.55	80	0.65	0.5		
Survival Rate	Binomials	_ -		·				
Sample Code		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-27		20/20	13/20	14/20	15/20	16/20	· · · · · · · · · · · · · · · · · · ·	
SED17-08		19/20	18/20	19/20	19/20	19/20		
SED17-06		20/20	19/20	18/20	18/20	19/20		
\$ED17-09		7/20	9/20	5/20	8/20	6/20		
SED17-13		5/20	10/20	8/20	6/20	11/20		
\$ED17-17		17/20	17/20	20/20	18/20	20/20		
SED17-20		17/20	11/20	14/20	9/20	11/20		
SED17-18		19/20	17/20	18/20	18/20	19/20		
SED17-19		10/20	10/20	12/20	13/20			
SED17-24		16/20	15/20	18/20	20/20	12/20		
SED17-12		19/20	16/20	17/20		20/20		
SED17-01		14/20	14/20	17/20	13/20 15/20	18/20		
SED17-03		19/20	20/20	19/20	15/20 20/20	17/20		
SED17-29		17/20	11/20		20/20	18/20		
		-1120	1020	16/20	13/20	10/20		

Analyst: JW QA:

000-469-187-2

CETIS™ v1.8.7.16

Report Date:

21 Jun-17 11:47 (p 3 of 3)

Test Code:

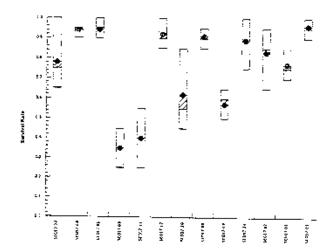
170470c (08-6646-1775

conaustorius	10-d Surviva	land	Reburial	Sediment	Test

Nautilus Environmental

Analysis ID: Analyzed:

19-8985-2781 21 Jun-17 10:33


Endpoint: Survival Rate

Analysis: STP 2x2 Contingency Tables

CETIS Version: Official Results: Yes

CETI\$v1.8.7

Graphics

Analyst:_`⊃IN

NAUTILUS ENVIRONMENTAL

ATTN: Jeslin Wijaya 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 26-MAY-17

Report Date: 05-JUN-17 15:08 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1932455
Project P.O. #: NOT SUBMITTED

Job Reference:

C of C Numbers: OL-2454

Legal Site Desc:

Heather McKenzie Account Manager

 $[This\ report\ shall\ not\ be\ reproduced\ except\ in\ full\ without\ the\ written\ authority\ of\ the\ Laboratory.]$

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

PAGE 2 of 8 05-JUN-17 15:08 (MT)

Version: FINAL

	Sample IE Descriptio Sampled Dat Sampled Tim Client II	Overlying Water 26-MAY-17 09:00	L1932455-2 Overlying Water 26-MAY-17 09:00 SED 17-12 - OVERLYING	L1932455-3 Overlying Water 26-MAY-17 09:00 SED 17-13 - OVERLYING	L1932455-4 Overlying Water 26-MAY-17 09:00 SED 17-06- OVERLYING	L1932455-5 Overlying Water 26-MAY-17 09:00 SED 17-08- OVERLYING
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.0282	0.377	0.120	0.773	0.747
	Sulphide as S (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 3 of 8 05-JUN-17 15:08 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1932455-6 Overlying Water 26-MAY-17 09:00 SED 17-09- OVERLYING	L1932455-7 Overlying Water 26-MAY-17 09:00 SED-17-17 - OVERLYING	L1932455-8 Overlying Water 26-MAY-17 09:00 SED 17-18- OVERLYING	L1932455-9 Overlying Water 26-MAY-17 09:00 SED 17-01 - OVERLYING	L1932455-10 Overlying Water 26-MAY-17 09:00 SED 17-03 - OVERLYING
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.219	0.545	0.446	0.421	1.48
Numerica	Sulphide as S (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 4 of 8 05-JUN-17 15:08 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1932455-11 Overlying Water 26-MAY-17 09:00 SED 17-19 - OVERLYING	L1932455-12 Overlying Water 26-MAY-17 09:00 SED 17-20 - OVERLYING	L1932455-13 Overlying Water 26-MAY-17 09:00 SED 17-24 - OVERLYING	L1932455-14 Overlying Water 26-MAY-17 09:00 SED 17-27 - OVERLYING	L1932455-15 Overlying Water 26-MAY-17 09:00 SED 17-29 - OVERLYING
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.477	0.295	0.497	0.271	0.581
- Numerica	Sulphide as S (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 5 of 8 05-JUN-17 15:08 (MT)

Version: FINAL

NTERSTITIAL	Porewater 26-MAY-17 09:00 SED 17-08 - INTERSTITIAL
Anions and Ammonia, Total (as N) (mg/L) 2.93 1.25 1.12 2.69 Nutrients	
Nutrients	
Sulphide as S (mg/L) <0.018 <0.018 0.018 0.018	9.18
	37.4

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 6 of 8 05-JUN-17 15:08 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1932455-21 Porewater 26-MAY-17 09:00 SED17-09 - INTERSTITIAL	L1932455-22 Porewater 26-MAY-17 09:00 SED17-17 - INTERSTITIAL	L1932455-23 Porewater 26-MAY-17 09:00 SED17-18 - INTERSTITIAL	L1932455-24 Porewater 26-MAY-17 09:00 SED17-01 - INTERSTITIAL	L1932455-25 Porewater 26-MAY-17 09:00 SED 17-03 - INTERSTITIAL
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	1.09	4.01	2.44	2.26	4.83
Nutrients	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 7 of 8 05-JUN-17 15:08 (MT)

Version: FINAL

Sampled Date 26-MAY-17 2	7-27 - SED 17-29 -
Grouping Analyte	
WATER	
Anions and Ammonia, Total (as N) (mg/L) 3.43 2.04 2.42 0.88	85 2.74
Sulphide as S (mg/L) <0.018 <0.018 <0.018 <0.018	<0.018

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1932455 CONTD.... PAGE 8 of 8 05-JUN-17 15:08 (MT) Version: FINAL

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike	Sulphide as S	MS-B	L1932455-16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30

Qualifiers for Individual Parameters Listed:

Qualifier Description

MS-B Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
NH3-F-VA	Water	Ammonia in Water by Fluorescence	APHA 4500 NH3-NITROGEN (AMMONIA)

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

NH3-F-VA

Water Ammonia in Water by Fluorescence

J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

S2-T-COL-VA Water Total Sulphide by Colorimetric APHA 4500-S2 Sulphide

This analysis is carried out using procedures adapted from APHA Method 4500-S2 "Sulphide". Sulphide is determined using the methlyene blue colourimetric method.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

OL-2454

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Page 1 of 2

Chain of Custody / Analytical Request Form Canada Toll Free : 1 800 668 9878 www.alsglobal.com

ALS Environmental

Roport To				Reporting				\$0rv	çe Rec	ueste	1								
Company:	Nautilus Environmental				Distribution;	⊕Fax	OMail OMail	⊡ Emait	⊚Re	gular (tanda	rd Tumen	րում Τκο	s - Bus	iness D	ays) -	R		
Contact:	Jestin Wijaya	•			□Ciriteria o	Report (select from	Guidelines below)		O Pri	ority (3	Days)	- surchar	go will app	aly - P					
Address.	8554 Commerce Court	<u></u>			Report Type	□ Excel	<u>—</u> ☑ Digit		OPri	ority (2	Days)	- ទេ២៤វិឃាញ	e will app	ly - P2					
	imperial Square Lake C. Burnaby, BC	ıΛ			Report Form	al.			φĒπ	ergenc	y (1-2	day) — sı	ircharge w	rill appl	y · E				
ľ	Cenada, VSA 4N7				Report Email	l(s). jeslin@nautilu	senvironmental.ca		⊖Sa	me Day	or We	ekend Er	nergency	- surch	arge wil	appi	y - E2		
					}				O Sp	ecify da	ie req	jired - X							
Phone:	604-420-8773	Fax:	604-357-1361	_	1				\Box				Analy	sis Re	quests				
lavolca To	⊠Email	☐ Mail			E00 Format.	:						I			\Box	$\neg \Gamma$		ΙΤ	
Сомралу	Naut≩us Environmentat				EDD Email(s): 	· · · · · · · · · · · · · · · · · · ·		1		-	-							1
Contact:	Jeslin Wijaya]				l	[- 1	i			1 1				
Address:	8664 Commerce Court														1 1				
	Imperial Square Lake Cr Burnaby, BC	īγ			Project Info]	1 1				1	'	'	'	'	
	Caneda, V\$A 4N7				Jab #:			_		ΙI				1		Ξ		- 1	
				_	PO/AFE:			-	1	ΙI				1		1			
Email:	Jeslin@nautilusenvironm	ental,ca			LSD:				, .							•		ŀ	
Phone:	604-420-8773				Quote #:				į	<u>.</u>				-		\Box	를		
	b Work Order *				ALS Contact		Sampler:		of Containers	Amman	Sulfide	Sulfide				1932455-COFC			
Sample		ple Identification	n	Coord	Inates			T	Mumber		Ple	ase indici	ste below	Filtered	1, P	55		F/P)	
4.00		appear on the n		Longitude	Latitude	Date	Time	Sample Type	ž	Р	P	P -		Τ	Γ	8	三	T	
	Control Sediment - Overl	lying				May-28-2017	09:00 AM	Overlying Water	1	R	\neg			T	Γ	Ö			
·····································	SED 17-12 - Overlying		_			May-26-2017	Q9.00 AM	Overlying Water	1	Ŕ				1	Γ				
340 PMS	SED 17-13 - Overlying					May-26-2017	09:00 AM	Overtying Water	1	R					Γ				
	SEO 17-06- Overlying					May-26-2017	09:00 AM	Overlying Water	1	R								$oxed{\top}$	
William.	SEO 17-08- Overlying					May-26-2017	09:00 AM	Overlying Water	1	R				\top					
和企業	SED 17-09- Overlying					May-26-2017	09:00 AM	Overlying Water	1	R	1			7	Г			\neg	
HARRISH	SED 17-17 - Overlying					May-26-2017	09:00 AM	Overlying Water	1	R				7		4	-	!	
MARKET THE	SED 17-18- Overlying					May-26-2017	09:00 AM	Overlying Water	1	R						7			
						(See page	2 for further sample	s)									•		
	Special Instruct	ions/Comments		The quest	ions below m	ust be answered in	or water samples (check Yas or No)	Gulde	een h									. –
				Are any samp	de taken from	a regulated DW sys	tem? ☐Yès	□No											
				lf yes, please	use an author	ized drinking weter	COC								•				
				is the water s	ampted intend	ed to be potable for	human			argin	11 T	SAM	PLE CON	omoi	l (lab ur	H DN	v)	: : : : : : : : : : : : : : : : : : :	
				consumption?			_Yes	□N≎	□Fro			Cold		mbien			ling Inklat		
鄉源科疆剛	SHIPMENT RELE	ASE (client use	1114年122年10日本年	學的蘇聯斯	ЖДЙ∄ \$н €	PMENT RECEPTIO	N (lab use only)	組織維持。同門等	鵬網	新加州	48	5HIPM	NT,VERI	FIÇAT	dal) NO	use	only)	编 .	i maid
Released by	_	Oste;	Time:	Received by		Date.	Time;	Temperature:	Verific	ed by:		Date:	:		Time;			Observ	glions:
núzec	wijaya	No. or to	10 . (*)	PAY	N.,	MAY 26	19:00	10.5										□Yes	i
Nauthus	- Environmental-	May 26/19	15:00	<u> </u>	 -	1017 20		-18:2-°C	 -			- -					-	(f Yes c	od SIF

Page 2 of 2

ALS Environmental

Chain of Custody / Analytical Request Form Canada Toll Free : 1 800 668 9878 www.alsglobal.com

(ALS)	Environmental					rww.aisgiobai.c	OIII	_																		
1 100		1													Anai	ysis F	teque	sts								\Box
Sample	Sample Identification	Coord	dinatea																							
	(This will appear on the report)	Longitude	Latitudo	- Date	Time	Sample Type	Number of Containers	Ammonla	Sulfide	Sulfde										b. a.b. (5		m2)				_
11.		1					Ĕ	<u> </u>	· -	_	_	Pl ⊕ 0	sė ink	Jicate	below	Fater	04. P	reserv	eo or	both(F	, P, F	/P)				긤
	CED 47 of Contribution	 		N	00.03.411	Don't land the	┞ —	P	P	P	\vdash	 -	<u> </u>			\vdash	-		\dashv		\dashv	\dashv	\rightarrow	-	+	\dashv
	SED 17-01 - Overlying SED 17-03 - Overlying	 	 	May-26-2017	09:00 AM 09:00 AM	Overlying Water	1	R	-	-		├	_	\dashv		\vdash	-	\dashv	\dashv	\dashv	-+	\dashv	\dashv		╀	\dashv
	SED 17-19 - Overlying	 	+	May-26-2017 May-26-2017	09:00 AM	Overlying Water Overlying Water	1	R	_	\vdash	\vdash	\vdash	<u> </u>	\vdash				\vdash		\dashv	\dashv	\dashv	\rightarrow	+	+	
	SED 17-20 - Overlying	 	 	May-26-2017 May-26-2017	09:00 AM	Overlying Water	1	R	_	 		┝	<u> </u>	\dashv		\vdash	\dashv	\dashv	\dashv	┰┼	\dashv		-	+	╁	\dashv
	SEO 17-24 - Qverlying	 	 	May-26-2017	09:00 AM	Overlying Water	1	R		┯		 				\vdash	-	\dashv	\dashv	一			'	+	十	_
	SED 17-27 - Overlying	 	-	May-26-2017	09:00 AM	Overlying Water	1	R	\vdash		┢			\dashv		\vdash			_	\dashv		Ξ	==	<u>:</u>	+	_
	SED 17-29 - Overlying	 		Mey-26-2017	D9:00 AM	Overlying Water	1	R				\vdash	_			\Box	\neg		一	ヿ		3		<u> </u>	十	
- 10 - 19 (40 (19) - 10 - 20 (11) (12) (13)	Control Sediment - Interstitial			May-26-2017	09:00 AM	Porewater	2	R	R							-					•			¥ -	T	
$\overline{}$	SEO 17-12 - Interstitlei			May-26-2017	09:00 AM	Porewater	2	R		R	Г	_									_	93		≐	\perp	
12年前2	SED 17-13 - Interstitial			May-26-2017	09.00 AM	Porewater	2	R	R												_	245		5	\perp	
性機能	SEO17-06 - Interstrial			May-25-2017	09:00 AM	Porewater	2	R	R	_												Š			floor	
機能能够	SED 17-08 - Interstitial]		May-26-2017	09:00 AM	Porewater	2	R	R												_	_1932455-COFC		=	\perp	
建	SED17-09 - Interstitual			May-26-2017	09:00 AM	Porewater	2	R	R		_										_	Ö	\equiv	三	\perp	
建筑顺湖	SED17-17 - Interstitial			May-26-2017	09:00 AM	Porowater	2	R	Ř											_			\equiv		\downarrow	
国政治 教	SEO 17-18 - Interstitial		L	May-26-2017	D9:00 AM	Porewater	2	R	R							\square		\Box		_	_				1	_
100 1100 110	SEO17-01 - Interstitial		L	May-26-2017	09:00 AM	Porewater	2	R	R							\square		Щ]	\perp				=	Ţ	_
	SED 17-03 - Interstitlet			May-28-2017	09:00 AM	Porewater	2	R	R	ļ															;	
	SEO 17-19 - Interstitial			May-28-2017	09:00 AM	Porcwater	2	R	R				<u> </u>			igsqcut		\square	_	_	-	· · · ·		_	4	_
	SED 17-20 - Interstitial			May-26-2017	09:00 AM	Porewaler	Ż	R	R					Ш						_				+	-	_
	SEO 17-24 - Interstital			May-26-2017	09:00 AM	Porewaler	2	R	R				_			$\mid \cdot \mid$			\Box	_	_	\dashv			+	႕
1	SED 17-27 - Interstitial			May-26-2017	09:00 AM	Porgwaler	2	R	R	_	_	_	<u> </u>	Щ				\vdash				_	\dashv	_	+	닉
	SED 17-29 - Interstitial			May-26-2017	MA 00:00	Porewater	2	R	R				ļ <u> </u>		_						_	_	\dashv	-	-+	닉
A STREET, STRE			ļ					<u> </u>	_		<u> </u>								<u> </u>			\dashv	\dashv	_+	+	\dashv
CAN DEPOSE		 -					 		├	-	1	\vdash			—	\vdash					-+		\rightarrow	\dashv	+	\dashv
	"						-		\vdash	\vdash	\vdash	\vdash	 					_			-	\dashv	-+	+	-+	ᅥ
2011年10日 高級電話所		- -						├	\vdash	\vdash	\vdash				_	\vdash	_						<u> </u>	<u>_</u> †-	<u> </u>	╛
Destructive on		1				- - -	1 —	ا —	_		1	1			ļ	į	1		ļ				[-			

NAUTILUS ENVIRONMENTAL

ATTN: Jeslin Wijaya 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 05-JUN-17

Report Date: 13-JUN-17 17:26 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1936736

Project P.O. #: NOT SUBMITTED

Job Reference:

C of C Numbers: OL-2496

Legal Site Desc:

Heather McKenzie Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

PAGE 2 of 8 13-JUN-17 17:26 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1936736-1 L1936736-2 L1936736-3 L1936736-4 L1936736-5 Sample ID Description Overlying water Overlying water Overlying water Overlying water Overlying water 05-JUN-17 05-JUN-17 05-JUN-17 05-JUN-17 05-JUN-17 Sampled Date 09:00 09:00 09:00 09:00 09:00 **Sampled Time** SED 17-09 -OVERLYING SED 17-13 -OVERLYING CONTROL SED 17-08 -SED 17-06 -Client ID SEDIMENT -OVERLYING OVERLYING OVERLYING Grouping Analyte **WATER** Anions and Ammonia, Total (as N) (mg/L) 0.983 0.0213 0.478 0.762 0.726 **Nutrients** Sulphide as S (mg/L)

PAGE 3 of 8 13-JUN-17 17:26 (MT)

Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L1936736-6 Overlying water 05-JUN-17 09:00 SED 17-17 - OVERLYING	L1936736-7 Overlying water 05-JUN-17 09:00 SED 17-20 - OVERLYING	L1936736-8 Overlying water 05-JUN-17 09:00 SED 17-18 - OVERLYING	L1936736-9 Overlying water 05-JUN-17 09:00 SED 17-19 - OVERLYING	L1936736-10 Overlying wate 05-JUN-17 09:00 SED 17-24 - OVERLYING
Grouping	Analyte						
WATER							
Anions and Nutrients	Ammonia, Total (as N) (mg/L)		0.518	1.89	0.443	6.39	6.89
	Sulphide as S (mg/L)						

PAGE 4 of 8 13-JUN-17 17:26 (MT)

Version: FINAL

		Sample ID Description Sampled Date Sampled Time Client ID	L1936736-11 Overlying water 05-JUN-17 09:00 SED 17-12 - OVERLYING	L1936736-12 Overlying water 05-JUN-17 09:00 SED 17-01 - OVERLYING	L1936736-13 Overlying water 05-JUN-17 09:00 SED 17-03 - OVERLYING	L1936736-14 Overlying water 05-JUN-17 09:00 SED 17-29 - OVERLYING	L1936736-15 Overlying water 05-JUN-17 09:00 SED 17-27 - OVERLYING
Grouping	Analyte						
WATER	A						
Anions and Nutrients	Ammonia, Total (as N) (mg/L)		0.0588	0.368	3.41	0.949	0.613
	Sulphide as S (mg/L)						

PAGE 5 of 8 13-JUN-17 17:26 (MT)

Version: FINAL

	Sample Descrip Sampled D Sampled T Clien	Porewater Date 05-JUN-17 ime 09:00	L1936736-17 Porewater 05-JUN-17 09:00 SED 17-08 - INTERSTITIAL	L1936736-18 Porewater 05-JUN-17 09:00 SED 17-06 - INTERSTITIAL	L1936736-19 Porewater 05-JUN-17 09:00 SED 17-09 - INTERSTITIAL	L1936736-20 Porewater 05-JUN-17 09:00 SED 17-13 - INTERSTITIAL
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.117	1.43	2.25	4.06	2.31
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018

PAGE 6 of 8 13-JUN-17 17:26 (MT)

Version: FINAL

					V C 1 3 1 0 1	i. I iivae
	Sample II Descriptio Sampled Da Sampled Tin Client I	Porewater 05-JUN-17 09:00	L1936736-22 Porewater 05-JUN-17 09:00 SED 17-20 - INTERSTITIAL	L1936736-23 Porewater 05-JUN-17 09:00 SED 17-18 - INTERSTITIAL	L1936736-24 Porewater 05-JUN-17 09:00 SED 17-19 - INTERSTITIAL	L1936736-25 Porewater 05-JUN-17 09:00 SED 17-24 - INTERSTITIAL
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	2.78	5.81	4.18	13.1	3.91
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018
		33.010	10.010	30.010	30.010	45.010

PAGE 7 of 8 13-JUN-17 17:26 (MT)

Version: FINAL

	Samp Descri Sampled Sampled Clie	ption Porewater Date 05-JUN-17	L1936736-27 Porewater 05-JUN-17 09:00 SED 17-01 - INTERSTITIAL	L1936736-28 Porewater 05-JUN-17 09:00 SED 17-03 - INTERSTITIAL	L1936736-29 Porewater 05-JUN-17 09:00 SED 17-29 - INTERSTITIAL	L1936736-30 Porewater 05-JUN-17 09:00 SED 17-27 - INTERSTITIAL
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	1.96	2.05	6.38	3.41	0.835
	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018

Reference Information

L1936736 CONTD....

PAGE 8 of 8

13-JUN-17 17:26 (MT)

Version: FINAL

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
NH3-F-VA	Water	Ammonia in Water by Fluorescence	APHA 4500 NH3-NITROGEN (AMMONIA)
			fied from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of trace levels of ammonium in seawater", Roslyn J. Waston et
NH3-F-VA	Water	Ammonia in Water by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
•	•		fied from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of trace levels of ammonium in seawater", Roslyn J. Waston et
S2-T-COL-VA	Water	Total Sulphide by Colorimetric	APHA 4500-S2 Sulphide
This analysis is carried out colourimetric method.	t using proce	dures adapted from APHA Method 4500-S2 "Sul	phide". Sulphide is determined using the methlyene blue
* ALS test methods may inc	orporate mod	ifications from specified reference methods to in	nprove performance.
The last two letters of the a	bove test co	de(s) indicate the laboratory that performed ana	lytical analysis for that test. Refer to the list below:
Laboratory Definition Cod	le Labor	atory Location	
VA	ALS E	NVIRONMENTAL - VANCOUVER, BRITISH CO	DLUMBIA, CANADA

Chain of Custody Numbers:

OL-2496

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

L1936736-COFC

Chain of Custody / Analytical Request Form Canada Toll Free : 1 800 668 9878 www.alsglobal.com

Report To	<u> </u>				Reporting				Servi	ce Ro	quest	.d										_
Company:	Nautitus Environmental				Distribution;	□Fax	() Mair	⊠€mail	⊕ Re	gular	(Standa	ord Tu	ımaro	und Ti	knes :	- Bus	inass (Days)	- R			
Contact	Jestin Wijaya				□Ciriteria o	n Report (select from	Guxfelines below)		OPa	ority (3 Days) - sur	charg	e will a	apply	. 0						
Address:	8664 Commerce Court				Report Type	: DExcel	Ø Digit	al	O Pri	ority (2 Days) - Şuf	charg	e will a	pply	- 22						
	Imperial Square Lake Ci Burnaby, BC	lty.			Report Form	at:			0 Em	erger	icy (1-	2 day) — Bul	charge	e wil	apply	/- E					_
	Canada, V5A 4N7				Report Emai	l(s): jeslin@nautilu	senvironmental.ca		≎Sa	me Da	ıγ or W	coke	nd Em	ergen	cy - s	urcha	arge wi	il app	y - E2			
									O Sp	ecity (fate rec	plined	- X									
Phone:	604-420-8773	Fax:	604-357-1351]									Αп	ulyak	s Rec	quests	_				
Invoice To	⊠ Email	□ Mall			EDD Formal			•										<u> </u>	\top	T	'''I —	
Company;	Nautitus Environmental			_	EOO Email(s):			1					-					j			
Contact:	Jestin Wijaya		_		1				l			- 1					1					1
Address:	8664 Commerce Court								i		1 1						1					l
	Impensi Square Lake Ci Burnsby, BC	Ţ			Project Info				1											i		l
	Canada, V5A 4N7				Job #:				1	i		ı										
			_		PO/AFE:				1							ļ						
Email:	Jesfin@nautil⊌senviron⁄m	ental.ca			LSO:			"	_ ا		ΙI			[- 1		ı l				1	
Phone:	604-420-8773				Duale #:				ية ق	.₫	ΙI			j	- 1	ļ		- }		ľ		
L.	Work Order# lab use only)				ALS Contact	:	Sämpler;	•	Number of Containers	Ammonia	Sulfide					j						
Sample	Sam	ple Identificatio	л	Coord	lin ates	Bat.	Thus.	damete Tour	ě		Pli	2888	indica	to belo	w Fil	lered,	Prese	nved (or both[i	F, P, F	/P)	
	(This will	appear on the r	report)	Longitude	Letitudo	Date	Time	\$ample Typo	Ž	Р	P			T		П		T	\exists		1	
	Control Sediment - Over	lying				Jun-05-2017	09:00 AM	Overlying Water	1	R							\Box	丁		\top		\Box
Plant	SED 17-08 - Overtying					Jun-05-2017	09;00 AM	Overtying Water	1	Fì	П		Ţ	\neg		ヿ	\Box	丁		\top		\sqcap
	SED 17-06 - Overlying					Jun-05-2017	09:00 AM	Overlying Water	1	R		T		П							1	<i></i>
(مبلاد	SED 17-09- Overlying			<u> </u>		Jun-05-2017	09:00 AM	Overlying Water	1	Ŕ							\neg			\top	\top	-
	SED 17-13 - Overlying					Jun-05-2017	09:00 AM	Overlying Water	1	Ŕ							\Box			\top		<u> </u>
操機艦	SED 17-17 - Overlying				•	Jun-05-2017	09:00 AM	Overlying Water	1	R							\neg	丁	\neg	\top		
HEAT TO SE	SED 17-20 - Overlying					Jun-05-2017	09.00 AM	Overlying Water	1	R		T	T	Т	T	T	\neg			7	1-	_
	SED 17-18- Overlying	•				Jun-05-2017	08:00 AM	Overlying Water	1	R	П		\Box	П			\neg	╗	\top	\top	\Box	
新加速						(Sec page	2 for lurther sample:	s)														
	Special Instruct	llons/Comments		The quest	ions below n	nust be answered fo	or water samples {	check Yes or No)	Guide	lines												
			-	Are any samp	le taken from	a regulated DW syst	tem? ⊡Yes	□No	l													
				If yes, please	изе од дифор	rized drinkling water (coc															_
						ed to be potable for	human GYes	□Mo.	推出	ĸHIJ		雛症	SAMP	LE CC	D M DI	TION	(lab u	e6 ou	と 関係	PRESIDE	相關	淵
				consumption?	·		L 765	U190	□fro	zen		GCol-	d		JΛml	bient		Ç	ling Initi	bels		
经	SHIPMENT RELE	EASE (client vec	用於於約至六188(6		инит вы	PMENT RECEPTION	N (lab use only)		複類			ijSН	PME	NT VE	RIFIC	CATIC	iál) MC	use.	only)			MI.
Released by		Date:	Тіте:	Received by:		Date:	Пите:	Temperature:	Verifie	d by:		Ī	Date:				Time:			Ob:	ervalio	75 :
Destin M	d Mautīlus	Jun 5/17	16:00	Trevor	_	June 5	16.00	8.3 °c												ΘY	es	
	Environmental]	" " " " " " " " " " " " " " " " " " "	1 ,,,,,,,		1 2 me 2	10.33	1 27 20												H Y	es edd .	ŞIF

Page 2 of 2

11036736 COEC

Chain of Custody / Analytical Request Form Canada Toll Free : 1 800 668 9878

(ALS)	L1936736-COF0	3			W	ww.alsglobal.c	om:	,															۲	'age	e 2 of	12
	į.			, 			Π						_	i	Analy	6is R	eque	ste						_		_
Sample	Sample Identification	Coord	dinates	Oate	[Time	Sample Type																				
# T NG	(This will appear on the report)	Congitude	Letitudo		• • • • • • • • • • • • • • • • • • • •	wenter type	Number of Containers	Ammonia	_			Pleas	se indi	cate b	elow I	Filtere	ed. Pn	eserv	ved or	both(I	F, P, F					
	· · ·	<u> </u>	<u> </u>	<u> </u>			╃	Р	Р	1		\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv		_	\dashv	_	\perp		\perp	!
	SED 17-19 - Overlying	<u> </u>	 	Jun-26-2017	09:00 AM	Overlying Water	1	R	<u> </u>	$\downarrow \downarrow \downarrow$	\Box	\dashv	_		_	+	_			\dashv	\dashv	\dashv		\dashv		
	SED 17-24 - Overlying	ļ	↓	Jun-05-2017	09:00 AM	Overlying Water	1	R	<u> </u>	╁		\rightarrow	\dashv	\dashv	\dashv	\dashv	4	_		\dashv	\rightarrow		- i		\dashv	!
	SED 17-12 - Overlying	 ′	 	Jun-05-2017	09:00 AM	Overlying Water	1	R	<u> </u>	┦	_ }	_	\dashv	\dashv	+	- -	_	_	\rightarrow	\dashv	\dashv	\dashv			_	
	SED 17-01 - Overlying	 '	 !	Jun-05-2017	09:00 AM	Overlying Water	1	R	—	 			_	_	\dashv	\dashv	_	\dashv		_	\dashv	\rightarrow	\rightarrow	\dashv	\dashv	/
	SED 17-03 - Overlying	 '	├-	Jun-05-2017	09:00 AM	Overlying Water	<u> </u>	R	igspace	\sqcup		\rightarrow	\rightarrow	\rightarrow	\dashv	\dashv	\dashv	\dashv		_	\dashv	\dashv	\rightarrow	\dashv	\rightarrow	/
	SED 17-29 - Overlying	 '	 	Jun-05-2017	09:00 AM	Overlying Water	-	R.	<u> </u>	\sqcup	\rightarrow	\dashv	\dashv	\rightarrow	\dashv	\dashv	\dashv		\rightarrow	\dashv		\rightarrow		\dashv		/
	SED 17-27 - Overlying	 	↓	Jun-05-2017	09:00 AM	Overlying Water	1	R	<u> </u>	┶┤	\dashv		\dashv	\rightarrow	\perp	\perp	\dashv	\dashv	\rightarrow	_	_	\dashv		_	_	!
	Control Sediment - Interstitial			Jun-05-2017	09:00 AM	Perewater	2	R	R																	
	SED 17-09 - Intersútial			Jun-05-2017	09:00 AM	Porewater	2	R	R			T		T	\exists		\top			\exists	\neg	\neg	\top	\Box	\top	
	SED 17-06 - Interstitial			Jun-05-2017	09:00 AM	Porewater	2	R	R			\Box	\neg	\top	\top	\top			\Box	\exists	ヿ	丁	\rightarrow	\neg	\top	\Box
	SED 17-09 - Interstitial			Jun-05-2017	09:00 AM	Porewater	2	R	R				\top	丁	T	\top	\neg	\exists	\neg	\neg	一		$\overline{}$	\neg	7	
Section 8	SED17-13 - Interstrial			Jun-05-2017	09:00 AM	Porewater	2	R	R			\exists	T	丁	十	十	\top	寸	\neg	丁	寸	ヿ	\neg	1	\top	
Figures:	SED 17-17 - Interstrial			Jun-05-2017	09 00 AM	Porewater	2	R	R	\Box	-	7		\top	十	十	_	\dashv	\neg	\exists	\exists	T	\top	\neg	\top	
	SED 17-20 - Interstitlal			Jun-05-2017	09:00 AM	Porewater	2	R	Ř			\Box	\top	\top		1	\top	\exists	\neg	\neg	\neg	\neg	\top	\neg		\neg
	SEO 17-18 - Interstinal			Jun-05-2017	09:00 AM	Porewater	2	R	R	\Box	_	\Box	\top	十		十	7	\neg	\top	\neg	丁		\top	\top	\neg	\neg
	SEO 17-19 - Interstitiel			Jun-05-2017	09;00 AM	Porewater	2	R	R	П	$\neg \uparrow$	T		7	\neg	\top	寸	\neg	\neg	\neg	1	\top	\neg	\top	\top	\Box
	ED 17-24 - Interstition			Jun-05-2017	09:00 AM	Porewater	2	R	Ŗ	П	\Box	\neg		丁	\dashv	\top	丁		\neg	\neg	\top	\top		_	_	
	SED 17-12 - Interstitial			Jun-05-2017	09:00 AM	Porowater	2	R	R			\neg	\top	\top		\top	\top	\top	\neg	\Box	T	\neg		\top		\neg
	ED 17-01 - Interstitiel			Jun-05-2017	08:00 AM	Porewator	2	R	R		\Box	\neg		\exists	\top	\top		\top	\Box	\neg	1	\top	\neg	\top	丁	\neg
	SED 17-03 - Interstitial			Jun-0\$-2017	09:00 AM	Porewater	2	R	R				\neg	\top		\top	\top	\neg	_		T	\neg		\top		
	EO 17-29 - Interstitial			Jun-05-2017	09:00 AM	Porewater	2	R	R	ГТ	7	\neg	\top	丁		\top	T	丁	$\neg \uparrow$	\neg	ヿ	\top	\neg	\top	\neg	\neg
	ED 17-27 - Interstitial			Jun-\$5-2017	09.00 AM	Porowater	2	R	R		\neg	\neg		丁		\top	十	寸	\neg	\neg	\dashv		\top	\top		\neg
												\neg	\top	1						寸	寸	\top	\top	\top	\top	\exists
														\top	\top		T				ヿ	\top	\top	$\overline{}$		
								\Box				\neg		\top			Т	\top		7	\neg	\Box	\neg	\neg		
京語 動物												\Box		\Box			\Box	\neg	\Box		\Box			\Box		
松水溪鹽鹽價		\Box	, T	, ———								$\neg \top$		\neg	\neg	7	\top	\neg		\neg			\top	\neg		

Marine Polychaete Sediment Test Summary Sheet

Client:	Golder Associates	Start Date: 26-May-17
Work Order No.:	170471	Set up by: JW/KJL
Sample Information	n;	
Sample ID:	Variouis - See below	
Sample Date:	April, 2017: 26, 26, 29, 30	
	May, 2017: 1, 2, 4, 5	· ''-
Date Received:	15-May-17	
Sample Volume:	2 x 4L per sample	·
Test Organism Info	ormation:	
Species:	N. arenaceodentata	
Supplier:	Aquatic Toxicology Support	
Date received:	24-May-17	
Age or size (Day 0):	0 515 mg	
Cadmium Reference	e Toxicant Results:	
Reference Toxicant	ID: <u>NA31</u>	
Stock Solution ID:	16Cd01	
Date Initiated:	26-May-17	
96-h LC50 (95% CL): <u>7.0 (5.6 - 8.7) mg/L Cd</u>	
96-h LC50 Referenc	e Toxicant Mean and Range:	8.7 (5.6 - 13.5) mg/L Cd
Test Results:		

Sample ID	Survi	val ±	SD (%)	Total Do	y We	eight ± SD (mg)	Averag	e Indi SD (r	v Dry Wt. ± ng)			Rate ± SD orm/day)
Control Sediment	96.0	±	8.9	47.0	ż	4.9	9.8	±	0.9	0.47	±	0.04
SED17-08	100.0	±	0.0	44.0	ż	9.1	8.8	±	1.8	0.41	±	0.09
SED17-06	96.0	±	8.9	48.0	±	55	10.1	±	1.6	0.48	±	80.0
SED17-09	92.0	±	11.0	37.8	±	9.8*(a)(c)	8.1		1.3*(a)(c)	0.38	±	0.07*(a)(c)
SED17-13	100.0	±	0.0	45.9	±	6.2	9.2	±	1.2	0.43	±	0.06
SED17-17	96.0	±	8.9	50.5	±	11.1	10.4	±	1.7	0.50	<u>+</u>	0.08
SE <u>D17-20</u>	84.0	±	16.7	38.8	±	10.7(c)	9.1	<u>+</u>	1.3	0.43	±	0.07
SED17-18	96.0	ż	8.9	39.0		_2.5*(a)(c)	8.2	±	1.2*(a)(c)	0.39	±	0.06*(a)(c)
SED17-19	80.0	±	28.3	32.5	÷	13.7*(a)(c)	8.0	+	1.5*(a)(c)	0.37	+	0.00 (a)(a)

Reviewed by:	Cll	Date reviewed:	July 25, 2017	

Test Results:

Sample ID	Survival ± SD (%)	Total Dry Weight ± SD (mg)	Average Indiv Dry Wt. ± SD (mg)	Growth Rate ± SD (mg/worm/day)
SED17-24	100.0 ± 0.0	48.3 ± 5.8	9,7 ± 1.2	0.46 ± 0.06
SED17-12	96.0 ± 8.9	38.9 ± 3.6*(a)(c)	8.2 ± 1.4*(c)	0.38 ± 0.07*(c)
SED17-01	96.0 ± 8.9	45.5 ± 4.6	9.6 ± 1.4	0.45 ± 0.07
SED17-03	96.0 ± 8.9	42.0 ± 7.6	8.8 ± 1.4(c)	0.41 ± 0.07(c)
SED17-29	100.0 ± 0.0	42.3 ± 6.7	8.5 ± 1.3*(c)	0.40 ± 0.07*(c)
SED17-27	96.0 ± 8.9	53.4 ± 13.4	11.0 ± 2.0	0.52 ± 0.10

^(*)Asterics indicates sample(s) that are significantly different from the Control Sediment

- (a) indicates sample(s) that is significantly different from reference sediment SED17-24
- (b) indicates sample(s) that is significantly different from reference sediment SED17-29
- (c) indicates sample(s) that is significantly different from reference sediment SED17-27

Reviewed by:	Date reviewed:	July	25	2017
	 -			

Marine Sediment 20-d Water Quality

Client: Golder Associates Work Order No.: 170471	Start Date: 26-May-17 Termination Date: 15-Jun-17 Test Organism: N. arenaceodentata
--	---

Temperature (°C)

	Г			_							Day				_						_
Sample ID	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	1
O had Cadimant		20.0	200	20 -	20 C	20.0	20.0	20.0	£3,3	اد هز	20.0	i0 o	20,0	20.D	الاخذ	25,4	ا در	20,0	20.0	201 0	ļ
Control Sediment	2.00	70:-	- 0	20.0	20.0	20.0	20.0	20 T	40	200	20.C	3n.0	200	20,0	2013	ادم	10,43	20.0	20.0	20.c	ľ
SED17-08	<i>u,</i> "	0,00	20.00	20.0	20.0	20.0	20.0	30 C	2. 2	20.3	20.0	20.0	20.0	2¢.0	20,3	ت.ور	19.0	20.J	2040	<u> 20.0</u>	l
SED17 <u>-06</u>	11.0 11.0	[A]. M	20,-	A) C	20.0	20.0	20,0	20.0	μ., : 1. :1	30,0	20.0	20.0	20.0	20.0	<u> </u>	20,0	10.0	20.0	2020	20.0	Ī
SED17-09	77.3	<u>w</u> ,~	10.7	20.0	20.0	20.0	20.0	20.0	13.1	P. 3	20.0	200	20.0	20.0	2. 2	13.4	349	20.0	20 b	20.0	Į
SED17-13	V°	ja. 0	10%	20.0	26.0	20.0	TO D	20.0	د, در	20,00	20.0	20.0	20.0	20.0	20 -	2.3	3	20.0	200	(O,O	Ţ
SED17-17	นว	10.3	عبور	20 <u>0</u>	20.0	20.0	26.0	<u> 20, t</u>	200	70 .u	20.0	20.0	-0.0	25.0	10 .4	<u> </u>	2	20.0	200	20.5	j
SED17-20	اهر <i>ار</i> ا	J. 1	20,0	30 <u>.0</u>	20.0	20.0	20.0	20 _{.0}	ું અ	2a/a	70.0	20.0	20.0	20.0	25,25	2-	22.2	20.0	20.0	20.5	7
\$ED17-18	51.3	a. 4	وحدا	dan ra	des a	lee e	ح م2ا	120.0	ا⊄. ∡دا	12. O	120.C	[20Q	ن دواا	120 V	ات ردر		10.	٧.٠٠	<u> 100,00</u>		4
SED17-19	no.s	20.10	200-0	20,0	20.0	200	20.5	20.0	2× 2	$2\omega_{\Omega}^{\alpha}$	20.0	20.0	20.0	20.0	35.0	در مړ.	20/2	AD:0	<u> 120,0</u>	20.0	4
SED17-24	24,0	20,0	و موا	don e	ilso e	dze.a	o act	120.0	ու≎	20.7	(20.0	120.0	 20.0	1200	0.00	مرعرا	22.0	22.0	1200	20.0	΄,
SED17-12	_	4 .	Las 5	മിമന സ	dan t	Mica a	د مدار	120.0	la 5	25 3	120.0)]2QC	120.7	120.0	2272	10.	v."	20.0	14	<u> 20-7</u>	v
SED17-01	4 . 1	г,	0.00	30.0	Aca a	محماه	ممط	CO. E	haa	ع.ما	ሳ 20 የ	y2a-o	120.0)(P ,O	10.0	10.0	\mathbf{p}	40.0	7243	203	Ľ
SED17-03	219	220	່າວ	rock	3120 t	dsa.d	કોટલગ	20.0	ಡಿ.ಎ	≥.د1 أ	(20.0	20-9	3/20.0	(2 0.0	12.3	100	100.0	20,0	20,00	120.4	¥
SED17-29		V >	- مرا	20.0	Mao.r	d 20.5	20.4	20.0	ک.ون ا	ترصورا	420.0	չթագրիչ	i 20.€	0.00	12,3	2>-	152"-	ΔU	42 <u>0.0</u>	20.5	⊻
\$ED17-27	20	10,3	7,5	20.i	20.1	0 20-3	20.0	20.0	و مرا	20	20.g	20.0	20.0	20.0	30,0	12-2	120	257.4	20.0		
Technician Initials	10-	-	1			3 73.70					JAN.	3v) Jiv	j ON	JW	ş.	<u></u>	10M	20.0		í
TCOMMODITATION	1-5	1-	1.5															1 ==		- 0₩	
Aeration checked ?	0	1.4	2	1 3	T 4	1 5	T 6	T 7	8	9	10	11	12	13	14	15		17	1	_	_

Aeration checked ? 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Technician Initials (a.m.) A A A DN

Salinity (ppt)

	$\overline{}$				Day			
Sample ID		3	6	9	12	15	18	20
Control Sediment	2-6	26	26	24	. <u>7</u> ⊐	27	28	28
SED17-08	22	27	28	27	29	28	્રવ	্রন
SED17-06	27	27	27	24	24	25	58	27
SED17-09	nå	27	28	12	58	24	<u> </u>	38
SED17-13	22	21	28	28	38	$\gamma_{\mathcal{S}}$	ૂર્લ	28
SED17-17	28	27	27	27	27-	23	25	27
SED17-20	29	29	29	29	⊃?	28	_ 28	27
SED17-18	27	27	28	28	28	2,8	54	28
\$ED17-19	27	27	27	27	34	28	28	2:
SED17-24	22	27	27	27	28	28	27	5.
SED17-12	2.50	23	27	73	28	28	78	2:
SED17-01	23	23	27	27	27	ンチ	28	3.
SED17-03	2.8	27	27	27	7.5	28_	28	ু এন
SED17-29	27	23	28	2-7	28	2,32	28	27
SED17-27	2.7	27	28	27	28	26	2₹	Ž.
Technician Initials	A-	3N	MLT	Ar .	Siv	B-	Jw	Ji

Instruments:	Thermometer: CER® 1	DO meter: 1/2	pH meter:	Salinity meter: (/ 2
Comments:				
Reviewed by:			Date Reviewed: _	July 21, 2017_

Marine Sediment 20-d Water Quality

Client:	Golder Associates	Start Date: 26-May-17
Work Order No.:	170471	Termination Date: 15-Jun-17
		Test Organism: N. arenaceodentata

Dissolved oxygen (mg/L)

Sample ID	Day									
Sample 10	0	3	· 6	9	12	15	18	20		
Control Sediment	**	7.3	4.9	٦,	6.9	入!	न∙⊅	7.3		
SED17-08	7-5	9.3	₹.7	69	6.9	3 ,5	7.3	7.3		
SED17-06	7.6	9.3	7. ₂	7,5	6.9	7-12	7-1	7.2		
SED17-09	₹.5	7.2	7.2	. <u>.</u> .	6.9	→ 4	7.0	7-1		
SED17-13	チン	4.2	5.9	コレ	6.8	N	7-1	7-1		
SED17-17	35	ቫ -፲	7.0) jo	6.9	3 53	7.1	7.1		
SED17-20	7.4	₹.2	7.₹	7-0	7.0	7.1	3 -0	₹,2		
SED17-18	→ +	7.2	T. 7-	6.7	쿠.0	ブニ	7-1	7-2		
SED17-19	2.3	7-2	7.7	68	7.0	ابر:	₹-1	7-1		
SED17-24	74	₹-2	4.7-	3.0	7.0	71	7.1	7.3		
SED17-12	24	1-2	7.3	7,1	≒ .⇔	→. 1	4.2	7-3		
SED17-01	3-3	7 -2	7.7	7.2	7.0	> 1	7-1	7.3		
SED17-03	74	₹-1	7.7	3/1	7-1	ንን	₹- 1	7.3		
SED17-29	24	₹-३	7.0	7-1	न-।	ጉレ	7-1	7-3		
SED17-27	74	₹.2	_ 7 2	71	71-1	ネ レ	7-2	구-3		
Technician Initials	B	DW	TUM	A~~	2M	<u>A</u>	วีฟ	J∧i		

pΗ

Sample ID	Day								
Sample 15	0	3	6	9	12	15	18	20	
Control Sediment	77	7.6	7.6	7.7	7.6	3-7	7.7	7.6.	
SED17-08	78	7.7	7.7	78	7.\$	32	7.7	7.4	
SED17-06	2.2	₹ .6	7.7	-}નું°	7.8	78	₹.%	7.8	
SED17-09	<u>ሕ</u> ን	<u>₹</u> -Ь	7.9	78	3.9	28	7.9	7.4	
SED17-13	7.7	7.5	7.6	78	7.9	7.8	4.9	8.0	
SED17-17	2.7	7-6	7.6	77	8.1	820	₹.8	4.8	
SED17-20	77.2	₹.₹	8.	<i>ት</i> .ኖ	8-1	أبنه	8-1	8:1	
SED17-18	7.6	₹-8	8.1	J-€	8-1	8-2	8.1	8.0	
SED17-19	7.7	3 .8	9.0	1,0	8-1	<i>g</i> -1	8-1	&-O	
SED17-24	3.7	7.8	7.8	79	7.8	ومريخ	3.8	7.9	
SED17-12	7.7	4.4	7.7	78	74.8	7.5	₹.?	7.7	
SED17-01	2.7	7.5	7.7	78	3.9	800	7.9	7.8	
SED17-03	3-3	7-9	7.9	78	8.9	£1	8.0	7.9	
SED17-29	2.3	4.4	7.8	7.9	8.3	ابع	80	8.0	
SED17-27	ጉን	7.1	7.6	子も	7.7	ナナ	7.7	4.4	
Technician Initials	9	つい こ	MIT	A	JW	<u>^</u>	JM	JW	

Instruments:	Thermomete <u>r: (€R [□] 1</u>	DO meter: 1/2	pH meter:	Salinity meter: 1 / 2
Comments:				
Reviewed by:	<u> </u>	<u> </u>	Date Reviewed:	July 21, 2017

Client:	Golder Associates	Start Date: 26-May-17
Work Order No.:	170471	Termination Date: 15-Jun-17

Sample ID	Rep	No.	No.	No.	Total	Initials	Pan weight	Pan + organism	No.	Initials		y 20 Wat	er Quality		Initials
		alive	dead	missing	Recovered		(mg)	(mg)	weighed		Temp (°C)	Sal (ppt)	DO (mg/L	рΗ	
Control	36 A	5	0	0	5	Jiv	1010.91	10b3.2b	5	Jivi	20.0	28	7.3	4-1	3tN
Sediment	31 B	S	Ş	٥	5		985.50	i0'35 -14	S		20-0	27	7.3	4.b	
	_% C	45	۵	0	5		1011 - 22	1052.83	5		20.0	29	7.3	7.6	
Pan : TS Blue	βŖD	_ u O	٥	l	<u></u>		1025 Ob	1067.10	4		⊋ 0.0	78	7.3	7.7	
	юE	5 ¥53¥	t)	٥	310 ¥ 5@		1030.00	1079.42	5		20.0	38	a .3	7.7	
SED17- ୖଃ)(A	ب ې	٥	¢	5	เมเร	i024.25	1077-14	5	OM	20.0	29	4.3	4.8	2//1
	22 B	<u>5</u>	0	0	5		1009 - 13	1052 . 12	5		20.0	23	‡ .⊋	1. ₹	
	23 C	5	6	Ç	5		1014 - 44	00.] [0)	5		20.0	00 (4	4.[₹-₹	
ion : ce Rive	14 D	\$	0	0	5		1015 - 07	1053.93	Ü		20.0	각	6.8	7 .6	
	25 E	5	υ	Ü	5		1028 - 52	1060.48	5		20. D	এৰ	a∙a	쿠. 귀	
SE017- 0₀	% A	5	0	™ B C	5	NC.	(D2) . 18	1062.30	5	CiA	20.0	3 .3	7-1	8.0	JIN
	2∃ B	5	C	_{XV} 8్ర	.5		1011.74	1068-37	5		35 26 20.0	ಭ	7.1	4 .9	711%
	22 C	5.	0	30 % C	ს j		1007-62	1093.69	S		m 2820.0	60 (1	7.0	80	
Pan : Ce Rive	βD	4 O	0	ĩ	ų		1018-96	1068-05	4		N. 28 20.0	26	7.1	8.0	
	3o E	ゥ	0	0	Ś		1011 - 59	१०५४ ५५	5		30.p	27	7-{	7.9	
⊕ SED17- 09	21 A	:40)	U	I	4-	μIJ	1016.92	1043.44	4	JW	20.D	28	4.1	4 -8	IN
	ņВ	.5	O :	Ü	ら	•	tot6.23	1054 - 31	5		20.0	27	7.1	80	
	23 C	5	_ ن	υ	ら		1013.65	(063.00	5		20.0	28	7.2	8.0	
Pan : Lon Redi	34 D	. 5	υ	Ū	5		IDID : 25	1059 Sl	5		20.0	27	ন.১	8.0	
	35 E	ų(J)	o	360 🎉 L	564.¥4		1010 . 19	1040.00	4		20.0	274	4.1	न-प]]

Thermometer:	Tw. CER # \$ I	DO meter:	pH meter:	ŧ	Salinity meter:	l atam
			•			1.65+36 + 4543.1
Comments:	O checked by MLT	(a) tousanism mas nery small	@ checked by Jiv	@ oily sheen in	ndirt 10% Rewei	91/1:18 36:1063.c
				'	_(mg)	
Reviewed by:	<i>&</i>			Date Reviewed:	July 21, 2017	

Client:	Golder Associates	Start Date: 26-May-17
Work Order No.:	170471	Termination Date: 15-Jun-17

Sample ID	Rep	No.	No.	No.	Total	Initials	Pan weight	Pan + organism	No.	Initials	Da	y 20 Wate	er Quality	•	Initials
	Ì.	alive	dead	missing	Recovered		(mg)	(mg)	weighed		Temp (°C) Sal (ppt) DO (mg/L	рН			
SED17- 13	_Ж А	'n	0	Э	G	Ú.V	990.13	1027.76	5	SM	20.0	28	4.2	3. 9	JM
	23 B	5	0	0	Ę5		992.95	1033 . 33	5		20.0	27	4.3	7.8	
	₂₈ C	5	0	0	5		1036.03	1087 - 30	S		20.0	23	₹.2	7.9	
Fan : tan Red	₂₉ D	ψ,	0	С	5		(DI7 - 60	1067-21	5		20.0	27	٦.۵	7.4	
	_{%υ} Ε.	ς.	0	0	5		1022.82	1072.83	5		20.0	34	7.0	4.9	
SED17- 13	ą, A	. 3	0	, O	5	NIT :	985-84	88 FEOI	5	JW	20.0	⊋ 1	4.3	4.9	JW
	2ĄB	5	Û	Ù	ای	·	1012.28	1077 - \$474	5		20-D	24	ネユ	7-4	
	J2 C	5	Ð	Û	<u>ئا</u>		1029,80	1080 . 29	5		20.0	-27	7.2	7.4	
ton : Nec Purple	34 D	щ [©]	Ċ.	ì	4		1021 . 77	1095,94	4		20.0	37	` - 1.j	३ .७	
	عنE	ij	0	0	5		1012.64	1062.88	S		20.0	23	7.2	7.8	
SED17- 20	21 A	კ ე	0	2	3	Jw (1)	1000°54	80 . 1101	3	JW	20.0	27	4.3	8-1	-7JM
	ъB	5_	0	٥	S.		1008-23	1057 - 21	5		20.0	27	₹-3-	<u></u> ዩ (
	₂₃ C	ખ્ઊ	0	ſ	4		(DII -92	1054-82	ц		20.0	27	4.3	3.L	
Pan : Y Black	24 D	.5	0	0	۶ ا		(023.40	1068-13	S		20.D	: 27	43	8.2	
	25 E	4.3	C	l	4		1017-09	1053.21	ų		26.0	27	4.3	જે ∙ (
SED17- i8	χ, A	5	Ö	O	<u> </u>	MLT	1000.56	1041 .95	5	7.5	20.0	27	7.3	g. į	JIN
	яВ	<u>5</u>	Ç	Ü	5		998-25	1036.54	5		20.0	2 7	43	8.0	
	% C	5	O	0	5		995-62	18.0801	5		J0.0	ลนุ	43	ያ∙ ਹ	
Pan : Y Black	pΩD	5	٥	Ü	5		१९ १ .40	1038-63	5		20.0	ST.	7.3	8.0	
****	∌υE ¦	4 (3)	0	į	ች .		F8-8001	1049.91	ц		20.0	ुन	4.3	80	

Thermometer:	CER # # 1	DO m	eter:t	pH meter:	Salinity meter:
Comments:	<u>①</u>	B checky by MED JW	G Checked by MLT	10°10 Rewagh: Lan	OP . F201 : \$C.Y., d8 - F201 : d8
Reviewed by:		W 245		(mg) Date Reviews	st: July 21, 2017

Client:	Golder Associates	Start Date: 26-May-17
Work Order No.:	170471	Termination Date: 15-Jun-17

Sample ID	Rep	No.	No.	No.	Total	Initials!	Pan weight	Pan + organism	No.	Initials	Da	y 20 Wat	er Quality		Initials
		alive	dead	missing	Recovered		(mg)	(mg)	weighed		Temp (°C)	Sal (ppt) DO (mg/L		pΗ	
SED17- 19	A	5	0	0	5	μ.	1029.61	1061 . 23	5	DΜ	20.0	23	7.3	8· D	Ð₩
	2 B	5	Ü	0	5		1이4 .51	i061.55	5		20.5	37	₹.3	8-1	
	_a C	20	O.	3	2		i032.l3	ા૦૫૫, જેા	a		20.D	2 7	7.3	81	
Pan : Bille	μD	3 √	O	2	3		1020.10	1047-64	3		20-D	2 7	7.3	8- i	
	ςE	5	O	0	5		1028.55	1072.15	5		30.0	27	7.3	8.0	
SED17- 24		54O	0	٥	9	₩	1034.00	1074.71	5	JW	20.0	27	4.3	વ∙દ	JM
	ąВ	3.0°	O	0	5	-	1035 - 24	1081 . 55	5		20.0	34	٦-3	₹.8	
	ξC	5	O	0	5		1037 - 98	(093.17	5		30.0 30.0	ď.	Ţ.3	4.5	
Pan : Biue	q D	5	٥.	O	5	i	1034.87	1087.83	5		20.5	34	7.3	ন ৪	
	ıвE	5	0	0	ن		1004.40	1050 - 램	5		20.0	27	7-3	ર્- &	
SE017- 12	ų A	S	0	a	9 .	300	(O)1 - 48	050.53	5	JiN	20.0	34	7.3	३ . ०	JIN
	μB	<u> </u> 5	O	S	5		1036.40	10वन् । 92	S		30.O	পু	7-3	ચ-જ	
	13 C	5	O	٥	5		1007 -91	1042.5%	5		30.0	27	7.3	₹.8	
Pan : Blue	μD	5	Ö	ې	<u>.</u> 9		1024 - 99	1063. 52	មា		30.5	27	₹-3	₹.8	
	ıςΕ	나 ①	0_	ţ	ц		1007-24	1049.18	4		20. Ø	જ	4.3	7.8	
SED17- Di	ЬΑ	4 O	0	Ĺ	4	SiN	1028 87	1074.63	ij	ЭN	a 0.6	28	¶. 3	न.प	DM.
	14 B	5	c .	٥	5		i026.66	1074 . 32	S		20.0	3 7	₹.3	7.9	
	⊕ C	5	0	o	5		ID22.37	10744.37	S		20.0	27	43	ন.৭	
17an : Blue	Ŕ D	5	Ô	0	5		1028 - 44	IO32.DH	5		20.0	28	ą. <u>3</u>	7.9	
	₂₀ E	5	٥	٥	5		1001.08	1040.32	5		20.D	27	4.3	₹.8	

Thermometer:	CER #1	DO meter: L	pH meter: 1	Salinity meter:!
Comments:	O Checked by Ki.	@ checked by DN	10% Reweigh: Blue 7: 1081-11:	; Blue 13 : 1042,14
Reviewed by:			(พร) Date Revie	ewed: July 21, 2017

Client:	Golder Associates	Start Date: 26-May-17
Work Order No.:	170471	Termination Date: 15-Jun-17

Sample ID	Rep	No.	No.	No.	Total	Initials	Pan weight	Pan + organism	No.	Initials	Da	y 20 Wate	er Quality		Initials
		alive	dead	missing	Recovered		(mg)	(mg)	weighed		Temp (°C)	Sal (ppt)	DO (mg/L	рН	
SED17- 03	χA	40	Û	3⊌ ¢ 1	<u> </u>	ΚĽ	1026.15	i061.96	ų	DIM	20.0	27	7.3	7.9	JW
i	яB	5	٥	0	: 59		(02t . 07	1099.05	9		90. 0	27	1.3	8.0	
	28 C	5	O	0	Ś		996.28	1049.78	5		ಇ೧೦	2b	4.3	7.9	
Pan : G green	39 D	5	Ú	O	į,		1037.72	1083.55	5		20. C	27	7.3	구.역	
	_{2O} E	5	0	υ	5		1022.68	1059 47	5		20.0	. य ₹	13	80	
SED17- 29	14 A	5	۵	Ū	5	J;N;	1004 - 32	1042.90	5	JW	2 0.0	28	7-1	8.0	Jk€
	៲ៜ឴឴₿	S	٥	٥	 ج		1003.11	1049 - 14	5		20.0	27	7.3	8.0	
	ųС	5	0	Ü	5		1007 - 22	(043.70	5		⊋ 0.€	27	4.3	8.0	
Рал : Ү власк	ıs D	5	0	0	S		1030.63	1082.33	5		20.0	27	7.3	3. 9	
_	ĄЕ	S	Q	O	5		1011 - 44	1053,36	5		30·0	28	٩٠,ڮ	8-0	
SED17- 27	ıя A	5	٥	Ö	S	ઉત્પ	99। ।।	1048-50	5	€W	20. <i>0</i>	.27 1	7-0	7.7	30
	∞B	5	٥	0	. 5		J002 - 1 2	1060.95	5		20.0	JЬ	6.9	a.b	
	ЭĮ C	ц ®	0	Į	4		(015 - 21	1045.26	4		20.0	27	7.0	4.6	
Pan : Nec Purple	યા D	5	D	0	S		1001.01	1065-17	5		20.0	과	7.1	7.4	
	25 E	5	٥	Ď	S		1002 - 42	1059 - 94	5		20·D	27	7-D	7.7	
SE017- ঝ	Α								·						
	В]													
	С					<u>.</u>									
	D							·				`	*		
	£														

Thermometer:	CER # 1	DO meter:	pH meter:l	Salinity meter:L
Comments:	O checked by JM	© Checked by Milt	10°70 Reweigh : 629 : 1083.24	A20 22 : 4064,87
Reviewed by:	<i>(</i>		(গ্ৰন্থ) Date Reviewed:	July 21, 2018

Nautilus Environmental Sediment Toxicity Test - Water Quality Data For Ammonia

Client:

Golder Associates

Species:

E. estuarius / N. arenaceodentata

Work Order No: 140470 - 140471

Sample Type:

Ammonia - Oversying

Date Measured: 26-May-17

[2512 + 5418 10500 c		<u> 28. januar 98. no</u>	Total	Unionized	
	Sample JD	Salinity (ppt)	p	Ammonia (mg/L)	Ammonia (mg/L)	the state of the s
	Control Sediment	29	7-6	0.0282	0.000	EC
,	SED17- ⊖&	29	7.7	0.447	6.00F	L
2	SED17- 06	29	7-6	0.773	0.006	
3	\$ED17- 64	29	7.7	0.219	0.002	
4	SED17- 13	29	7.7	0.120	100.0	
5	SED17- in	<u>2</u> f	7.7	0.545	0.005	
6	SED17- ⊒⊘	2 1	77	o. a95	0.003	
7	\$ED17- (\$	29	7.7	0.446	0.004	,
В	SED17- PA	27	7.8	0-477	0.009	
9	\$E017- 24	29	77	o.49 3	0.005	
10	SED17- (2	28	<u> </u>	0.377	0.003	
13	SED17- OI	28	1	0.421	0.004	i
12	SED17- 03	26	7.6	1.48	0.011	
13	SED17- 29	21	3.7	0.581	F00.0	
14	SED17- ೧೫	29	7.6	IFS.0	0 - \$003-	J
15						

1. PH and satisfy values were obtained from composites of

are one 2. Total Ammonia measurements were done by ALS. Results were enclosed in the data package.

Reviewed by:

Date Reviewed: __tme 25, 2017

Nautilus Environmental Sediment Toxicity Test - Water Quality Data For Ammonia

Client : Golder Associates Species : E. estuarius / N. arenaceodentata

Work Order No: 140470 - 140471 Sample Type: Ammonia - Interstitue

Date Measured: 26-May-17

		。2013年19月1日 (1913年)		Total	Unionized	
	Sample ID	Salinity (ppt)	рН	Ammonia (mg/L)	Ammonia (mg/L)	Tech Init
	Control Sediment	29	7.3	2.93	0.011	EL
1	SED17- 08	29	7.0	9.18	0.017	
2	SE017- ∂6	२९	7.2	ર.69	800.0	
3	\$ED17- 04	21	7.5	1, 0 9	0.006	
4	\$ED17- i3	21	7,7	1.12	0.010	
5	\$ED17- {٦	ደ1	7,2	4.01	0.002	
5	SED17- ao	29	7,5	2.04	0.0(2	
7	\$ED17- ∤%	29	7,4	2.44	0.011	
8	SED17- (A	. ፈኀ	7.5	3.43	0.020	
9	SED17- ဥပု	29	7.3		P00-0	
10	SED17- (2	21	7.4	1-25	o.∞6	
11	SED17- Ol	19	7,2	2.26	F00.0	
12	SED17- 03	29	7. ¹ .	4.83	o . OI4	
13	SED17- 29	21	4. 2	2. 7 4	o.0/P	
14	SED17- 27	29	7.1	0.885	6,002	1
15						

Comments:	<u>:</u> .,	Total	Ammonia	measurements	were	aone	ьy	ALS .	Results	are	enciosed
		in the	data pad	<u>-</u> Ka9e ⋅	~					•	
				·							

Reviewed by: ______ Date Reviewed: _____ JUNE 28, 2017

Nautilus Environmental Sediment Toxicity Test - Water Quality Data For Ammonia

Client :	Golder Associates	Species :	N. arenaceodentata
Work Order No:	140471	Sample Type:	Ammonia - Overlying
		Date Measured:	15-Jun-17

				Total		Salata A.
	Sample ID	Salinity (ppt)	DH.	Ammonla (mg/L)	Ammonia (mg/L)	Tech Init
	Control Sediment	27	4.8			DΙΝ
1	SED17- 08	28	7.8			j
2	SED17- 0%	27	8· C			
3	\$E017- 69	28	8.0			
4	SED17- 13	27	₹-0	100		
s[SED17- 17	27	&- O			
6	SED17- 20	a 1	% ∙ ⊋	<u> </u>		
7	SED17- 9	ੜ੍ਹੀ	1.8			Ì
8	SED17- PA	27	8-1			·—
٥	SED17- 24	24	٦.8	<u>.</u>		
٥	SED17- 12	27	₹. %			
1	SED17- O	27	7.9		-,.	
2L	SED17- 03	27	8.0			-
3	SED17- 였	26	71.7			
4	SED17- 12쿠	F⊊	8·0		-	J
5				~	<u> </u>	

<u> </u>	 <u>_</u>		
Comments:	 	 	
	 ·	 	

Nautitus Environmental Sediment Toxicity Test - Water Quality Data For Ammonia

Client :	Golder Associates	Species:	N. arenaceodentata
Work Order No:	140471	Sample Type:	Ammonia - Interstitial
		Date Measured:	15-Jun-17

	STATE OF THE STATE		Total	Unionized	
Sample ID	Salinity (ppt)	pH	Ammonia (mg/L)	Ammonia (mg/L)	Tech /
Cantrol Sediment	28	75			Ann
SED17- 08	28	75			
SED17- Ob	21	77			
SED17- 09	29	74			
\$ED17- பூ	28	75			
SED17- (7	28	7,2		·-•··	
SED17- ao	29	6.9			
SED17- 12	27	હિલ			
SED17- (9	28	3			
SED17- 24	28	7.3	•		
SED17- 12	28	7,3			
SED17- 01	28	70			
\$ED17- 03	25	. 7 .1			1
SED17- ⊋Q	28 25 24	7,0			.1
SED17- 24	2,5	73			
				-1,-	

Comments:	 ·	- 		
	 			

Reviewed by:	El	Date Reviewed:	July 21, 2	2617
no no neu my		Date Reviewed:		

CETIS Summary Report

Ending Date: 15 Jun-17

Batch ID:

Duration:

Start Date:

Report Date: Test Code:

21 Jun-17 11:58 (p 1 of 5) 170471 : 04-9482-5635

Nautilus Environmental

Neanthes 20-d Survival and Growth Sediment Test

26 May-17

16-1257-1507

Test Type: Survival-Growth Protocol: PSEP (1995)

Species:

Neanthes arenaceodentata Aquatic Toxicology Support, WA Analyst: Diluent:

Jeslin Wijaya Natural seawater

Brine: Age:

Duration:	20d Oh	Source: Aquatic To	Age:				
Sample Code	Sample ID	Sample Date	Receive Date	Sample Age	Client Name		Project
Control Sed	01-7363-8469	26 May-17	26 May-17	NA	Golder		- TOJECT
SED17-08	10-1003-8381	26 Apr-17 17:00	-	0 29d 7h (7,5 °C)			
SED17-06	19-4215-8235			29d 7h (7.5 °C)			
SED:17-09	13-9590-2568			26d 7h (8.5 °C)			
SED17-13	02-1258-2667			26d 7h (7.5 °C)			
SED17-17	06-5820-5843	30 Apr-17 17:00					
SED17-20	00-0790-7357	01 May-17 17:00					
SED17-18	04-2524-4947	02 May-17 17:00					
SED17-19	07-6812-4215	02 May-17 17:00					
SED17-24	05-6632-5205	02 May-17 17:00					
SED17-12	01-4413-4098	04 May-17 17.00					
SED17-01	05-6502-2240	04 May-17 17:00					
SED17-03	05-1816-3513	04 May-17 17:00					
SED17-29	08-4658-3752	04 May-17 17:00					
SED17-27	15-8574-8565	05 May-17 17.00					
Sample Code	Material Type	Sample Source		Station Location	n	Latitude	Longitude
Cantrol Sed	Sediment Sampl	e Golder		Control Sedimen	<u> </u>		congitude
SED17-08	Sediment Samol	e Golder		0 = D47 00	•		

Sample Code	Material Type	Sample Source	Station Location	Latitude	Longitude
Control Sed	Sediment Sample	Golder	Control Sediment		Longitude
ED17-08	Sediment Sample	Golder	SED17-08		
ED17-06	Sediment Sample	Golder	SED17-06		
ED17-09	Sediment Sample	Golder	SED17-09		
ED17-13	Sediment Sample	Golder	SED17-13		
ED17-17	Sediment Sample	Golder	SED17-17		
ED17-20	Sediment Sample	Golder	SED17-20		
ED17-18	Sediment Sample	Golder	SED17-18		
ED17-19	Sediment Sample	Golder	SED17-19		
ED17-24	Sediment Sample	Golder			
ED17-12	Sediment Sample	Golder	SED17-24		
ED17-01	Sediment Sample	Golder	SED17-12		
ED17-03	Sediment Sample	Golder	SED17-01		
ED17-29	Sediment Sample	Golder	SED17-03		
ED17-27	Sediment Sample		SED17-29		
•.	ozemieni Gampie	Golder	\$ED17-27		

000-469-187-2

CETI\$** v1.8.7.16

Report Date: Test Code:

21 Jun-17 11:58 (p 2 of 5) 170471 | 04-9482-5635

Neanthes 20-d Survival and Growth Sediment Test Nautilus Environmental

Individual Growth Rat	e Summary						· ''-			
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
Control Sed	5	0.4655	0.4106	0.5204	0.3909	0.4997	0.01977	0.04422	9.5%	0.0%
SED17-08	5	0.4148	0.302	0.5276	0.2969	0.5069	0.04062	0.09083	21.9%	10.9%
\$ED17-06	5	0.4791	0.3773	0.581	0.3894	0.5879	0.03668	0.08202	17.12%	-2.93%
SED17-09	5	0.3805	0.2992	0.4617	0.3057	0.4677	0.02926	0.06543	17.2%	18.27%
SED17-13	5	0.4329	0.356	0.5099	0.3506	0.487	0.02772	0.06199	14.32%	7.0%
SED17-17	5	0.4962	0.3937	0.5987	0.4014	0.6288	0.03691	0.08254	16.63%	-6.6%
SED17-20	5	0.431	0.3497	0.5123	0.3329	0.5105	0.02928	0.06548	15.19%	7.42%
SED17-18	5	0.3851	0.3089	0.4612	0.3262	0.4873	0.02520	0.06133	15.19%	
SED17-19	5	0.3741	0.2788	0.4694	0.291	0.4447	0.03432	0.00133	20.52%	17.28%
SED17-24	5	0.4572	0.3852	0.5293	0.3813	0.5262	0.02595	0.05803		19,64%
SED17-12	5	0.3845	0.2963	0.4727	0.3203	0.4985	0.02393	0.03603	12.69%	1.78%
\$ED17-01	5	0.4522	0.3651	0.5392	0.3666	0.5463	0.03176	0.07011	18.47%	17.4%
SED17-03	5	0.412	0.3282	0.4958	0.3421	0.5092	0.03133		15.5%	2.86%
SED17-29	5	0.3977	0.314	0.4813	0.3301	0.4912		0.06748	16.38%	11.5%
SED17-27	5	0.5234	0.3978	0.649	0.3301	0.4912	0.03012 0.04523	0.06735 0.1011	16.94% 19.32%	14.57% -12.44%

Mean Dry Weight-mg Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Day	CV%	%Effect
Control Sed	5	9.825	8.727	10.92	8.332	10.51	0,3955	0.8844		
SED17-08	5	8.81	6,555	11.07	6.452	10.65	0.8124		9.0%	0.0%
SED17-06	5	10.1	8.061	12.13	8.304			1.817	20.62%	10.32%
SED17-09	5	8.124	6.499	9.749		12.27	0.7336	1.64	16.25%	-2.78%
SED17-13				-	6.63	9.87	0.5853	1.309	16.11%	17.31%
_	5	9.174	7.634	10.71	7.526	10.25	0.5544	1.24	13.51%	6.63%
SED17-17	5	10.44	8.389	12.49	8.542	13.09	0.7383	1.651	15.81%	-6.25%
SED17-20	5	9.134	7.508	10.76	7.173	10.72	0.5857	1.31	14 34%	7.03%
SED17-18	5	8.216	6.693	9.739	7.038	10.26	0.5485	1.227	14.93%	
SED17-19	5	7.996	6.091	9.902	6.334	9.408			•	16.37%
SED17-24	5	9.659					0.6865	1.535	19.2%	18.61%
SED17-12	_		8.218	11, 1	8.142	11.04	0.5191	1.161	12.02%	1.69%
	5	8.205	6.442	9.968	6.92	10.49	0.6351	1.42	17.31%	16.49%
SED17-01	5	9.559	7.81\$	11.3	7.848	11.44	0.6271	1.402	14.67%	2.71%
\$ED17-03	5	8.755	7.079	10.43	7.358	10.7	0.6036	1.35	15.42%	10.89%
SED17-29	5	8.468	6.796	10.14	7.116	•				
SED17-27	5					10.34	0.6024	1.347	15.91%	13.81%
		10.98	8.472	13.49	7.512	12.83	0.9046	2.023	18.42%	-11.79%

Survival Rate Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	D/ E47 4
Control Sed	5	0.96	0.8489	1	0.8	- 1	0.04			%Effect
SED17-08	5	1	1	1	4	,		0.08944	9.32%	0.0%
SED17-06	5	0.96	0.8489			1	Ç	D	0.0%	-4.17%
SED17-09	5			!	8.0	1	0.04	0.08944	9.32%	0.0%
SED17-13	-	0.92	0.784	1	8.0	1	0.04899	0.1095	11.91%	4.17%
SED17-13 SED17-17	5	1	1	1	1	1	0	0	0.0%	-4.17%
• • • • • • • • • • • • • • • • • • • •	5	0.96	0.8489	1	0.8	1	0.04	0.08944	9.32%	0.0%
SED17-20	5	0.84	0.6322	1	0.6	1	0.07483	0.1673	19.92%	
SED17-18	5	0.96	0.8489	1	8.0	1	0.04			12.5%
SED17-19	5	0.8	0.4488	1		,		0.08944	9.32%	0.0%
SED17-24	5	4	4	1	0.4	7	0.1265	0.2828	35.36%	16.67%
SED17-12	5			1	1	1	Q	0	0.0%	-4.17%
SED17-01	5	0.96	0.8489	1	8.0	1	0.04	0.08944	9.32%	0.0%
	5	0.96	0.8489	1	8.0	1	0.04	0.08944	9.32%	0.0%
\$ED17-03	5	0.96	0.8489	1	8.0	1	0.04	0.08944		
SED17-29	5	1	1	1	1				9.32%	0.0%
SED17-27	5	0.96	0.8489		•		Ð	0	0.0%	-4.17%
	•	0.00	0.0469	ι	0.8	1	0.04	0.08944	9.32%	0.0%

Neanthes 20-d Survival and Growth Sediment Test

Report Date:

21 Jun-17 11:58 (p 3 of 5) 170471 | 04-9482-5635

Test Code:

Nautilus Environmental

Total Dry Weight Summary										•
Sample Code	Count	Mean	95% LCL	95% UCL	Mín	Max	Std Err	Std Dev	cv%	%Effect
Control Sed	5	47.02	40.98	53.06	41.66	52.35	2.174	4.862	10.34%	0.0%
SED17-08	5	44.05	32.77	55.33	32.26	53.26	4.062	9.083	20.62%	6.32%
SED17-06	5	48.03	41.16	54.91	41.52	56.63	2,477	5.538	11.53%	-2.15%
\$ED17-09	5	37.8	25.7	49.91	26.52	49.35	4.36	9.75	25.79%	19.6%
SED17-13	5	45.87	38.17	53.56	37.63	51.27	2.772	6.199	13.51%	2.45%
\$ED17-17	5	50.49	36.7	64.27	34,17	65.46	4.954	11.1	21.99%	-7.37%
SED17-20	5	38.85	25.51	52.19	21.52	48,98	4.803	10.74	27.64%	17.38%
SED17-18	5	39.03	35.93	42.13	35.19	41.39	1.117	2,497	6.4%	17.0%
SED17-19	5	32.51	15,47	49.54	12.68	47.04	6.135	13.72	42.2%	30.87%
\$ED17-24	5	48.3	41.09	55.5	40.71	55.19	2.595	5.803	12.02%	-2.71%
SED17-12	5	38.93	34.51	43.34	34.6	41.94	1.59	3.556	9.13%	17.21%
SED17-01	5	45.51	39.75	51.27	39.24	51.6	2.075	4.64	10.2%	3.22%
SED17-03	5	41.98	32.6	51.37	35.81	53.5	3.38	7.559	18.0%	10.72%
SED17-29	5	42.34	33.98	50.7	35.58	51.7	3.012	6,735	15.91%	9.95%
SED17-27	5	53.41	36.81	70.01	30.05	64.16	5.979	13.37	25.03%	-13.59%

naiver JW De Duly 21/13

Report Date: Test Code: 21 Jun-17 11:58 (p 4 of 5) 170471 | 04-9482-5635

			_			Test Code:	170471 04-9482-563
Neanthes 20-d Surviva	l and Growth Se	ediment Tes	st				Nautilus Environmental
Individual Growth Rate	Detail			•		· · · · ·	
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Control Sed	0.4978	0.4707	0.3909	0.4997	0.4685		
SED17-08	0.5032	0.4041	0.5069	0.3629	0.2969		
SED17-06	0.3894	0.5405	0.4349	0.5879	0.4428		
SED17-09	0.3057	0.3551	0.4677	0.4269	0.3469		
SED17-13	0.3506	0.3825	0.487	0.4703	0.4743		
SED17-17	0.4946	0.6288	0.4791	0.4014	0.477		
SED17-20	0.3329	0.464	0.5105	0.4215	0.4257		
SED17-18	0.3881	0.3572	0.3262	0.3665	0.4873		
SED17-19	0.291	0.4447	0.2913	0.4333	0.4102		
SED17-24	0.3813	0.4374	0.5262	0.5038	0.4373		
\$ED17-12	0.3848	0.3895	0.3203	0.3296	0.4985		
SED17-01	0.5463	0.4508	0.4902	0.407	0.3666		
SED17-03	0.4219	0.3541	0.5092	0.4326	0.3421		
\$ED17-29	0.3301	0.4346	0.339	0.4912	0.3934		
SED17-27	0.5484	0.5565	0.3499	0.6159	0.5464		
Mean Dry Weight-mg D	etail	<u> </u>					. <u> </u>
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Control Sed	10.47	9.928	8.332	10.51	9.884	·	
SED17-08	10.58	8.598	10.65	7.772	6.452		
\$ED17-06	8,304	11,33	9.214	12.27	9.372		
SED17-09	6.63	7.616	9.87	9.052	7.452		
SED17-13	7.526	8.164	10.25	9.922	10		
SED17-17	10.41	13.09	10.1	8.542	10.05		
SED17-20	7.173	9.796	10.72	8.946	9.03		
SED17-18	8.278	7.658	7.038	7.846	10.26		
SED17-19	6.334	9.408	6 34	9.18	8.72		•
SED17-24	8.142	9.262	11.04	10.59	9.262		
SED17-12	8.21	8.304	6.92	7.106	10.49		
SED17-01	11.44	9.532	10.32	8.654	7.848		
SED17-03	8.952	7.596	10.7	9.166	7.358		
SED17-29	7.116	9.206	7.296	10.34	8.384		
SED17-27	11.48	11.65	7.512	12.83	11,44		
Survival Rate Detail	- 					. <u>-</u>	
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Control Sed	1	1	1	8.0	1	·	
SED17-08	1	1	1	1	1		
ED17-06	1	1	1	0.8	1		
ED17-09	0.8	1	1	1	0.8		
ED17-13	1	†	1	1	1		
ED17-17	1	1	1	0.8	1		
SED17-20	0.6	1	0.8	1	0.8		
ED17-18	1	1	1	1	0.8		
ED17-19	1	1	0.4	0.6	1		
ED17-24	1	1	1	1	1		
ED17-12	1	1	1	1	0.8		
ED17-01	0.8	1	1	1	1		
ED17-03	0.8	1	1	1	1		
ED17-29	1	1	1	1	1		
ED17-27	1	1	0.8				
			V.0	1	1		

:_JW 94: July 21/13

						Test Code:	170471 04-9482-5635
Neanthes 20-d Survival an	d Growth Se	ediment Tes	st				Nautilus Environmental
Total Dry Weight Detail				_		· · · · · · · · · · · · · · · · · · ·	····
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Control Sed	52.3 5	49.64	41.66	42.04	49.42	· · · · · ·	
SED17-08	52.89	42.99	53.26	38.86	32.26		
\$ED17-06	41.52	56.63	46.07	49.09	46.86		
SED17-09	26.52	38.08	49.35	45.26	29.81		
\$ED17-13	37.63	40.82	51,27	49.61	50.01		
SED17-17	52.04	65.46	50.49	34.17	50.27		
SED17-20	21.52	48.98	42.9	44.73	36.12		
SED17-18	41.39	38.29	35.19	39.23	41.04		
SED17-19	31.67	47.04	12.68	27,54	43.6		
SED17-24	40.71	46.31	55.19	52.96	46.31		
SED17-12	41.05	41.52	34.6	35.63	41.94		
SED17-01	45.76	47.66	51.6	43.27	39.24		
SED17-03	35.81	37.98	53.5	45.83	36.79		
\$ED17-29	35.58	46.03	36.48	51.7	41.92		
SED17-27	57.41	58.23	30.05	64.16	57 22		
Survival Rate Binomials					· · · · ·		
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Control Sed	5/5	5/5	5/5	4/5	5/5	· · · · · · · · · · · · · · · · · · ·	
SED17-08	5/5	5/5	5/5	5/5	5/5		
\$ED17-06	5/5	5/6	5/5	4/5	5/5		
SED17-09	4/5	5/5	5/5	5/5	4/5		
SED17-13	5/5	5/5	5/5	5/5	5/5		
\$ED17-17	5/5	5/5	5/5	4/5	5/5		
SED17-20	3/5	5/5	4/5	5/5	4/5		
\$ED17-18	5/5	5/5	5/5	5/5	4/5		
SED17-19	5/5	5/5	2/5	3/5	5/5	•	
SED17-24	5/5	5/5	5/5	5/5	5/5		
SED17-12	5/5	5/5	5/5	5/5	4/5		
SED17-01	4/5	5/5	5/5	5/5	5/5		
SED17-03	4/5	5/5	5/5	5/5	5/5		
SED17-29	5/5	5/5	5/5	5/5	5/5		
SED17-27	5/5	5/5	4/5	5/5	5/5		
				***	474		

nalyst: DW July21/17

Start Date:

Neanthes 20-d Survival and Growth Sediment Test

26 May-17

Report Date: Test Code:

Diluent:

21 Jun-17 11:17 (p 1 of 4) 170471 | 04-9482-5635

Nautilus Environmental

Natural seawater

Analysis ID: 14-8838-6878 Endpoint: Survival Rate CETIS Version: CETISv1.8.7

Analyzed: 21 Jun-17 11:15 Analysis: Nonparametric-Two Sample Official Results: Yes

Batch ID: 16-1257-1507 Test Type: Survival-Growth Analyst: Jeslin Wijaya

PSEP (1995)

Ending Date:15 Jun-17Species:Neanthes are naceodentataBrine:Duration:20d 0hSource:Aquatic Toxicology Support, WAAge:

Protocol:

Sample Code	Sample ID	Sample Date	Receive Date	Sample Age	Client Name	Project
Control Sed	01-7363-8469	26 May-17	26 May-17	NA	Golder	
SED17-08	10-1003-8381	26 Apr-17 17:00	15 May-17 10:30	29d 7h (7.5 °C)		
\$ED17-06	19-4215-8235	26 Apr-17 17:00	15 May-17 10:30	29d 7h (7.5 °C)		
SED17-09	13-9590-2568	29 Apr-17 17:00	15 May-17 10:30	26d 7h (8.5 °C)		
SED17-13	02-1258-2667	29 Apr-17 17:00	15 May-17 10:30	26d 7h (7.5 °C)		
SED17-17	06-5820-5843	30 Apr-17 17:00	15 May-17 10:30	25d 7h (7 °C)		
SED17-20	00-0790-7357	01 May-17 17:00	15 May-17 10:30	24d 7h (7 °C)		
SED17-18	04-2524-4947	02 May-17 17:00	15 May-17 10:30	23d 7h (4 °C)		
SED17-19	07-6812-4215	02 May-17 17:00	15 May-17 10:30	23d 7h (5.5 °C)		
\$ED17-24	05-6632-5205	02 May-17 17:00	15 May-17 10:30	23d 7h (6 °C)		
SED17-12	01-4413-4098	04 May-17 17:00	15 May-17 10:30	21d 7h (5 °C)		
SED17-01	05-6502-2240	04 May-17 17:00	15 May-17 10:30	21d 7h (5.8 °C)		
SED17-03	05-1816-3513	04 May-17 17:00	15 May-17 10:30	21d 7h (7.2 °C)		
SED17-29	08-4658-3752	04 May-17 17:00	15 May-17 10:30	21d 7h (8.5 °C)		
SED17-27	15-8574-8565	05 May-17 17:00	15 May-17 10:30	20d 7h (5.5 °C)		

Sample Code	Material Type	Sample Source	Station Location	Latitude	Longitude
Control Sed	Sediment Sample	Golder	Control Sediment		
SED17-08	Sediment Sample	Golder	SED17-08		
SED17-06	Sediment Sample	Golder	SED17-06		
SED17-09	Sediment Sample	Golder	\$ED17-09		
\$ED17-13	Sediment Sample	Golder	SED17-13		
SED17-17	Sediment Sample	Golder	SED17-17		
SED17-20	Sediment Sample	Golder	\$ED17-20		
SED17-18	Sediment Sample	Golder	SED17-18		
\$ED17-19	Sediment Sample	Golder	SED17-19		
SED17-24	Sediment Sample	Golder	SED17-24		
SED17-12	Sediment Sample	Golder	SED17-12		
SED17-01	Sediment Sample	Golder	SED17-01		
SED17-03	Sediment Sample	Golder	SED17-03		
SED17-29	Sediment Sample	Golder	SED17-29		
SED17-27	Sediment Sample	Golder	SED17-27		

Analyst: JW QA: Analyst: JW QA:

000-469-187-2

CETIS™ v1.8.7.16

Report Date: Test Code:

21 Jun-17 11:17 (p 2 of 4)

170471 | 04-9482-5635

				<u> </u>		Test	Code:		170471 0	4-9482-56
Neanthes 20-d	Survival and Gro	wth Sediment T	est					Na	eutilus Env	/ironment
Analy s is ID:	14-8838-6878	Endpoint:	Survival Rate			CET	IS Version	: CETISv1	1.8.7	
Analyzed:	21 Jun-17 11:15	•	Nonparametric	-Two Şamp	le		ial Result			
Data Transfon	m Z	eta Alt Hy	p Trials	Seed			Test Res	suit		·
Angular (Corre		!A C>T	NA	NA			•			
Kolmogorov-S	Smirnov Two-Sam	ple Test								
Sample Code			itat Critical	MSD D	F P-Value	P-Type	Decision	n(a:5%)		
Control Sed	SED17-08	Q.	NA	8	0.5000	CDF		nificant Effec	t	
	SED17-06	0	NA	8	0.5000	CDF	•	nificant Effec		
	SED17-09	0.2	NΑ	8	0.5000	CDF	-	nificant Effec		
	SED17-13	D D	NΑ	8	0.5000	CDF	_	nificant Effec		
	SED17-17	0	ΝA	8	0.5000	CDF	-	rificant Effec		
	\$ED17-20	0.4	NA.	8	0.4365	CDF		nificant Effec		
	SED17-18	0.7	ΝA	8	0.5000	CDF		ificant Effec		
	SED17-19	0.4	NA.	8	0.4365	CDF	_	micant Effec tificant Effec		
	\$ED17-24	0.4	NA.		0.5000	CDF	_			
	SED17-12	•		8			-	rificant Effec		
	· · · · · · · · · · · · · · · · · · ·	0	NA ***	8	0.5000	CDF	_	sificant Effec		
	\$ED17-01	0	NA 	8	0.5000	CDF	•	nificant Effec		
	SED17-03	0	NA M	8	0.5000	COF	_	rificant Effec		
	SED17-29	0	NA	8	0.5000	CDF	_	nificant Effec		
	\$ED17-27		NA	8	0.5000	CDF	Non-Sigr	nificant Effec	t	
ANOVA Table										
Source	Sum Square	s Mean	Square	DF	F Stat	P-Value	Decision	n(a:5%)		
Between	0.2994542	0.0213	88958	14	1.314	0.2265	Non-Sigr	rificant Effec	t	
Error	0.9766811	0.0162	7802	60						
rotal .	1.276135			74	_					
Distributional	Tests						•			
Attribute	Yest		Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Mod Levene	Equality of Varia	nce 1.297	2.506	0.2466	Equal Val	iances			
Variances		ality of Variance	6.987	2.394	< 0.0001	Unequal \				
Distribution	Shapiro-Will	W Normality	0.8227	0.9554	< 0.0001	Non-norm	al Distribut	ion		
Survival Rate	Summary	•								
Sample Code		ount Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effec
Control Sed	5		0.6489	1	1	0.8	1	0.04	9.32%	0.0%
\$ED17-08	5	1	1	1	1	1	1	0	0.0%	-4.17%
SED17-06	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	0.0%
SED17-09	5	0.92	0.784	1	1	0.8	1	0.04899	11,91%	4.17%
SED17-13	5	1	1	1	1	1	1	0	0.0%	-4.17%
SED17-17	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	0.0%
SED17-20	5		0.6322	1	0.8	0.6	1	0.07483	19.92%	12.5%
SED17-18	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	0.0%
SED17-19	5		0.4488	1	1	0.4	1	0.1265	35.36%	
SED17-24	5		1	1	1	1	1	0.1265		16.67%
SED17-12	5		0.8489	1			4		0.0%	-4 .17%
SED17-01	5				1	0.8	1	0.04	9.32%	0.0%
SED17-03	5		0.8489 0.8489	1	1	8.0	1	0.04	9.32%	0.0%
	5	Lt 9h	II NANG	1	1	пя	4	0.04	A 574/	0.00/

0.0%

0.0%

4.17%

Analyst:_□W

SED17-29

SED17-27

5

0.96

0.96

0.8489

0.8489

1

1

1

8.0

1

8.0

1

0.04

Đ

0.04

9.32%

0.0%

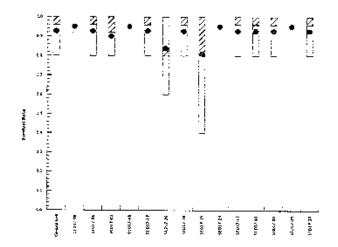
9.32%

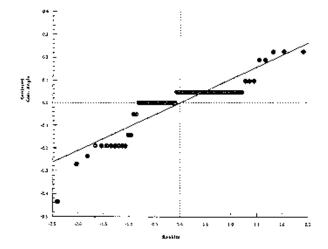
Report Date: Test Code:

21 Jun-17 11:17 (p 3 of 4) 170471 | 04-9482-5635

						ies	t Code:		170471 0	
Neanthes 20-	d Survival and Growl	th Sediment 1	Test					Na	utilus Env	ironmenta
Analysis ID: Analyzed:	14-8838-0878 21 Jun-17 11:15	Endpoint: Analysis:	Survival Rate Nonparametric	-Two Sampl	ę		TIS Version: icial Resulta:	CETISv1 Yes	.8.7	
Angular (Cori	rected) Transformed	Summary								
Sample Code	. Co.	unt M ean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
Control Sed	5	1.298	1.165	1.43	1.345	1.107	1.345	0.04763	8.21%	0.0%
SED17-08	5	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	-3.67%
SED17-06	5	1.298	1.165	1.43	1.345	1.107	1.345	0.04763	8.21%	0.0%
SED17-09	5	1.25	1.088	1.412	1.345	1.107	1.345	0.05833	10.43%	3.67%
SED17-13	5	1.345	1.345	1.346	1,345	1.345	1.345	0	0.0%	-3.67%
SED17-17	5	1.298	1.165	1.43	1.345	1.107	1.345	0.04763	8.21%	0.0%
SED17-20	5	1.158	0.9183	1.398	1.107	0.8861	1.345	0.08639	16.68%	10.75%
SED17-18	5	1.298	1.165	1.43	1.345	1.107	1.345	0.04763	8.21%	0.0%
SED17-19	5	1.121	0.7304	1.512	1.345	0.6847	1.345	0.1408	28.08%	13.59%
SED17-24	5	1.345	1.345	1.346	1.345	1,345	1.345	0	0.0%	-3.67%
SED17-12	5	1,298	1.165	1.43	1.345	1.107	1.345	0.04763	8.21%	0.0%
SED17-01	5	1.298	1.165	1.43	1.345	1.107	1.345	0.04763	8.21%	0.0%
SED17-03	5	1.298	1,165	1.43	1.345	1.407	1.345	0.04763	8.21%	0.0%
SED17-29	5	1.345		1.346	1.345	1.345	1.345	0	0.0%	-3.67%
SED17-27	5	1.298	1.165	1.43	1.345	1,107	1.345	0.04763	8.21%	0.0%
Survival Rate	: Delail									
Sample Code	eRep	1 Rep 2	Rep 3	Rep 4	Rep 5					
Control Sed	1	1	1	8.0	1					
SED17-08	1	1	1	1	1					
SED17-06	1	1	1	8.0	1					
SED17-09	0.8	1	1	1	0.8					
\$ED17-13	1	1	1	1	1					
SED17-17	1	1	1	8.0	1					
\$ED17-20	0.6	1	8.0	1	0.8					
SED17-18	1	1	1	1	0.8					
SED17-19	1	1	0.4	0.6	1					
SED17-24	1	1	1	1	1					
SED17-12	1	1	1	1	0.8					
SED17-01	0.8	1	1	1	1					
SED17-03	0.8	1	1	1	1					
SED17-29	1	1	1							
\$ED17-27	1	1	0.8	1 1	1 1					
Angular (Cori	rected) Transformed	Detail				•			.	
Sample Code			Rep 3	Rep 4	Rep 5					
Control Sed	1.3		1.345	1.107	1.345					
SED17-08	1.3	1.345	1.345	1.345	1.345					
SED17-06	1.34	45 1.345	1.345	1.107	1.345					
SED17-09	1.10	7 1.345	1.345	1.345	1.107					
SED17-13	1.34	5 1.345		1.345	1.345					
SED17-17	1.34			1.107	1.345	•				
SED17-20	0.88			1.345	1.107					
SED17-18	1.34			1.345	1.107					
SED17-19	1.34			0.8861	1.345					
SED17-24	1.34			1.345	1.345					
SED17-12	1.34			1.345						
SED17-G1	1.16				1.107					
\$ED17-03	1,1(1.345	1.345					
SED17-03				1.345	1.345					
SED17-25 SED17-27	1.34			1.345	1.345					_
4-11-21	1.34	15 1.345	1.107	1.345	1.345					(de)

Analyst: JW July 21/17


Report Date:


21 Jun-17 11:17 (p 4 of 4) 170471 | 04-9482-5635

Test Code:

							rest vouc.	110411 04-0402-0000
Neanthes 20-	d Survival and G	ro w(h	Sediment 1	l'est				Nautilus Environmental
Analysis ID: Analyzed:	14-8838-6878 21 Jun-17 11:13	5	Endpoint: Analysis:	Survival Rate Nonparametri		ple	CETIS Version: Official Results:	CETJSv1.8.7 Yes
Survival Rate	Binomials				- · · · · ·			
Sample Code		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
Control Sed		5/5	5/5	5/5	4/5	5/5		
SED17-08		5/5	5/5	5/5	5/5	5/5		
SED17-06		5/5	5/5	5/5	4/5	5/5		
SED17-09		4/5	5/5	5/5	5/5	4/5		
SED17-13		5/5	5/5	5/5	5/5	5/5		
SED17-17		5/5	5/5	5/5	4/5	5/5		
SED17-20		3/5	5/5	4/5	5/5	4/5		
SED17-18		5/5	5/5	5/5	5/5	4/5		
SED17-19		5/5	5/5	2/5	3/5	5/5		
SED17-24		5/5	5/5	5/5	5/5	5/5		
SED17-12		5/5	5/5	5/5	5/5	4/5		
SED17-01		4/5	5/5	5/5	5/5	5/5		
SED17-03		4/5	5/5	5/5	5/5	5/5		
SED17-29		5/5	5/5	5/5	5/5	5/5		
SED17-27		5/5	5/5	4/5	5/5	5/5		

Graphics

Analyst: つい

Neanthes 20-d Survival and Growth Sediment Test

Report Date: Test Code: 21 Jun-17 11:58 (p 1 of 3) 170471 | 04-9482-5635

rest dode.	170411 04-9402-3033
	Nautilus Environmental

Analysis ID;	13-9063-2482	Endpoint:	Total Dry Weight	CETIS Version:	CETISV1.8.7
Analyzed:	21 Jun-17 11:57	Analysis:	Parametric-Two Sample		

Batch ID:16-1257-1507Test Type:Survival-GrowthAnalyst:Jeslin WijayaStart Date:26 May-17Protocol:PSEP (1995)Diluent:Natural seawaterEnding Date:15 Jun-17Species:Neanthes arenaceodentataBrine:

Ending Date: 15 Jun-17 Species: Neanthes arenaceodentata Brine:

Duration: 20d 0h Source: Aquatic Toxicology Support, WA Age:

_			,					
Sample Code	Sample ID	Sample Date	Receive Date	Sample Age	Client Name	Project		
Control Sed	01-7363-8469	26 May-17	26 May-17	NA.	Golder	- Troject		
SED17-08	10-1003-8381	26 Apr-17 17:00	15 May-17 10:30					
SED17-06	19-4215-8235		15 May-17 10:30					
SED17-09	13-9590-2568		15 May-17 10:30					
SED17-13	02-1258-2667		15 May-17 10:30					
SED17-17	06-5820-5843		15 May-17 10:30					
SED17-20	00-0790-7357		15 May-17 10:30					
SED17-18	04-2524-4947) 15 May-17 10:30					
SED17-19	07-6612-4215		15 May-17 10:30	. ,				
SED17-24	05-6632-5205		15 May-17 10:30					
SED17-12	01-4413-4098		l 15 May-17 10:30					
SED17-01	05-6502-2240		15 May-17 10:30					
SED17-03	05-1816-3513		15 May-17 10:30 15 May-17 10:30					
SED17-29	08-4658-3752		15 May-17 10:30					
SED17-27	15-8574-8565		15 May-17 10:30					

Sample Code	Material Type	Sample Source	Station Location	Latitude	Longitude
Control Sed	Sediment Sample	Golder	Control Sediment	LACIDOR	
ED17-08	Sediment Sample	Golder	SED17-08		
ED17-06	Sediment Sample	Golder	SED17-06		
ED17-09	Sediment Sample	Golder	SED17-09		
ED17-13	Sediment Sample	Golder	SED17-13		
ED17-17	Sediment Sample	Golder	SED17-17		
ED17-20	Sediment Sample	Golder	\$ED17-20		
ED17-18	Sediment Sample	Golder	SED17-18		
ED17-19	Sediment Sample	Golder	SED17-19		
ED17-24	Sediment Sample	Golder	SED17-24		
ED17-12	Sediment Sample	Golder	SED17-12		
ED17-01	Sediment Sample	Golder	SED17-01		
ED17-03	Sediment Sample	Golder	SED17-01		
ED17-29	Sediment Sample	Golder	SED17-03		
ED17-27	Sediment Sample	Golder	SED17-29 SED17-27		

Analyst: JW OA July 24 P

Report Date: Test Code:

21 Jun-17 11:58 (p 2 of 3)

-	•	•	•			٠	•	۱P	-	٠.	~
		1	170	47	1	İ	04-	348	32	-56	35
								_	_		

	·					Tes	st Code:		170471	04-9482-563
Neanthes 20-c	d Survival and Growth	Sediment Tes	<u>t </u>			_			lautilus Er	vironmental
Analysis ID;	13-9063-2482	Endpoint: To	tal Dry Wei	ght		CE	TIS Versio	n: CETISV	1.8.7	_
Analyzed:	21 Jun-17 11:57 Analysis: Parametric-Two Sample Official Results:									
Data Transform	m Zeta	Alt Hyp	Trials	Seed		PMSD	Test Re	esult		
Untransformed NA C > T			ÑΑ	NA		25.2%	<u> </u>			
Equal Variance	e t Two-Sample Test			_						· · · -
Sample Code	•	Test Sta	t Critical	MSD E	F P-Value	P-Tuno	Decisio			
Control Sed	SED17-08	0.6446	1.86	8.568 8		P-Type CDF		n(a:5%) Initicant Effe		
	SED17-06	-0.3071	1.86	6.129 8		CDF	_	-		
	SED17-09	1.892	1.86	9.06 8		CDF	-	prificant Effect ant Effect	л	
	SED17-13	0.3276	1.86	6.551 8		CDF	-			
•	SED17-17	-0.6391	1.86	10.08 8		CDF		inificant Effec		
	\$ED17-20	1.55	1.86	9.804 8		CDF	_	mificant Effec		
	\$ED17-18	3.27	1.86	4.546 8		CDF	-	milicant Effec	3 1	
	SED17-19	2.23	1.86	12.1 8			-	ant Effect		
	SED17-24	-0.3763	1.85	6.296 8		CDF		ant Effect		
	SED17-12	3.005	1.86			CDF	_	nificant Effec	it .	
	SED17-01	0.5044	1.86	5.009 8 5.589 8		CDF	-	ant Effect		
	SED17-03	1.254	1.86	_		CDF	_	nificant Effec		
	SED17-29	1.26	1.86	7,474 8	0.1226	CDF		nificant Effec		
	\$ED17-27	-1.005	1.86	6.908 8	0.1216	CDF	-	nificant Effec		
ANOVA Table		-1.003		11.83 8	0.8278	CDF	Non-Sig	nificant Effec	<u> </u>	
Source	Cum Causes									
Between	Sum Squares 2161.485	Mean Squ		DF	F Stat	P-Value		n(a:5%)		
Епог		154.3918		14	2.201	0.0181	Significa	ant Effect		
Total	4209.498	70.15829	··	60	_					
	6370,982			74 —-	<u>-</u>					
Distributional 1	Tests									
Attribute	Test		Test Slat	Critical	P-Value	Decision	(a:1%)			
Variances	Bartlett Equality of		21.16	29.14	0.0976	Equal Va	riances			
Distribution	Shapiro-Wilk W N	ormality	0.9707	0.9554	0.0797	Normal D	istribution			
Total Dry Weigi	ht Summary			<u></u>					•	
Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
Control Sed	5	47.02	40.98	53.06	49.42	41.66	52.35	2.174	10.34%	0.0%
\$ED17-08	5	44.05	32.77	55.33	42.99	32.26	53.26	4.062	20.62%	6.32%
SED17-06	5	48.03	41.16	54.91	46.86	41.52	56.63	2.477	11.53%	-2.15%
SED17-09	5	37.8	25.7	49.91	38.08	26.52	49.35	4.36	25.79%	19.6%
\$ED17-13	5	45.87	38.17	53.56	49.61	37.63	51.27	2.772	13.51%	2.45%
SED17-17	5	50.49	36.7	64.27	50.49	34.17	65.46	4.964	21.99%	-7.37%
SED17-20	5	38.85	25,51	52.19	42.9	21,52	48.98	4.803	27.64%	17.38%
SED17-18	5	39.03	35.93	42.13	39.23	35.19	41.39	1,117	6.4%	17.0%
SED17-19	5	32.51	15.47	49.54	31.67	12.68	47.04	6.135	42.2%	30.87%
SED17-24	5	48.3	41.09	55.5	46.31	40.71	55.19	2.595		
SED17-12	5	38.93	34.51	43.34	41.05	34.6	41.94	1.59	12.02%	-2.71% 17.04%
SED17-01	5	45.51	39.75	51.27	45.76	39.24	51.6		9.13%	17.21%
SED17-03	5	41.98	32.6	51.37	37.98	35.81	53.5	2.075	10.2%	3.22%
SED17-29	5	42.34	33.98	50.7	41.92	35.59	99.9 51.7	3.38	18.0%	10.72%

15.91% 9.95%

25.03% -13.59%

SED17-27

5

53.41

36.81

50.7

70.01

41.92

57.41

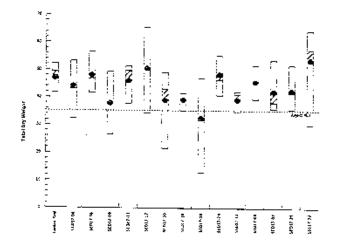
35.58

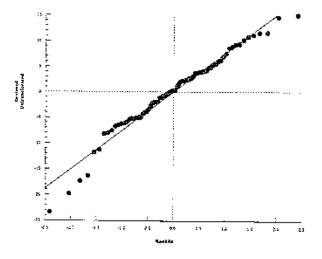
30.05

51.7

64.16

3.012


5.979


Report Date:

21 Jun-17 11:58 (p.3 of 3)

						Test Code:	170471 04-9482-5635
Neanthes 20-6	d Survival and Grow	th Sedimen		Nautilus Environmental			
Analysis ID: Analyzed:	13-9063-2482 21 Jun-17 11:57	Endpoint Analysis:	•	eight Fwo Sample	•	CETIS Version: Official Results:	CETISv1.8.7 Yes
Total Dry Wei	ght Delail						
Sample Code	Re	p1 Rep	2 Rep 3	Rep 4	Rep 5		
Control Sed	52.	35 49.6	41.66	42.04	49.42		
SED17-08	52.	89 42.9	99 53.26	38.86	32.26		
SED17-06	41.	52 56.6	3 46.07	49.09	46.86		
SED17-09	26.	52 38.0	8 49.35	45.26	29.81		
\$ED17-13	37.	63 40,8	32 51.27	49.61	50.01		
SED17-17	52.	04 65.4	6 50,49	34.17	50.27		
SED17-20	21.	52 48.9	8 42.9	44.73	36.12		
SED17-18	41.	39 38.2	9 35.19	39.23	41.04		
SED17-19	31.	67 47.0	12.68	27.54	43.6		
SED17-24	40.	71 46.3	1 55.19	52.95	46.31		
SED17-12	41.	05 41.5	34.6	35.53	41,94		
\$ED17-01	45.	76 47.6	6 51.6	43.27	39.24		
SED17-03	35.	81 37.9	8 53.5	45.83	36.79		
SED17-29	35.	58 46.0	3 36.48	51.7	41.92		
SED17-27	5 7.	41 58.2	3 30.05	64.16	57.22		

Graphics

Analyst: □W

Report Date:

21 Jun-17 11:17 (p 1 of 3)

Test Code: 170471 | 04-9492-5635

Neanthes 20-	Survival and Grow	rth Sediment 1	[est	Nautilus Environmenta
Analysis ID: Analyzed:	01-2048-1016 21 Jun-17 11:15	•	Mean Dry Weight-mg Parametric-Two Sample	CETIS Version: CETISv1.8.7 Official Results: Yes
Batch IO:	16-1257-1507	Test Type:	Survival-Growth	Analyst: Jeslin Wijaya
Start Date:	26 May-17	Protocol:	PSEP (1995)	Diluent: Natural seawater
Ending Date:	15 Jun-17	Species:	Neanthes arenaceodentata	Brine:
Duration:	20d Oh	Source:	Aquatic Toxicology Support, WA	Age:

Sample Code	Sample ID	Sample Date	Receive Date	Sample Age	Client Name	Project
Control Sed	01-7363-8469	26 May-17	26 May-17	NA	Golder	1 11
SED17-08	10-1003-8381	26 Apr-17 17:00	15 May-17 10:30	29d 7h (7.5 °C)	
SED17-06	19-4215-8235	26 Apr-17 17:00	15 May-17 10:30	29d 7h (7.5 °C)	
SED17-09	13-9590-2568	29 Apr-17 17:00	15 May-17 10:30	26d 7h (8.5 °C)	
SED17-13	02-1258-2667	29 Apr-17 17:00	15 May-17 10:30	26d 7h (7.5 °C)	
SED17-17	06-5820-5843	30 Apr-17 17:00	15 May-17 10:30	25d 7h (7 °C)		
SED17-20	00-0790-7357	01 May-17 17:00	0 15 May-17 10:30	24d 7h (7 °C)		
SED17-18	04-2524-4947	02 May-17 17:00	0 15 May-17 10:30	23d 7h (4 °C)		
SED17-19	07-6812-4215	02 May-17 17 00	0 15 May-17 10:30	23d 7h (5.5 °C)	
SED17-24	05-6632-5205	02 May-17 17:00	0 15 May-17 10:30	23d 7h (6 °C)		
SED17-12	01-4413-4098	04 May-17 17:00	0 15 May-17 10:30	21d 7h (5 °C)		
SED17-01	05-6502-2240	04 May-17 17:00	0 15 May-17 10:30	23d 7h (5.8 °C)	
SED17-03	05-1816-3513	04 May-17 17:00	0 15 May-17 10:30	21d 7h (7.2 °C)	
SED17-29	08-4658-3752	04 May-17 17:00	0 15 May-17 10:30	21d 7h (8.5 °C)	
SED17-27	15-8574-8565	05 May-17 17:00	0 15 May-17 10:30	20d 7h (5.5 °C)	

Control Sed	Sediment Sample	Golder			
		AA.44.	Control Sediment		
SED17-08	Sediment Sample	Golder	\$ED17-08		
SED17-06	Sediment Sample	Golder	SED17-06		
SED17-09	Sediment Sample	Golder	SED17-09		
SED17-13	Sediment Sample	Golder	SED17-13		
ED17-17	Sediment Sample	Golder	SED17-17		
SED17-20	Sediment Sample	Golder	SED17-20		
SED17-18	Sediment Sample	Go!der	SED17-18		
SED17-19	Sediment Sample	Golder	\$ED17-19		
SED17-24	Sediment Sample	Golder	SED17-24		
SED17-12	Sediment Sample	Golder	SED17-12		
ED17-01	Sediment Sample	Golder	SED17-01		
SED17-03	Sediment Sample	Golder	SED17-03		
ED17-29	Sediment Sample	Golder	SED17-29		
SED17-27	Sediment Sample	Golder	\$ED17-27		

Analyst: JW Ox Wy24/17

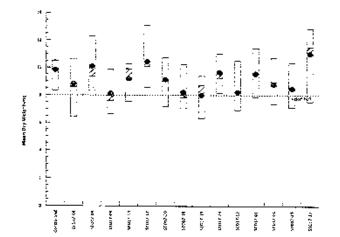
CETIS™ v1.8.7.16

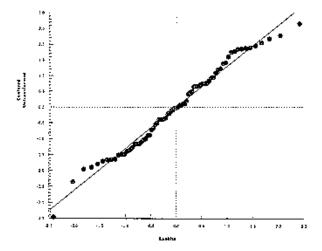
Report Date: Test Code:

21 Jun-17 11:17 (p 2 of 3) 170471 | 04-9482-5635

		vival and Growth			1=1 1 1 1				····		autilus Env	••
Analysis ID: Analyzed:		048-1016 un-17 11:15	Endpoint: Analysis:		y Weight-m ric-Two Sar	_			IS Version: cial Results:	CETISv [*] Yes	.8.7	
Data Transfor	m	Žeta	Alt H	yp Tria	ıls Se	ed		PMSD	Test Resu	lt		
Untransformed		NA.	C > T	NA	NΑ			18.7%				
Equal Varianc	e t Tv	vo-Sample Test										
Sample Code	٧s	Sample Code	Test :	Stat Crit	ical MS	D D	F P-Value	P-Type	Decision(x:5%)		
Control Sed		SED17-08	1.123	1.84	5 1.6	8 8	0.1471	CDF	Non-Signif	icant Effec	t	
		SED17-06	-0.327	4 1.8	5 1.5	58	0.6241	CDF	Non-Signif	icant Effec	t	
		SED17-09	2.408	1.86	6 1.3	14 8	0.0213	CDF	Significant	Effect		
		SED17-13	0.956	2 1.8	5 1.2	66 8	0.1835	CDF	Non-Signif	icant Effec	t	
		SED17-17	-0.733	32 1.84	5 1.5	57 8	0.7578	CDF	Non-Signif	cant Effec	t	
		SED17-20	0.977			14 8		CDF	Non-Signifi			
		SED17-18	2,379			58 8		CDF	Significant			
		SED17-19	2.308			73 8		CDF	Significant			
		SED17-24	0.253			13 8		CDF	Non-Signif		t	
		SED17-12	2.165			91 8		CDF	Significant			
		SED17-01	0.358			79 8		CDF	Non-Signif		t	
		SED17-03	1.483			42 8		CDF	Non-Signif			
		SED17-29	1.882	1.8				CDF	Significant		•	
		SED17-27	-1.173			36 8		CDF	Non-Signifi		t	
ANOVA Table	•							.				
Source		Sum Squares	Mean	Square	DF		F Stat	P-Value	Decision(e	a:5%)		
Between		58.42656	4.173	326	14		1.995	0.0336	Significant	·		
Error		125.5221	2.092	035	60							
Total		183.9487			74		_					
Distributional	Test	5										
Attribute		Test		Tes	t Stat Cri	tical	P-Value	Decision	(a:1%)			
Variances		Bartlett Equality	of Variance	3.94			0.9957	Equal Va				
Distribution		Shapiro-Wilk W	Normality	0.98	317 0.9	554	0.3524	Normal D	istribution			
Mean Dry Wei	ght-n	ng Summary					<u> </u>					
Sample Code		Cour	nt Mean	95%	LCL 959	6 UCI	L Median	Min	Max	Std Err	cv%	%Effec
Control Sed		5	9.825	8.73	27 10.	92	9.928	8.332	10.51	0.3955	9.0%	0.0%
SED17-08		5	8.81	6.5	55 11.	07	8.598	6.452	10.65	0.8124	20.62%	10.32%
SED17-06		5	10.1	8.06	51 1 2.	13	9.372	8.304	12.27	0.7336	16.25%	-2.78%
SED17-09		5	8.124	6.49	99 9.7	49	7.616	6.63	9.87	0.5853	16.11%	17,31%
SED17-13		5	9.174	7.63	34 10.	71	9.922	7.526	10.25	0.5544	13.51%	6.63%
SED17-17		5	10.44	8.38	39 12	49	10.1	8.542	13.09	0.7383	15.81%	-6.25%
SED17-20		5	9.134	7.50			9.03	7.173	10.72	0.5857	14.34%	7.03%
SED17-18		5	8.216	6.69			7.846	7.038	10.26	0.5485	14.93%	16.37%
SED17-19		5	7,996	6.09			8.72	6.334	9.408	0.6865	19.2%	18.61%
SED17-24		5	9.659	8.2			9.262	8.142	11.04	0.5191	12.02%	1.69%
SED17-12		5	8.205	6.4			8.21	6.92	10.49	0.6351	17.31%	16.49%
SED17-01		5	9.559	7.8			9.532	7.848	11.44			
SED17-03		5	8.755	7.0			8.952			0.6271	14.67%	2.71%
SED17-29								7.358	10.7	0.6036	15.42%	10.89%
												13.81%
SED17-29 SED17-27		5 5	8.468 10.98	6.79 8.47			8.384 11.48	7.116 7.512	10.34 12.83	0.6024 0.9046	15.91% 18.42%	13 -1

CETI\$™ v1 8.7.16


Report Date:


21 Jun-17 11:17 (p 3 of 3)

Test Code: 170471 [04-9482-5635

Neanthes 20-	d Survival and Grow	th Sediment	Test				Nautilus Environmental
Analysis ID: Analyzed:	01-2048-1016 21 Jun-17 11:15	Endpoint: Analysis:	Mean Dry We Parametric-T			CETIS Version: Official Results:	CETISv1.8.7 Yes
Mean Dry We	ight-mg Detail		· · · · · · ·				
Sample Code	Re	p1 Rep	2 Rep 3	Rep 4	Rep 5		
Control Sed	10.	47 9.928	8.332	10.51	9.884		
SED17-08	10.	58 8.598	10.65	7,772	6.452		
SED17-06	8.3	04 11.33	9.214	12.27	9.372		
SED17-09	6.6	3 7.616	9.87	9.052	7.452		
SED17-13	7.5	26 8.164	10.25	9.922	10		
SED17-17	10.	41 13.09	10.1	8.542	10.05		
SED17-20	7.1	73 9.796	10.72	8.946	9.03		
SED17-18	8.2	78 7.658	7.038	7.846	10.26		
SED17-19	6.3	34 9,408	6.34	9.18	8.72		
SED17-24	8.1	42 9.262	11.04	10.59	9.262		
\$ED17-12	8.2	1 8.304	6.92	7.106	10.49		
SED17-01	11,	44 9.532	10.32	8.654	7.848		
SED17-03	8.9	52 7.596	10.7	9.166	7.358		
SED17-29	7.1	16 9.206	7.296	10.34	8.384		
SED17-27	11.	48 11.65	7.512	12.83	11.44		

Graphics

Analyst:_ つい

Neanthes 20-d Survival and Growth Sediment Test

Report Date: Test Code: 21 Jun-17 11:18 (p 1 of 3) 170471 | 04-9482-5635

Nautilus Environmental

Analysis ID: 16-4781-0451 Endpoint: Individual Growth Rate CETIS Version: CETISv1.8.7

Analyzed: 21 Jun-17 11:15 Analysis: Parametric-Two Sample Official Results: Yes

Batch ID:16-1257-1507Test Type:Survival-GrowthAnalyst:Jeslin WijayaStart Date:26 May-17Protocol:PSEP (1995)Diluent:Natural seawater

Ending Date:15 Jun-17Species:Neanthes arenaceodentataBrine:Duration:20d 0hSource:Aquatic Toxicology Support, WAAge:

Sample Code	Sample ID	Sample Date	Receive Date	Sample Age	Client Name	Project
Control Sed	01-7363-8469	26 May-17	26 May-17	NA	Golder	
SED17-08	10-1003-8381	26 Apr-17 17:00	15 May-17 10:30	ጋ 29d 7ክ (7.5°C)	
SED17-06	19-4215-8235	26 Apr-17 17:00	15 May-17 10:30	29d 7h (7.5°C)	
SED17-09	13-9590-2568	29 Apr-17 17:00	15 May-17 10:30	0 26d 7h (8.5 °C)	
SED17-13	02-1258-2667	29 Apr-17 17:00	15 May-17 10:30	26d 7h (7.5°C)	
SED17-17	06-5820-5843	30 Apr-17 17;00	15 May-17 10:30	0 25d 7h (7 °C)		
SED17-20	00-0790-7357	01 May-17 17:0	0 15 May-17 10:30	24d 7h (7 °C)		
SED17-18	04-2524-4947	02 May-17 17:0	0 15 May-17 10:30	23d 7h (4 °C)		
\$ED17-19	07-6812-4215	02 May-17 17:0	0 15 May-17 10:30	23d 7h (5.5 °C)	
SED17-24	05-6632-5205	02 May-17 17:0	0 15 May-17 10:30	23d 7h (6 °C)		
SED17-12	01-4413-4098	04 May-17 17:0	0 15 May-17 10:30	21d 7h (5 °C)		
SED17-01	05-6502-2240	04 May-17 17:0	0 15 May-17 10:30	21d 7h (5.8 °C)	
SED17-03	05-1816-3513	04 May-17 17:0	0 15 May-17 10:30	21d 7h (7.2°C)	
SED17-29	08-4658-3752	04 May-17 17:0	0 15 May-17 10:30	ጋ 21d 7ክ (8.5°C)	
SED17-27	15-8574-8565	05 May-17 17:0	0 15 May-17 10:30	20d 7h (5.5 °C)	

Sample Code	Material Type	Sample Source	Station Location	Latitude	Longitude
Control Sed	Sediment Sample	Golder	Control Sediment		
SED17-08	Sediment Sample	Golder	SED17-08		
SED17-06	Sediment Sample	Golder	SED17-06		
SED17-09	Sediment Sample	Golder	SED17-09		
SED17-13	Sediment Sample	Golder	SED17-13		
\$ED17-17	Sediment Sample	Golder	SED17-17		
SED17-20	Sediment Sample	Golder	SED17-20		
SED17-18	Sediment Sample	Golder	SED17-18		
SED17-19	Sediment Sample	Golder	SED17-19		
SED17-24	Sediment Sample	Golder	SED17-24		
SED17-12	Sediment Sample	Golder	SED17-12		
SED17-01	Sediment Sample	Golder	\$ED17-01		
SED17-03	Sediment Sample	Golder	SED17-03		
SED17-29	Sediment Sample	Golder	SED17-29		
SED17-27	Sediment Sample	Golder	SED17-27		

Analyst: DW QA: Suly 24/7

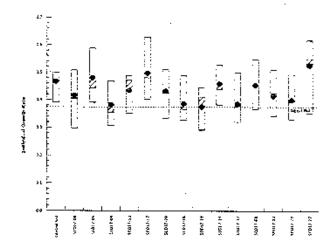
000-469-187-2

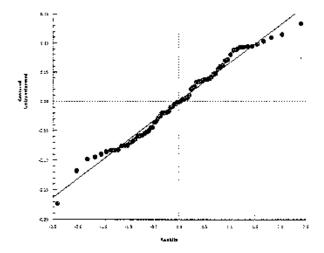
CETIS™ v1.8.7.16

Report Date: Test Code:

21 Jun-17 11:18 (p 2 of 3) 170471 | 04-9482-5635

Neanthes 20-d	Sun	vival and Growth	Sediment Tes	t					Na	utilus Env	ironmenta
Analysis ID:		781-0451	Endpoint: In					S Version:	CETISv1	.8.7	
Analyzed:		lun-17 11:15		arametric-Two	· ·			ial Results:			
Data Transform Untransformed		Zeta NA	Alt Hyp C > T	Trials NA	NA NA		PM\$D 19.7%	Test Resu		-	
Enual Varianci	e t Tv	wo-Sample Test									
		Sample Code	Test Sta	t Critical	MSD DF	P-Value	P-Type	Decision(a:5%)		
Control Sed		SED17-08	1.123	1.86	0.084 8	0.1471	CDF		icant Effect		
3311131 233		SED17-06	-0.3274	1.86	0.077 8	0.6241	CDF	_	icant Effect		
		SED17-09	2.408	1.86	0.066 8	0.0213	CDF	Significant		•	
		SED17-13	0.9562	1.86	0.063 8	0.1835	CDF	-	icant Effect	I	
		\$ED17-17	-0.7332	1.86	0.078 8	0.7578	CDF	-	icant Effect		
		SED17-17	0.9774	1.86	0.066 8	0.1785	CDF	-	icant Effect		
		SED17-20	2.379	1.85	0.063 8	0.0223	CDF	_		L	
		SED17-19	2.379			0.0249	CDF	Significant Significant			
				1.86	0.074 8			-			
		\$ED17-24 \$ED17-12	0.2538	1.86	0.061 8	0.4030	CDF	•	icant Effect	l	
			2.165	1.86	0.07 8	0.0312	CDF	Significant			
		SED17-01	0.3588	1.86	0.069 8	0.3645	CDF	_	icant Effect		
		SED17-03	1.483	1.86	0.067 8	0.0882	CDF	•	icant Effect	I	
		SED17-29	1.882	1.86	0.067 8	0.0483	ÇDF CDF	Significant			
· · · · · · · · · · · · · · · · · · ·		SED17-27	-1.173	1.86	0.092 8	0.8628	CDF	Non-Signii	îçant Effec		
ANOVA Table											
Source		Sum Squares	Mean S		DF	F Stat	P-Value	Decision(
Between		0.1460664	0.01043		14	1.995	0 0336	Significant	Effect		
Error		0.3138052	0.00523	ዕሰጵን	60						
			V.00020	4441							
Total		0.4598716	0.00020		74						
	Test	0.4598716									<u>-</u>
Distributional Attribute	Test	0.4598716 s Test		Test Stat	74 Critical	P-Value	Decision				
Distributional Attribute Variances	Test	0.4598716 s Test Bartlett Equality	of Variance	Test Stat 3,964	74 Critical 29.14	0.9957	Decision Equal Var				
Distributional Attribute Variances Distribution		0.4598716 s Test Bartlett Equality Shapiro-Wilk W	of Variance	Test Stat	74 Critical		Equal Var				-
Distributional Attribute Variances Distribution ndividual Gro		0.4598716 Test Bartlett Equality Shapiro-Wilk W Rate Summary	of Variance Normality	Test Stat 3,964 0,9817	74 Critical 29.14 0.9554	0.9957 0.3524	Equal Var Normal D	iances istribution			
Distributional Attribute Variances Distribution Individual Gro Sample Code		0.4598716 Test Bartlett Equality Shapiro-Wilk W Rate Summary Cour	of Variance Normality nt Mean	Test Stat 3,964 0,9817 95% LCL	74 Critical 29.14 0.9554 95% UCL	0.9957 0.3524 Median	Equal Var Normal D Min	iances	Std Err	CV%	%Effec
Distributional Attribute Variances Distribution Individual Gro Sample Code Control Sed		0.4598716 Test Bartlett Equality Shapiro-Wilk W Rate Summary Cour	of Variance Normality nt Mean 0.4655	Test Stat 3,964 0,9817 95% LCL 0,4106	74 Critical 29.14 0.9554 95% UCL 0.5204	0.9957 0.3524 Median 0.4707	Equal Var Normal D Min 0.3909	iances istribution Max 0.4997	0.01977	9.5%	0.0%
Distributional Attribute Variances Distribution Individual Gro Sample Code Control Sed SED17-08		0.4598716 Test Bartlett Equality Shapiro-Wilk W Rate Summary Cour	of Variance Normality nt Mean 0.4655 0.4148	Test Stat 3.964 0.9817 95% LCL 0.4106 0.302	74 Critical 29.14 0.9554 95% UCL 0.5204 0.5276	0.9957 0.3524 Median	Equal Var Normal D Min 0.3909 0.2969	Max 0.4997 0.5069	0.01977 0.04 06 2		
Distributional Attribute Variances Distribution Individual Gro Sample Code Control Sed SED17-08 SED17-06		0.4598716 Test Bartlett Equality Shapiro-Wilk W Rate Summary Cour 5 5 5	of Variance Normality nt Mean 0.4655 0.4148 0.4791	Test Stat 3,964 0.9817 95% LCL 0.4106 0.302 0.3773	74 Critical 29.14 0.9554 95% UCL 0.5204 0.5276 0.581	0.9957 0.3524 Median 0.4707 0.4041 0.4428	Equal Var Normal D Min 0.3909 0.2969 0.3894	iances istribution Max 0.4997	0.01977	9.5%	0.0%
Distributional Attribute Variances Distribution Individual Gro Sample Code Control Sed SED17-08 SED17-09		0.4598716 Fast Bartlett Equality Shapiro-Wilk W Rate Summary Cour 5 5 5 5	of Variance Normality nt Mean 0.4655 0.4148 0.4791 0.3805	Test Stat 3,964 0.9817 95% LCL 0.4106 0.302 0.3773 0.2992	74 Critical 29.14 0.9554 95% UCL 0.5204 0.5276	0.9957 0.3524 Median 0.4707 0.4041	Equal Var Normal D Min 0.3909 0.2969	Max 0.4997 0.5069	0.01977 0.04 06 2	9.5% 21.9%	0.0% 10.9% -2.9 3 %
Distributional Attribute Variances Distribution Individual Gro Sample Code Control Sed SED17-08 SED17-09 SED17-13		0.4598716 Test Bartlett Equality Shapiro-Wilk W Rate Summary Cour 5 5 5 5 5	of Variance Normality nt Mean 0.4655 0.4148 0.4791 0.3805 0.4329	Test Stat 3.964 0.9817 95% LCL 0.4106 0.302 0.3773 0.2992 0.356	74 Critical 29.14 0.9554 95% UCL 0.5204 0.5276 0.581	0.9957 0.3524 Median 0.4707 0.4041 0.4428	Equal Var Normal D Min 0.3909 0.2969 0.3894	Max 0.4997 0.5069 0.5879 0.4677 0.487	0.01977 0.04062 0.03668	9.5% 21.9% 17.12%	0.0% 10.9% -2.9 3 %
Distributional Attribute Variances Distribution Individual Gro Sample Code Control Sed SED17-08 SED17-09 SED17-13 SED17-17		0.4598716 Fast Bartlett Equality Shapiro-Wilk W Rate Summary Cour 5 5 5 5 5 5	of Variance Normality nt Mean 0.4655 0.4148 0.4791 0.3805 0.4329 0.4962	Test Stat 3,964 0.9817 95% LCL 0.4106 0.302 0.3773 0.2992	74 Critical 29.14 0.9554 95% UCL 0.5204 0.5276 0.581 0.4617 0.5099 0.5987	0.9957 0.3524 Median 0.4707 0.4041 0.4428 0.3551	Equal Var Normal D Min 0.3909 0.2969 0.3894 0.3057	Max 0.4997 0.5069 0.5879 0.4677	0.01977 0.04062 0.03668 0.02926	9.5% 21.9% 17.12% 17.2%	0.0% 10.9% -2.93% 18.27%
Distributional Attribute Variances Distribution Individual Gro Sample Code Control Sed SED17-08 SED17-08 SED17-13 SED17-17 SED17-20		0.4598716 Test Bartlett Equality Shapiro-Wilk W Rate Summary Cour 5 5 5 5 5 5	of Variance Normality nt Mean 0.4655 0.4148 0.4791 0.3805 0.4329	Test Stat 3.964 0.9817 95% LCL 0.4106 0.302 0.3773 0.2992 0.356	74 Critical 29.14 0.9554 95% UCL 0.5204 0.5276 0.581 0.4617 0.5099	0.9957 0.3524 Median 0.4707 0.4041 0.4428 0.3551 0.4703	Min 0.3909 0.2969 0.3894 0.3057 0.3506	Max 0.4997 0.5069 0.5879 0.4677 0.487	0.01977 0.04062 0.03668 0.02926 0.02772	9.5% 21.9% 17.12% 17.2% 14.32%	0.0% 10.9% -2.93% 18.27% 7.0%
Distributional Attribute Variances Distribution Individual Gro Sample Code Control Sed SED17-08 SED17-09 SED17-13 SED17-17 SED17-20 SED17-18		0.4598716 Fast Bartlett Equality Shapiro-Wilk W Rate Summary Cour 5 5 5 5 5 5	of Variance Normality nt Mean 0.4655 0.4148 0.4791 0.3805 0.4329 0.4962	Test Stat 3,964 0,9817 95% LCL 0,4106 0,302 0,3773 0,2992 0,356 0,3937	74 Critical 29.14 0.9554 95% UCL 0.5204 0.5276 0.581 0.4617 0.5099 0.5987	0.9957 0.3524 Median 0.4707 0.4041 0.4428 0.3551 0.4703 0.4791	Min 0.3909 0.2969 0.3894 0.3057 0.3506 0.4014	Max 0.4997 0.5069 0.5879 0.4677 0.487 0.6286	0.01977 0.04062 0.03668 0.02926 0.02772 0.03691	9.5% 21.9% 17.12% 17.2% 14.32% 16.63%	0.0% 10.9% -2.93% 18.27% 7.0% -6.6% 7.42%
Distributional Attribute Variances Distribution Individual Gro Sample Code Control Sed SED17-08 SED17-09 SED17-13 SED17-17 SED17-20 SED17-18 SED17-19		0.4598716 Test Bartlett Equality Shapiro-Wilk W Rate Summary Cour 5 5 5 5 5 5	of Variance Normality nt Mean 0.4655 0.4148 0.4791 0.3805 0.4329 0.4962 0.431	Test Stat 3,964 0,9817 95% LCL 0,4106 0,302 0,3773 0,2992 0,356 0,3937 0,3497	74 Critical 29.14 0.9554 95% UCL 0.5204 0.5276 0.581 0.4617 0.5099 0.5987 0.5123	0.9957 0.3524 Median 0.4707 0.4041 0.4428 0.3551 0.4703 0.4791 0.4257	Equal Var Normal D Min 0.3909 0.2969 0.3894 0.3057 0.3506 0.4014 0.3329	Max 0.4997 0.5069 0.5879 0.4677 0.487 0.6286 0.5105	0.01977 0.04062 0.03668 0.02926 0.02772 0.03691 0.02928	9.5% 21.9% 17.12% 17.2% 14.32% 16.63% 15.19%	0.0% 10.9% -2.93% 18.27% 7.0% -6.6% 7.42% 17.28%
Distributional Attribute Variances Distribution Individual Gro Sample Code Control Sed SED17-08 SED17-09 SED17-13 SED17-17 SED17-19 SED17-18 SED17-19 SED17-19		0.4598716 Test Bartlett Equality Shapiro-Wilk W Rate Summary Cour 5 5 5 5 5 5 5	of Variance Normality nt Mean	7est Stat 3,964 0,9817 95% LCL 0,4106 0,302 0,3773 0,2992 0,356 0,3937 0,3497 0,3089	74 Critical 29.14 0.9554 95% UCL 0.5204 0.5276 0.581 0.4617 0.5099 0.5987 0.5123 0.4612	0.9957 0.3524 Median 0.4707 0.4041 0.4428 0.3551 0.4703 0.4791 0.4257 0.3665	Min 0.3909 0.2969 0.3894 0.3057 0.3506 0.4014 0.3329 0.3262	Max 0.4997 0.5069 0.5879 0.4677 0.487 0.6286 0.5105 0.4873	0.01977 0.04062 0.03668 0.02926 0.02772 0.03691 0.02928 0.02743	9.5% 21.9% 17.12% 17.2% 14.32% 16.63% 15.19%	0.0% 10.9% -2.93% 18.27% 7.0% -6.6% 7.42% 17.28% 19.64%
Distributional Attribute Variances Distribution Individual Gro Sample Code Control Sed SED17-08 SED17-09 SED17-13 SED17-17 SED17-17 SED17-18 SED17-19 SED17-19 SED17-14 SED17-14		0.4598716 Test Bartlett Equality Shapiro-Wilk W Rate Summary Cour 5 5 5 5 5 5 5 5 5	of Variance Normality nt Mean	7est Stat 3,964 0,9817 95% LCL 0,4106 0,302 0,3773 0,2992 0,356 0,3937 0,3497 0,3089 0,2788	74 Critical 29.14 0.9554 85% UCL 0.5204 0.5276 0.581 0.4617 0.5099 0.5987 0.5123 0.4612 0.4694	0.9957 0.3524 Median 0.4707 0.4041 0.4428 0.3551 0.4703 0.4791 0.4257 0.3665 0.4102 0.4374	Min 0.3909 0.2969 0.3894 0.3057 0.3506 0.4014 0.3329 0.3262 0.291 0.3813	Max 0.4997 0.5069 0.5879 0.4677 0.6288 0.5105 0.4873 0.4447 0.5262	0.01977 0.04062 0.03668 0.02926 0.02772 0.03691 0.02928 0.02743 0.03432 0.02595	9.5% 21.9% 17.12% 17.2% 14.32% 16.63% 15.19% 15.93% 20.52% 12.69%	0.0% 10.9% -2.93% 18.27% 7.0% -6.6% 7.42% 17.28% 19.64% 1.78%
Distributional Attribute Variances Distribution Individual Gro Sample Code Control Sed SED17-08 SED17-08 SED17-13 SED17-17 SED17-19 SED17-19 SED17-19 SED17-14 SED17-12 SED17-12 SED17-12		0.4598716 Test Bartlett Equality Shapiro-Wilk W Rate Summary Cour 5 5 5 5 5 5 5 5 5 5 5 5 5	of Variance Normality nt Mean	7est Stat 3,964 0,9817 95% LCL 0,4106 0,302 0,3773 0,2992 0,356 0,3937 0,3497 0,3089 0,2788 0,3852	74 29.14 0.9554 95% UCL 0.5204 0.5276 0.581 0.4617 0.5099 0.5987 0.5123 0.4612 0.4694 0.5293 0.4727	0.9957 0.3524 Median 0.4707 0.4041 0.4428 0.3551 0.4703 0.4791 0.4257 0.3665 0.4102 0.4374 0.3848	Min 0.3909 0.2969 0.3894 0.3057 0.3506 0.4014 0.3329 0.3262 0.291 0.3813 0.3203	Max 0.4997 0.5069 0.5879 0.4677 0.487 0.6286 0.5105 0.4873 0.4447 0.5262 0.4985	0.01977 0.04062 0.03668 0.02926 0.02772 0.03691 0.02928 0.02743 0.03432 0.02595 0.03176	9.5% 21.9% 17.12% 17.2% 14.32% 16.63% 15.19% 15.93% 20.52% 12.69% 18.47%	0.0% 10.9% -2.93% 18.27% 7.0% -6.6% 7.42% 17.28% 19.64% 17.4%
Distributional Attribute Variances Distribution Individual Gro Sample Code Control Sed SED17-08 SED17-08 SED17-13 SED17-17 SED17-17 SED17-19 SED17-19 SED17-19 SED17-12 SED17-12 SED17-12 SED17-01		0.4598716 Test Bartlett Equality Shapiro-Wilk W Rate Summary Cour 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	of Variance Normality nt Mean 0.4655 0.4148 0.4791 0.3805 0.4329 0.4962 0.431 0.3851 0.3741 0.4572 0.3845	7est Stat 3,964 0,9817 95% LCL 0,4106 0,302 0,3773 0,2992 0,356 0,3937 0,3089 0,2788 0,3852 0,2963 0,3651	74 29.14 0.9554 95% UCL 0.5204 0.5276 0.581 0.4617 0.5099 0.5987 0.5123 0.4612 0.4694 0.5293 0.4727 0.5392	0.9957 0.3524 Median 0.4707 0.4041 0.4428 0.3551 0.4703 0.4791 0.4257 0.3665 0.4102 0.4374 0.3848 0.4508	Min 0.3909 0.2969 0.3894 0.3057 0.3506 0.4014 0.3329 0.3262 0.291 0.3813 0.3203 0.3666	Max 0.4997 0.5069 0.5879 0.4677 0.487 0.6286 0.5105 0.4873 0.4447 0.5262 0.4985 0.5463	0.01977 0.04062 0.03668 0.02926 0.02772 0.03691 0.02928 0.02743 0.03432 0.02595 0.03176 0.03135	9.5% 21.9% 17.12% 17.2% 14.32% 16.63% 15.19% 15.93% 20.52% 12.69% 18.47% 15.5%	0.0% 10.9% -2.93% 18.27% 7.0% -6.6% 7.42% 17.28% 19.64% 1.78% 17.4% 2.86%
Total Distributional Attribute Variances Distribution Individual Gro Sample Code Control Sed SED17-08 SED17-08 SED17-17 SED17-17 SED17-17 SED17-19 SED17-19 SED17-19 SED17-12 SED17-12 SED17-12 SED17-12 SED17-01 SED17-03 SED17-29		0.4598716 Test Bartlett Equality Shapiro-Wilk W Rate Summary Cour 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	of Variance Normality nt Mean 0.4655 0.4148 0.4791 0.3805 0.4329 0.4962 0.431 0.3851 0.3741 0.4572 0.3845 0.4522	7est Stat 3,964 0,9817 95% LCL 0,4106 0,302 0,3773 0,2992 0,356 0,3937 0,3497 0,3089 0,2788 0,3652 0,2963	74 29.14 0.9554 95% UCL 0.5204 0.5276 0.581 0.4617 0.5099 0.5987 0.5123 0.4612 0.4694 0.5293 0.4727	0.9957 0.3524 Median 0.4707 0.4041 0.4428 0.3551 0.4703 0.4791 0.4257 0.3665 0.4102 0.4374 0.3848	Min 0.3909 0.2969 0.3894 0.3057 0.3506 0.4014 0.3329 0.3262 0.291 0.3813 0.3203	Max 0.4997 0.5069 0.5879 0.4677 0.487 0.6286 0.5105 0.4873 0.4447 0.5262 0.4985	0.01977 0.04062 0.03668 0.02926 0.02772 0.03691 0.02928 0.02743 0.03432 0.02595 0.03176	9.5% 21.9% 17.12% 17.2% 14.32% 16.63% 15.19% 15.93% 20.52% 12.69% 18.47%	0.0% 10.9% -2.93% 18.27% 7.0% -6.6% 7.42% 17.28% 19.64% 1.78% 17.4%


Ell-duy24/17


21 Jun-17 11:18 (p 3 of 3)

st Code:	170471 04-9482-5635
port Date.	21 Juli-17 11.16 (p 3 01 3)

16-4783-0451	Endpoint:			·		`
21 Jun-17 11:15	Analysis:	Individual Gro Parametric-Tv			CETIS Version: Official Results:	CETISv1.8.7 Yes
with Rate Detail						
Rep	1 Rep	2 Rep 3	Rep 4	Rep 5		
0.49	978 0.470	0.3909	0.4997	0.4685		
0.50	0.404	41 0.5069	0.3629	0.2969		
0.38	394 0.540	06 0.4349	0.5879	0.4428		
0.30	0.355	51 0.4677	0.4269	0.3469		
0.39	506 0.382	25 0.487	0.4703	0.4743		
0.49	946 0.628	88 0.4791	0.4014	0.477		
0.33	329 0.464	0.5105	0.4215	0.4257		
0.38	381 0.357	72 0.3262	0.3665	0.4873		
0.29	91 0.444	47 0.2913	0.4333	0.4102		
0.38	313 0.437	74 0.526 2	0.5038	0.4373		
0.38	348 0.389	95 0.3203	0.3296	0.4985		
0.54	463 0.450	0.4902	0.407	0.3666		
0.43	219 0.354	41 0.5092	0.4326	0.3421		
0.33	301 0.434	46 0.339	0.4912	0.3934		
0.54	484 0.556	55 0.3499	0.6159	0.5464		
•	Rep 0.49 0.50 0.33 0.33 0.49 0.33 0.29 0.34 0.34 0.34 0.34	Rep 1 Rep 3 0.4978 0.470 0.5032 0.404 0.3894 0.540 0.3057 0.358 0.3506 0.382 0.4946 0.626 0.3329 0.464 0.3881 0.357 0.291 0.444 0.3848 0.388 0.5463 0.450 0.4219 0.354 0.3301 0.434	Rep 1 Rep 2 Rep 3 0.4978 0.4707 0.3909 0.5032 0.4041 0.5069 0.3894 0.5406 0.4349 0.3057 0.3551 0.4677 0.3506 0.3825 0.487 0.4946 0.6288 0.4791 0.3329 0.464 0.5105 0.3881 0.3572 0.3262 0.291 0.4447 0.2913 0.3813 0.4374 0.5262 0.3848 0.3895 0.3203 0.5463 0.4508 0.4902 0.4219 0.3541 0.5092 0.3301 0.4346 0.339	Rep 1 Rep 2 Rep 3 Rep 4 0.4978 0.4707 0.3909 0.4997 0.5032 0.4041 0.5069 0.3629 0.3894 0.5406 0.4349 0.5879 0.3057 0.3551 0.4677 0.4269 0.3506 0.3825 0.487 0.4703 0.4946 0.6288 0.4791 0.4014 0.3329 0.464 0.5105 0.4215 0.3881 0.3572 0.3262 0.3665 0.291 0.4447 0.2913 0.4333 0.3813 0.4374 0.5262 0.5038 0.3848 0.3895 0.3203 0.3296 0.5463 0.4508 0.4902 0.407 0.4219 0.3541 0.5092 0.4326 0.3301 0.4346 0.339 0.4912	Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 0.4978 0.4707 0.3909 0.4997 0.4685 0.5032 0.4041 0.5069 0.3629 0.2969 0.3894 0.5406 0.4349 0.5879 0.4428 0.3057 0.3551 0.4677 0.4269 0.3469 0.3506 0.3825 0.487 0.4703 0.4743 0.4946 0.6288 0.4791 0.4014 0.477 0.3329 0.464 0.5105 0.4215 0.4257 0.3881 0.3572 0.3262 0.3665 0.4873 0.291 0.4447 0.2913 0.4333 0.4102 0.3848 0.3895 0.3203 0.3296 0.4985 0.5463 0.4508 0.4902 0.407 0.3666 0.4219 0.3541 0.5092 0.4326 0.3421 0.3301 0.4346 0.339 0.4912 0.3934	Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 0.4978 0.4707 0.3909 0.4997 0.4685 0.5032 0.4041 0.5069 0.3629 0.2969 0.3894 0.5406 0.4349 0.5879 0.4428 0.3057 0.3551 0.4677 0.4269 0.3469 0.3506 0.3825 0.487 0.4703 0.4743 0.4946 0.6288 0.4791 0.4014 0.477 0.3329 0.464 0.5105 0.4215 0.4257 0.3881 0.3572 0.3262 0.3665 0.4873 0.291 0.4447 0.2913 0.4333 0.4102 0.3848 0.3895 0.3203 0.3296 0.4985 0.5463 0.4508 0.4902 0.407 0.3666 0.4219 0.3541 0.5092 0.4326 0.3421 0.3301 0.4346 0.339 0.4912 0.3934

Graphics

000-469-187-2

CETIS™ v1.8.7.16

Ending Date: 15 Jun-17

Batch ID;

Duration:

Start Date:

Report Date: Test Code: 21 Jun-17 11:58 (p 1 of 5) 170471a | 03-9301-7863

Nautilus Environmental

Neanthes 20-d Survival and Growth Sediment Test

04-5200-1789 26 May-17

20d 0h

Test Type: Survival-Growth Protocol: PSEP (1995)

Source:

Protocol: PSEP (1995)
Species: Neanthes are nace

Neanthes arenaceodentata Aquatic Toxicology Support, WA Analyst: Diluent: Jestin Wijaya Natural seawater

Brine: Age:

Sample Code	Sample ID	Sample Date	Receive Date	Sample Age	Client Name	Project
SED17-24	05-6632-5205	02 May-17 17:00	15 May-17 10:30	23d 7h (6 °C)	Golder	
SED17-08	10-1003-6381		15 May-17 10:30			
SED17-06	19-4215-8235		15 May-17 f0:30			
SED17-09	13-9590-2568		15 May-17 10:30	, ,		
SED17-13	02-1258-2667		15 May-17 10:30	, ,		
SED17-17	06-5820-5843		15 May-17 10:30			
SED17-20	00-0790-7357		15 May-17 10:30			
SED17-18	04-2524-4947		15 May-17 10:30			
\$ED17-19	07-6812-4215		15 May-17 10:30			
SED17-12	01-4413-4098	04 May-17 17:00	-			
SED17-01	05-6502-2240		15 May-17 10:30			
SED17-03	05-1816-3513		15 May-17 10:30			
\$ED17-29	08-4658-3752	04 May-17 17:00				
SED17-27	15-8574-8565	05 May-17 17:00	-	, ,		

Sample Code	Material Type	Sample Source	Station Location	Latitude	Longitude
SED17-24	Sediment Sample	Golder	SED17-24		
SED17-08	Sediment Sample.	Golder	SED17-08		
SED17-06	Sediment Sample	Golder	SED17-06		
SED17-09	Sediment Sample	Golder	SED17-09		
SED17-13	Sediment Sample	Golder	SED17-13		
SED17-17	Sediment Sample	Golder	SED17-17		
ED17-20	Sediment Sample	Golder	SED17-20		
ED17-18	Sediment Sample	Golder	\$ED17-18		
ED17-19	Sediment Sample	Golder	SED17-19		
ED17-12	Sediment Sample	Golder	SED17-12		
ED17-01	Sediment Sample	Golder	SED17-01		
ED17-03	Sediment Sample	Golder	SED17-03		
ED17-29	Sediment Sample	Golder	SED17-29		
ED17-27	Sediment Sample	Golder	SED17-27		

Anaiyst: JW QA: Uy 24/7

21 Jun-17 11:58 (p 2 of 5) 170471a | 03-9301-7863

						164	it dode.		arour la ju	0.930 1.1000
Neanthes 20-d Surviva	al and Growth Se	diment Tes	t					N:	autilus Env	ironmental
Individual Growth Rat	te Summary									
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
SED17-24	5	0.4572	0.3852	0.5293	0.3813	0.5262	0.02595	0.05803	12.69%	0.0%
SED17-08	5	0.4148	0.302	0.5276	0.2969	0.5069	0.04062	0.09083	21.9%	9.28%
SED17-06	5	0.4791	0.3773	0.581	0.3894	0.5879	0.03668	0.08202	17.12%	-4.8%
SED17-09	5	0.3805	0.2992	0.4617	0.3057	0.4677	0.02926	0.06543	17.2%	16.79%
SED17-13	5	0.4329	0.356	0.5099	0.3506	0.487	0.02772	0.06199	14.32%	5.31%
\$ED17-17	5	0.4962	0.3937	0.5987	0.4014	0.6288	0.03691	0.08254	16,63%	-8.53%
SED17-20	5	0.431	0.3497	0.5123	0.3329	0.5105	0.02928	0.06548	15.19%	5.74%
\$ED17-18	5	0.3851	0.3089	0.4612	0.3262	0.4873	0.02743	0.06133	15.93%	15.78%
SED17-19	5	0.3741	0.2788	0.4694	0.291	0.4447	0.03432	0.07675	20.52%	18.18%
SED17-12	5	0.3845	0.2953	0.4727	0.3203	0.4985	0.03176	0.07101	18.47%	15.9%
SED17-01	5	0.4522	0.3851	0.5392	0.3666	0.5463	0.03135	0.07011	15.5%	1.1%
SED17-03	5	0.412	0.3282	0.4958	0.3421	0.5092	0.03018	0.06748	16.38%	9.89%
SED17-29	5	0.3977	0.314	0.4813	0.3301	0.4912	0.03012	0.06735	16.94%	13.02%
SED17-27	. 5	0.5234	0.3978	0.649	0.3499	0.6159	0.04523	0.1011	19.32%	-14.48%
Mean Dry Weight-mg	Summary			_						
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
SED17-24	5	9.659	8.218	11.1	8.142	11.04	0.5191	1.161	12.02%	0.0%
SED17-08	5	8.81	6.555	11.07	6.452	10.65	0.8124	1.817	20.62%	8.79%
SED17-06	5	10.1	8.061	12.13	8.304	12.27	0.7336	1.64	16.25%	-4.54%
SED17-09	5	8.124	6.499	9.749	6.63	9.87	0.5853	1.309	16.11%	15.89%
SED17-13	5	9.174	7.634	10.71	7.526	10.25	0.5544	1.24	13.51%	5.03%
SED17-17	5	10.44	8.389	12.49	8.542	13.09	0.7383	1.651	15.81%	-8.07%
SED17-20	5	9.134	7.508	10.76	7.173	10.72	0.5857	1.31	14.34%	5.44%
SED17-18	5	8.216	6.693	9.739	7.038	10.26	0.5485	1.227	14,93%	14.94%
SED17-19	5	7.996	6.091	9.902	6.334	9,408	0.6865	1.535	19 2%	17.21%
SED17-12	5	8.205	6.442	9.968	6.92	10.49	0.6351	1.42	17.31%	15.05%
SED17-01	5	9.559	7.818	11.3	7.848	11.44	0.6271	1.402	14.67%	1.04%
\$ED17-03	5	8.755	7.079	10.43	7.358	10.7	0.6036	1.35	15.42%	9.37%
SED17-29	5	8.468	6.796	10.14	7.116	10.34	0.6024	1.347	15.91%	12.33%
SED17-27	5	10.98	8.472	13.49	7.512	12.83	0.9046	2.023	18.42%	-13.71%
Survival Rate Summar	у			··						
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
SED17-24	5	1	1	1	1	1	0	0	0.0%	0.0%
SED17-08	5	1	1	1	1	1	0	o o	0.0%	0.0%
SED17-06	5	0.96	0.8489	1	8.0	1	0.04	0.08944	9.32%	4.0%
SED17-09	5	0.92	0.784	1	8.0	1	0.04899	0.1095	11.91%	8.0%
SED17-13	5	1	1	1	1	1	0	0	0.0%	0.0%
SED17-17	5	0.96	0.8489	1	0.8	1	0.04	0.08944	9.32%	4.0%
\$ED17-20	5	0.84	0.6322	1	0.6	1	0.07483	0.1673	19.92%	16.0%
SED17-18	5	0.96	0.6489	1	0.8	1	0.04	0.08944	9.32%	4.0%
SED17-19	5	0.8	0.4488	1	0.4	1	0.1265	0.2828	35.36%	
SED17-12	5	0.96	0.8489	1	0.8	1	0.04	0.08944		20.0%
SED17-01	5	0.96	0.8489	1	0.8	1	0.04		9.32%	4.0%
SED17-03	5	0.96	0.8489	1	0.8	1		0.08944	9.32%	4.0%
SED17-29	5	1	1	1	1	1	0.04	0.08944	9.32%	4.0%
\$ED17-27	5	0.96	0.8489	1	8.0		0	0	0.0%	0.0%
	•	0.00	0. 0 −0 <i>3</i>	•	0.0	1	0.04	0.08944	9.32%	4.0%

Analyst: JW QA: JULY 24/17

21 Jun-17 11:58 (p 3 of 5) 170471a | 03-9301-7863

Neanthes 20-d Survival and Growth Sediment Test

Nautilus Environmental

Total Dry Weight Summary	ī									
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
SED17-24	5	48.3	41.09	55.5	40.71	55.19	2.595	5.803	12.02%	0.0%
\$ED17-08	5	44.05	32.77	55.33	32.26	53.26	4.062	9.083	20.62%	8.79%
SED17-06	5	48.03	41.16	54,91	41.52	56.63	2.477	5.538	11.53%	0.54%
SED17-09	5	37.8	25.7	49.91	26.52	49.35	4.36	9.75	25.79%	21.72%
SED17-13	5	45.87	38.17	53.56	37.63	51.27	2.772	6.199	13,51%	5.03%
SED17-17	5	50.49	36.7	64.27	34,17	65.46	4.964	11.1	21.99%	-4.53%
SED17-20	5	38.85	25.51	52.19	21.52	48.98	4.803	10.74	27.64%	19.56%
SED17-18	5	39.03	35.93	42.13	35.19	41.39	1.117	2.497	6.4%	19.19%
SED17-19	5	32.51	15.47	49.54	12.68	47.04	6.135	13.72	42.2%	32.69%
SED17-12	5	38.93	34.51	43.34	34.6	41.94	1.59	3,556	9.13%	19.4%
SED17-01	5	45.51	39.75	51.27	39.24	51.6	2.075	4.64	10.2%	5.78%
SED17-03	5	41.98	32.6	51.37	35.81	53.5	3.38	7.559	18.0%	13.07%
\$ED17-29	5	42.34	33.98	50.7	35.58	51.7	3.012	6.735	15.9 1 %	12.33%
SED17-27	5	53.41	36.81	70.01	30.05	64.16	5.979	13.37	25.03%	-10.6%

21 Jun-17 11:58 (p 4 of 5) 170471a | 03-9301-7863

	l and Growth Se	diment Tes	t 			Nautilus Environmental
Individual Growth Rate	e Detail					
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
SED17-24	0.3813	0.4374	0.5262	0.5038	0.4373	
SED17-08	0.5032	0.4041	0.5069	0.3629	0.2969	
SED17-06	0.3894	0.5406	0.4349	0.5879	0.4428	
SED17-09	0.3057	0.3551	0.4677	0.4269	0.3469	
SED17-13	0.3506	0.3825	0.487	0.4703	0.4743	
SED17-17	0.4946	0.6288	0.4791	0.4014	0.477	
SED17-20	0.3329	0.464	0.5105	0.4215	0.4257	
SED17-18	0.3881	0.3572	0.3262	0.3665	0.4873	
SED17-19	0.291	0.4447	0.2913	0.4333	0.4102	
SED17-12	0.3848	0.3895	0.3203	0.3296	0.4985	
SED17-01	0.5463	0.4508	0.4902	0.407	0.3666	
SED17-03	0.4219	0.3541	0.5092	0.4325	0.3421	•
\$ED17-29	0.3301	0.4346	0.339	0.4912	0.3934	
SED17-27	0.5484	0.5565	0.3499	0.6159	0.5464	
Mean Dry Weight-mg D	etail	_			·	
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
SED17-24	8.142	9.262	11.04	10.59	9.262	
SED17-08	10.58	8.598	10.65	7 772	6.452	
SED17-06	8.304	11.33	9.214	12.27	9.372	
SED17-09	6.63	7.616	9.87	9.052	7.452	
SED17-13	7.526	8.164	10.25	9.922	10	
\$ED17-17	10.41	13.09	10.1	8.542	10.05	
SED17-20	7.173	9.796	10.72	8.946	9.03	
\$ED17-18	8.278	7.658	7.038	7.846	10.26	
SED17-19	6.334	9.408	6.34	9.18	8.72	
SED17-12	8.21	8.304	6.92	7.106	10.49	
SED17-01	11.44	9.532	10.32	8.654	7.848	
SED17-03	8.952	7.596	10.7	9.166	7.358	
SED17-29	7.11 6	9.206	7.296	10.34	8.384	
\$ED17-27	11.48	11.65	7.512	12.83	11.44	
Survival Rate Detail	_				· ·-	· · · · · · · · · · · · · · · · · · ·
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
SED17-24	1	1	1		1	
\$ED17-08	1	1	. 1	1	1	
SED17-06	1	1	1	0.8	1	
SED17-09	0.8	1	1	1	8.0	
SED17-13	1	1	1	1	1	
SED17-17	1	1	1	0.8	1	
SED17-20	0.6	1	0.8	1	0.8	
SED17-18 .	1	1	1	1	8.0	
SED17-19	1	1	0.4	0.6	1	
SED17-12	1	1	1	1	0.8	
SED17-01	0.8	1	1	1	1	
SED17-03	0.8	1	1	1	1	
SED17-29	1	1	1	1	1	
SED17-27	1	1	C.8	1	1	

Analysi: JiN QAZUU 74/17

Report Date: Test Code:

21 Jun-17 11:58 (p 5 of 5) 170471a ! 03-9301-7863

		<u>-</u> -				Test Code:	170471a 03-9301-7863
Neanthes 20-d Survival an	d Growth Se	diment Tes	it .				Nautilus Environmental
Total Dry Weight Delail	·						"
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-24	40.73	46.31	55.19	52.96	46.31		· ·
SED17-08	52.89	42.99	53.26	38.86	32.26		
SED17-06	41.52	56.63	46.07	49.09	46.86		
SED17-09	26.52	38.08	49.35	45.26	29.81		
SED17-13	37.63	40.82	51.27	49.61	50.01		
SED17-17	52.04	65.46	50.49	34.17	50.27		
\$ED17-20	21,52	48.98	42.9	44.73	36.12		
SED17-18	41.39	38.29	35.19	39.23	41.04		
\$ED17-19	31.67	47.04	12.68	27.54	43.6		
\$ED17-12	41.05	41.52	34.6	35.53	41.94		
SED17-01	45.76	47.66	51.6	43.27	39.24		
\$ED17-03	35.81	37.98	53.5	45.83	36.79		
SED17-29	35.58	46.03	36.48	51.7	41.92		
SED17-27	57.41	58.23	30.05	64.16	57.22		
Survival Rate Binomials							
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-24	5/5	5/5	5/5	5/5	5/5	****	
\$ED17-08	5/5	5/5	5/5	5/5	5/5		
SED17-06	5/5	5/5	5/5	4/5	5/5		
SED17-09	4/5	5/5	5/5	5/5	4/5		
SED17-13	5/5	5/5	5/5	5/5	5/5		
SED17-17	5/5	5/5	5/5	4/5	5/5		
SED17-20	3/5	5/5	4/5	5/5	4/5		
SED17-18	5/5	5/5	5/5	5/5	4/5		
SED17-19	5/5	5/5	2/5	3/5	5/5		
SED17-12	5/5	5/5	5/6	5/5	4/5		
SED17-01	4/5	5/5	5/5	5/5	5/5		
SED17-03	4/5	5/5	5/5	5/5	5/5		
SED17-29	5/5	5/5	5/5	5/5	5/5		
SED1 7 -27	5/5	5/5	4/5	5/5	5/5		

Report Date:

21 Jun-17 11:22 (p 1 of 4)

Jun-17 10:48 5200-1789 May-17 Jun-17 1 Oh Sample D 05-6632-5205 10-1003-6381 19-4215-8235 13-9590-2568 02-1258-2667 06-5820-5843 00-0790-7357	Endpoint: Analysis: Test Type: Protocol: Species: Source: Samp 02 Ma 26 Ap 26 Ap 29 Ap	Survival F Nonparan Survival-O PSEP (19 Neanthes Aquatic To le Date y-17 17:00	netric-Two S Growth (95) arenaceodo oxicology S Receive D 15 May-17	entata uppor late	t, WA			S Versio al Resul at: Je nt: N	N: n: CETISv1			
2474-2326 Jun-17 10:48 5200-1789 May-17 Jun-17 1 Oh Sample ID 05-6632-5205 10-1003-6381 19-4215-8235 13-9590-2568 02-1258-2667 06-5820-5843 00-0790-7357	Endpoint: Analysis: Test Type: Protocol: Species: Source: Samp 02 Ma 26 Ap 26 Ap 29 Ap	Survival F Nonparan Survival-O PSEP (19 Neanthes Aquatic To le Date y-17 17:00	netric-Two S Growth (95) arenaceodo oxicology S Receive D 15 May-17	entata uppor late	t, WA		Offici Analy Dilue:	al Resul st: Je nt: N	n: CETISv1 ts: Yes eslin Wijaya	1.8.7	ronmental	
Jun-17 10:48 5200-1789 May-17 Jun-17 f Oh Sample ID 05-6632-5205 10-1003-6381 19-4215-8235 13-9590-2568 02-1258-2667 06-5820-5843 00-0790-7357	Analysis: Test Type: Protocol: Species: Source: Samp 02 Ma 26 Ap 26 Ap 29 Ap 29 Ap	Nonparan Survival-0 PSEP (19 Neanthes Aquatic To le Date y-17 17:00	netric-Two S Growth (95) arenaceodo oxicology S Receive D 15 May-17	entata uppor late	t, WA		Offici Analy Dilue:	al Resul st: Je nt: N	ts: Yes eslin Wijaya			
5200-1789 May-17 Jun-17 f Oh Sample D 05-6632-5205 10-1003-6381 19-4215-8235 13-9590-2568 02-1258-2667 06-5820-5843 00-0790-7357	Test Type: Protocol: Species: Source: Samp 02 Ma 26 Ap 26 Ap 29 Ap 29 Ap	Survival-0 PSEP (19 Neanthes Aquatic To le Date y-17 17:00 r-17 17:00	Growth 195) arenaceode oxicology Si Receive D 15 May-17	entata uppor late	t, WA		Analy Dilue:	st: Je nt: N	slin Wijaya	er		
May-17 Jun-17 f Oh Sample ID 05-6632-520\$ 10-1003-6381 19-4215-8235 13-9590-2568 02-1258-2667 06-5820-5843 00-0790-7357	Protocol: Species: Source: Samp 02 Ma 26 Ap 26 Ap 29 Ap 29 Ap	PSEP (19 Neanthes Aquatic To le Date y-17 17:00 r-17 17:00	95) arenaceodo oxicology Si Receive D 15 May-17	uppor ate	t, WA		Dilue	nt: N		5t		
Jun-17 f Oh Sample ID 05-6632-5205 10-1003-6381 19-4215-8235 13-9590-2568 02-1256-2667 06-5820-5843 00-0790-7357	Species: Source: Samp 02 Ma 26 Ap 26 Ap 29 Ap 29 Ap	Neanthes Aquatic To le Date y-17 17:00 r-17 17:00	arenaceode oxicology Si Receive D 15 May-17	uppor ate	t, WA				atural seawat	51		
Sample ID 05-6632-5205 10-1003-6381 19-4215-8235 13-9590-2568 02-1256-2667 06-5820-5843 00-0790-7357	Source: Samp 02 Ma 26 Ap 26 Ap 29 Ap 29 Ap	Aquatic To le Date y-17 17:00 r-17 17:00	oxicology Si Receive D 15 May-17	uppor ate	t, WA		Brine					
Sample D 05-6632-5205 10-1003-6381 19-4215-8235 13-9590-2568 02-1258-2667 06-5820-5843 00-0790-7357	Samp 02 Ma 26 Ap 26 Ap 29 Ap	le Date y-17 17:00 r-17 17:00	Receive D 15 May-17	ate				;				
05-6632-5205 10-1003-6381 19-4215-8235 13-9590-2568 02-1258-2667 06-5820-5843 00-0790-7357	02 Ma 26 Ap 26 Ap 29 Ap 29 Ap	y-17 17:00 r-17 17:00	15 May-17		_		Age:					
10-1003-8381 19-4215-8235 13-9590-2568 02-1258-2667 06-5820-5843 00-0790-7357	26 Ap 26 Ap 29 A p 29 Ap	r-17 17:00		10.2	San	iple Age	Client	Name		Project		
19-4215-8235 13-9590-2568 02-1258-2667 06-5320-5843 00-0790-7357	26 Ap 26 Ap 29 A p 29 Ap	r-17 17:00		10:3								
13-9590-2568 02-1258-2667 06-5820-5843 00-0790-7357	29 A p 29 Ap	r-17 17:00	1 to 1 to 1 to 1 to 1	10:3	0 29 d	7h (7.5°	C)					
02-1258-2667 06-5820-5843 00-0790-7357	29 Ap.		15 May-17	10:3	0 29d	7h (7.5°	c)					
06-5820-5843 00-0790-7357		r-17 17:00	15 May-17	10:3	0 26d	7h (8.5 °	c)					
00-0790-7357		r-17 17:00	15 May-17	10:3	0 26d	75 (7.5°	c)					
	30 A pı	r-17 17:00	15 May-17	10:3	0 25d	7h (7 °C)						
04.0504.4545	01 Ma	y-17 17:00	15 May-17	10:34	0 24d	7h (7 °C)	l					
04-2524-4947	02 Ma	y-17 17:00	15 May-17	10:3	0 23 d	7h (4 °C)	ı					
07-6812 -4 215	02 Ma	y-17 17:00	15 May-17	10:30	0 23d	7h (5.5 °	C)					
01-4413-4098			15 May-17									
05-6502-2240												
05-1816-3513						-						
08-4658-3752												
15 - 8574-8565												
Material Type	Samp	e Source			Stat	ion Locat	: :lon	· · ·	Latitude	L ona	itude	
Sediment Samp	le Golde:											
Sediment Samp	le Golder	,										
Sediment Samp	le Golder				SED	17-06						
Sediment Samp	le Golder				SED	17-09						
Sediment Samps	le Golder				\$ED	17-13						
Sediment Sampl	le Golder				SED	17-17						
Sediment Sample	le Golder	•			SED	17-20						
Sediment Sampl	le Golder	•			SED	17-18						
Sediment Sampl	le Golder				SED	17-19						
Sediment Sampl	le Golder				ŞĘD	17-12						
Sediment Sampl	le Golder				SED	17-01						
Sediment Sampl	e Golder				SED	17-03						
Sediment Sampl	e Golder											
Sediment Sampl	e Golder				SED	17 -27						
Zeta	Alt Hy	p Trials	Seed					Test Re:		_		
NA	C > T	NA	NA			-						
ov Two-Sample Te	est	-										
Sample Code	Test S	tat Critic	al MSD	DF	P-Va	lue P-	Гуре	Decision	i(a:5%)			
SED17-08	o o	NA		8								
SED17-06	0.2	NA		8	0.500	00 CC		_				
	0.4	NA		8				_				
				8								
				8								
				8								
								_				
								_				
								-				
								_				
SED17-03	0.∠ 0	NA NA						-			,	
· r = 0	0.2	NA		8	1.4 513							
1	05-1816-3513 08-4658-3752 15-8574-8565 Material Type Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sediment Samp Sedi	05-1816-3513 04 Ma 08-4658-3752 04 Ma 15-8574-8565 05 Ma Material Type Sample Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder	05-1816-3513 04 May-17 17:00 08-4658-3752 04 May-17 17:00 15-8574-8565 05 May-17 17:00 Material Type Sample Source Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder <td< td=""><td>05-1816-3513 04 May-17 17:00 15 May-17 08-4658-3752 04 May-17 17:00 15 May-17 15-8574-8565 05 May-17 17:00 15 May-17 Material Type Sample Source Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder</td><td>05-1816-3513 04 May-17 17:00 15 May-17 10:31 08-4658-3752 04 May-17 17:00 15 May-17 10:31 15-8574-8565 05 May-17 17:00 15 May-17 10:31 Material Type Sample Source Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder <td col<="" td=""><td>05-1816-3513</td><td>05-1816-3513 04 May-17 17:00 15 May-17 10:30 21d 7h (7.2 °) 08-4658-3752 04 May-17 17:00 15 May-17 10:30 21d 7h (8.5 °) 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (5.5 °) Material Type Sample Source Station Local Sediment Sample Golder SED17-24 Sediment Sample Golder SED17-06 Sediment Sample Golder SED17-06 Sediment Sample Golder SED17-09 Sediment Sample Golder SED17-09 Sediment Sample Golder SED17-13 Sediment Sample Golder SED17-17 Sediment Sample Golder SED17-18 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-01 Sediment Sample Golder SED17-02 Sediment Sample Golder SED17-03 Sediment Sample Golder SED17-29 Sediment Sample Golder<td>05-1816-3513 04 May-17 17:00 15 May-17 10:30 21d 7h (7.2 °C) 08-4658-3752 04 May-17 17:00 15 May-17 10:30 21d 7h (8.5 °C) 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (8.5 °C) Material Type Sample Source Station Location Sediment Sample Golder SED17-24 Sediment Sample Golder SED17-06 Sediment Sample Golder SED17-09 Sediment Sample Golder SED17-09 Sediment Sample Golder SED17-13 Sediment Sample Golder SED17-13 Sediment Sample Golder SED17-13 Sediment Sample Golder SED17-18 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-12 Sediment Sample Golder SED17-12 Sediment Sample Golder SED17-29 Sediment Sample Golder SED17-29 Sediment Sample Golder SED17-29 Sediment Sample Gol</td><td> 05-1816-3513 04 May-17 17:00 15 May-17 10:30 21d 7h (7.2 °C) 08-4658-3752 04 May-17 17:00 15 May-17 10:30 21d 7h (8.5 °C) 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (8.5 °C) 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (5.5 °C) Material Type</td><td>05-1816-3513</td><td> 05-1816-3513</td></td></td></td></td<>	05-1816-3513 04 May-17 17:00 15 May-17 08-4658-3752 04 May-17 17:00 15 May-17 15-8574-8565 05 May-17 17:00 15 May-17 Material Type Sample Source Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder	05-1816-3513 04 May-17 17:00 15 May-17 10:31 08-4658-3752 04 May-17 17:00 15 May-17 10:31 15-8574-8565 05 May-17 17:00 15 May-17 10:31 Material Type Sample Source Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder Sediment Sample Golder <td col<="" td=""><td>05-1816-3513</td><td>05-1816-3513 04 May-17 17:00 15 May-17 10:30 21d 7h (7.2 °) 08-4658-3752 04 May-17 17:00 15 May-17 10:30 21d 7h (8.5 °) 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (5.5 °) Material Type Sample Source Station Local Sediment Sample Golder SED17-24 Sediment Sample Golder SED17-06 Sediment Sample Golder SED17-06 Sediment Sample Golder SED17-09 Sediment Sample Golder SED17-09 Sediment Sample Golder SED17-13 Sediment Sample Golder SED17-17 Sediment Sample Golder SED17-18 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-01 Sediment Sample Golder SED17-02 Sediment Sample Golder SED17-03 Sediment Sample Golder SED17-29 Sediment Sample Golder<td>05-1816-3513 04 May-17 17:00 15 May-17 10:30 21d 7h (7.2 °C) 08-4658-3752 04 May-17 17:00 15 May-17 10:30 21d 7h (8.5 °C) 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (8.5 °C) Material Type Sample Source Station Location Sediment Sample Golder SED17-24 Sediment Sample Golder SED17-06 Sediment Sample Golder SED17-09 Sediment Sample Golder SED17-09 Sediment Sample Golder SED17-13 Sediment Sample Golder SED17-13 Sediment Sample Golder SED17-13 Sediment Sample Golder SED17-18 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-12 Sediment Sample Golder SED17-12 Sediment Sample Golder SED17-29 Sediment Sample Golder SED17-29 Sediment Sample Golder SED17-29 Sediment Sample Gol</td><td> 05-1816-3513 04 May-17 17:00 15 May-17 10:30 21d 7h (7.2 °C) 08-4658-3752 04 May-17 17:00 15 May-17 10:30 21d 7h (8.5 °C) 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (8.5 °C) 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (5.5 °C) Material Type</td><td>05-1816-3513</td><td> 05-1816-3513</td></td></td>	<td>05-1816-3513</td> <td>05-1816-3513 04 May-17 17:00 15 May-17 10:30 21d 7h (7.2 °) 08-4658-3752 04 May-17 17:00 15 May-17 10:30 21d 7h (8.5 °) 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (5.5 °) Material Type Sample Source Station Local Sediment Sample Golder SED17-24 Sediment Sample Golder SED17-06 Sediment Sample Golder SED17-06 Sediment Sample Golder SED17-09 Sediment Sample Golder SED17-09 Sediment Sample Golder SED17-13 Sediment Sample Golder SED17-17 Sediment Sample Golder SED17-18 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-01 Sediment Sample Golder SED17-02 Sediment Sample Golder SED17-03 Sediment Sample Golder SED17-29 Sediment Sample Golder<td>05-1816-3513 04 May-17 17:00 15 May-17 10:30 21d 7h (7.2 °C) 08-4658-3752 04 May-17 17:00 15 May-17 10:30 21d 7h (8.5 °C) 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (8.5 °C) Material Type Sample Source Station Location Sediment Sample Golder SED17-24 Sediment Sample Golder SED17-06 Sediment Sample Golder SED17-09 Sediment Sample Golder SED17-09 Sediment Sample Golder SED17-13 Sediment Sample Golder SED17-13 Sediment Sample Golder SED17-13 Sediment Sample Golder SED17-18 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-12 Sediment Sample Golder SED17-12 Sediment Sample Golder SED17-29 Sediment Sample Golder SED17-29 Sediment Sample Golder SED17-29 Sediment Sample Gol</td><td> 05-1816-3513 04 May-17 17:00 15 May-17 10:30 21d 7h (7.2 °C) 08-4658-3752 04 May-17 17:00 15 May-17 10:30 21d 7h (8.5 °C) 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (8.5 °C) 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (5.5 °C) Material Type</td><td>05-1816-3513</td><td> 05-1816-3513</td></td>	05-1816-3513	05-1816-3513 04 May-17 17:00 15 May-17 10:30 21d 7h (7.2 °) 08-4658-3752 04 May-17 17:00 15 May-17 10:30 21d 7h (8.5 °) 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (5.5 °) Material Type Sample Source Station Local Sediment Sample Golder SED17-24 Sediment Sample Golder SED17-06 Sediment Sample Golder SED17-06 Sediment Sample Golder SED17-09 Sediment Sample Golder SED17-09 Sediment Sample Golder SED17-13 Sediment Sample Golder SED17-17 Sediment Sample Golder SED17-18 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-01 Sediment Sample Golder SED17-02 Sediment Sample Golder SED17-03 Sediment Sample Golder SED17-29 Sediment Sample Golder <td>05-1816-3513 04 May-17 17:00 15 May-17 10:30 21d 7h (7.2 °C) 08-4658-3752 04 May-17 17:00 15 May-17 10:30 21d 7h (8.5 °C) 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (8.5 °C) Material Type Sample Source Station Location Sediment Sample Golder SED17-24 Sediment Sample Golder SED17-06 Sediment Sample Golder SED17-09 Sediment Sample Golder SED17-09 Sediment Sample Golder SED17-13 Sediment Sample Golder SED17-13 Sediment Sample Golder SED17-13 Sediment Sample Golder SED17-18 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-12 Sediment Sample Golder SED17-12 Sediment Sample Golder SED17-29 Sediment Sample Golder SED17-29 Sediment Sample Golder SED17-29 Sediment Sample Gol</td> <td> 05-1816-3513 04 May-17 17:00 15 May-17 10:30 21d 7h (7.2 °C) 08-4658-3752 04 May-17 17:00 15 May-17 10:30 21d 7h (8.5 °C) 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (8.5 °C) 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (5.5 °C) Material Type</td> <td>05-1816-3513</td> <td> 05-1816-3513</td>	05-1816-3513 04 May-17 17:00 15 May-17 10:30 21d 7h (7.2 °C) 08-4658-3752 04 May-17 17:00 15 May-17 10:30 21d 7h (8.5 °C) 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (8.5 °C) Material Type Sample Source Station Location Sediment Sample Golder SED17-24 Sediment Sample Golder SED17-06 Sediment Sample Golder SED17-09 Sediment Sample Golder SED17-09 Sediment Sample Golder SED17-13 Sediment Sample Golder SED17-13 Sediment Sample Golder SED17-13 Sediment Sample Golder SED17-18 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-19 Sediment Sample Golder SED17-12 Sediment Sample Golder SED17-12 Sediment Sample Golder SED17-29 Sediment Sample Golder SED17-29 Sediment Sample Golder SED17-29 Sediment Sample Gol	05-1816-3513 04 May-17 17:00 15 May-17 10:30 21d 7h (7.2 °C) 08-4658-3752 04 May-17 17:00 15 May-17 10:30 21d 7h (8.5 °C) 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (8.5 °C) 15-8574-8565 05 May-17 17:00 15 May-17 10:30 20d 7h (5.5 °C) Material Type	05-1816-3513	05-1816-3513

Analyst: JW QA JULY 74 1

Report Date:

21 Jun-17 11:22 (p 2 of 4)

					Test	Code:	170471a (03-9301-7863
Neanthes 20⊣	d Survival and Growt	h Sediment Test				•	Nautilus Environmental
Analysis ID: Analyzed:	04-2474-2326 21 Jun-17 10:48	Endpoint: Survival Ra Analysis: Nonparame	ite etric-Two Sar	nple		S Version:	CETISv1.8.7 Yes
ANOVA Table		·	_	,			
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a	::5%)
Between	0.2987423	0.02298018	13	1.382	0.1973	Non-Signific	cant Effect
Error	0.9313147	0.01663062	56			Ç	
Total	1.230057	·	69	 -			

Attribute	_Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Mod Levene Equality of Variance	1.378	2.586	0.2102	Equal Variances
Variances	Levene Equality of Variance	7.628	2.465	< 0.0001	Unequal Variances
Distribution	Shapiro-Wilk W Normality	0.8318	0.9526	<0.0001	Non-normal Distribution

Survival Rate Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-24	5	1	1	1	1	1	1	0	0.0%	0.0%
SED17-08	5	f	1	1	1	1	1	0	0.0%	0.0%
\$ED17-06	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	4.0%
SED17-09	5	0.92	0.784	1	1	0.8	1	0.04899	11,91%	8.0%
SED17-13	5	1	1	1	1	1	1	0	0.0%	0.0%
SED17-17	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	4.0%
SED17-20	5	0.84	0.6322	1	0.8	0.6	1	0.07483	19.92%	16.0%
SED17-18	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	4.0%
\$ED17-19	5	0.8	0.4488	1	1	0.4	1	0.1265	35.36%	20.0%
SED17-12	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	4.0%
SED17-01	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	4.0%
SED17-03	5	0.96	0.8489	1	1	8.0	1	0.04	9.32%	4.0%
SED17-29	5	1	1	1	1	1	1	0	0.0%	0.0%
SED17-27	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	4.0%

Angular (Corrected) Transformed Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-24	5	1.345	1.345	1.346	1,345	1.345	1.345	0	0.0%	0.0%
SED17-08	5	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%
SED17-06	5	1.298	1.165	1.43	1.345	1.107	1.345	0.04763	8.21%	3.54%
SED17-09	5	1.25	1.088	1.412	1.345	1,107	1.345	0.05833	10.43%	7.08%
SED17-13	5	1,345	1,345	1.346	1.345	1.345	1.345	0.00033	0.0%	0.0%
SED17-17	5	1.298	1.165	1,43	1.345	1.107	1.345	0.04763	8.21%	3.54%
\$ED17-20	5	1.158	0.9183	1.398	1.107	0.8861	1.345	0.08639	16.68%	3.54% 13.91%
SED17-18	5	1,298	1.165	1.43	1.345	1.107	1.345	0.00039	8.21%	
SED17-19	5	1.121	0.7304	1,512	1.345	0.6847	1.345	0.1408		3.54%
\$ED17-12	5	1.298	1.165	1.43	1.345	1.107	1.345		28.08%	16.65%
SED17-01	5	1.298	1.165	1,43	1.345	1.107	-	0.04763	8.21%	3.54%
SED17-03	5	1.298	1.165	1.43	1.345	-	1.345	0.04763	8.21%	3.54%
SED17-29	5	1.345	1.345	1.346		1.107	1.345	0.04763	8.21%	3.54%
\$ED17-27	5	1.298			1.345	1.345	1.345	0	0.0%	0.0%
	3	1.230	1.165	1.43	1.345	1.107	1.345	0.04763	8.21%	3.54%

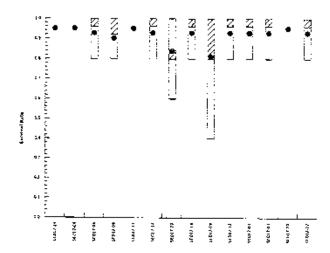
Report Date: Test Code: 21 Jun-17 11:22 (p 3 of 4) 170471a | 03-9301-7863

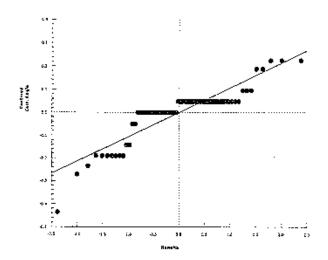
Neanthes 20-d Survival and Growth Sediment Test Analysis ID: Analysis ID: Analysis ID: 21 Jun-17 10:48 Endpoint: Analysis: Nonparametric-Two Sample CETIS Version: Official Results: Survival Rate Detail Sample Code Rep 1 Rep 2 Rep 4 Rep 5 SED17-24 1	Nautilus Environmental
Analyzed: 21 Jun-17 10:48 Analysis: Nonparametric-Two Sample Official Results: Survival Rate Detail Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 SED17-24 1 1 1 1 1 1 SED17-08 1 1 1 1 1 1 SED17-09 0.8 1 1 1 0.8 1 <td< th=""><th>Nauthus Environmentar</th></td<>	Nauthus Environmentar
Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 SED17-24 1 1 1 1 1 SED17-08 1 1 1 1 1 SED17-06 1 1 1 0.8 1 SED17-09 0.8 1 1 1 0.8 SED17-13 1 1 1 1 1 SED17-17 1 1 1 0.8 1 SED17-20 0.6 1 0.8 1 0.8 SED17-18 1 1 1 1 0.8 SED17-19 1 1 1 1 0.8 SED17-01 0.8 1 1 1 1 0.8	CETISv1.8.7 Yes
SED17-24 1 0.8 1 2 1	
SED17-24 1 1 1 1 1 SED17-08 1 1 1 1 1 SED17-06 1 1 1 0.8 1 SED17-09 0.8 1 1 1 0.8 SED17-13 1 1 1 1 1 SED17-17 1 1 1 0.8 1 SED17-18 1 1 1 0.8 SED17-19 1 1 1 1 0.8 SED17-12 1 1 1 1 0.8 SED17-01 0.8 1 1 1 1 1	
SED17-08 1 1 1 1 1 SED17-06 1 1 1 0.8 1 SED17-09 0.8 1 1 1 0.8 SED17-13 1 1 1 1 1 SED17-17 1 1 1 0.8 1 SED17-20 0.6 1 0.8 1 0.8 SED17-18 1 1 1 1 0.8 SED17-19 1 1 1 1 0.8 SED17-01 0.8 1 1 1 1 SED17-01 0.8 1 1 1 1	
SED17-06 1 1 1 0.8 1 SED17-09 0.8 1 1 1 0.8 SED17-13 1 1 1 1 1 SED17-17 1 1 1 0.8 1 SED17-20 0.6 1 0.8 1 0.8 SED17-18 1 1 1 1 0.8 SED17-19 1 1 1 1 0.8 SED17-12 1 1 1 1 0.8 SED17-01 0.8 1 1 1 1 SED17-01 0.8 1 1 1 1	
SED17-09 0.8 1 1 1 0.8 SED17-13 1 1 1 1 1 SED17-17 1 1 1 0.8 1 SED17-20 0.6 1 0.8 1 0.8 SED17-18 1 1 1 1 0.8 SED17-19 1 1 0.4 0.6 1 SED17-12 1 1 1 0.8 SED17-01 0.8 1 1 1 1 SED17-01 0.8 1 1 1 1	
SED17-13 1 1 1 1 1 SED17-17 1 1 1 0.8 1 SED17-20 0.6 1 0.8 1 0.8 SED17-18 1 1 1 1 0.8 SED17-19 1 1 0.4 0.6 1 SED17-12 1 1 1 0.8 SED17-01 0.8 1 1 1 1	
SED17-17 1 1 1 0.8 1 SED17-20 0.6 1 0.8 1 0.8 SED17-18 1 1 1 0.8 SED17-19 1 1 0.4 0.6 1 SED17-12 1 1 1 0.8 SED17-01 0.8 1 1 1 1 SED17-01 0.8 1 1 1 1	
SED17-20 0.6 1 0.8 1 0.8 SED17-18 1 1 1 1 0.8 SED17-19 1 1 0.4 0.6 1 SED17-12 1 1 1 1 0.8 SED17-01 0.8 1 1 1 1 SED17-02 0.8 1 1 1 1	
SED17-18 1 1 1 1 0.8 SED17-19 1 1 0.4 0.6 1 SED17-12 1 1 1 0.8 SED17-01 0.8 1 1 1 1 SED17-02 0.8 1 1 1 1	
SED17-19	
SED17-12	
SED17-01 0.8 1 1 1 1	
PEDAT 02	
5.0	
\$ED47.50	
SED17-29 1 1 1 1 1 1 SED17-27 1 1 1 0.8 1 1	
Angular (Corrected) Transformed Detail	· · · · · · · · · · · · · · · · · · ·
Paralla 9 4	
The state of the s	
DEDA A	
200	
SEPARADO INTERNACIONAL DE LA CONTRACTOR	
PED47.40	
DEDA -	
DEDAT TO	
CEDAT 40	
PEDAZ 4D	
PEDATAA	
OFFIAT DA	
CED47 Ad	
DEDAT OF	
SED47-17	
SED17-27 1.345 1.345 1.107 1.345 1.345 Survival Rate Binomials	
Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5	
SED17-24 5/5 5/5 5/5 5/5 5/5	· · · · · · · · · · · · · · · · · · ·
SED17-08 5/5 5/5 5/5 5/5	
SED17-06 5/5 5/5 5/5 4/5 5/5	
SED17-09 4/5 5/5 5/5 5/5 4/6	
SED17-13 5/5 5/5 5/5 5/5	
SED17-17 5/5 5/5 5/5 4/5 5/5	
SED17-20 3/5 5/5 4/5 5/5 4/5	
SED17 10	
SED17-10	
SED17.40	
SED47 04	
SED17.03	
SED17.20	
SED17-57	
SED17-27 5/5 5/5 4/5 5/5 5/5	

Analyst: JW July24/17

Report Date:

21 Jun-17 11:22 (p 4 of 4) 170471a | 03-9301-7863


Neanthes 20-d Survival and Growth Sediment Test


Nautilus Environmental

Analysis ID: 04-2474-2326 Endpoint: Survival Rate CETIS Version: CETISv1.8.7

Analyzed: 21 Jun-17 10:48 Analysis: Nonparametric-Two Sample Official Results: Yes

Graphics

Analyst: JW Qx My 24/7

Report Date:

21 Jun-17 11:59 (p 1 of 3)

	, .,				_			Test Code:		17	0471a 03-9301	i-78 6
Neanthes 20-c	Survival and Growth	Sediment Tee	st							Nau	tilus Environm	enta
Analysis ID:	18-6485-5789	Endpoint: T	otai Dry	Weight	• • • • • • • • • • • • • • • • • • • •			CETIS Vers	eian:	CETISv1.8		
Analyzed:	21 Jun-17 11:57		-	ic-Two Samp	le			Official Res		Yes	,. r	
Batch ID:	04-5200-1789	Test Type: S	แกงival-0	Srowth	_	=		Analyst:		Wijaya		
Start Date:	26 May-17	,,	SEP (19					Diluent:		al seawater		
	15 Jun-17			arenaceode	ntata			Brine:	144(4)	01.550410101		
Duration:	20d 0h	•		oxicology Su				Age:				
Sample Code	Sample ID	Sample		Receive Da				Client Nam			Decinat	
SED17-24	05-6632-5205	<u> </u>) 15 May-17		Sample 1 23d 7h		Golder	ié		Project	
SED17-08	10-1003-8381			15 May-17				Golder				
SED17-06	19-4215-8235			15 May-17								
SED17-09	13-9590-2568			15 May-17								
SED17-13	02-1258-2667			16 May-17								
SED17-17	06-5820-5843			15 May-17								
SED17-20	00-0790-7357			15 May-17								
SED17-18	04-2524-4947) 15 May-17								
SED17-19	07-6812-4215) 15 May-17								
SED17-12	01-4413-4098) 15 May-17								
SED17-01	05-6502-2240) 15 May-17								
ED17-03	05-1816-3513	-) 15 May-17								
ED17-29	08-4658-3752) 15 May-17								
ED17-27	15-8574-8565) 15 May-17) 15 May-17								
ample Code	Material Type	Sample				Station	· ·			Latitude	1 oppiles do	
ED17-24	Sediment Samp		000100			SED17-2		<u> </u>		Cantube	Longitude	:
ED17-08	Sediment Samp					\$ED17-0						
ED17-06	Sediment Samp					\$ED17-0						
ED17-09	Sediment Samp					SED17-0						
ED17-13	Sediment Samp					SED17-1						
ED17-17	Sediment Samp					SED17-1						
ED17-20	Sediment Samp					SED17-2						
ED17-18	Sediment Samp					SED17-1						
ED17-19	Sediment Samp					SED17-1						
ED17-12	Sediment Samo					SED17-1						
ED17-01	Sediment Samp					SED17-0						
ED17-03	Sediment Samp					SED17-0						
ED17-29	Sediment Samp					SED17-2						
ED17-27	Sediment Samp					SED17-2						
ata Transform	T Zeta	Alt Hyp	Trial	s Seed			PMSI	D Tont	Populi	 :		
Intransformed	NA	C > T	NA	NA NA			25.19		Result	<u> </u>		
qual Variance	e t Two-Sample Test							-				
ample Code	vs Sample Code	Test Sta	t Critic	cat MSD	ĎΕ	P-Value	Р-Тур	no Daci-	sion(g:	-60L1		
ED17-24	SED17-08	0.8804	1.86	8.964	8	0.2022	CDF			ant Effect	 ·	· · · · · ·
	SED17-06	0.07304	1.85	6.671		0.4718	CDF		_	ant Effect		
	SED17-09	2.068	1.86	9.436		0.0362	ÇDF		ficant E			
	SED17-13	0.6394	1.86	7.061		0.2702	CDF	•		ant Effect		
	SED17-17	-0.3909	1.86	10.42		0.6470	CDF			ant Effect		
	SED17-20	1.73	1.86	10.15		0.0609	CDF			ant Effect		
	SED17-18	3.28	1.86	5.254		0.0056	CDF		icant E			
	SED17-19	2.37	1.65	12.39		0.0226	CDF		ficant E			
	SED17-12	3.078	1.86	5.66	8	0.0076	CDF		îcant E			
	SED17-01	0.8397	1.86	6.179		0.2127	CDF			ant Effect		
	SED17-03	1.482	1.86	7 925	8	0.0884	CDE	Non 9	- Signifia	ant Effect		

an July 24/17

CDF

ÇDF

CDF

Non-Significant Effect

Non-Significant Effect

Non-Significant Effect

SED17-29

SED17-27

1.498

-0.7852

1.86

1.85

1.86

7.925 8 0.0884

7.393 8 0.0863

12.12 8 0.7725

Report Date: Test Code:

21 Jun-17 11:59 (p 2 of 3) 170471a | 03-9301-7863

_	·					Test	Code:	3-9301-766		
Neanthes 20-	d Survival and Growth	Sediment	Test					N:	autilus Env	/ironmenta:
Analysis ID:	18-6485-5789	Endpoint:	Total Dry Weig	ħt		CET	IS Version:	CETISV	1.8.7	
Analyzed:	21 Jun-17 11;57	Analysis:	Parametric-Two	o Sample		Offic	cial Results:	Yes		
ANOVA Table	:								•	
Source	Sum Squares	Mean	Square	DF	F Stat	P-Value	Decision(d	a:5%)		
Setween	2099.04	161.4	1646	13	2.197	0.0216	Significant	Effect		
Error	4114.933	73.48	094	56			-			
Total	6213.974		'	69	•					
Distributional	Tests									
Attribute	Test		Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Bartlett Equality	of Variance	19.54	27.69	0.1074	Equal Val				
Distribution	Shapiro-Wilk W		0.9713	0.9526	0.1078		istribution			
Total Dry Wei	·			- .					•	
Sample Code	-	nt M ean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
\$ED17-24	5	48.3	41.09	55.5	46.31	40.71		2.595	12.02%	
SED17-08	5	44.05		55.33			55.19			0.0%
\$ED17-06	5	48.03		54.91	42.99 46.86	32.26	53.26	4.062	20.62%	8.79%
SED17-09	5	37.8	25.7			41.52	56.63	2.477	11.53%	0.54%
SED17-13	5	45.87		49.91	38.08	26.52	49.35	4.36	25.79%	21.72%
SED17-17	5	50 49		53.56	49.61	37.63	51.27	2.772	13.51%	5.03%
SED17-20	5	38.85		64.27	50.49	34,17	65.46	4.964	21.99%	-4.53%
\$ED17-18	5	39.03		52.19	42.9	21.52	48.98	4.803	27.64%	19.56%
SED17-19	5	32.51		42.13	39.23	35.19	41.39	1.117	6.4%	19.19%
\$ED17-12	5	38.93		49.54	31.67	12.68	47.04	6.135	42.2%	32.69%
SED17-01	5	45.51		43.34	41.05	34.6	41.94	1.59	9.13%	19.4%
SED17-03	5	41.98		51.27	45.7 6	39.24	51.6	2.075	10.2%	5.78%
SED17-29	5	42.34	-	51.37	37.98	35.81	\$3.5	3.38	18.0%	13.07%
SED17-27	5	53.41		50.7 70.01	41.92 57.41	35.58 30.05	51,7 64.46	3.012	15.91%	12.33%
Total Dry Wei					37.41	30.05	64.16	5.979	25.03% 	-10.6%
Sample Code	-									
SED17-24	Rep 1		-	Rep 4	Rep 5					
SED17-08				52.96	46.31					
SED17-06	52.89			38.86	32.26					
SED17-09	41.52			49.09	46.86					
	26.52			45.26	29.81					
SED17-13	37.63			49.61	50.01					
SED17-17	52.04		50.49	34.17	50 27					
SED17-20	21.52		42.9	44.73	36.12					
SED17-18	41.39	38.29	35.19	39.23	41.04					
SED17-19	31.67	47.04	12.68	27.54	43.6					
SED17-12	41.05	41.52	34.6	35.53	41.94					
SED17-01	45.76		51,6	43.27	39.24					
SED17-03	35.81		53.5	45.83	36.79					
SED17-29	35.58									
SED17-27			36.48	51.7	41.92					
	57.41	58.23	30.05	64.16	57.22					

Analysi: JW of My 24/17

000-469-187-2

CETI\$*** v1.8.7.16

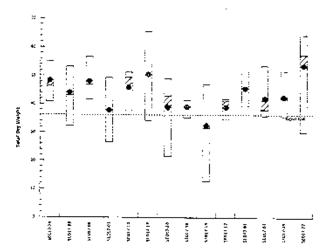
Report Date: Test Code:

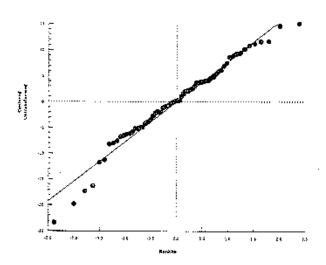
21 Jun-17 11:59 (p 3 of 3) 170471a | 03-9301-7863

Neanthes 20-d Survival and Growth Sediment Test

Nautilus Environmental

Analysis ID: Analyzed:


18-6485-5789 21 Jun-17 11:57 Endpoint: Total Dry Weight Analysis:


Parametric-Two Sample

CETIS Version: Official Results: Yes

CETISv1.8.7

Graphics

Analyst: つい

Report Date: Test Code: 21 Jun-17 11:22 (p 1 of 3) 170471a | 03-9301-7863

								Test Code	:	1	70471a 0	3-9301-786
Neanthes 20-c	1 Survival and Growth	Sediment T	est							Na	utilus Env	rironmenta)
Analysis ID: Analyzed:	-	Endpoint: Analysis:		Weight-mg c-Two Sample	ę	·		CETIS Ver Official Re		CETISv1 Yes	.8.7	
Batch ID:	04-5200-1789	Test Type:	Survival-C					Analyst:	Jestin	Wijaya		
Start Date:		•	PSEP (19					Diluent:		al seawate	er.	
Ending Date:	15 Jun-17	Species:	Neanthes	arenaceoden	tata			Brine:				
Duration:	20d Oh	Source:		oxicology Sup				Age:				
Sample Code	Sample ID	Samp	le Date	Receive Dat	te	Samp	le Age	Client Nan	 1e		Project	
SED17-24	05-6632-5205	02 Ma	y-17 17:00	15 May-17 1	0:30	<u> </u>		Golder				<u> </u>
SED17-08	10-1003-8381			15 May-17 1								
SED17-06	19-4215-8235			15 May-17 1								
SED17-09	13-9590-2668			15 May-17 1								
SED17-13	02-1258-2667			15 May-17 1								
SED17-17	06-5820-5843			15 May-17 1								
SED17-20	00-0790-7357			15 May-17 1								
SED17-18	04-2524-4947			15 May-17 1								
SED17-19	07-6812-4215			15 May-17 1								
SED17-12	01-4413-4098			15 May-17 1								
SED17-01	05-6502-2240			15 May-17 1								
SED17-03	05-1816-3513											
SED17-29	08-4658-3752			15 May-17 1								
SED17-27	15-8574-8585			15 May-17 1								
	·	-		15 May-17 1	0:30) 20 0 7	h (5.5 °C)					
Sample Code SED17-24	Material Type		e Source			_	n Location	<u>n</u>		Latitude	Lôn	gitude
SED17-24	Sediment Sampl					SED17						
SED17-06	Sediment Sampl					SED17						
_	Sediment Sampl					SED17						
SED17-09	Sediment Sampl					SED17						
SED17-13	Sediment Sampl					SED17	7-13					
SED17-17	Sediment Sampl					SED17	⁷ -17					
SED17-20	Sediment Sampl					SED17	'-20					
SED17-18	Sediment Sampl					SED17	7-18					
SED17-19	Sediment Sampl					SED17	7 - 19					
SED17-12	Sediment Sample	le Golder				SED17	-12					
SED17-01	Sediment Sampl					SED17	' - 01					
SED17-03	Sediment Sampl					SED17	-03					
SED17-29	Sediment Sampt					SED17	-29					
SED17-27	Sediment Sample	e Golder				SED17						
Data Transform	Zeta	Alt Hy	p Trials	Seed	_		PMSI	D Test	Result			
Intransformed	NA NA	C>T	NA	NA			20.19					·
qual Variance	t Two-Sample Test											
Sample Code	vs Sample Code	Test St	at Critic	al MSD	DF	P-Valu	e P-Typ	oe Decir	sion(a:	5%)		
ED17-24	SED17-08	0.8804			8	0.2022				ant Effect		
	SED17-06	-0.4879		1 671		0.6807				ant Effect		
	SED17-09	1.962	1.86	1.455		0.0427	CDF		Scant E			
	SED17-13	0.6394	1.86	1.412		0.2702	CDF	_		ant Effect		
	SED17-17	-0.8639		1.678		0.7936	CDF		_	ant Effect		
	SED17-20	0.671	1.86	1.455		0.2605	CDF		_	ant Effect		
	\$ED17-18	1.911	1.86	1.404		0.0462	CDF		icant E			
	SED17-19	1.932	1.86	1.6		0.0447	CDF		icant E			
	SED17-12	1.773	1.86	1.525		0.0571	CDF			ant Effect		
	\$ED17-01	0.1233	1.86	1.514	8	0.4524	CDF			ent Effect		
	SED17-03	1 136	1.86	1.48	8	0.1443	CDF			ant Effect		•
	\$ED17-29	1.498	1.86	1.479	8	0.0863	CDF			ant Effect		111
	\$E017-2 7	-1.27	1.86	1.939	8	0.8800	CDF			ant Effect		Ef/

nalyst: JW Oxily 24/7

Report Date: Test Code: 21 Jun-17 11:22 (p 2 of 3) 170471a | 03-9301-7863

	·		Tes	t Code:		170471a 0	3-9301-789			
Neanthes 20-	d Survival and Growti	h Sediment	Test	,				N	autilus Em	/ironmenta
Analysis ID:	17-5782-2073	Endpoint:	Mean Dry Weig	ght-mg		CET	IS Version:	CETISV	1.8.7	•••
Analyzed:	21 Jun-17 10:49	Analysis:	Parametric-Tw	o Sample		Offi	cial Results:	Yes		
ANOVA Table										
Source	Sum Squares	Mear	Square	DF	FStat	P-Value	Decision(a: 5%)		
Between	56.08031	4.313	87	13	1.974	0.0406	Significant			
Ettöt	122.3938	2.185	603	56			_			
Total	178,4741	.,,	-	69	_					
Distributional	Tests	 -								
Attribute	Test		Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Bartlett Equality	of Variance		27.69	0.9990	Equal Va				
Distribution	Shapiro-Wilk W		0.9792	0.9526	0.2955		istribution			
Mean Dry Wei	ight-mg Summary									
Sample Code	•	nt Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-24	5	9.659		11.1	9.262	8.142	11.04	0.5191	12.02%	0.0%
SED17-08	5	8.81	6.555	11.07	8.598	6.452	10.65		20.62%	
SED17-06	5	10.1	8.061	12.13	9.372	8.304		0.8124		8.79%
SED17-09	5	8.124		9.749	7.616		12.27	0.7336	16.25%	-4.54%
SED17-13	5	9.174		10.71		6.63	9.87	0.5853	16.11%	15 89%
SED17-17	5	10.44		12.49	9.922	7.526	10.25	0.5544	13.51%	5.03%
SED17-20	5	9.134		10.76	10.1	8.542	13.09	0.7383	15.81%	8.07%
SED17-18	5	8.216		9.739	9.03	7.173	10.72	0.5857	14.34%	5.44%
\$ED17-19	5	7.996		9.902	7.846	7.038	10.26	0.5485	14.93%	14,94%
SED17-12	5	8.205		9.968	8.72	6.334	9.408	0.6865	19.2%	17.21%
SED17-01	5	9.559	7.818		8.21	6.92	10.49	0.6351	17.31%	15.05%
SED17-03	5	8.755	-	11.3	9.532	7.848	11.44	0.6271	14.67%	1.04%
SED17-29	5	8.468	8.796	10.43 10.14	8.952	7.358	10.7	0.6036	15.42%	9.37%
SED17-27	5	10.98	8.472	13.49	8.384 11.48	7.116 7.512	10.34 12.83	0.6024 0.9046	15.91% 18.42%	12.33%
Mean Dry Wei	ght-mg Detail			-				0.3040	10.4270	-13.71%
Sample Code	Rep	1 Rep 2	Rep 3	Rep 4	Don 6					
SED17-24	8.142		11.04	10.59	Rep 5 9.262					
SED17-08	10.58		10.65							
SED17-06	8.304			7.772	6.452					
SED17-09			9.214	12.27	9.372					
SED17-13	6.63	7.616	9.87	9.052	7.452					
	7.526		10.25	9.922	10					
SED17-17	10.41		10.1	8.542	10.05					
SED17-20	7.173		10.72	8.946	9.03					
SED17-18	8.278		7:038	7.846	10.26					
ED17-19	6.334	9.408	6.34	9.18	8.72					
ED17-12	8.21	8.304	6.92	7.106	10.49					
ED17-01	11.44	9.532	10.32	8.654	7.848					
ED17-03	8.952		10.7	9.166	7.358					
SED17-29	7.116		7.296	10.34						
)	7.110	3.240	7.230	10.34	8.384					

Analyst: NN aduly 24/19

000-469-187-2

SED17-27

11.48

11.65

7.512

12.83

11.44

CETI\$™ v1.8.7.16

Report Date:

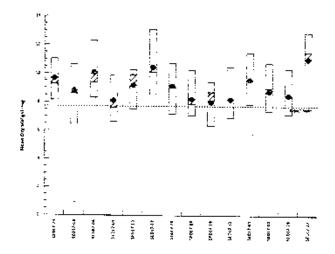
21 Jun-17 11:23 (p 3 of 3) 170**471a** | 03-9301-7863

Test Code: Neanthes 20-d Survival and Growth Sediment Test

Nautilus Environmental

Analysis ID: Analyzed:

17-5782-2073 21 Jun-17 10:49


Analysis:

Endpoint: Mean Dry Weight-mg Parametric-Two Sample

CETIS Version: Official Results: Yes

CETISV1.8.7

Graphics

Report Date:

21 Jun-17 11:23 (p 1 of 3)

								Test Code	:: ::			03 -93 01-7863
Neanthes 20-	d Survival and Growth	Sediment T	est	_								vironmental
Analysis ID:	19-1681-4692	Endpoint:	Individual	Growth Rate	 e			CETIS Ver	sion:	CETISv1.	8.7	- .
Analyzed:	21 Jun-17 10:49	Analysis:		ic-Two Samp				Official Re		Yes	0.7	
Batch ID:	04-5200-1789	Test Type:	Survival-0	Growth				Analyst:	Jeslir	Wijaya		
Start Date:	26 May-17	Protocol:	PSEP (19	195)				Diluent:		al seawate	г	
Ending Date:	15 Jun-17	Species:	Neanthes	arenaceode	ntat	a		Brine:				
Duration:	20d Oh :	Source:	Aquatic T	oxicology Su	oqqı	rt, WA		Age:				
Sample Code	Sample ID	Samp	le Date	Receive D	ate	Sample	a Age	Client Nan	ne		Project	
SED17-24	05-6632-5205	02 Ma	y-17 17:00	15 May-17	10:3	0 23d 7h	(6 °C)	Golder				
SED17-08	10-1003-8381	26 Apr	-17 17:00	15 May-17	10:3	0 29d 7h	(7.5 °C)					
SED17-06	19-4215-8235	26 Apr	-17 17:00	15 May-17	10:3	i0 29ď 7h	(7.5 °C)					
SED17-09	13-9590-2568	29 Apr	-17 17:00	15 May-17	10:3	0 26d 7h	(8.5 °C)					
SED17-13	02-1258-2667	29 Apr	-17 17:00	15 May-17	10:3	0 26d 7h	(7.5 °C)					
SED17-17	06-5820-5843	30 Apr	-17 17:00	15 May-17	10:3	0 25d 7h	(7 °C)					
SED17-20	00-0790-7357	01 May	y-1 7 17:00	15 May-17	10:3	0 24d 7h	(7 °C)					
SED17-18	04-2524-4947			15 May-17								
SED17-19	07-6812-4215			15 May-17								
SED17-12	01-4413-4098			15 May-17								
SED17-01	05-6502-2240			15 May-17			. ,					
SED17-03	05-1816-3513			15 May-17								
SED17-29	08-4658-3752			15 May-17								
SED17-27	15-8574-8565			15 May-17								
Sample Code	Material Type	Sampl	e Sourçe		_	Station	Locatio	 R		Latitude	ion	igitude
SED17-24	Sediment Sample	e Golder				SED17-						igitaat
\$ED17-08	Sediment Sample	e Golder				SED17-						
\$ED17-06	Sediment Sample	e Golder				SED17-						
SED17-09	Sediment Sample	e Goider				SED17-						
SED17-13	Sediment Sample	e Golder				SED17-						
\$ED17-17	Sediment Sample	e Golder				SED17-						
SED17-20	Sediment Sample	e Golder				SED17-						
SED17-18	Sediment Sample	e Golder				SED17-						
SED17-19	Sediment Sample	e Golder				SED17-						
SED17-12	Sediment Sample					SED17-						
\$ED17-01	Sediment Sample					SED17-						
SED17-03	Sediment Sample					SED17-						
SED17-29	Sediment Sample					SED17-						
SED17-27	Sediment Sample					SED17-						
Data Transform	T Zeta	Alt Hy	Trials	Seed	- -		PMS.	D Tast	Result	·		
Untransformed	NA	C > T	NA	NA.			21.29		Result			
Equal Variance	t Two-Sample Test		- .									
Sample Code	vs Sample Code	Test St	at Critic	al M \$D	DF	P-Value	P-Ty;	ne Decid	slon(q;	5%)		
SED17-24	SED17-08	0.8804	1.86	0.09	8	0.2022	CDF		<u> </u>	ant Effect		
	SED17-06	-0.4879		0.084	8	0.6807	CDF			ant Effect		
	SED17-09	1.962	1.86	0.073		0.0427	CDF		ficant E			
	SED17-13	0.6394	1.86	0.071		0.2702	CDF			ent Effect		
	SED17-17	-0.8639	1.86	0.084		0.7936	CDF			int Effect		
	SED17-20	0.671	1.86	0.073		0.2605	CDF			int Effect		
	SED17-18	1.911	1.86	0.070		0.0462	CDF		icant E			
	SED17-19	1.932	1.86	0.080		0.0447	GDF		icant E			
	\$ED17-12	1.773	1.86	0.076		0.0571	CDF			int Effect		
	SED17-01	0.1233	1.86	0.076		0.4524	CDF		_	int Effect		
	\$ED17-03	1.136	1.86	0.074		0.1443	CDF			int Effect		
	SED17-29	1.498	1.86	0.074	8	0.0863	CDF			int Effect		
	SED17-27	-1.27	1.86	0.097	8	0.8860	COF		_	int Effect		EU

nalyst DW OAJULY 24/17

Report Date:

21 Jun-17 11:23 (p 2 of 3)

Test Code: 170471a | 03-9301-7863 Neanthes 20-d Survival and Growth Sediment Test Nautilus Environmental Analysis ID: 19-1681-4692 Endpoint: Individual Growth Rate **CETIS Version: CETISv1.8.7** Analyzed: 21 Jun-17 10:49 Analysis: Parametric-Two Sample Official Results: Yes ANOVA Table Source Sum Squares Mean Square DF F Stat P-Value Decision(a:5%) Between 0.1402008 0.01078467 13 1.974 0.0406 Significant Effect 0.005464006 Error 0.3059843 56 Total 0.4461851 69 Distributional Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variances	Bartlett Equality of Variance	2.599	27.69	0.9990	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.9792	0.9526	0.2955	Normal Distribution

Individual Growth Rate Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-24	5	0.4572	0.3852	0.5293	0.4374	0.3813	0.5262	0.02595	12.69%	0.0%
SED17-08	5	0.4148	0.302	0.5276	0.4041	0.2969	0.5069	0.04062	21,9%	9.28%
SED17-06	5	0.4791	0.3773	0.581	0.4428	0.3894	0.5879	0.03668	17.12%	-4.8%
SED17-09	5	0.3805	0.2992	0.4617	0.3551	0.3057	0.4677	0.02926	17.2%	16,79%
SED17-13	5	0.4329	0.356	0.5099	0.4703	0.3506	0.487	0.02772	14.32%	5.31%
SED17-17	5	0.4962	0.3937	0.5987	0.4791	0.4014	0.6288	0.03691	16.63%	-8.53%
\$ED17-20	5	0.431	0.3497	0.5123	0.4257	0.3329	0.5105	0.02928	15.19%	5.74%
SED17-18	5	0.3851	0.3089	0.4612	0.3665	0.3262	0.4873	0.02743	15.93%	15.78%
SED17-19	5	0.3741	0.2788	0.4694	0.4102	0.291	0.4447	0.03432	20.52%	18.18%
SED17-12	5	0.3845	0.2963	0.4727	0.3848	0.3203	0.4985	0.03176	18.47%	15.9%
SED17-01	5	0.4522	0.3651	0.5392	0.4508	0.3666	0.5463	0.03135	15.5%	1.1%
SED17-03	5	0.412	0.3282	0.4958	0.4219	0.3421	0.5092	0.03018	16.38%	9.89%
SED17-29	5	0.3977	0.314	0.4813	0.3934	0.3301	0.4912	0.03012	16.94%	13.02%
SED17-27	· 5	0.5234	0.3978	0.649	0.5484	0.3499	0.6159	0.04523	19.32%	-14,48%

Individual Growth Rate Octail

Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
SED17-24	0.3813	0.4374	0.5262	0.5038	0.4373
SED17-08	0.5032	0.4041	0.5069	0.3629	0.2969
SED17-06	0.3894	0.5406	0.4349	0.5879	0.4428
SED17-09	0.3057	0.3551	0.4677	0.4269	0.3469
SED17-13	0.3506	0.3825	0.487	0.4703	0.4743
SED17-17	0.4946	0.6288	0.4791	0.4014	0.477
SED17-20	0.3329	0.464	0.5105	0.4215	0.4257
SED17-18	0.3881	0.3572	0.3262	0.3665	0.4873
SED17-19	0.291	0.4447	0.2913	0.4333	0.4102
SED17-12 .	0.3848	0.3895	0.3203	0.3296	0.4985
SED17-01	0.5463	0.4508	0.4902	0.407	0.3666
SED17-03	0.4219	0.3541	0.5092	0.4326	0.3421
SED17-29	0.3301	0.4346	0.339	0.4912	0.3934
SED17-27	0.5484	0.5565	0.3499	0.6159	0.5464

Analyst: JW DA July 24/17

Report Date: Test Code:

21 Jun-17 11:23 (p 3 of 3) 170471a | 03-9301-7863

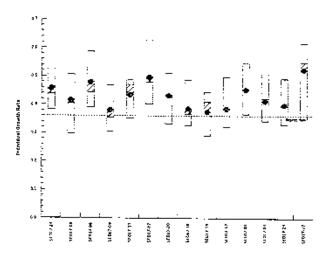
Neanthes 20-d Survival and Growth Sediment Test

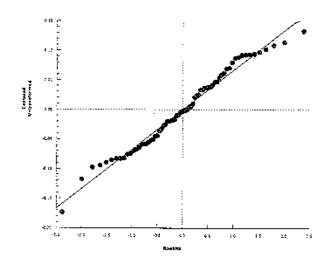
Nautilus Environmental

Analysis ID: Analyzed:

19-1681-4692 21 Jun-17 10:49

Analysis:


Endpoint: Individual Growth Rate Parametric-Two Sample


CETIS Version:

CETISV1.8.7

Official Results: Yes

Graphics

Ending Date: 15 Jun-17

Report Date:

21 Jun-17 11:59 (p 1 of 5)

Test Code: 170471b | 11-9861-4236

Neanthes 20-d Survival and Growth Sediment Test

Nautilus Environmental

Batch ID: Start Date: 05-7709-2624 26 May-17

Species:

Test Type: Survival-Growth Protocol: PSEP (1995)

Neanthes arenaceodentata

Analyst: Diluent:

Jestin Wijaya Natural seawater

Brine: Age:

Duration:	20d Oh \$	ource: Aquatic 1	loxicology Support, WA	Age:		
Sample Code	Sample ID	Sample Date	Receive Date Sample Age	Client Name	F	Project
SED17-29	08-4658-3752	04 May-17 17:0	0 15 May-17 10:30 21d 7h (8.5 °	°C) Golder		
SED17-08	10-1003-8381		15 May-17 10:30 29d 7h (7.5 °	•		
SED17-06	19-4215-8235		15 May-17 10:30 29d 7h (7.5 °	•		
SED17-09	13-9590-2568		15 May-17 10:30 26d 7h (8.5 °	•		
SED17-13	02-1258-2667		15 May-17 10:30 26d 7h (7.5°	•		
SED17-17	06-5820-5843		15 May-17 10:30 25d 7h (7 °C	•		
\$ED17-20	00-0790-7357		0 15 May-17 10:30 24d 7h (7 °C	•		
SED17-18	04-2524-4947		0 15 May-17 10:30 23d 7h (4 °C			
SED17-19	07-6812-4215		0 15 May-17 10:30 23d 7h (5.5°	•		
SED17-24	05-6632-5205		0 15 May-17 10:30 23d 7h (6 °C	•		
SED17-12	01-4413-4098		0 15 May-17 10:30 21d 7h (5 °C	•		
SED17-01	05-6502-2240		0 15 May-17 10:30 21d 7h (5.8°	•		
\$ED17-03	05-1816-3513		0 15 May-17 10:30 21d 7h (7.2°			
SED17-27	15-8574-8565		0 15 May-17 10:30 20d 7h (5.5°	•		
Sample Code	Material Type	Sample Source	Station Loca	tion	Latitude	Longitude
SED17-29	Sediment Sample	Golder	SED17-29			22
SED17-08	Sediment Sample	Golder	SED17-08			
SED17-06	Sediment Sample	: Golder	SED17-06			

Sample Code	Material Type	Sample Source	Station Location	Latitude	Longitude
SED17-29	Sediment Sample	Golder	SED17-29		
SED17-08	Sediment Sample	Golder	SED17-08		
SED17-06	Sediment Sample	Golder	SED17-06		
SED17-09	Sediment Sample	Golder	SED17-09		
SED17-13	Sediment Sample	Golder	SED17-13		
SED17-17	Sediment Sample	Golder	SED17-17		
SED17-20	Sediment Sample	Golder	SED17-20		
SED17-18	Sediment Sample	Golder	SED17-18		
SED17-19	Sediment Sample	Golder	SED17-19		
SED17-24	Sediment Sample	Golder	\$ED17-24		
SED17-12	Sediment Sample	Golder	SED17-12		
SED17-01	Sediment Sample	Golder	SED17-01		
SED17-03	Sediment Sample	Golder	SED17-03		
SED17-27	Sediment Sample	Golder	SED17-27		

21 Jun-17 11:59 (p 2 of 5) 170471b | 11-9861-4236

Neanthes 20-d Survival and	Growth Sediment	Test
----------------------------	------------------------	------

Nautilus Environmental

Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
SED17-29	5	0.3977	0.314	0.4813	0.3301	0.4912	0.03012	0.06735	16.94%	0.0%
SED17-08	5	0.4148	0.302	0.5276	0.2969	0.5069	0.04062	0.09083	21.9%	-4.3%
SED17-06	5	0.4791	0.3773	0.581	0.3894	0.5879	0.03668	0.08202	17.12%	-20.49%
SED17-09	5	0.3805	0.2992	0.4617	0.3057	0.4677	0.02926	0.06543	17.2%	4.33%
SED17-13	5	0.4329	0.356	0.5099	0.3506	0.487	0.02772	0.06199	14.32%	-8.87%
SED17-17	5	0.4962	0.3937	0.5987	0.4014	0.6288	0.03691	0.08254	16.63%	-24.78%
SED17-20	5	0.431	0.3497	0.5123	0.3329	0.5105	0.02928	0.06548	15.19%	-8.37%
\$ED17-18	5	0.3851	0.3089	0.4612	0.3262	0.4873	0.02743	0.06133	15.93%	3.17%
\$ED17-19	5	0.3741	0.2788	0.4694	0.291	0.4447	0.03432	0.07675	20.52%	5.93%
\$ED17-24	5	0.4572	0.3852	0.5293	0.3813	0.5262	0.02595	0.05803	12.69%	-14.97%
SED17-12	5	0.3845	0.2963	0.4727	0.3203	0.4985	0.03176	0.07101	18.47%	3.31%
SED17-01	5	0.4522	0.3651	0.5392	0.3666	0.5463	0.03135	0.07011	15.5%	-13.71%
SED17-03	5	0.412	0.3282	0.4958	0.3421	0.5092	0.03018	0.06748	16.38%	-3.6%
SED17-27	5	0.5234	0.3978	0.649	0.3499	0.6159	0.04523	0.1011	19.32%	-31,62%

Mean Dry Weight-mg Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
SED17-29	5	8.468	6.796	10.14	7.116	10.34	0.6024	1.347	15.91%	0.0%
SED17-08	5	8.81	6.555	11.07	6.452	10.65	0.8124	1.817	20.62%	-4.04%
\$ED17-06	5	10.1	8.061	12.13	8.304	12.27	0.7336	1.64	16.25%	-19.24%
SED17-09	5	8.124	6.499	9.749	6.63	9.87	0.5853	1.309	16.11%	4.07%
SED17-13	5	9.174	7.634	10.71	7.526	10.25	0.5544	1.24	13.51%	-B.33%
SED17-17	5	10.44	8.389	12.49	8.542	13.09	0.7383	1.651	15.81%	-23.27%
SED17-20	5	9.134	7.508	10.76	7.173	10.72	0.5857	1.31	14.34%	-7.86%
\$ED17-18	5	8.216	6.693	9.739	7.038	10.26	0.5485	1.227	14.93%	2.98%
SED17-19	5	7.996	6.091	9.902	6.334	9.408	0.6865	1.535	19.2%	5.57%
\$ED17-24	5	9.659	8.218	11,1	8.142	11.04	0.5191	1.161	12.02%	-14.06%
SED17-12	5	8.205	6.442	9.968	6.92	10.49	0.6351	1.42	17.31%	3.11%
SED17-01	5	9.559	7.818	11.3	7.848	11.44	0.6271	1.402	14.67%	-12.88%
SED17-03	5	8.755	7.079	10.43	7.358	10.7	0.6036	1.35	15.42%	-3.38%
SED17-27	5	10.98	8.472	13.49	7.512	12.83	0.9046	2.023	18.42%	-29.7%

Survival Rate Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
SED17-29	5	1	1	1	1	1	0	0	0.0%	0.0%
SED17-08	5	1	1	1	1	1	o o	o	0.0%	0.0%
SED17-06	5	0.96	0.6489	1	0.8	1	0.04	0.08944	9.32%	4.0%
SED17-09	5	0.92	0.784	1	8.0	1	0.04899	0.1095	11.91%	8.0%
SED17-13	5	1	1	1	1	1	0.04035	0.1033	0.0%	0.0%
SED17-17	5	0.96	0.8489	1	0.8	1	0.04	0.08944	9.32%	4.0%
\$ED17-20	5	0.84	0.6322	1	0.6	1	0.07483	0.1673	19.92%	16.0%
SED17-18	5	0.96	0.8489	1	0.8	1	0.04	0.08944	9.32%	
SED17-19	5	0.8	0.4488	1	0.4	1	0.1265	0.06944	•	4.0%
SED17-24	5	1	1	1	1	4			35.36%	20.0%
SED17-12	5	0.96	0.8489	4	0.8	,	0	0	0.0%	0.0%
SED17-01	5	0.96	0.8489	, 1		1	0.04	0.08944	9.32%	4.0%
\$ED17-03	5	0.95	0.8489	1	0.8	1	0.04	0.08944	9.32%	4.0%
SED17-27	5			1	0.8	1	0.04	0.08944	9.32%	4.0%
: 2:	3	0.96	0.8489	1	0.8	1	0.04	0.08944	9.32%	4.0%

Analyst: 3W QA MUSZ4117

000-469-187-2

Report Date:

21 Jun-17 11:59 (p 3 of 5)

Test Code: 170471b j 11-9861-4236

Neanthes 20-d Survival and	Growth Sediment Test
----------------------------	----------------------

Nautilus Environmental

Total Dry Weight Sumi	mary									
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
SED17-29	5	42.34	33.98	50.7	35.58	51.7	3.012	6.735	15.91%	0.0%
SED17-08	5	44.05	32.77	55.33	32.26	53.26	4.062	9.083	20.62%	4.04%
\$ED17-06	5	48.03	41.16	54.91	41.52	56.63	2.477	5.538	11.53%	-13.44%
SED17-09	5	37.8	25.7	49.91	26.52	49.35	4.36	9.75	25.79%	10.72%
SED17-13	5	45.87	38.17	53.56	37.63	51.27	2.772	6.199	13.51%	-8.33%
SED17-17	5	50.49	36.7	64.27	34.17	65.46	4.964	11.1	21.99%	-19.23%
SED17-20	5	38.85	25.51	52.19	21.52	48.98	4.803	10.74	27.64%	8.25%
SED17-18	5	39.03	35.93	42.13	35.19	41.39	1.117	2,497	6.4%	7.83%
SED17-19	5	32.51	15.47	49.54	12.68	47.04	6.135	13.72	42.2%	23.23%
\$ED17-24	5	48.3	41.09	55.5	40.71	55.19	2.595	5,803	12.02%	-14.06%
SED17-12	5	38.93	34,51	43.34	34.6	41.94	1.59	3.556	9.13%	8.06%
SED17-01	5	45.51	39.75	51.27	39.24	51.6	2.075	4.64	10.2%	-7.47%
SED17-03	5	41.98	32.6	\$1.37	35.81	53.5	3.38	7.559	18.0%	0.85%
\$ED17-27	5	53.41	36.81	70.01	30.05	64.16	5.979	13.37	25.03%	-26.15%

Analyst: JiN QA: July 24/19

21 Jun-17 11:59 (p 4 of 5) 170471b | 11-9861-4236

						1000 0000	17041 M 11 0001 -E00
Neanthes 20-d Survival and	d Growth Se	diment Tes	it .				Nautilus Environmental
Individual Growth Rate Det	tail						
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
\$ED17-29	0.3301	0.4346	0.339	0.4912	0.3934		
SED17-08	0.5032	0.4041	0.5069	0.3629	0.2969		
SED17-06	0.3894	0.5406	0.4349	0.5879	0.4428		
SED17-09	0.3057	0.3551	0.4677	0.4269	0.3469		
SED17-13	0.3506	0.3825	0.487	0.4703	0.4743		
SED17-17	0.4946	0.6288	0.4791	0.4014	0.477		
SED17-20	0.3329	0.464	0.5105	0.4215	0.4257		
SED17-18	0.3881	0.3572	0.3262	0.3665	0.4873		
SED17-19	0.291	0.4447	0.2913	0.4333	0.4102		
SED17-24	0.3813	0.4374	0.5262	0.5038	0.4373		
\$ED17-12	0.3848	0.3895	0.3203	0.3296	0.4985		
\$ED17-01	0.5463	0.4508	0.4902	0.407	0.3666		
SED17-03	0.4219	0.3541	0.5092	0.4326	0.3421		
SED:7-27	0.5484	0.5565	0.3499	0.6159	0.5464		
Mean Dry Weight-mg Detail	 -					<u> </u>	
Sample Code	· Rep1	Rep 2	Rep 3	Rep 4	Dan E		
\$ED17-29	7.116	9.206	7.296	10.34	Rep 5 8.384		
SED17-08	10.58	8.598	10.65	7.772	6.452		
SED17-06	8.304	11.33	9.214	12.27	9.372		
SED17-09	6.63	7.616	9.87	9.052	7.4 5 2		
SED17-13	7.526	8.164	10.25	9.922	10		
\$ED17-17	10.41	13.09	10.1	8.542	10.05		
SED17-20	7,173	9.796	10.72	8.946	9.03		
SED17-18	8.278	7.658	7.038	7.846	10.26		
SED17-19	6.334	9.408	6.34	9.18	8.72		
SED17-24	8,142	9.262	11.04	10.59			
SED17-12	8.21	8.304	6.92	7.106	9.262		
\$ED17-01	11.44	9.532	10.32		10.49		
SED17-03	8.952	7.596	10.32	8.654	7.848		
SED17-27	11.48	11.65	7.512	9.166 12.83	7.358		
Survival Rate Detail				12.03	11.44		<u> </u>
Sample Code	Rep 1	Rep 2	Dan ?	Dom 4	D		
SED17-29	1	1 1 Tep 2	Rep 3	Rep 4	Rep 5		
SED17-08	1	1	1	ī			
SED17-06	1	1	1	0.8	1		
SED17-09	0.8	1	1	1	1 n a		
SED17-13	1	1	1	1	0.8		
\$ED17-17	1	1	1		1		
SED17-20	0.6	1	0.8	0.8	1		
SED17-18	1	1		1	8.0		
SED17-19	1	1	1	1	8.0		
SED17-19	1	1	0.4	0.6	1		
SED17-12	1		1	1	1		
SED17-01	1 0.8	1	1	1	0.8		
SED17-03		1	1	1	1		
SED17-03 SED17-27	0.8	1	1	1	1		
V=01)-21	1	1	0.8	1	1		

nalyst: JIN OA: JULY 4/17

21 Jun-17 11:59 (p 5 of 5) 170471b | 11-9861-4236

						lest Code:	1704716 17-9861-4236
Neanthes 20-d Survival and	d Growth Se	diment Tes	ŧ				Nautilus Environmental
Total Dry Weight Detail							
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-29	35.58	46.03	36.48	51.7	41.92		
SED17-08	52.89	42.99	53.26	38.86	32.26		
SED17-06	41.52	56.63	46.07	49.09	46.86		
SED17-09	26.52	38.08	49.35	45.26	29 81		
\$ED17-13	37.63	40.82	51.27	49.61	50.01		
SED17-17	52.04	65.46	50.49	34.17	50.27		
SED17-20	21.52	48.98	42.9	44.73	36.12		
\$ED17-18	41.39	38.29	35.19	39.23	41,04		
SED17-19	31.67	47.04	12.68	27.54	43.6		
SED17-24	40.71	46.31	55.19	52.96	46.31		
\$ED17-12	41.05	41.52	34.6	35.53	41,94		
\$ED17-01	45.76	47.66	51.6	43.27	39.24		
SED17-03	35.81	37.98	53.5	45.83	36.79		
SED17-27	57.41	58.23	30.05	64.16	57.22		
Survival Rate Binomials		·-···					
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-29	5/5	5/5	5/5	5/5	5/5		
\$ED17-08	5/5	5/5	5/5	5/5	5/5		
SED17-06	5/5	5/5	5/5	4/5	5/5		
SED17-09	4/5	5/5	5/5	5/5	4/5		
\$ED17-13	5/5	5/5	5/5	5/5	5/5		
SED17-17	5/5	5/5	5/5	4/5	5/5		
SED17-20	3/5	5/5	4/5	5/5	4/5		
\$ED17-18	5/5	5/5	5/5	5/5	4/5		
SED17-19	5/5	5/5	2/5	3/5	5/5		
\$ED17-24	5/5	5/5	5/5	5/5	5/5		
SED17-12	5/5	5/5	5/5	5/5	4/5		
SED17-01	4/5	5/5	5/5	5/5	5/5		
SED17-03	4/5	5/5	5/5	5/5	5/5		
					-		

SED17-27

5/5

5/5

4/5

5/5

5/5

Report Date: Test Code:

21 Jun-17 11:26 (p 1 of 4) 170471b | 11-9861-4236

								Test Code	:		170471b <u>!</u>	11-9861-4236
Neanthes 20-d	Survival and Growth	Sediment Te	est							N	autilus Ei	nvironmental
Analysis ID: Analyzed:			Survivat A Nonparam	late retric-Two Sa	amp	le	-	CETIS Ver Official Re		CETISv1 Yes	1,8.7	
Batch ID:	05-7709-2624	Test Type:	Survival-G	rowth				Analyst:	Jeslin	Wijaya		
Start Date:			P\$EP (19					Diluent:		al seawate	er	
Ending Date:	15 Jun-17	Species:	Neanthes	arenaceode	ntata	à		Brine:				
Duration:	20d Oh	Source:	Aquatic Te	oxicology Su	ppor	t, WA		Age:				
Sample Code	Sample ID	Sampl	e Date	Receive Da	ate	Sam	ple Age	Client Nan	ne		Projec	t
SED17-29	08-4658-3752	04 May	-17 17:00	15 May-17	10:3	0 21d	7h (8.5 °C)	Golder			-	
SED17-08	10-1003 - 8381	26 Apr	17 17:00	15 May-17	10:3	0 29d	7h (7.5 °C)					
SED17-06	19-4215-8235	26 Apr	17 1 7:00	15 May-17	10:31	0 29d	7h (7.5 °C)					
SED17-09	13-9590-2568	29 Apr	17 17:00	15 May-17	10:3	0 26d	7h (8 5 °C)					
SED17-13	02-1258-2667	29 Apr-	17 17:00	15 May-17	10:3	0 26d	7h (7.5 °C)					
SED17-17	06-5820-5843	30 Apr	17 17:00	15 May-17	10:3	0 25đ	7h (7 °C)					
SED17-20	00-0790-7357	01 May	-17 17:00	15 May-17	10:30	0 24đ	7h (7 °C)					
\$ED17-18	04-2524-4947	02 May	-17 17:00	15 May-17	10:30	0 23d	7h (4 °C)					
SED17-19	07-6812-4215			15 May-17								
SED17-24	05-6632-5205			15 May-17								
SED17-12	01-4413-4098	-		15 May-17								
SEO17-01	05-6502-2240			15 May-17								
SED17-03	05-1816-3513			15 May-17								
SED17-27	15-8574-8565			15 May-17								
Sample Code	Material Type	Sample	Source	•		Stati	on Locatio	 п		Latitude	Lo	ngitude
\$ED17-29	Sediment Samp					SED	17-29				•	-
SED17-08	Sediment Samp	le Golder				SEO	17-08					
SED17-06	Sediment Samp	le Golder				SED [*]	17-06					
SED17-09	Sediment Samp	le Golder				\$ED	17-09					
SED17-13	Sediment Samp	ie Golder				SED ⁴	17-13					
SED17-17	Sediment Samp	le Golder				SED*	17-17					
SED17-20	Sediment Samp	le Go!der				SED	17-20					
SED17-18	Sediment Samp	le Golder				SED.	17- 1 8					
SED17-19	Sediment Samp	le Golder					17-19					
SED17-24	Sediment Samp	le Golder				\$ED	-					
SED17-12	Sediment Samp					SED1						
SED17-01	Sediment Sampl	le Golder				SED1						
SED17-03	Sediment Sampl					SED1						
SED17-27	Sediment Sampl					SED1						
Data Transform	ı Zela	Alt Hyp	Trials	Seed			_	Tost	Result			
Angular (Correc	led) NA	Ç>T	NA	NA	_			1000	Nesun	•		
Kolmogorov-Si	mirnov Two-Sample To	est						 -		 -		
Sample Code	vs Sample Code	Test St	at Critic	al MSD	DF	P-Val	ие Р-Туј	pe Deci	sion(a:	5%)		
SED17-29	SED17-08	0	NA		8	0.500				ant Effect		····
	SED17-06	0.2	NA		8	0.500				ant Effect		
	SED17-09	0.4	NA		8	0.436				ant Effect		
	SED17-13	0	NA		8	0.500	0 CDF		_	ant Effect		
	\$ED17-17	0.2	NA		8	0.500				ant Effect		
	SED17-20	0.6	NA		8	0.178		Non-	Signific	ant Effect		
	SED17-18	0.2	NA		8	0.500				ant Effect		
	SED17-19	0.4	NA		8	0.436	5 CDF	Non-	Significa	ant Effect		
	SED17-24	0	NA		8	0.500				ant Effect		
	SED17-12	0.2	NA		8	0.500		Non-	Significa	ant Effect		
	SED17-01	0.2	NA		8	0.500	0 CDF			ant Effect		
	SED17-03	0.2	NA		8	0.500		Non-	Significa	ant Effect		
	SED17-27	0.2	NA		8	0.500	0 CDF	- Non-	Significa	ant Effect		411

Analyst: 3W QASTUN24/17

Report Date:

21 Jun-17 11:26 (p 2 of 4)

CETIS Alla	alytical Report						t Code:			11-9861-4236
Neanthes 20-	d Survival and Growt	h Sediment '	Test			140	- Code.			ivironmental
	·							· · · · · · · · · · · · · · · · · · ·	autilus Li	IAN OHNIENTAL
Analysis ID:	11-4586-0682	Endpoint:	Survival Rate			CET	iS Versio	n: CETISv	1.8.7	
Analyzed:	21 Jun-17 10:56	Analysis:	Nonparametric	-Two Sampl	ê	Offic	cial Resul	ts: Yes		
ANOVA Table	;									
Source	Sum Squares	Меал	Square	DF	F Stat	P-Value	Decisio	n(a:5%)		
Between	0.2987423	0.022	98018	13 .	1.382	0.1973	Non-Sig	nificant Effec	Į.	
Errar	0.9313147	0.016	63062	56			-			
Total	1.230057		··	69	_					
Distributional	l Tests		·							
Attribute	Test		Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Mod Levene Ed	juality of Vari	ance 1.378	2.586	0.2102	Equal Val	riances			
Variances	Levene Equality	y of Variance	7.628	2.465	< 0.0001	Unequal \	Variances			
Distribution	Shapiro-Wilk W	/ Normality	0.8318	0.9526	<0.0001	Non-norm	nal Distribu	ition		
Survival Rate	Summary			_						
Sample Code	Cou	nt Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-29	5	1	1	1	1	1	1	0	0.0%	0.0%
OFFIATION	_					-	-	-	U. U Fu	2.278

Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-29	5	1	1	1	1	1	1	0	0.0%	0.0%
SED17-08	5	1	1	1	1	1	1	ū	0.0%	0.0%
SED17-06	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	4.0%
SED17-09	5	0.92	0.784	1	1	0.8	1	0.04899	11.91%	8.0%
SED17-13	. 5	1	1	1	†	1	1	0	0.0%	0.0%
SED17-17	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	4.0%
SED17-20	5	0.84	0.6322	1	80	0.6	1	0.07483	19.92%	16.0%
SED17-18	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	4 0%
SED17-19	5	8.0	0.4488	1	1	0.4	1	0.1265	35.36%	20.0%
SED17-24	5	1	1	1	1	1	1	0	0.0%	0.0%
SED17-12	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	4.0%
SED17-01	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	4.0%
SED17-03	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	4.0%
SED17-27	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	4.0%

Angular (Corrected) T	iansionileu Suili	iliai y								
Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-29	5	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%
SED17-08	5	1.345	1.345	1.346	1.345	1.345	1.345	Ċ.	0.0%	0.0%
\$ED17-06	5	1.298	1.165	1.43	1.345	1.107	1.345	0.04763	8.21%	3.54%
SED17-09	5	1.25	1.088	1.412	1,345	1.107	1.345	0.05833	10.43%	7.08%
SED17-13	5	1.345	1.345	1.346	1.345	1.345	1.345	0.00000	0.0%	0.0%
SED17-17	5	1,298	1.165	1.43	1.345	1.107	1.345	0.04763	8.21%	3.54%
SED17-20	5	1.158	0.9183	1.398	1.107	0.8861	1.345	0.04703	16.68%	13.91%
SED17-18	5	1.298	1.165	1.43	1.345	1.107	1.345	0.04763	8.21%	3.54%

SED17-09	. 5	1.25	1.088	1.412	1,345	1.107	1.345	n denan	40.4000	3.000
SED17-13	-						1.345	0.05833	10.43%	7.08%
	5	1.345	1.345	1.346	1.345	1.345	1.345	0	0.0%	0.0%
SED17-17	5	1,298	1.165	1.43	1.345	1.107	1.345	0.04763	8.21%	3.54%
SED17-20	5	1.158	0.9183	1.398	1.107	0.8861	1.345	0.08639	16.68%	13.91%
SED17-18	5	1.298	1.165	1.43	1.345	1.107	1.345	0.04763	8.21%	3.54%
SED17-19	5	1,121	0.7304	1.512	1.345	0.6847	1.345	0.1408	28.08%	16.65%
SED17-24	5	1.345	1.345	1.346	1.345	1.345	1.345	0.1400		
SED17-12	5	1.298	1.165	1.43	1.345	1.107	1.345	-	0.0%	0.0%
SED17-01	5	1.298	1.165	1.43	1.345		-	0.04763	8.21%	3.54%
SED17-03				_		1.107	1.345	0.04763	8.21%	3.54%
	5	1.298	1.165	1.43	1 345	1.107	1.345	0.04763	8.21%	3.54%
SED17-27	5	1.298	1.165	1.43	1.345	1.107	1.345	0.04763	8.21%	3.54%

Analyst: JW OA Wy 24/17

000-469-187-2

CETI\$™ v1.8.7.16

Report Date: Test Code: 21 Jun-17 11:26 (p 3 of 4) 170471b | 11-9861-4236

						Test Code:	170471b 11-9861-4236
Neanthes 20-	d Survival and Grow	th Sediment	Test				Nautilus Environmental
Analysis ID: Analyzed:	11-4586-0682 21 Jun-17 10:56	Endpoint: Analysis:	Survival Rate Nonparamet		iple	CETIS Version: Official Results:	CETISv1.8.7 Yes
Survival Rate	Detail						
Sample Code	Re	p1 Rep:	2 Rep 3	Rep 4	Rep 5		
SED17-29	1	1	1	1	1		
SED17-08	1	1	1	t	1		
SED17-06	1	1	1	0.8	1		
SED17-09	0.8	1	1	1	0.8		
SED17-13	1	1	1	1	1		
SED17-17	1	1	1	8.0	1		
SED17-20	0.6	1	0.8	1	0.8		
SED17-18	1	1	1	1	0.8		
SED17-19	1	1	0.4	0.6	1		
SED17-24	1	1	1	1	1		
SED17-12	1	1	1	1	0.8		
SED17-01	0.8	1	1	1	1		
SED17-03	0.8	1	1	1	1		
SEØ17-27	1	1	0.8	1	1		
Angular (Corn	ected) Transformed	Detail			- -	 -	·
Sample Code	Rep	1 Rep 2	Rep 3	Rep 4	Rep 5		
SED17-29	1.34			1.345	1,345		
SED17-08	1.34			1,345	1,345		
SED17-06	1.34	1.345		1.107	1.345		
\$ED17-09	1.10			1.345	1.107		
SED17-13	. 1.34			1,345	1.345		
SED17-17	1.34			1.107	1,345		
SED17-20	0.88	861 1.345	1.107	1.345	1.107		
SED17-18	1.34	15 1.345		1.345	1,107		
SED17-19	1.34	1.345		0.8861	1.345		
SED17-24	1.34	5 1.345		1.345	1.345		
SED17-12	1.34	5 1.345		1.345	1.107		
SED17-01	1,10			1.345	1.345		
SED17-03	1.10		1.345	1.345	1.345		
\$ED17-27	1.34			1.345	1.345		
Survival Rate I	Binomials		 '				
Sample Code	Rep	1 Rep 2	Rep 3	Rep 4	Rep 5		
SED17-29	5/5	5/5	5/5	5/5	5/5		
SED17-08	5/5	5/5	5/5	5/5	5/5		
SED17-06	5/5	5/5	5/5	4/5	5/5		
SED17-09	4/5	5/5	5/5	5/5	4/5		
SED17-13	5/5	5/5	5/5	5/5	5/5		
SED17-17	5/5	5/5	5/5	4/5	5/5		
SED17-20	3/5	5/5	4/5	5/5	4/5		
SED17-18	5/5	5/5	5/5	5/5	4/5		
SED17-19	5/5	5/5	2/5	3/5	5/5		
SED17-24	5 /5	5/5	5/5	5/5	5/5		
SED17-12	5/5	5/5	5/5	5/5	4/5		
SED17-01	4/5	5/5	5/5	5/5	5/5		
SED17-03	4/5	5/5	5/5	5/5	5/6		
ED17-27	5/5	5/5	4/5	5/5	5/5		

Analyst: DN Julyzal Pr

Report Date:

21 Jun-17 11:26 (p 4 of 4) 170471b | 11-9861-4236

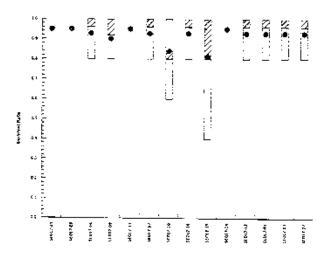
Test Code:

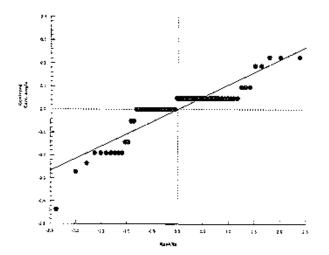
Nautilus Environmental

Analysis ID: Analyzed:

11-4586-0682 21 Jun-17 10:56

Neanthes 20-d Survival and Growth Sediment Test


Analysis:


Endpoint: Survival Rate Nonparametric-Two Sample

CETIS Version: Official Results:

CETISv1.8.7 Yes

Graphics

Analyst:_كيراً

21 Jun-17 11:59 (n. 1 of. 3)

CETIS Ana	alytical Report							Report I Test Co			Jun-17 11:59 (p. 70471b <u>}</u> 11-986	
Neanthes 20-	d Survival and Growth	Sediment 1	est		•			1691.00	uç.		utilus Environn	••••
Analysis ID:	01-3789-5262	Endpoint:	Total Dry	_				CETIS V		CETISv1	.8.7	
Analyzed:	21 Jun-17 11:57	Analysis:	Parametr	ic-Two Şan	nple			Official	Results:	Yes		
Batch ID:	05-7709-2624	Test Type:						Analyst	Jestir	ı Wijaya		
Start Date:	26 May-17	Protocol:	PSEP (19					Diluent:	Natur	al seawate	gr .	
Ending Date:		Species:	Neanthes	arenaceo	ienta:	2		Brine:				
Duration:	20d Oh	Source:	Aquatic T	oxicology S	Suppo	rt, WA		Age:				
Sample Code	 _		ie Date	Receive			ple Age	Client N	ame		Project	
SED17-29	08-4658-3752						7h (8.5 °C	-				
SED17-08	10-1003-8381			•			7h (7.5 °C	•				
SED17-06	19-4215-8235			_			7h (7.5 °C					
SED17-09	13-9590-2568						7ħ (8.5 °C					
SED17-13	02-1258-2667						7h (7.5 °C)				
SED17-17	06-5820-5843	30 Ap	r-17 17:00	15 May-1	7 10:3	10 25d	7h (7 °C)					
SED17-20	00-0790-7357	01 Ma	y-17 17:00	15 May-1	7 10:3	0 24d	7h (7 °C)					
SED17-18	04-2524-4947	02 Ma	y-17 17:00	15 May-1	7 10:3	i0 23d	7h (4 °C)					
SED17-19	07-6812-4215	02 Ma	y-17 17:00	15 May-1	7 10:3	0 23d	7h (5.5 °C)				
SED17-24	05-6632-5205	02 Ma	y-17 17:00	15 May-1	7 10:3	0 23d	7h (6 °C)					
\$ED17-12	01-4413-4098	04 Ma	y-17 17:00	15 May-1	7 10:3	0 21d	7h (5 °C)					
SED17-01	05-6502-2240	04 Ma	y-17 17:00	15 May 1	7 10:3	0 21đ	7h (5.8 °C)				
SED17-03	05-1816-3513	04 Ma	y-17 17:00	15 May-1	7 10:3	0 21d	7h (7.2 °C)				
SED17-27	15-8574-8565	05 Ma	y-17 17:00	15 May-1	7 10:3	0 20d	7h (5.5 °C	}				
Sample Code	Material Type	Samp	le Source			Stati	ion Location	on		Latitude	Longitude	ė
SED17-29	Sediment Samp	le Golde	r			ŞED	17-29	.,				
SED17-08	Sediment Samp	ie Golde	г			SED	17-08					
SED17-06	Sediment Samp	ie Golde	г			SED	17- 06					•
SED17-09	Sediment Samp	le Golde	г			SED	17-09					
SED17-13	Sediment Samp	le Golde	ſ			SED	17-13					
SED17-17	Sediment Samp	le Golde	ť			SED	17-17					
SED17-20	Sediment Samp	le Golde	r			SED	17-20					
SED17-18	Sediment Samp	le Golde	r			SED	17-18					
\$ED17-19	Sediment Samp	le Golde	r				17-19					
SED17-24	Sediment Samp	le Golde	г				17-24					
SED17-12	Sediment Samp						17-12					
SED17-01	Sediment Samp						17-01					
SED17-03	Sediment Samp						17-03					
SED17-27	Sediment Samp						17-27					
Data Transfor	m Zeta	Alt Hy	p Trials	s See	d		PM	SD To	st Result	•		
Untransformed	NA NA	Ç>T	NA	NΑ			29.4		_			
Equal Varianc	e t Two-Sample Test		_		•							
Sample Code	 _	Test S	lat Critic	al MSI	DF	P-Va	lue P-T	ype De	ecision(a	:5%)		
SED17-29	SED17-08	-0.338	1 1.86	9.40	4 8	0.628				ant Effect		
	SED17-06	-1.46	1.86		1 8	0.908			_	ant Effect		
	SED17-09	0.8563	1.86	9.85	4 8	0.208				ant Effect		
	SED17-13	-0.861		7.61	2 8	0.792				ant Effect		
	SED17-17	-1.403	1.86	10.8	8	0.900	08 CD5			anl Effect		
	SED17-20	0.616	1.86	10.5	4 8	0.277	75 CDF		_	ant Effect		
	SED17-18	1,032	1.86	5.97	38	0.166			_	ant Effect		
	SED17-19	1.439	1.86	12.7	1 8	0.094	O CDF		-	ant Effect		
	SED17-24	-1.498	1.86	7.39	3 8	0.913			_	ant Effect		
	SED17-12	1.002	1.86	6.33	4 8	0.172			_	ant Effect		
	SED17-01	-0.865		6.80	1 8	0.793				ant Effect		
	\$ED17-03	0.0795		8.41	98	0.469	BB CDF			ant Effect	de	2.
	SED17-27	-1.6 5 4	1.86	12.4	5.8	0.931	ia che		_	ant Effect	190	1

-1.654

1.86

12.45 8 0.9316

CDF

Non-Significant Effect

Report Date:

21 Jun-17 11:59 (p 2 of 3)

Test Code: 1704715 | 11-9861-4236

· "'——		
Neanthes 20-d Survival and Growth Sediment	Test	Nauti us Environmental

Analysis ID: 01-3789-5262 Endpoint: Total Dry Weight CETIS Version: **CETISv1.8.7** Analyzed: 21 Jun-17 11:57 Analysis: Parametric-Two Sample Official Results: Yes

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	2099.04	161.4646	13	2.197	0.0216	Significant Effect
Error	4114.933	73.48094	56			
Total	6213.974		69			

Distributional Tests

Attribute	Test	Test Slat	Critical	P-Value	Decision(α:1%)
Variances	Bartlett Equality of Variance	19.54	27.69	0.1074	Equal Variances
Distribution	Shapiro-Wilk W Normality	0.9713	0 9526	0.1078	Normal Distribution

Total Dry Weight Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-29	5	42.34	33.98	50.7	41.92	35.58	51.7	3.012	15.91%	0.0%
SED17-08	5	44.05	32.77	55.33	42.99	32.26	53.26	4.062	20.62%	-4.04%
SED17-06	5	48.03	41.16	54.91	46.86	41.52	56.63	2.477	11.53%	-13.44%
SED17-09	5	37.8	25.7	49.91	38.08	26.52	49.35	4.36	25.79%	10.72%
SED17-13	5	45.87	38.17	53.56	49.61	37 63	51.27	2.772	13.51%	-8.33%
SED17-17	5	50.49	36.7	64.27	50.49	34.17	65.46	4.964	21.99%	-19.23%
SED17-20	5	38.85	25.51	52.19	42.9	21.52	48.98	4,803	27.64%	8.25%
SED17-16	5	39.03	35.93	42.13	39.23	35,19	41.39	1.117	6.4%	7.83%
SED17-19	5	32.51	15.47	49.54	31 67	12.68	47.04	6.135	42.2%	23.23%
SED17-24	5	48.3	41.09	55.5	46.31	40.71	55.19	2,595	12.02%	-14.06%
SED17-12	5	38.93	34.51	43.34	41.05	34.6	41.94	1.59	9.13%	8.06%
SED17-01	5	45.51	39.75	51.27	45.76	39.24	51.6	2.075	10.2%	-7.47%
SED17-03	5	41.98	32.6	51.37	37.98	35.81	53.5	3.38	18.0%	0.85%
SED17-27	5	53.41	36.81	70.01	57.41	30.05	64.16	5.979	25.03%	-26.15%

Total Ory Weight Detail

Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
SED17-29	35.58	46.03	36.48	51.7	41.92
SED17-08	52.89	42.99	53.26	38.86	32.26
SED17-06	41.52	56.63	46.07	49.09	46.86
\$ED17-09	26.52	38.08	49.35	45.26	29.81
SED17-13	37.63	40.82	51.27	49.61	50.01
SED17-17	52.04	65.46	50.49	34.17	50.27
SED17-20	21.52	48.98	42.9	44.73	36.12
SED17-18	41.39	38.29	35.19	39.23	41.04
SED17-19	31.67	47.04	12.68	27.54	43.6
SED17-24	40.71	46.31	55.19	52.96	46.31
SED17-12	41.05	41.52	34.6	35.53	41,94
SED17-01	45.76	47.66	51. 6	43.27	39.24
\$ED17-03	35.81	37.98	53.5	45.83	36.79
SED17-27	57.41	58.23	30.05	64.16	57.22

Report Date:

21 Jun-17 11:59 (p 3 of 3)

Test Code:

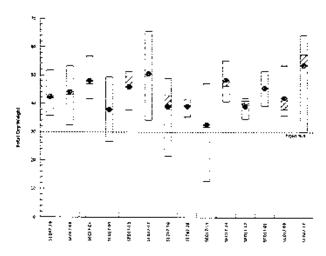
1704716 | 11-9861-4236

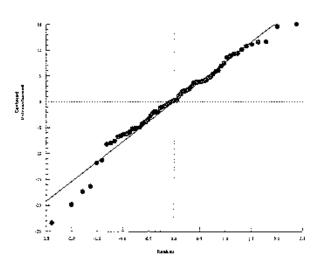
Neanthes 20-d Survival and Growth Sediment Test

Nautilus Environmental

Analysis ID: Analyzed:

01-3789-5262


21 Jun-17 11:57 Analysis;


Endpoint: Total Dry Weight
Analysis: Parametric-Two Sample

CETIS Version: Official Results:

CETISv1.8.7 : Yes

Graphics

Analyst: DW QA:

Report Date:

21 Jun-17 11:27 (p 1 of 3)

CE 113 Ana	llytical Report							Report Da Test Code				27 (p 1 of 3) 1 0001 4000
Neanthes 20-	d Survival and Growth	Sediment 1	rest				-	Test Con	s: 			1-9861-4236
Analysis ID:				1.1-1-1-4					-			ironmental
Analyzed:	21 Jun-17 10:56	Endpoint: Analysis:		Weight-mg c-Two Samp	ole			Official R		CETISv1 Yes	.8.7	
Batch ID:	05-7709-2624	Test Type:	Survival-0	Srowth				Analyst:	Jeşlir	Wijaya		
Start Date:	•	Protocol:	PSEP (19	95}				Diluent:		al seawate	er	
Ending Date:	15 Jun-17	Species:	Neanthes	arenaceode	ntat	а		Brine:				
Duration:	20d Oh	Source:	Aquatic T	oxicology Su	ibbo	rt, WA		Age:				
Sample Code	Sample ID	Samp	le Date	Receive D	ate	Sami	ole Age	Client Na	ne		Project	
SED17-29	08-4658-3752			15 May-17								
SED17-08	10-1003-8381			15 May-17								
SED17-06	19-4215-8235			15 May-17								
SED17-09	13-9590-2568	29 Ap	r-17 17:00	15 May-17	10:3	0 26d 1	7h (8.5 °C)					
SED17-13	02-1258-2667	29 Ap	r-17 17:00	15 May-17	10:3	0 26d 1	7h (7.5 °C)					
\$ED17-17	06-5820-5843	30 Ap	r-17 17:00	15 May-17	10:3	0 25d :	7h (7 °C)					
SED17-20	00-0790-7357	01 Ma	y-17 17:00	15 May-17	10:3	0 24d	7h (7 °C)					
SED17-18	04-2524-4947	02 Ma	y-17 17:00	15 May-17	10:3	0 23d	7h (4 °C)					
SED17-19	07-6812-4215			15 May-17								
SED17-24	05-6632-5205			15 May-17								
\$ED17-12	01-4413-4098			15 May-17								
SED17-01	05-6502-2240			15 May-17								
SED17-03	05-1816-3513			15 May-17								
SED17-27	15-8574 -856 5			15 May-17								
Sample Code	Material Type	Samp	le Source			Static	n Locatio	u .		Latitude	Lond	gitude
SED17-29	Sediment Samp		•			SED1	7-29					
\$ED17-08	Sediment Samp	le Golde	r			SED1	7-08					
SED17-06	Sediment Samp	le Golde	•			SED1	7-06					
SED17-09	Sediment Samp	ie Golde	г			SED1	7-09					
\$ED17-13	Sediment Sampl	fe Golde	τ.			SED1	7-13					
SED17-17	Sediment Sample	ie Golder	r			SED1	7-17					
SED17-20	Sediment Sampl	le Golder	•			SED1	7-20					
SED17-18	Sediment Sampl	le Golder				SED1						
SED17-19	Sediment Sampl	le Golder				SED1						
SED17-24	Sediment Sampl	le Golder				SED1						
SED17-12	Sediment Sampl	le Golder				SED1						
SED17-01	Sediment Sampl	le Goider				SED1						
SED17-03	Sediment Sampl					SED1						
SED17-27	Sediment Sampt					SED1						
Data Transform	n Zela	Alt Hy	p Trials	Seed		_	PMS	D Test	Result			<u> </u>
Untransformed	NA NA	C>T	NA	NA	_		23.99					
Equal Variance	et Two-Sample Test										 -	
	vs Sample Code	Test S	lat Critic	al MSD	DF	P-Valu	ıе Р-Ту _І	pe Deci	sion{a:	5%)		
SED17-29	SED17-08	-0.338	1.86	1.881	8	0.6280				ant Effect		
	SED17-06	-1.716	1.86	1.765	8	0.9378	CDF		-	ant Effect		
	SED17-09	0.4099		1.562	8	0.3463	CDF		_	ant Effect		
	SED17-13	-0.8614		1.522		0.7929	CDF			ant Effect		
	SED17-17	-2.068	1.86	1.772		0.9638	CDF		_	ant Effect		
	SED17-20	-0.7923		1.562		0.7745			_	ant Effect		
	SED17-18	0.3098		1.515		0.3823				ant Effect		
	SED17-19 SED47-24	0.5168	1.86	1.698		0.3096				nt Effect		
	SED17-24	-1.498	1.86	1.479		0.9137				ant Effect		
	SED17-12	0.3009	1.86	1.628		0.3856				nt Effect		
	SED17-01 SED17-03	-1.254	1.86	1.617		0.8774				int Effect		
	95017-03 85017-37	-0.3355	1.86	1.586	8	0.6271	CDF	Non-	Significa	int Effect		1.

Non-Significant Effect

2.021 8 0.9753

CDF

-2.314

SEQ17-27

1.86

Report Date:

21 Jun-17 11:27 (p 2 of 3)

Test Code: 170471b | 11-9861-4236

						162	L Coue:		100-40-10-11	-800 -4 27
Neanthes 20-0	d Survival and Growth	Sediment	Test					N	autilus En	vironmenta
Analysis ID:	06-5594-5652	Endpoint:	Mean Dry Weig	ht-mg		ĊET	IS Version:	CETISV	1.8.7	
Analyzed:	21 Jun-17 10:56	Analysis:	Parametric-Two	o Sample		Offic	cial Results:	Yes		
ANOVA Table				_						
Source	Sum Squares	Mean	Square	DF	F Stat	P-Value	Decision(a:5%)		
Belween	56.08031	4.313	87	13	1.974	0.0406	Significant			
Error	122.3938	2.185	603	56						
Total	178.4741			69	_					
Distributional	Tests		·			-				
Attribute	Test		Test Stat	Critical	P-Value	Decision	(a:1%)			
/ariances	Bartlett Equality	of Variance	2.599	27.69	0.9990	Equal Va.	_			
Distribution	Shapiro-Wilk W		0.9792	0.9526	0.2955	•	istribution			
Mean Dry Wei	ght-mg Summary									
Sample Code	Cou	nt Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-29	5	8.468		10.14	8.384	7,116	10.34	0.6024	15.91%	0.0%
SED17-08	5	8.81	6.555	11.07	8.598	6.452	10.65	0.8124	20.62%	4.04%
SED17-06	5	10.1	8.061	12.13	9.372	8.304	12.27	0.7336	16.25%	-19.24%
SED17-09	5	8.124	6.499	9.749	7.616	6.63	9.87	0.5853	16.11%	4.07%
SED17-13	5	9.174	7.634	10.71	9.922	7.52 6	10.25	0.5544	13.51%	-8.33%
SED17-17	5	10.44	8.389	12.49	10.1	8.542	13.09	0.7383	15.81%	-23.27%
SED17-20	5	9.134	7.508	10.76	9.03	7.173	10.72	0.5857	14.34%	-7.86%
SED17-18	5	8.216		9.739	7.846	7.038	10.26	0.5485	14.93%	2.98%
SED17-19	5	7.996		9.902	8.72	6.334	9.408	0.6865	19.2%	5.57%
SED17-24	5	9.659	8.218	11.1	9.262	8.142	11.04	0.5191	12.02%	-14.06%
SED17-12	5	8.205	6.442	9.968	8 21	6.92	10.49	0.6351	17.31%	3.11%
SED17-01	5	9.559	7.818	11.3	9.532	7.848	11.44	0.6271	14.67%	-12.88%
SED17-03	5	8.755	7.079	10.43	8.952	7.358	10.7	0.6036	15.42%	-3.38%
SED17-27	5	10.98	8.472	13.49	11.48	7.512	12.83	0.9046	18.42%	-29.7%
Mean Dry Weig	ght-mg Detail				<u> </u>	-	- · .	 .		
ample Code	Rep	1 Rep 2	Rep 3	Rep 4	Rep 5					
SED17-29	7.116	9.206	7.296	10.34	8.384					- · · · · · · · · · · · · · · · · · · ·
ED17-08	10.58	8.598	10.65	7.772	5.452					
ED17-06	8.304		9.214	12.27	9.372					
£D17-09	6.63	7.616	9.87	9.052	7.452					
ED17-13	7.526		10.25	9.922	10					
ED17-17	10.41		10.1	8.542	10.05					
ED17-20	7.173		10.72	8.946	9.03					
ED17-18	8.278		7.038							
ED17-19	6.334		6.34	7.846	10.26					
ED17-94	9.334		0,34	9.18	8.72					

nalyst: JW OA JULY 24/17

SED17-24

SED17-12

SED17-01

SED17-03

SED17-27

8.142

8.21

11.44

8.952

11.48

9.262

8.304

9.532

7.596

11.65

11.04

6.92

10.32

10.7

7.512

10.59

7.106

8.654

9.166

12.83

9.262

10,49

7.848

7.358

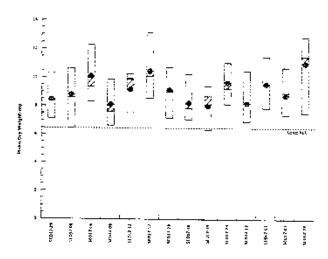
11.44

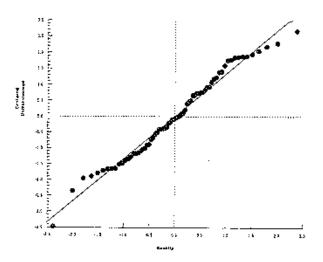
Report Date: Test Code:

21 Jun-17 11:27 (p 3 of 3) 170471b [11-9861-4236

Neanthes 20-d Survival and Growth Sediment Test

Nautilus Environmental


Analysis ID: Analyzed;


06-5594-5652 21 Jun-17 10:56

Endpoint: Mean Dry Weight-mg Analysis: Parametric-Two Sample CETI\$ Version: Official Results:

CETISV1.8.7 Yes

Graphics

Report Date: Test Code:

21 Jun-17 11:27 (p 1 of 3) 170471b | 11-9861-4236

								Test Code	:		70471b	11-9861-4236
Neanthes 20-d	Survival and Growth	Sediment To	est .							Na	autilus En	vironmental
Analysis ID:	12-2753-7472	Endpoint:	individual	Growth Rat	e			CETIS Ver	sion: CE	ETISv1	.8.7	
Analyzed:	21 Jun-17 10:56	Analysis:	Parametri	c-Two Sam	ple			Official Re				
Batch ID:	05-7709-2624	Test Type:	Survival-G	rowth				Analyst:	Jeslin Wi	iava	_	
Start Date:			PSEP (19					Diluent:	Natural s		er	
Ending Date:	15 Jun-17	Species:	Neanthes	arenaceode	entat	la .		Brine:	•			
Duration:	20d Oh	Source:	Aquatic Te	oxicology St	ppo	rt. WA		Age:				•
Sample Code	Sample ID	Sample	e Date	Receive D	ate	Samp	ole Age	Client Nam	 ne		Project	·
SED17-29	08-4658-3752	04 May	-17 17:00	15 May-17	10:3				···			
SED17-08	10-1003-8381			15 May-17								
SED17-06	19-4215-8235	26 Apr-	17 17:00	15 May-17	10:3	30 29d 7	7h (7.5 °C)					
SED17-09	13-9590-2568	29 Apr-	17 17:00	15 May-17	10:3	30 26d 7	7h (8.5 °C)					
SED17-13	02-1258-2667	29 Apr-	17 17:00	15 May-17	10:3	30 26d 7	7h (7.5 °C)					
SED17-17	06-5820-5843	30 Apr-	17 17:00	15 May-17	10:3	30 25d 7	7h (7 °C)					
SED17-20	00-0790-7357	01 May	-17 17:00	15 May-17	10:3	30 24 d 7	7h (7 °C)					
SED17-18	04-2524-4947	02 May	-17 17:00	15 May-17	10:3	30 23d 7	7h (4 °C)					
SED17-19	07-6812-4215	02 May	-17 17:00	15 May-17	10:3	30 23d 7	7ክ (5.5 °C)					
SED17-24	05-8632-5205	02 May	-17 17:0 0	15 May-17	10:3	90 23d 7	'h (6 °C)					
SED17-12	01-4413-4098	04 May	-17 17:00	15 May-17	10:3	0 21d 7	'h (5 °C)					
SED17-01	05-6502-2240	04 May	-17 17:00	15 May-17	10:3	t0 21ď 7	'h (5.8 °C)					
SED17-03	05-1816-3513			15 May-17								
SED17-27	15-8574-8565	05 May	-17 17:00	15 May-17	10:3	0 20d 7	h (5.5 °C)					
Sample Code	Material Type	Sample	Source			Statio	n Location	1	Lati	tude	Lor	ngitude
SED17-29	Sediment Sampl				•	SED1	7-29					
SED17-08	Sediment Sampl					SED1	7-08					
SED17-06	Sediment Sampl					SED13	7-06					
SED17-09	Sediment Sampl					SED1	7-09					
SED17-13	Sediment Sample					SED1	7-13					
SED17-17	Sediment Sample					SED1:	7-17					
SED17-20	Sediment Sample					SED1	7-20					
SED17-18	Sediment Samp!					SED17	7-18					
SED17-19	Sediment Sample					SED17	7-19					
SED17-24	Sediment Sample					SED17	7-24					
SED17-12	Sediment Sample					SED17	7-12					
SED17-01	Sediment Sample					SED17	7-01					
SED17-03	Sediment Sample					SED17	7-03					
\$ED17-27	Sediment Sample	e Golder				SED17	7-2 7					
Data Transform Untransformed		Alt Hyp		Seed			PMSt	Test I	Result		,	
	NA	<u> </u>	NA	NA NA			25.4%	, <u>—</u>				
	t Two-Sample Test					-	-					
	vs Sample Code	Test Sta		MSD	DF	P-Valu	е Р-Тур	e Decis	ion(a:5%)			
SED17-29	SED17-08	-0.3381	1.86	0.094		0.6280			ignificant E	ffect	··	
	SED17-06	-1.716	1.86	0.088		0.9378	CDF		ignificant 8			
	SED17-09	0.4099	1.86	0.078		0.3463			ignificant E			
	SED17-13 SED17-17	-0.8614	1.86	0.076		0.7929	CDF		ignificant E			
	SED17-17 SED17-20	-2.068	1.88	0.089		0.9638	CDF		ignificant E			
	SED17-18	-0.7923 0.3098	1.86	0.078		0.7745	CDF		ignificant a			
	SED17-19	0.5168	1.86 1.86	0.076		0.3823	CDF		ignificant E			
	SED17-24	-1.498	1.86	0.085 0.074		0.3096	CDF		ignificant E			
	SED17-12	0.3009	1.86	0.074		0.9137 0.3856	CDF CDF		ignificant E			
	SED17-01	-1.254	1.86	0.081		0.8774	CDF		ignificant E			
	SED17-03	-0.3355	1.86	0.079		0.6271	CDF		ignificant E ignificant E			
	SED17-27	-2.314	1.86	0.101		0.9753	CDF		ignilicant E ignilicant E			AU
									J			

Analysi: and QA: 24/17

Report Date:

21 Jun-17 t1:27 (p 2 of 3)

Test Code: 170471b | 11-9861-4236 Neanthes 20-d Survival and Growth Sediment Test Nautilus Environmental Analysis ID: 12-2753-7472 Endpoint: Individual Growth Rate CETIS Version: **CETISV1.8.7** Analyzed: 21 Jun-17 10:56 Analysis: Parametric-Two Sample Official Results: Yes **ANOVA Table** Source Sum Squares Mean Square DF F Slat P-Value Decision(a:5%) Between 0.1402008 0.01078467 13 1.974 0.0406 Significant Effect Error 0.3059843 0.005464006 56 Total 0.4461851 69 Distributional Tests Attribute Test Test Stat Critical P-Value Decision(a:1%) Variances Bartlett Equality of Variance 2.599 27.69 0.9990 Equal Variances Distribution Shapiro-Wilk W Normality 0.9792 0.9526 0.2955Normal Distribution Individual Growth Rate Summary Sample Code Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect SED17-29 5 0.3977 0.314 0.4813 0.3934 0.3301 0.4912 0.03012 16.94% 0.0% SED17-08 5 0.41480.302 0.5276 0.4041 0.2969 0.5069 0.04062 21.9% -4.3%SED17-06 5 0.4791 0.3773 0.581 0.4428 0.3894 0.5879 0.0366817.12% -20.49% SED17-09 5 0.3805 0.29920.4617 0.3551 0.3057 0.4677 0.02926 17.2% 4.33% SED17-13 5 0.4329 0.356 0.5099 0.4703 0.3506 0.487 0.02772 14.32% -8.87% SED17-17 5 0.4962 0.3937 0.5987 0.4791 0.4014 0.6288 0.03691 16.63% -24.78% SED17-20 5 0.431 0.3497 0.5123 0.4257 0.33290.5105 0.0292815.19% -8.37% SED17-18 5 0.3851 0.3089 0.4612 0.3665 0.32620.4873 0.02743 15.93% 3.17% SED17-19 5 0.3741 0.2788 0.46940.4102 0.291 0.4447 0.03432 20.52% 5.93% SED17-24 5 0.4572 0.3852 0.5293 0.4374 0.3813 0.5262 0.02595 12.69% -14,97% SED17-12 5 0.3845 0.2963 0.4727 0.3848 0.3203 0.4985 0.03176 18.47% 3.31% SED17-01 5 0.45220.3651 0.5392 0.4508 0.36660.54630.03135 15.5% -13.71% SED17-03 5 0.412 0.3282 0.4958 0.4219 0.3421 0.50920.03018 16.38% -3.6% SED17-27 5 0.52340.3978 0.649 0.5484 0.34990.6159 0.04523 19.32% -31.62% Individual Growth Rate Detail Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 SED17-29 0.3301 0.4346 0.3390.4912 0.3934SED17-08 0.5032 0.4041 0.5059 0.3629 0.2969 SED17-06 0.3894 0.5406 0.4349 0.5879 0.4428 SED17-09 0.3057 0.3551 0.4677 0.4269 0.3469 SED17-13 0.35060.3825 0.487 0.4703 0.4743 SED17-17 0.49460.6288 0.4791 0.4014 0.477 SED17-20 0.33290.4640.5105 0.4215 0.4257 SED17-18 0.38810.3572 0.3262 0.3665 0.4873 SED17-19 0.291 0.4447 0.2913 0.43330.4102 SED17-24 0.3813 0.43740.5262 0.5038 0.4373 SED17-12 0.38480.3895

W Jungalis

0.3296

0.407

0.4326

0.6159

0.4985

0.3666

0.3421

0.5464

0.3203

0.4902

0.5092

0.3499

0.5463

0.4219

0.5484

0.4508

0.3541

0.5565

SED17-01

SED17-03

SED17-27

Report Date:

21 Jun-17 11:27 (p 3 of 3)

Test Code:

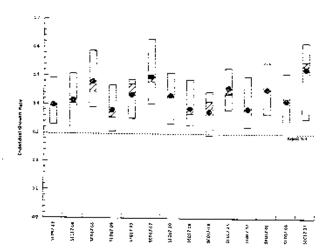
170471b { 11-9861-4236

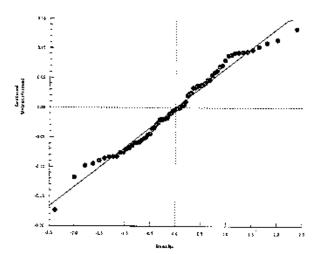
Neanthes 20-d Survival and Growth Sediment Test

Nautilus Environmental

Analysis ID: Analyzed:

12-2753-7472 21 Jun-17 10:56


Analysis:


Endpoint: Individual Growth Rate Parametric-Two Sample

CETIS Version: Official Results: Yes

CETISv1.8.7

Graphics

Ending Date: 15 Jun-17

Report Date:

21 Jun-17 11:59 (p 1 of 5)

Test Code:

170471c | 11-9348-3710

Neanthes 20-d Survival and	Growth Sediment Test
----------------------------	-----------------------------

Nautilus Environmental

Batch ID: Start Date:

Duration:

09-2852-2152 26 May-17

20d Oh

Protocol: Species:

Source;

Test Type: Survival-Growth Protocol: PSEP (1995)

PSEP (1995)
Neanthes arenaceodentata

Aquatic Toxicology Support, WA

Analyst: Diluent:

Age:

Jeslin Wijaya Natural seawater

Diluent: Brine:

Sample Code	Sample ID	Sample Date	Receive Date	Sample Age	Client Name	Project
\$ED17-27	15-8574-8565	05 May-17 17:00	15 May-17 10:30	20d 7h (5.5 °C)	Golder	
SED17-08	10-1003-8381	26 Apr-17 17:00	15 May-17 10:30	29d 7h (7.5 °C)		
SED17-06	19-4215-8235	26 Apr-17 17:00	15 May-17 10:30	29d 7h (7.5 °C)		
SED17-09	13-9590-2568	29 Apr-17 17:00	15 May-17 10:30	26d 7h (8.5 °C)		
SED17-13	02-1258-2667	29 Apr-17 17:00	15 May-17 10:30	26d 7h (7.5 °C)		
SED17-17	06-5820-5843	30 Apr-17 17:00	15 May-17 10:30	25d 7h (7 °C)		
SED17-20	00-0790-7357	01 May-17 17:00	15 May-17 10:30	24d 7h (7 °C)	•	
SED17-18	04-2524-4947	02 May-17 17:00	15 May-17 10:30	23d 7h (4 °C)		
SED17-19	07-6812-4215	02 May-17 17:00	15 May-17 10:30	23d 7h (5.5 °C)		
SED17-24	05-6632-5205	02 May-17 17:00	15 May-17 10:30	23d 7h (6 °C)		
SED17-12	01-4413-4098	04 May-17 17:00	15 May-17 10:30	21d 7h (5 °C)		
\$ED17-01	05-6502-2240	04 May-17 17:00	15 May-17 10:30	21d 7h (5.8 °C)		
SED17-03	05-1816-3513	04 May-17 17:00	15 May-17 10:30	21d 7h (7.2 °C)		
SED17-29	08-4658-3752	04 May-17 17:00	15 May-17 10:30	21d 7h (8.5 °C)		

Sample Code	Material Type	Sample Source	Station Location	Latitude	Longitude
SED17-27	Sediment Sample	Golder	SED17-27		<u>-</u>
SED17-08	Sediment Sample	Golder	SED17-08		
SED17-06	Sediment Sample	Golder	SED17-06		
SED17-09	Sediment Sample	Golder	SED17-09		
SED17-13	Sediment Sample	Golder	SED17-13		
SED17-17	Sediment Sample	Golder	SED17-17		
SED17-20	Sediment Sample	Golder	SED17-20		
SED17-18	Sediment Sample	Golder	SED17-18		
SED17-19	Sediment Sample	Golder	SED17-19		
SED17-24	Sediment Sample	Golder	SED17-24		
SED17-12	Sediment Sample	Golder	SED17-12		
SED17-01	Sediment Sample	Golder	SED17-01		
SED17-03	Sediment Sample	Golder	SED17-03		
SED17-29	Sediment Sample	Golder	SED17-29		

Analyst: DW QX MUG ZA(17

000-469-187-2

CETIST# v1.8.7.16

Report Date: Test Code: 21 Jun-17 11:59 (p 2 of 5) 170471c / 11-9348-3710

Neanthes 20-d Survival and Growth Sediment Test	Nautilus Environmental
Individual Growth Pate Summary	•

Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
\$ED17-27	5	0.5234	0.3978	0.649	0.3499	0.6159	0.04523	0.1011	19.32%	0.0%
SED17-08	5	0.4148	0.302	0.5276	0.2969	0.5069	0.04062	0.09083	21.9%	20.76%
SED17-06	5	0.4791	0.3773	0.581	0.3894	0.5879	0.03668	0.08202	17.12%	8.46%
\$ED17-09	5	0.3805	0.2992	0.4617	0.3057	0.4677	0.02926	0.06543	17.2%	27.31%
SED17-13	5	0.4329	0.356	0.5099	0.3506	0.487	0.02772	0.06199	14.32%	17.29%
SED17-17	5	0.4962	0.3937	0.5987	0.4014	0.6288	0.03691	0.08254	16.63%	5.2%
\$ED17-20	5	0.431	0.3497	0.5123	0.3329	0.5105	0.02928	0.06548	15.19%	17.67%
SED17-18	5	0.3851	0.3089	0.4612	0.3262	0.4873	0.02743	0.06133	15.93%	26.44%
SED17-19	5	0.3741	0.2788	0.4694	0.291	0.4447	0.03432	0.07675	20.52%	28.53%
\$ED17-24	5	0.4572	0.3852	0.5293	0.3813	0.5262	0.02595	0.05803	12.69%	12.65%
SED17-12	5	0.3845	0.2963	0.4727	0.3203	0.4985	0.03176	0.07101	18.47%	26.54%
SED17-01	5	0.4522	0.3651	0.5392	0.3666	0.5463	0.03135	0.07011	15.5%	13.61%
\$ED17-03	5	0.412	0.3282	0.4958	0.3421	0.5092	0.03018	0.06748	16.38%	21.29%
SED17-29	5	0.3977	0.314	0.4813	0.3301	0.4912	0.03012	0.06735	16.94%	24.02%

Mean Dry Weight-mg Summary

Sample Code	Count	Mean	95% LCL	95% LICL	Min	Max	Std Err	Std Dev	CV%	%Effect
SED17-27	5	10.98	8.472	13.49	7.512	12.83	0.9046	2.023	18.42%	0.0%
SED17-08	5	8.81	6.555	11.07	6 452	10.65	0.8124	1.817	20.62%	19.78%
SED17-06	5	10.1	8.061	12,13	8.304	12.27	0.7336	1.64	16.25%	8.06%
SED17-09	5	8.124	6.499	9.749	6.63	9.87	0.5853	1.309	16.11%	26.03%
SED17-13	5	9.174	7.634	10.71	7.526	10.25	0.5544	1.24	13.51%	16.48%
SED17-17	5	10.44	8.389	12.49	8.542	13.09	0.7383	1.651	15.81%	4.96%
SED17-20	5	9.134	7.508	10.76	7.173	10.72	0.5857	1.31	14.34%	16.84%
SED17-18	5	8.216	6.693	9.739	7.038	10.26	0.5485	1.227	14.93%	25.2%
SED17-19	5	7.996	6.091	9.902	6.334	9.408	0.6865	1.535	19.2%	27.19%
SED17-24	5	9.659	8.218	11.1	8.142	11,04	0.5191	1.161	12.02%	12.06%
SED17-12	5	8.205	6.442	9.968	6.92	10.49	0.6351	1,42	17,31%	25.3%
SED17-01	5	9.559	7.818	11.3	7.848	11.44	0.6271	1.402	14.67%	12.97%
SED17-03	5	8.755	7.079	10.43	7.358	10.7	0.6036	1.35	15.42%	20.29%
SED17-29	5	8.468	6.796	10.14	7.116	10.34	0.6024	1.347	15.91%	22.9%

Survival Rate Summary

Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
SED17-27	5	0.96	0.8489	1	8.0	1	0.04	0.08944	9.32%	0.0%
SED17-08	5	1	1	1	1	1	0	0	0.0%	-4 .17%
SED17-06	5	0.96	0.8489	1	0.8	1	0.04	0.08944	9.32%	0.0%
SED17-09	5	0.92	0.784	1	0.8	1	0.04899	0.1095	11.91%	4.17%
SED17-13	5	1	1	1	1	1	0	0	0.0%	-4,17%
SED17-17	5	0.96	0.8489	1	0.8	1	0.04	0.08944	9.32%	0.0%
SED17-20	5	0.84	0.6322	1	0.6	1	0.07483	0.1673	19.92%	12.5%
SED17-18	5	0.96	0.8489	1	8.0	1	0.04	0.08944	9.32%	0.0%
\$ED17-19	5	0.8	0.4488	1	0.4	1	0.1265	0.2828	35.36%	16.67%
SED17-24	5	1	1	1	1	•	0.1203	0.2020	0.0%	-4.17%
SED17-12	5	0.98	0.8489	1	0.8	1	0.04	0.08944	9.32%	0.0%
SED17-01	5	0.96	0.8489	1	0.8	1	0.04	0.08944		
SED17-03	5	0.96	0.8489	1	0.8	r r			9.32%	0.0%
SED17-29	5	1	1	1	1	1	0.04 0	0.08944 0	9. 32 % 0.0%	0.0% -4.17%

ell/ July24/17

Analyst: JW

Report Date:

21 Jun-17 11:59 (p 3 of 5) 170471c | 11-9348-3710

Test Code:

Nautilus Environmental

Total Dry Weight Summ	ary									
Sample Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
\$ED17-27	5	53.41	36.81	70.01	30.05	64.16	5.979	13.37	25.03%	0.0%
SED17-08	5	44.05	32.77	55.33	32.26	53.26	4.062	9.083	20.62%	17.53%
SED17-06	5	48.03	41,16	54.91	41.52	56.63	2.477	5.538	11.53%	10.07%
\$ED17-09	5	37.8	25.7	49.91	26.52	49.35	4.36	9.75	25.79%	29,22%
SED17-13	5	45.87	38.17	53.56	37.63	51.27	2.772	6.199	13.51%	14.13%
SED17-17	5	50.49	36.7	64,27	34.17	65.46	4.964	11.1	21.99%	5.48%
SED17-20	5	38.85	25.51	52.19	21.52	48.98	4.803	10.74	27.64%	27.27%
SED17-18	5	39.03	35.93	42.13	35.19	41.39	1.117	2.497	6.4%	26.93%
SED17-19	5	32.51	15.47	49.54	12.68	47,04	6.135	13.72	42.2%	39,14%
SED17-24	5	48.3	41.09	55.5	40.71	55.19	2.595	5.803	12.02%	9.58%
SED17-12	5	38.93	34.51	43.34	34.6	41.94	1.59	3.555	9.13%	27.12%
\$ED17-01	5	45.51	39.75	51.27	39.24	51.6	2.075	4.64	10.2%	14.81%
SED17-03	5	41.98	32.6	51.37	35.81	53.5	3.38	7.559	18.0%	21.4%
SED17-29	5	42.34	33.98	50.7	35.58	51.7	3.012	6.735	15.91%	20.73%

nalyst: DW QA: ____

000-469-187-2

CETIS™ v1.8.7.16

Report Date: Test Code: 21 Jun-17 11:59 (p 4 of 5) 170471c | 11-9348-3710

Neanthes 20-d Survival and	Growth Se	diment Tes	t			Nautilus Environmental
Individual Growth Rate Deta	ī!					
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
\$ED17-27	0.5484	0.5565	0.3499	0.6159	0.5464	
SED17-08	0.5032	0.4041	0.5069	0.3629	0.2969	
SED17-06	0.3894	0.5406	0.4349	0.5879	0.4428	
SED17-09	0.3057	0.3551	0.4677	0.4269	0.3469	
SED17-13	0.3506	0.3825	0.487	0.4703	0.4743	
SED17-17	0.4946	0.6288	0.4791	0.4014	0.477	
SED17-20	0.3329	0.464	0.5105	0.4215	0.4257	
SED17-18	0.3881	0.3572	0.3262	0.3665	0.4873	
SED17-19	0.291	0.4447	0.2913	0.4333	0.4102	
SED17-24	0.3813	0.4374	0.5262	0.5038	0.4373	
SED17-12	0.3848	0.3895	0.3203	0.3296	0.4985	
SED17-01	0.5463	0.4508	0.4902	0.407	0.3666	
SED17-03	0.4219	0.3541	0.5092	0.4326	0.3421	
SED17-29	0.3301	0.4346	0.339	0.4912	0.3934	
	0.0301	0.4340		0.4912	0.3934	
Mean Dry Weight-mg Detail						
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
SED17-27	11.48	11.65	7.512	12.83	11.44	
SED17-08	10.58	8.598	10.65	7.772	6.452	
\$ED17-06	8.304	11.33	9.214	12.27	9.372	
SED17-09	6.63	7.616	9.87	9.052	7.452	
SED17-13	7.526	8.164	10.25	9.922	10	
\$ED17-17	10.41	13.09	10.1	8.542	10.05	
SED17-20	7.173	9.796	10.72	8.946	9.03	
\$ED17-18	8.278	7.658	7.038	7.846	10 26	•
\$ED17-19	6.334	9.408	6.34	9.18	8.72	
SED17-24	8.142	9.262	11.04	10.59	9.262	
SED17-12	8.21	8.304	6.92	7.106	10.49	
SED17-01	11.44	9.532	10.32	8.654	7.848	
SED17-03	8.952	7.596	10.7	9.1 66	7.358	
SED17-29	7.116	9.206	7.296	10.34	8 384	
Survival Rate Detail		•••	-	•	· · ·	
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
\$ED17-27	1	1	0.8		1	
SED17-08	1	1	1	1	1	
SED17-06	1	1	1	0.8	1	
\$ED17-09	8.0	1	1	1	0.8	
SED17-13	1	1	1	1	1	
\$ED17-17	1	1	1	0.8	· •	
SED17-20	0.6	1	0.8	1	0.8	
SED17-18	1	1	1	1	0.8	
SED17-19	1	1	0.4	0.6	1	
SED17-24	1	1	1	1:	1	
SED17-12	1	1	1	: 1		
SED17-01	0.8	1	1		0.8	
SED17-03	0.8	1	-	1	1	
SED17-29	1	1	1 1	1	1	
	1	1	1	1	1	

a duly 24/12

CETIS™ v1.8.7,16

Report Date: Test Code: 21 Jun-17 12:00 (p 5 of 5) 170471c | 11-9348-3710

Total Dry Weight Detail Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 SED17-27 57.41 58.23 30.05 64.16 57.22 SED17-08 52.89 42.99 53.26 38.86 32.26 SED17-06 41.52 56.63 46.07 49.09 46.86 SED17-09 26.52 38.08 49.35 45.26 29.81 SED17-13 37.63 40.82 51.27 49.61 50.01 SED17-17 52.04 65.46 50.49 34.17 50.27 SED17-20 21.52 48.98 42.9 44.73 36.12 SED17-18 41.39 38.29 35.19 39.23 41.04	Nautilus Environmenta
SED17-27 57.41 58.23 30.05 64.16 57.22 SED17-08 52.89 42.99 53.26 38.86 32.26 SED17-06 41.52 56.63 46.07 49.09 46.86 SED17-09 26.52 38.08 49.35 45.26 29.81 SED17-13 37.63 40.82 51.27 49.61 50.01 SED17-17 52.04 65.46 50.49 34.17 50.27 SED17-20 21.52 48.98 42.9 44.73 36.12 SED17-18 41.39 38.29 35.19 39.23 41.04	
SED17-08 52.89 42.99 53.26 38.86 32.26 SED17-06 41.52 56.63 46.07 49.09 46.86 SED17-09 26.52 38.08 49.35 45.26 29.81 SED17-13 37.63 40.82 51.27 49.61 50.01 SED17-17 52.04 65.46 50.49 34.17 50.27 SED17-20 21.52 48.98 42.9 44.73 36.12 SED17-18 41.39 38.29 35.19 39.23 41.04	
SED17-06 41.52 56.63 46.07 49.09 46.86 SED17-09 26.52 38.08 49.35 45.26 29.81 SED17-13 37.63 40.82 51.27 49.61 50.01 SED17-17 52.04 65.46 50.49 34.17 50.27 SED17-20 21.52 48.98 42.9 44.73 36.12 SED17-18 41.39 38.29 35.19 39.23 41.04	
SED17-09 26.52 38.08 49.35 45.26 29.81 SED17-13 37.63 40.82 51.27 49.61 50.01 SED17-17 52.04 65.46 50.49 34.17 50.27 SED17-20 21.52 48.98 42.9 44.73 36.12 SED17-18 41.39 38.29 35.19 39.23 41.04	
SED17-13 37.63 40.82 51.27 49.61 50.01 SED17-17 52.04 65.46 50.49 34.17 50.27 SED17-20 21.52 48.98 42.9 44.73 36.12 SED17-18 41.39 38.29 35.19 39.23 41.04	
SED17-17 52.04 65.46 50.49 34.17 50.27 SED17-20 21.52 48.98 42.9 44.73 36.12 SED17-18 41.39 38.29 35.19 39.23 41.04	
SED17-20 21.52 48.98 42.9 44.73 36.12 SED17-18 41.39 38.29 35.19 39.23 41.04	
SED17-18 41.39 38.29 35.19 39.23 41.04	
70.20	
SED17-19 31.67 47.04 12.68 27.54 43.6	
SED17-24 40.71 46.31 55.19 52.96 46.31	
SED17-12 41.05 41.52 34.6 35.53 41.94	
SED17-01 45.76 47.66 51.6 43.27 39.24	
SED17-03 35.81 37.98 53.5 45.83 36.79	
SED17-29 35.58 46.03 36.48 51.7 41.92	
Survival Rate Binomials	
Sample Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5	
SED17-27 5/5 5/5 4/5 5/5 5/5	
SED17-08 5/5 5/5 5/5 5/5	
\$ED17-06 5/5 5/5 5/5 4/5 5/5	
SED17-09 4/5 5/5 5/5 4/5	
SED17-13 5/5 5/5 5/5 5/5	
SED17-17 5/5 5/5 5/5 4/5 5/5	
SED17-20 3/5 5/5 4/5 5/5 4/5	
SED17-18 5/5 5/5 5/5 5/5 4/5	
SED17-19 5/5 5/5 2/5 3/5 5/6	
\$ED17-24 5/5 5/5 5/5 5/5 5/5	
\$ED17-12 5/5 5/5 5/5 4/5	
SED17-01 4/5 5/5 5/5 5/5 5/5	
SED17-03 4/5 5/5 5/5 5/5	

Analysi: JW QAJUM17

CETIS™ v1.8.7.16 Analyst: _3

SED17-29

5/5

5/5

5/5

5/5

5/5

CETIS Analytical Panert

CETIS Anal	ytical Report							Report Dat			Jun-17 11:32 (p 1 of 4
Naonthae 20 d	Survival and Growth	. <u>.</u>						Test Code	:		70471c 11-9348-3710
		Sealment II	est							Na	utilus Environmental
-	01-3248-6546	-	Survival R					CETIS Ven		CETISv1.	.8.7
	21 Jun-17 11:02	Analysis:	Nonparam	etric-Two S	amp	le		Official Re	sults:	Yes	
		Test Type:	Survival-G	rowth				Analyst:	Jeslin	Wijaya	
			PSEP (19	•				Diluent:	Natur	al seawate	ſ
Ending Date:		Species:	Neanthes	arenaceode	ntata	a a		Brine:			
Duration:	20d Oh	Source:	Aquatic To	oxidology Su	ppor	t, WA		Age:			
Sample Code	Sample ID	Sampl	e Date	Receive Da	nce	Sample	Age	Client Nam	le		Project
SED17-27	15-8574-8565	05 May	/-17 17:00	15 May-17	10:3			_	•		110,000
SED17-08	10-1003-8381			15 May-17							
SED17-06	19-4215-8235			15 May-17							
SED17-09	13-9590-2568			15 May-17							
SED17-13	02-1258-2667			15 May-17							
SED17-17	06-5820-5843			15 May-17							
SED17-20	00-0790-7357			15 May-17							
SED17-18	04-2524-4947			15 May-17							
SED17-19	07-6812-4215			15 May-17							
SED17-24	05-6632-5205										
\$ED17-12	01-4413-4098			15 May-17							
SED17-01	05-6502-2240			15 May-17							
SED17-03	-			15 May-17							
SED17-09	05-1815-3513			15 May-17		-					
02017-23	08-4658-3752 ——————	04 May	-17 17:00	15 May-17	10:30	0 21d 7h (8.5 °C)				
Sample Code	Material Type		e Source			Station (1	ļ	Latitude	Longitude
SED17-27	Sediment Samp					SED17-2	17				
SED17-08	Sediment Sampl		•			SED17-0	16				
SED17-06	Sediment Sampl					SED17-0	16				
SED17-09	Sediment Sampl					SED17-0	9				
SED17-13	Sediment Sampi					SED17-1	3				
SED17-17	Sediment Samp.					SED17-1	7				
SED17-20	Sediment Sampl					SED17-2	0				
SED17-18	Sediment Sampl	'e Golder				SED17-1	8				
SED17-19	Sediment Sampl					SED17-1	9				
SED17-24	Sediment Sampl	e Golder				SED17-2	4				
SED17-12	Sediment Sampl	e Golder				\$ED17-1	2				
SED17-01	Sediment Sampl	e Galder				SED17-0					
SED17-03	Sediment Sampl	e Golder				SED17-0					
SED17-29	Sediment Sample	e Golder				SED17-2					
Data Transform	Zeta	Alt Hyp	Trials	Seed				Toet	Result	_	
Angular (Correcte	ed) NA	C > T	NA	NA NA			_	Teat.	resuit		
Kolmogorov-Sm	irnov Two-Sample To	est	<u>-</u>			 -	· · ·				
Sample Code v		Test St	at Critica	al MSD	be	B. Males					
SED17-27	SED17-08	0	NA NA	ai 183D		P-Value	P-Typ		ion(a:		 .
	SED17-06	0	NA NA		8	0.5000	CDF		_	ant Effect	
	SED17-09	0.2	NA.		8	0.5000	CDF		-	ant Effect	
•	SED17-13	0.2	NA NA		8 8	0.5000	CDF			ant Effect	
	SED17-17	0	NA		8	0.5000 0.5000	CDF			ant Effect	
	SED17-20	0.4	NA.		8	0.4365	CDF		_	ant Effect	
	SED17-18	0	NA		8	0.5000	CDF CDF			ani Effect	
	\$ED17-19	0.4	NA		8	0.4365	CDF			ent Effect	
	SED17-24	0	NA		8	0.5000	CDF		-	int Effect int Effect	
	PED17 40				-	2.0000	001	MOH-9	uðunnda	ни штест	

NA

NA

NA

NA

0

٥

Đ

0

Non-Significant Effect Analyst: 3W

CDF

CDF

CDF

CDF

Non-Significant Effect

Non-Significant Effect

Non-Significant Effect

8 0.5000

8 0.5000

8 0.5000

8 0.5000

SED17-12

SED17-01

SED17-03

SED17-29

Report Date:

21 Jun-17 11:32 (p 2 of 4)

Test Code: 170471c1 11-9348-3710

							t Code:		170471c 1	11-9348-3710
Neanthes 20-	d Survival and Growth	Sediment 7	Test				-	N	autilus En	vironmental
Analysis ID:	01-3248-6546	Endpoint:	Survival Rate			ĊEI	(IS Version:	CETISV	1.8.7	
Analyzed:	21 Jun-17 11:02	Analysis:	Nonparametric	-Two Samp	fe	Offi	cial Results:	Yes		
ANOVA Table				•						
Source	Sum Squares	Mean	Square	DF	F Stat	P-Value	Decision(e	x:5%)		
Between	0.2987423	0.022	98018	13	1.382	0.1973	Non-Signifi	cant Effec	<u></u>	
Error	0.9313147	0.016	63062	56			-			
Total	1.230057			69						
Distributional	! Tests		<u></u>							
Attribute	Test		Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Mod Levene Equ	ality of Van	ance 1.378	2.586	0.2102	Equal Va				
Variances	Levene Equality		7.628	2,465	<0.0001	•	Variances			
Distribution	Shapiro-Wilk W		0.8318	0.9526	<0.0001		ral Distribution	п		
Survival Rate	Summary	· <u>-</u>				_	•	•		
Sample Code	Coun	t Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-27	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	0.0%
SED17-08	5	1	1	1	1	1	1	0	0.0%	-4.17%
SED17-06	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	0.0%
SED17-09	5	0.92	0.784	1	1	0.8	1	0.04899	11.91%	4.17%
SED17-13	5	1 .	1	1	1	1	1	0	0.0%	-4.17%
SED17-17	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	0.0%
SED17-20	5	0.84	0.6322	1	0.8	0.6	î	0.07483	19.92%	12.5%
\$ED17-18	5	0.98	0.6489	1	1	0.8	1	0.04	9.32%	0.0%
SED17-19	5	0.8	0.4488	1	1	0.4	1	0.1265	35.36%	16.67%
SED17-24	5	1	1	1	1	1 '	1	0	0.0%	-4.17%
SED17-12	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	0.0%
SED17-01	5	0.98	0.8489	1	1	0.8	1	0.04	9.32%	0.0%
SED17-03	5	0.96	0.8489	1	1	0.8	1	0.04	9.32%	0.0%
\$ED17-29	5	f	1	1	1	1	1	0	0.0%	-4.17%
Angular (Corr	ected) Transformed Su	ımmary		-			 .			
Sample Code	Coun	t Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-27	5	1.298	1.165 .	1.43	1,345	1.107	1.345	0.04763	8.21%	0.0%
SED17-08	5	1,345	1.345	1.346	1,345	1.345	1.345	0	0.0%	-3.67%
SED17-06	5	1,298	1.165	1.43	1.345	1,107	1.345	0.04763	8.21%	0.0%
SED17-09	5	1.25	1.088	1.412	1.345	1.107		0.05833	10.43%	3.67%
SED17-13	5	1.345	1,345	1.346	1.345	1.345	1.345	0.00000	0.0%	-3. 6 7%
SED17-17	5	1.298	1.165	1.43	1.345	1.107		0.04763	8.21%	0.0%
SED17-20	5	1.158	0.9183	1.398	1.107	0.8861		0.08639	16.68%	10.75%
SED17-18	5	1.298	1.165	1.43	1.345	1.107		0.04763	8.21%	0.0%
SED17-19	5	1.121	0.7304	1.512	1,345	0.6847		0.1408	28.08%	13.59%
SED17-24	5	1.345	1.345	1.346	1.345	1.345		0.1400	0 0%	13.59% -3.67%
\$ED17-12	5	1.298	1.165	1.43	1.345	1.107		0.04763		
SED17-01	5	1.298	1.165	1.43	1.345	1.107		0.04763	8.21%	0.0%
SED17-03	5	1.298	1.165	1.43	1.345	1.107		0.04763	8.21%	0.0%
SED17-29	5	1 345	1 345	1.73	1.945	1.107	1.040	0.04703	8.21%	0.0%

0.0%

-3.67%

000-469-187-2

5

1.345

1.345

1.346

1.345

1.345

1.345

CETIS™ v1.8.7.16

Report Date:

21 Jun-17 11:32 (p 3 of 4)

	<u> </u>					Test Code:	170471c 11-9348-3710
Neanthes 20-d S	urvival and Growth	Sediment 1	Test		-		Nautilus Environmental
-		Endpoint: Analysis:	Survival Rate Nonparametr		unio -	CETIS Version: Official Results:	CETISv1.8.7 Yes
Survival Rate De		7.114.7	- 10 i parameti			Onicizi Restits;	· · · · · · · · · · · · · · · · ·
Sample Code	Rep 1	l Rep 2	Rep 3	Rep 4	Rep 5		
SED17-27	1	1	0.8	í	1		-
SED17-08	1	1	1	1	1		
SED17-06	1	1	1	0.8	1		
SED17-09	0.8	1	1	- 1	0.8		
SED17-13	1	1	1	1	1		
\$ED17-17	1	1	1	0.8	1		
SED17-20	0.6	1	0.8	1	0.8		
SED17-18	1	1	1				
SED17-19	1	1		1	0.8		
SED17-24			0.4	0.6	1		
SED17-12	1	1	1	1	1		
SED17-01	1	1	1	1	0.8		
	0.8	1	1	1	1		
SED17-03	0.8	1	1	1	1		
SED17-29	1	1	1	1	1		
	ed) Transformed De	tali					
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
SED17-27	1.345	1.345	1.107	1.345	1.345	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
SED17-08	1.345	1.345	1.345	1.345	1.345		
SED17-06	1,345	1.345	1.345	1.107	1.345		
\$ED17-09	1.107	1.345	1.345	1.345	1.107		
SED17-13	1.345	1.345	1.345	1.345	1.345		
SED17-17	1.345	1.345	1.345	1.107	1.345		
SED17-20	0.8851	1.345	1.107	1.345	1,107		
SED17-18	1.345	1.345	1.345	1.345	1.107		
SED17-19	1.345	1.345	0.6847	0.8861	1.345		
SED17-24	1.345	1.345	1.345	1.345	1.345		
SED17-12	1.345	1.345	1.345	1.345	1,107		
SED17-01	1.107	1,345	1.345	1.345	1.345		
SED17-03	1.107	1.345	1.345	1.345	1.345		
SED17-29	1.345	1.345	1.345	1.345	1.345		
Survival Rate Bin	omials			· •	·		
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5		
\$ED17-27	5/5	5/5	4/5	5/5	5/5		
SED17-08	5/5	5/5	5/5	5/5	5/5		
SED17-06	5/5	5/5	5/5	4/5	5/5		
SED17-09	4/5	5/5	5/5	5/5	4/5		
SED17-13	5/5	5/5	5/5	5/5	5/5		
SED17-17	5/5	5 /5	5/5	4/5	5/5		
SED17-20	3/5	5/5	4/5	5/5	4/5		
SED17-18	5/5	5/5	5/5	5/5	4/5		
SED17-19	5/5	5/5	2/5	3/5			
SED17-24	5/5	5/5	2/5 5/5		5/5 e/e		
SED17-12	5/5	5/5		5/5 5/5	5/5		
SED17-01	4/5	5/5	5/5 5/6	5/5	4/5		
SED17-03	4/5	5/5 5/5	5/5 5/5	5/5 5/5	5/5		
SED17-29	5/5		5/5	5/5	5/5		
	5/5	5/5	5 /5	5/5	5/5		

Analyst: JW QA TUYZ4/17

Report Date: Test Code:

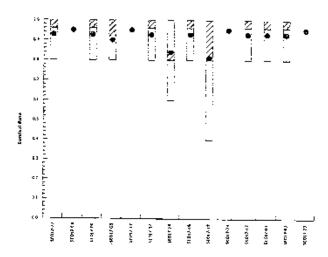
21 Jun-17 11:32 (p 4 of 4) 170471c | 11-9348-3710

Neanthes 20-d Survival and Growth Sediment Test

Nautilus Environmental

Analysis ID: Analyzed:

01-3248-6546 21 Jun-17 11:02


Endpoint: Survival Rate Analysis:


Nonparametric-Two Sample

CETIS Version: Official Results: Yes

CETISv1.8.7

Graphics

Analyst<u>:</u> الكال

Report Date: Test Code:

21 Jun-17 12:00 (p 1 of 3) 170471c | 11-9348-3710

Neanthes 20-d	Survival and Growth	Sediment T	est							Nau	tilus E	nvironmenta
Analysis ID: Analyzed:	01-0017-4572 21 Jun-17 11:57	Endpoint: Analysis:	Total Dry We Parametric-T	_	,			ETIS Ven		CETISv1.8 Yes	3.7	
Batch ID:	09-2852-2152	Test Type:	Survival-Grov	wth			-	Analyst:	Jeslin	Wijaya		
Start Date:	26 May-17	Protocol:	PSEP (1995)					Diluent:		al seawater		
Ending Date:	15 Jun-17	Species:	Neanthes are		ata			Brine:		3, 303,1013		
Duration:	20d Oh	Source:	Aquatic Toxic			WA		Age:				
Sample Code	Sample ID	Samp	le Date Re	eceive Date		Sample A	lge (lient Nam	.e		Projec	;t
SED17-27	15-8574-8565	05 Ma	y-17 17:00 18	May-17 10	0:30	20d 7h (5	5.5 °C) (Solder				
SED17-08	10-1003-8381	26 Ap	-17 17:00 -15	May-17 10	0:30	29d 7h (7	7.5 °C)					
SED17-06	19-4215-8235	26 Ap	-17 17:00 -15	May-17 30	0:30	29d 7h (7	7.5 °C)					
SED17-09	13-9590-2568	29 Ap	-17 17:00 15	May-17 10	0:30	26d 7h (8	3.5 °C)					
SED17-13	02-1258-2667	29 Ap	-17 17:00 -15	May-17 10	0:30	26d 7h (7	7.5 °C)					
SED17-17	06-5820-5843	30 Ap	-17 17:00 15	May-17 10	0:30	25d 7h (7	7 °C)					
ED17-20	00-0790-7357	01 Ma	y-17 17:00 15	May-17 10	0:30	24d 7h (7	r °C)					
ED17-18	04-2524-4947	02 Ma	y-17 17:00 15	May-17 10	0:30	23d 7h (4	°C)					
ED17-19	07-6812-4215	02 Ma	y-17 17:00 15	May-17 10	0:30	23ď 7h (5	5.5 °C)					
ED17-24	05-6632-5205		y-17 17:00 15									
ED17-12	01-4413-4098	04 Ma	y-17 17:00 15	May-17 10	0:30	21d 7h (5	°Ci					
ED17-01	05-6502-2240		y-17 17:00 15	-								
ED17-03	05-1816-3513		y-17 17:00 16									
SED17-29	08-4658-3752		y-17 17:00 15	-								
ample Code	Material Type	Samp	e Source			Station L	ocation			Latitude	L	ongitude
ED17-27	Sediment Samp	ple Golde	,			SED17-27	7					•
ED17-08	. Sediment Samp	ple Golde	•			SED17-08	3					
ED17-06	Sediment Sam	ple Golde	•			SED17-06	5					
ED17-09	Sediment Samp	ple Golde:	•			SED17-09)					
ED17-13	Sediment Samp	ple Golde:	•			SED17-13	3				٤	
ED17-17	Sediment Sam	ple Golder	•			SED17-17	7					
ED17-20	Sediment Samp	ple Golder	•			SED17-20)					
ED17-18	Sediment Samp	ple Golder				SED17- 1 8	3					
ED17-19	Sediment Samp	ple Golder				SED17-19)					
ED17-24	Sediment Samp	ple Golder				SED17-24	Į.					
€D17-12	Sediment Samp	ple Golder				SED17-12						
ED17-01	Sediment Samp	ple Golder	•			SED17-01						
ED17-03	Sediment Samp					SED17-03						
ED17-29	Sediment Sam					\$ED17-28						•
ata Transform	Zeta	Alt Hy	p Trials	Seed			PMSD	Test	Result	<u> </u>		
Intransformed	NA NA	C > T	NA NA	NA			23.3%					
	t Two-Sample Test											
	vs Sample Code	Test S				P-Value	Р-Тур	e Decis	sion(a:	:5%)		
ED17-27	SED17-08	1.295	1.86	13,44	8	0.1157	CDF	Non-	Signific	ant Effect		
	SED17-06	0.8313	1.86	12.03	8	0.2150	CDF	Non-	Signific	ant Effect		
	SED17-09	2.109	1.85	13.76	8	0.0340	CDF	Signi	ficant E	Effect		
	SED17-13	1.145	1.86	12.28	8	0.1427	CDF	Non-	Signific	ant Effect		
	SED17-17	0.3768		14,45		0.3581	CDF			ant Effect		
	SED17-20	1.899	1.86	14.26		0.0471	CDF		ficant E			
	SED17-18	2.365	1.86	11.31		0.0228	CDF		ficant E			
	SED17-19 SED17-24	2.441	1 86	15.93		0.0203	CDF		ficant E			
	SED17-24 SED17-12	0.7852		12.12		0.2275	CDF			ant Effect		
	SED17-12 SED17-01	2.341	1.86	11.5		0.0237	CDF		ficant E			
	SED17-01 SED17-03	1.25 1.664	1.86 1.86	11,77		0.1234	CDF			ant Effect		
		i nna	1.86	12.77	ĸ	1.0677		Mans	Pianifia	and Pitter -		
	SED17-03	1.654	1.85	12.45		0.0673 0.0684	CDF CDF			ant Effect ant Effect		1111

Analyst: DW Quely 24/17

Report Date: Test Code: 21 Jun-17 12:00 (p 2 of 3) 170471c J 11-9348-3710

						Test	Code:		170471c J 1	1-9348-3716
Neanthes 20-	d Survival and Growth	Sediment Tes	st					N	autilus Env	ironmental
Analysis ID:	01-0017-4572	Endpoint: To	olal Dry Weig	hį		CET	1\$ Version:	CETISv	1.8.7	
Analyzed:	21 Jun-17 11-57	Analysis: P	arametric-Tw	Sample		Offic	tial Results:	Yes		
ANOVA Table	· · · · · · · · · · · · · · · · · · ·	_								
Source	Sum Squares	Mean So	quare	DF	F Stat	P-Value	Decision(d	1:5%)		
Between	2099.04	161.464	6	13	2.197	0.0216	Significant	Effect		
Error	4114.933	73,4809	4	56			_			
Total	6213.974			69	_					
Distributional	l Tests									
Attribute	Test		Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Bartlett Equality	of Variance	19.54	27.69	0.1074	Equal Var	·			
Distribution	Shapiro-Wilk W		0.9713	0.9526	0.1078		istribution			
Total Dry Wei	ight Summary									
Sample Code	Coun	t Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	cv%	%Effect
SED17-27	- 5	53.41	36.81	70.01	57.41	30.05	64.16	5.979	25.03%	0.0%
SED17-08	5	44.05	32.77	55.33	42.99	32.26	53.26	4.062	20.62%	17.53%
\$ED17-06	5	48.03	41.16	54.91	46.86	41.52	56.63	2.477	11.53%	10.07%
SED17-09	5	37.8	25.7	49.91	38.08	26.52	49.35	4.36	25.79%	29.22%
SED17-13	5	45.87	38.17	53.56	49.61	37.63	51,27	2 772	13.51%	14.13%
SED17-17	5	50.49	36.7	64.27	50.49	34.17	65.46	4.964	21.99%	5.48%
SED17-20	5	38.85	25.51	52.19	42.9	21.52	48.98	4.803	27.64%	27.27%
SED17-18	5	39.03	35.93	42.13	39.23	35.19	41.39	1.117	6.4%	26.93%
SED17-19	5	32.51	15.47	49.54	31.67	12.68	47.04	6.135	42.2%	39.14%
SED17-24	5	48.3	41.09	55.5	46.31	40.71	55.19	2.595	12.02%	9.58%
SED17-12	5	38.93	34.51	43.34	41.05	34.6	41.94	1.59	9.13%	27.12%
SED17-01	5	45.51	39.75	51.27	45.76	39.24	51.6	2.075	10.2%	14.81%
SED17-03	5	41.98	32.6	51.37	37.98	35.81	53.5	3.38	18.0%	21.4%
SED17-29	5	42.34	33.98	50.7	41.92	35.58	51.7	3.012	15.91%	20.73%
Total Dry Wei	ght Detail									
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
SED17-27	57.41	58.23	30.05	64.16	57.22					
SED17-08	52.89	42.99	53.26	38.86	32.26					
SED17-06	41.52	56.63	46.07	49.09	46.86					
\$ED17-09	26.52	38.08	49.35	45.26	29.81					
SED17-13	37.63		51.27	49,51	50.01					
SED17-17	52.04	65.46	50.49							
SED17-20	21.52	48.98		34.17	50.27					
SED17-18			42.9	44.73	36.12					
SED17-19	41.39	38.29	35.19	39.23	41.04					
SED17-19 SED17-24	31.67	47.04	12.68	27.54	43.6					
	40.71	46.31	55.19	52.96	46.31					
SED17-12	41.05	41.52	34.6	35.53	41.94					
SED17-01	45.76	47.66	51.6	43.27	39.24					
SED17-03	35.81	37.98	53.5	45.83	36.79					

Analyst DW QA:

000-459-187-2

\$ED17-29

35.58

46.03

36.48

\$1.7

41.92

CET(\$** v1.8.7.16

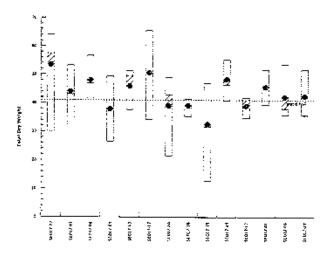
Report Date: Test Code: 21 Jun-17 12:00 (p 3 of 3)

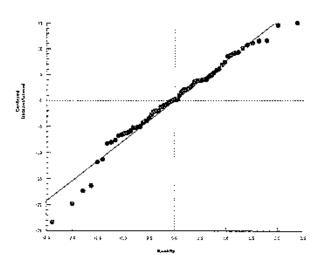
170471c | 11-9348-3710

Neanthes 20-d Survival and Growth Sediment Test

Nautilus Environmental

Analysis ID: Analyzed:


01-0017-4572 21 Jun-17 11:57 Endpoint: Total Dry Weight


Analysis: Parametric-Two Sample

CETIS Version: CET Official Results: Yes

CETJSv1.8.7

Graphics

Report Date:

21 Jun-17 11:33 (p 1 of 3) 170471c | 11-9348-3710

OE HO AH	nyucai Keport							Report Da		! Jun-17 11:33 (p 1 :	-
Neanthae 20	d Supplied and Supplie	Dardina		 -				Test Code		170471c 11-9348-	
Heartifies 204	Survival and Growth	Sediment Te	est 						N.	autilus Environme	ntal
Analysis ID;	04-9870-3698	Endpoint:	Mean Dry	Weight-mg				CETIS Ver	sion: CETISV	1.8.7	
Analyzed:	21 Jun-17 11:03	Analysis:	Parametr	c-Two Sam	ple			Official Re			
Batch ID;	09-2852-2152	Test Type:	Survival-C	Srowth				Analyst:	Jeslin Wijaya		
Start Date:		_	PSEP (19					Diluent:	Natural seawat	- or	
Ending Date:	15 Jun-17		-	arenaceode	entat	a		Brine:	MRIOIGI SEAWAI	.Ç1	
Duration:	20d Oh			oxicology Su				Age:			
Sample Code	Samula ID			·· -							
SED17-27	Sample ID 15-8574-8565	Sample		Receive D			le Age	Client Nan	<u> </u>	Project	
SED17-08	10-1003-8381			15 May-17							
SED17-06	19-4215-8235			15 May-17							
SED17-09	13-9590-2568			15 May-17							
SED17-13	02-1258-2667			15 May-17							
SED17-17	06-5820-5843			15 May-17							
SED17-20	00-0790-7357			15 May-17							
SED17-18	04-2524-4947			15 May-17							
SED17-19	07-6812-4215			15 May-17							
SED17-24	05-6632-5205			15 May-17							
SED17-12	01-4413-4098			15 May-17							
SED17-01	05-6502-2240			15 May-17							
SED17-03	05-1816-3513			15 May-17							
SED17-29	08-4658-3752			15 May-17							
 -	··		17:00	15 May-17	10:3	0 21d 7	h (8.5 °C)				
Sample Code	Material Type		Source			Statio	n Location	nt	Latitude	Longitude	
SED17-27	Sediment Sampl					SED1	7-27				
SED17-08	Sediment Sampl					SED1	7-08				
SED17-06	Sediment Sampl					SED1	7-06				
SED17-09	Sediment Sampl					SED1	7-09				
SED17-13	Sediment Sampl					SED17	7-13				
SED17-17	Sediment Sample					SED17	7-17				
SED17-20	Sediment Sample					SED17	7-20 .				
SED17-18	Sediment Sample					SED17	7-18				
SED17-19	Sediment Sample					SED17	7-19				
\$ED17-24	Sediment Sample					SED17	?-24				
SED17-12	Sediment Sample					SED17	-12				
SED17-01	Sediment Sample					SED17	'-01				
SED17-03 SED17-29	Sediment Sample					SED17	-03				
	Sediment Sample	Golder	_			SED17	-29				
Data Transform	Zeta	Alt Hyp	Trials	Seed			PMSC) Test l	Result	<u> </u>	
Untransformed	NA NA	C > T	NA	NA			18.4%			· · · · · · · · · · · · · · · · · · ·	-
Equal Variance	t Two-Sample Test										—
Sample Code		Test Sta	t Critica	d MSD	DC	0.4-1					
\$ED17-27	SED17-08	1.787	1.86	2.261		P-Valu 0.0559			ion(a:5%)	·	
	SED17-06	0.7604	1.86	2.166		0.2344	CDF CDF		Significant Effect		
	SED17-09	2.654	1.86	2.003		0.0145	CDF		Significant Effect		
	SED17-13	1.706	1.86	1.973		0.0632	CDF		cant Effect		
	SED17-17	0.4663	1.86	2.171		0.3267	CDF		ignificant Effect ignificant Effect		
	SED17-20	1.716	1.86	2.004		0.0622	CDF		ignificant Effect		
	SED17-18	2.616	1.86	1.967		0.0154	CDF		cant Effect		
	SED17-19	2.63	1.86	2.112		0.0151	CDF		cant Effect		
	SED17-24	1.27	1.86	1.939	6	0.1200	CDF		ignificant Effect		
	SED17-12	2.514	1.86	2.055		0.0181	CDF		cant Effect		
	SED17-01	1.294	1.86	2.047		0.1158	CDF		ignificant Effect		
	SED17-03 SED17-29	2.05	1.86	2.022		0.0373	CDF		cant Effect	Go	
	GLD 17-23	2.314	1.86	2.021	8	0.0247	CDF	Signifi	cant Effect	90	_

Analyst: DW_ July 24/19

Report Date: Test Code: 21 Jun-17 11:33 (p 2 of 3) 170471c | 11-9348-3710

						I est	t Gode:		170471c 1	1-9346-37
Neanthes 20-	d Survival and Growth				N	lautilus En	/ironment			
Analysis ID:		Endpoint:	Mean Dry Weig	ght-mg		CET	'S Version:	CETIS	1.8.7	<u></u>
Analyzed:	21 Jun-17 11:03	Analysis:	Parametric-Tw	o Sample		Offic	cial Results:	Yes		
ANOVA Table		•••								
Source	Sum Squares	Mean	Square	DF	F Stat	P-Value	Decision(m-59/-1		
Between	56.08031	4.313		13	1.974	0.0406	Significant			
Error	122.3938	2.185	603	56	1.51 1	0.0400	Cigimicant	LITEGE		
Total	178.4741			69	 .					
Distributional	Tests				- -					
Attribute	Test		Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Sartlett Equality	of Variance	2.599	27.69	0.9990	Equal Var		_		
Distribution	Shapiro-Wilk Wil		0.9792	0.9526	0.2955	Normal D				
Mean Dry Wei	ght-mg Summary			·-						
Sample Code	Coun	t M ean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
SED17-27	5	10.98	8,472	13.49	11.48	7.512	12.83	0.9046	18.42%	0.0%
SED17-08	5	8.81	6.555	11.07	8.598	6.452	10.65	0.8124	20.62%	19.78%
SED17-06	5	10.1	8.061	12.13	9.372	8.304	12.27	0.7336	16.25%	8.06%
SED17-09	5	8.124	6.499	9.749	7.616	6.63	9.87	0.5853	16.11%	26.03%
SED17-13	5	9.174	7.634	10.71	9.922	7.526	10.25	0.5544	13.51%	16.48%
SED17-17	5	10.44	8.389	12.49	10.1	8.542	13.09	0.7383	15.81%	4.96%
SED17-20	5	9,134	7.508	10.76	9.03	7.173	10.72	0.5857	14.34%	16.84%
SED17-18	5	8.216	6.693	9.739	7.846	7.038	10.26	0.5485	14.93%	25.2%
SED17-19	5	7.996	6.091	9.902	8.72	6.334	9.408	0.6865	19.2%	27.19%
SED17-24	5	9.659	8.218	11.1	9.262	8.142	11.04	0.5191	12.02%	12.06%
SED17-12	5	8.205	6.442	9.968	8.21	6.92	10.49	0.6351	17.31%	25.3%
SED17-01	5	9.559	7.818	11.3	9.532	7.848	11.44	0.6271	14.67%	12.97%
SED17-03	5	8.755	7.079	10.43	8.952	7.358	10.7	0.6036	15.42%	20.29%
SED17-29	5	8.468	6.796	10.14	8.384	7.116	10.34	0.6024	15.91%	22.9%
Mean Dry Weig	ht-mg Detail									
Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
ED17-27	11.48	11.65	7.512	12.83	11.44		-			
SED17-08	10.58	8.598	10.65	7.772	6.452					
SED17-08	8.304	11.33	9.214	12.27	9.372					
SED17-09	6.63	7.616	9,87	9.052	7.452					
ED17-13	7.526	8.184	10.25	9.922						
SED17-17	10.41	13.09	10.25		10					
ED17-20	7.173	9.796		8.542	10.05					
ED17-18	8.278		10.72	8.946	9.03					
ED17-19		7.658	7.038	7.846	10.26					
ED17-24	6.334	9,408	6.34	9.18	8.72					
ED17-12	8.142	9.262	11.04	10.59	9.262					
	8.21	8.304	6. 9 2	7.1 06	10.49					
ED17-01	11.44	9.532	10.32	8.654	7.848					
ED17-03	8.952	7.596	10.7	9 166	7.358					
ED17-29	7.116	9.206	7.296	10.34	8.384					

000-469-187-2

CETfS™ v1.8.7.16

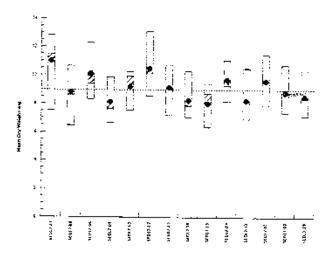
Report Date: Tost Code:

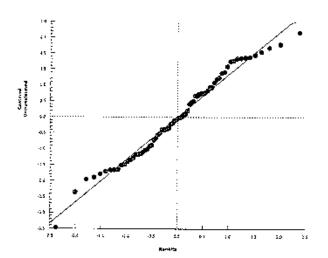
21 Jun-17 11:33 (p 3 of 3) 170471c | 11-9348-3710

Neanthes 20-d Survival and Growth Sediment Test

Nautilus Environmental

Analysis ID: Analyzed:


04-9870-3698 21 Јил-17 11:03


Analysis:

Endpoint: Mean Dry Weight-mg Parametric-Two Sample CETIS Version: Official Results: Yes

CETISv1.8.7

Graphics

Report Date: Test Code: 21 Jun-17 11:33 (p 1 of 3) 170471c (11-9348-3710

		_ _						rest Code:		704710	11-9348-371
Neanthes 20-d	Survival and Growth	Sediment Tes	st						Ná	utilus E	nvironmental
Analysis ID: Analyzed:	09-4762-2585 21 Jun-17 11:03			Growth Rat -Two Samp				CETIS Version: Official Results:	CETISv1 Yes	.8.7	
Batch ID:	09-2852-2152	Test Type: S	urviva!-G	rowth	•			Analyst: Jesli	n Wijaya		
Start Oate:	26 May-17		SEP (199					-	ral seawate	èr	
Ending Date:	15 Jun-17		•	arenaceode	ntat	a		Brine;	isi scamati		
Duration:	20d 0h			xicology Su				Age:			
Sample Code	Sample ID	Sample	Date	Receive Da	ate	Sample	Age	Client Name		Projec	+
\$ED17-27	15-8574-8565	05 May-	_	15 May-17			_			1 TOJCC	
SED17-08	10-1003-8381			15 May-17							
SED17-06	19-4215-8235			15 May-17							
SED17-09	13-9590-2568			15 May-17							
SED17-13	02-1258-2667			15 May-17							
SED17-17	06-5820-5843			15 May-17							
SED17-20	00-0790-7357			15 May-17							
SED17-18	04-2524-4947			15 May-17							
SED17-19	07-6812-4215			15 May-17							
SED17-24	05-6632-5205			15 May-17							
SED17-12	01-4413-4098			15 May-17							
\$ED17-01	05-6502-2240										
SED17-03	05-1816-3513			15 May-17							
SED17-29	08-4658-3752			15 May-17 15 May-17							
Sample Code	Material Type	Sample				Station			Lotitude		
SED17-27	Sediment Samp		000.00			SED17-2			Latitude		ngilude
SED17-08	Sediment Samp					SED17-0					
SED17-06	Sediment Samp										
\$ED17-09	Sediment Samp					\$ED17-0					
SED17-13	Sediment Samp					SED17-0					
SED17-17	Sediment Samp					SED17-1					
SED17-20	Sediment Samp					SED17-1					
SED17-18	Sediment Samp					SED17-2					
SED17-19	Sediment Samp					\$ED17-1					
SED17-24	Sediment Samp					SED17-1					
SED17-12	· ·					SED17-2					
SED17-01	Sediment Sampl					SED17-1					
SED17-03	Sediment Sampl					SED17-0					
SED17-03	Sediment Sampl					SED17-0)3				
	Sediment Sampl	le Golder				SED17-2	9				
Data Transform Untransformed	Zeta NA	Alt Hyp	Trials	Seed			PMS		t		
	<u></u>	C > T	NA —-	NA			19.3%	<u>.</u>			
Sample Code	t Two-Sample Test										
SED17-27	vs Sample Code SED17-08	Test Stat				P-Value	Р-Тур	e Decision(α	5%)		
	SED17-08	1.787	1.86	0.113		0.0559	CDF	Non-Signific	ant Effect		
		0.7604	1.86	0.108		0.2344	CDF	Non-Signific	ant Effect		
	\$ED17-09 \$ED17-13	2.654	1.86	0.100		0.0145	CDF	Significant E	Effect		
	SED17-13 SED17-17	1.706	1.86	0.099		0.0632	CDF	Non-Signific	ant Effect		
	\$ED17-17	0.4663	1.86	0.109		0.3267	COF	Non-Signific			
	SED17-18	1.716 2.616	1.86	0.100		0.0622	CDF	Non-Signific			
	SED17-19	2.616	1.86	0.098		0.0154	CDF	Significant E			
	SED17-19	2.63	1.86	0.105		0.0151	CDF	Significant £			
	\$ED17-12	1.27 2.514	1.86	0.097		0.1200	CDF	Non-Signific			
	\$ED17-01	1,294	1.86 1.88	0.103		0.0181	CDF	Significant E			
	SED17-03	2.05	1.86 1.86	0.102		0.1158	CDF	Non-Signific			_
	SED17-29	2.314	1.86 1.86	0.101		0.0373	CDF	Significant E			She
	· · · · —•		1,00	0.101	٥	0.0247	CDF	Significant E	ffect		W

Analyst:_ OW__

Report Date:

21 Jun-17 11:33 (p 2 of 3) 170471c | 11-9348-3710

Test Code:

· · · · · · · · · · · · · · · · · · ·			res	t Code:		1704710 11-9348-3710				
Neanthes 20-	d Survival and Growt	h Sediment	Test					N	lautilus Em	rironmenta
Analysis ID: Analyzed:	09-4762-2585 21 Jun-17 11:03	Endpoint: Analysis:	Individual Grow Parametric-Two				FIS Version: cial Results:	CETI\$v	1.8.7	
ANOVA Table	!									
Source	Sum Squares	Mear	1 Square	DF	F Stat	P-Value	Decision(a:5%)		
Between	0.1402008	0.010	78467	13	1.974	0.0406	Significant			
Error	0.3059843	0.005	464006	55		0.0 ⊣00	Giginii (di ji	Lifeot		
Total	0.4461851			69	_					
Distributional	Tests			_		· ·				
Attribute	Test		Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Bartlett Equality	y of Variance	2.599	27.69	0.9990	Equal Va	`			
Distribution	Shapiro-Wilk W	V Normality	0.9792	0.9526	0.2955		istribution			
Individual Gra	owth Rate Summary			_	· · · · ·					
Sample Code	Cou	nt Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
\$ED17-27	5	0.523	4 0.3978	0.549	0.5484	0.3499	0.6159	0.04523	19.32%	0.0%
SED17-08	5	0.414		0.5276	0.4041	0.2969	0.5069	0.04062	21 9%	20.76%
SED17-06	5	0.479		0.581	0.4428	0.3894	0.5879	0.03668		
9ED47.00	_	= · · · · =		4.401	D.44420	0.000	0.0073	0.00000	17.12%	8.46%

CED-7 00	_				0.0-10-1	4.0400	0.0100	0.04323	15.0270	0.070
SED17-08	5	0.4148	0.302	0.5276	0.4041	0.2969	0.5069	0.04062	21 9%	20.76%
SED17-06	5	0.4791	0.3773	0.581	0.4428	0.3894	0.5879	0.03668	17.12%	8.46%
SED17-09	5	0.3805	0.2992	0.4617	0.3551	0.3057	0.4677	0.02926	17.2%	27.31%
SED17-13	5	0.4329	0.356	0.5099	0.4703	0.3506	0.487	0.02320		
SED:7-17	5	0.4962	0.3937	0.5987	0.4791				14.32%	17,29%
SED17-20	-			D.3501	0.4791	0.4014	0.6288	0.03691	16.63%	5.2%
SED17-20	5	0.431	0.3497	0.5123	0.4257	0.3329	0.5105	0.02928	15.19%	17.67%
SED17-18	5	0.3851	0.3089	0.4612	0.3665	0.3262	0.4873	0.02743	15.93%	26.44%
SED17-19	5	0.3741	0.2788	0.4694						
SED17-24	-			0.4034	0.4102	0.291	0.4447	0.03432	20.52%	28.53%
	5	0.4572	0.3852	0.5293	0.4374	0.3813	0.5262	0.02595	12.69%	12.65%
\$ED17-12	5	0.3845	0.2963	0.4727	0.3848	0.0000				
SED17-01	-				V.3040	0.3203	0.4985	0.03176	18.47%	26.54%
	5	0.4522	0.3651	0.5392	0.4508	0.3656	0.5463	0.03135	15.5%	13.61%
SED17-03	5	0.412	0.3282	0.4958	0.4219	0.3421				
SED17-29	-				0.4219	0.3421	0.5092	0.03018	16.38%	21.29%
<u> </u>	5	0.3977	0.314	0.4813	0.3934	0.3301	0.4912	0.03012	16.94%	24.02%

Individual Growth Rate Detail

Sample Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
SED17-27	0.5484	0.5565	0.3499	0.6159	0.5464
\$ED17-08	0.5032	0.4041	0.5089	0.3629	0.2969
SED17-06	0.3894	0.5406	0.4349	0.5879	0.4428
SED17-09	0.3057	0.3551	0.4677	0.4269	0.3469
SED17-13	0.3506	0.3825	0.487	0.4703	0.4743
SED17-17	0.4946	0.6288	0.4791	0.4014	0.477
SED17-20	0.3329	0.464	0.5105	0.4215	0 4257
SED17-18	0.3881	0.3572	0.3262	0.3665	0.4873
SED17-19	0.291	0.4447	0.2913	0.4333	0.4102
SED17-24	0.3813	0.4374	0.5262	0.5038	0.4373
SED17-12	0.3848	0.3895	0.3203	0.3296	0.4985
SED17-01	0.5463	0.4508	0.4902	0.407	0.3666
SED17-03	0.4219	0.3541	0.5092	0.4326	0.3421
SED17-29	0.3301	0.4346	0.339	0.4912	0.3934

Report Date: Test Code:

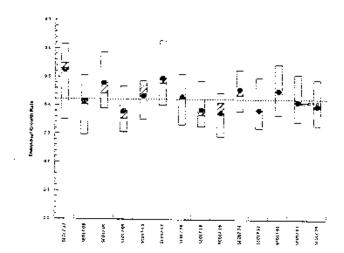
21 Jun-17 11:33 (p.3 of 3) 170471c | 11-9348-3710

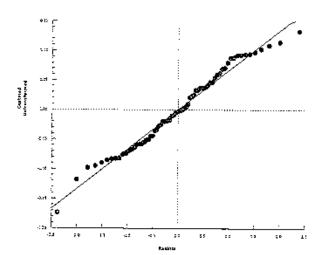
Neanthes 20-d Survival and Growth Sediment Test

Nautilus Environmental

Analysis ID: Analyzed:

09-4762-2585 21 Jun-17 11:03


Analysis:


Endpoint: Individual Growth Rate Parametric-Two Sample

CETIS Version: Official Results: Yes

CETISv1.8.7

Graphics

المنان _{Italian}

NAUTILUS ENVIRONMENTAL

ATTN: Jeslin Wijaya 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 26-MAY-17

Report Date: 05-JUN-17 15:08 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1932455
Project P.O. #: NOT SUBMITTED

Job Reference:

C of C Numbers: OL-2454

Legal Site Desc:

Heather McKenzie Account Manager

 $[This\ report\ shall\ not\ be\ reproduced\ except\ in\ full\ without\ the\ written\ authority\ of\ the\ Laboratory.]$

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

PAGE 2 of 8 05-JUN-17 15:08 (MT)

Version: FINAL

	Sample IE Descriptio Sampled Dat Sampled Tim Client II	Overlying Water 26-MAY-17 09:00	L1932455-2 Overlying Water 26-MAY-17 09:00 SED 17-12 - OVERLYING	L1932455-3 Overlying Water 26-MAY-17 09:00 SED 17-13 - OVERLYING	L1932455-4 Overlying Water 26-MAY-17 09:00 SED 17-06- OVERLYING	L1932455-5 Overlying Water 26-MAY-17 09:00 SED 17-08- OVERLYING
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.0282	0.377	0.120	0.773	0.747
	Sulphide as S (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 3 of 8 05-JUN-17 15:08 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1932455-6 Overlying Water 26-MAY-17 09:00 SED 17-09- OVERLYING	L1932455-7 Overlying Water 26-MAY-17 09:00 SED-17-17 - OVERLYING	L1932455-8 Overlying Water 26-MAY-17 09:00 SED 17-18- OVERLYING	L1932455-9 Overlying Water 26-MAY-17 09:00 SED 17-01 - OVERLYING	L1932455-10 Overlying Water 26-MAY-17 09:00 SED 17-03 - OVERLYING
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.219	0.545	0.446	0.421	1.48
Numerica	Sulphide as S (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 4 of 8 05-JUN-17 15:08 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1932455-11 Overlying Water 26-MAY-17 09:00 SED 17-19 - OVERLYING	L1932455-12 Overlying Water 26-MAY-17 09:00 SED 17-20 - OVERLYING	L1932455-13 Overlying Water 26-MAY-17 09:00 SED 17-24 - OVERLYING	L1932455-14 Overlying Water 26-MAY-17 09:00 SED 17-27 - OVERLYING	L1932455-15 Overlying Water 26-MAY-17 09:00 SED 17-29 - OVERLYING
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	0.477	0.295	0.497	0.271	0.581
- Numerica	Sulphide as S (mg/L)					

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 5 of 8 05-JUN-17 15:08 (MT)

Version: FINAL

NTERSTITIAL	Porewater 26-MAY-17 09:00 SED 17-08 - INTERSTITIAL
Anions and Ammonia, Total (as N) (mg/L) 2.93 1.25 1.12 2.69 Nutrients	
Nutrients	
Sulphide as S (mg/L) <0.018 <0.018 0.018 0.018	9.18
	37.4

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 6 of 8 05-JUN-17 15:08 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1932455-21 Porewater 26-MAY-17 09:00 SED17-09 - INTERSTITIAL	L1932455-22 Porewater 26-MAY-17 09:00 SED17-17 - INTERSTITIAL	L1932455-23 Porewater 26-MAY-17 09:00 SED17-18 - INTERSTITIAL	L1932455-24 Porewater 26-MAY-17 09:00 SED17-01 - INTERSTITIAL	L1932455-25 Porewater 26-MAY-17 09:00 SED 17-03 - INTERSTITIAL
Grouping	Analyte					
WATER						
Anions and Nutrients	Ammonia, Total (as N) (mg/L)	1.09	4.01	2.44	2.26	4.83
Nutrients	Sulphide as S (mg/L)	<0.018	<0.018	<0.018	<0.018	<0.018

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 7 of 8 05-JUN-17 15:08 (MT)

Version: FINAL

Sampled Date 26-MAY-17 2	7-27 - SED 17-29 -
Grouping Analyte	
WATER	
Anions and Ammonia, Total (as N) (mg/L) 3.43 2.04 2.42 0.88	85 2.74
Sulphide as S (mg/L) <0.018 <0.018 <0.018 <0.018	<0.018

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1932455 CONTD.... PAGE 8 of 8 05-JUN-17 15:08 (MT) Version: FINAL

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike	Sulphide as S	MS-B	L1932455-16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30

Qualifiers for Individual Parameters Listed:

Qualifier Description

MS-B Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
NH3-F-VA	Water	Ammonia in Water by Fluorescence	APHA 4500 NH3-NITROGEN (AMMONIA)

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

NH3-F-VA

Water Ammonia in Water by Fluorescence

J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al.

S2-T-COL-VA Water Total Sulphide by Colorimetric APHA 4500-S2 Sulphide

This analysis is carried out using procedures adapted from APHA Method 4500-S2 "Sulphide". Sulphide is determined using the methlyene blue colourimetric method.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

OL-2454

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Page 1 of 2

Chain of Custody / Analytical Request Form Canada Toll Free : 1 800 668 9878 www.alsglobal.com

ALS) Enuironmental

Roport To					Reporting						Service Requested										
Company:	Nautilus Environmental				Distribution;	⊕Fax	OMail OMail	⊡ Emait													
Contact:	Jestin Wijaya	•			□Ciriteria o	Report (select from	Guidelines below)		O Pri	ority (3	Days)	- surchar	go will app	aly - P							
Address.	8554 Commerce Court	<u></u>			Report Type	□ Excel	<u>—</u> ☑ Digit		OPri	ority (2	Days)	- ទេ២៤វិឃាញ	e will app	ly - P2							
	imperial Square Lake C. Burnaby, BC	ıΛ			Report Form	al.			φĒπ	ergenc	y (1-2	day) — sı	ircharge v	rill appl	y · E						
ľ	Cenada, VSA 4N7				Report Email	l(s). jeslin@nautilu	senvironmental.ca		⊖Sa	me Day	or We	ekend Er	nergency	- surch	arge wil	appi	y - E2				
					}				O Sp	ecify da	ie req	jired - X									
Phone:	604-420-8773	Fax:	604-357-1361	_	1				\Box				Analy	sis Re	quests						
lavolca To	⊠Email	☐ Mail			E00 Format.	:						I			\Box	$\neg \Gamma$		ΙΤ			
Сомралу	Naut≩us Environmentat				EOD Emal/(s):						-	-							1		
Contact:	Jeslin Wijaya]						- 1	i			1 1						
Address:	8664 Commerce Court				7										1 1						
	Burnaby, BC	ιγ			Project Info									1	'	'	'	'			
	Jeslin@nautiluscrivironmental.ca				Jab #:			_		ΙI				1		Ξ		- 1			
				_	PO/AFE:			-	1	ΙI				1		1					
Email:	Jeslin@nautilusenvironm	ental,ca				, .							•		ŀ						
Phone:	604-420-8773				Quote #:				Containers	<u>.</u>				-		\Box	를				
	Clab Work Order * The Clab Control of the Control o				ALS Contact		Sampler:			Amman	Sulfide	Sulfide				1932455-COFC					
Sample		Sample Identification (This will appear on the report)	n .	Coord	Inates			T	Mumber		Ple	ase indica	ste below	Filtered	1, P	55		F/P)			
4.00		Sample Identification (This will appear on the report)		Longitude	e Latitude Date		Time	Sample Type	ž	Р	P	P -		Τ	Γ	8	三	T			
	Control Sediment - Overl	(This will appear on the roport)				May-28-2017	09:00 AM	Overlying Water	1	R	\neg			T	Γ	Ö					
·····································	SED 17-12 - Overlying		_			May-26-2017	Q9.00 AM	Overlying Water	1	Ŕ				1	Γ						
340 PMS	SED 17-13 - Overlying					May-26-2017	09:00 AM	Overtying Water	1	R					Γ						
	SEO 17-06- Overlying					May-26-2017	09:00 AM	Overlying Water	1	R								$oxed{\top}$			
William.	SEO 17-08- Overlying					May-26-2017	09:00 AM	Overlying Water	1	R				\top							
和企業	SED 17-09- Overlying					May-26-2017	09:00 AM	Overlying Water	1	R	1			1	Г			\neg			
HARRISH	SED 17-17 - Overlying					May-26-2017	09:00 AM	Overlying Water	1	R				7		4	-	!	\neg		
1000 M	SED 17-18- Overlying					May-26-2017	09:00 AM	Overlying Water	1	R						7					
						(See page	2 for further sample	s)									•				
	Address: 8664 Commerce Courl Imperial Square Lake City Burnaby, BC Caneda, VSA 4N7 Inail: Jestin@nautiluscrivironmental.ca In			The quest	ions below m	ust be answered in	or water samples (check Yas or No)	Gulde	een h									. –		
				Are any samp	de taken from	a regulated DW sys	tem? ☐Yès	□No													
				lf yes, please	use an author	ized drinking weter	COC								•						
	SED 17-13 - Overlying SED 17-06- Overlying SED 17-08- Overlying SED 17-09- Overlying SED 17-17 - Overlying SED 17-18- Overlying SED 17-18- Overlying SED 17-18- Overlying SED 17-18- Overlying			is the water s	ampted intend	ed to be potable for	human			argin	#11E	SAM	PLE CON	omoi	l (lab ur	H DN	v)	: : : : : : : : : : : : : : : : : : :			
	SED 17-06- Overlying SED 17-06- Overlying SED 17-08- Overlying SED 17-17- Overlying SED 17-18- Overlying SED 17-18- Overlying Sed 17-18- Overlying Special Instructions/Comments Special Instructions/Comments Date: Time:			consumption?			_Yes	□N≎	□Fro			Cold		mbien			ling Inklat				
鄉源科疆剛	작가(PSHIPMENT RELEASE (client use) 병원 (환경)			學所能的原	ЖДЙ∄ \$н €	PMENT RECEPTIO	N (lab use only)	組織維持。同門等	· 國際經過的學科學等SHIPMENT VERIFICATION (lab use only) 医下心性 医中间性									i maid			
Released by	_	Oste;	Time:	Received by		Date.	Time;	Temperature:	Verific	ed by:		Date:	Date:				Observations:				
núzec	wijaya	No. or to	10 . (*)	PAY	N.,	MAY 26	19:00	10.5										□Yes	i		
Nauthus	See Commerce Court Imperial Square Lake City Surnaby, BC Caneda, VSA 4N7 estin@nautituscnvironmental.ca i04-420-8773 Work Order # ab use only) Sample Identification (This will appear on the report) Control Sediment - Overlying ED 17-12 - Overlying ED 17-08- Overlying ED 17-08- Overlying ED 17-09- Overlying ED 17-18- Overlying		15.00	<u> </u>	 -	1017 20		-18:2-°C	 -			- -					-	(f Yes c	od SIF		

Page 2 of 2

ALS Environmental

Chain of Custody / Analytical Request Form Canada Toll Free : 1 800 668 9878 www.alsglobal.com

(ALS)	Environmental				_ •	rww.aisgiobai.c	OIII	_																		
1 100		1													Anai	ysis F	teque	sts								\Box
Sample	Sample Identification	Coord	dinatea																							
	(This will appear on the report)	Longitude	Latitudo	- Date	Time	Sample Type	Number of Containers	Ammonla	Sulfide	Sulfide										b. a.b. (5		m2)				_
11.		1					Ĕ	<u> </u>	· -	_	_	Pl ⊕ 0	sė ink	Jicate	below	Fater	04. P	reserv	eo or	both(F	, P, F	/P)				긤
	CED 47 of Contribution	 		N	00.03.411	Don't land the	┞ —	P	P	P	\vdash	 -	<u> </u>			\vdash	-	\dashv	\dashv		\dashv	\dashv	\rightarrow	-	+	\dashv
	SED 17-01 - Overlying SED 17-03 - Overlying	 	 	May-26-2017	09:00 AM 09:00 AM	Overlying Water	1	R	-	-		├	_	\dashv		\vdash	-	\dashv	\dashv	\dashv	-+	\dashv	\dashv		╀	\dashv
	SED 17-19 - Overlying	 	+	May-26-2017 May-26-2017	09:00 AM	Overlying Water Overlying Water	1	R	_	\vdash	\vdash	\vdash	<u> </u>	\vdash				\vdash		\dashv	\dashv	\dashv	\rightarrow	+	+	
	SED 17-20 - Overlying	 	 	May-26-2017 May-26-2017	09:00 AM	Overlying Water	1	R	_	 		┝	<u> </u>	\dashv		\vdash	\dashv	\dashv	\dashv	┰┼	\dashv		-	+	╁	\dashv
	SEO 17-24 - Qverlying	 	 	May-26-2017	09:00 AM	Overlying Water	1	R		┯		 				\vdash	-	\dashv	\dashv	一			'	+	十	_
	SED 17-27 - Overlying	 	-	May-26-2017	09:00 AM	Overlying Water	1	R	\vdash		┢			\dashv		\vdash			_	\dashv		Ξ	==	<u>:</u>	+	_
	SED 17-29 - Overlying	 		Mey-26-2017	D9:00 AM	Overlying Water	1	R				\vdash	_			\Box	\neg		一	ヿ		3		<u> </u>	十	
- 10 - 19 (40 (19) - 10 - 20 (11) (12) (13)	Control Sediment - Interstitial			May-26-2017	09:00 AM	Porewater	2	R	R							-					•			¥ -	T	
$\overline{}$	SEO 17-12 - Interstitlei			May-26-2017	09:00 AM	Porewater	2	R		R	Г	_									_	93		≐	\perp	
12年前2	SED 17-13 - Interstitial			May-26-2017	09.00 AM	Porewater	2	R	R												_	245		5	\perp	
性機能	SEO17-06 - Interstrial			May-25-2017	09:00 AM	Porewater	2	R	R	_												Š			floor	
機能能够	SED 17-08 - Interstitial]		May-26-2017	09:00 AM	Porewater	2	R	R												_	_1932455-COFC		=	\perp	
建	SED17-09 - Interstitual			May-26-2017	09:00 AM	Porewater	2	R	R		_										_	Ö	\equiv	三	\perp	
建筑顺湖	SED17-17 - Interstitial			May-26-2017	09:00 AM	Porowater	2	R	Ř											_			\equiv		\downarrow	
国政治 教	SEO 17-18 - Interstitial		L	May-26-2017	D9:00 AM	Porewater	2	R	R							\square		\Box		_	_				1	_
100 1100 110	SEO17-01 - Interstitial		L	May-26-2017	09:00 AM	Porewater	2	R	R							Щ		Щ]	\perp				=	Ţ	_
	SED 17-03 - Interstitlet			May-28-2017	09:00 AM	Porewater	2	R	R	ļ															;	
	SEO 17-19 - Interstitial			May-28-2017	09:00 AM	Porcwater	2	R	R				<u> </u>			igsqcut		\square	_	_	-	· · · ·		_	4	_
	SED 17-20 - Interstitial			May-26-2017	09:00 AM	Porewaler	Ż	R	R					Ш						_				+	-	_
	SEO 17-24 - Interstital			May-26-2017	09:00 AM	Porewaler	2	R	R				_			$\mid \cdot \mid$			\Box	_	_	\dashv			+	႕
1	SED 17-27 - Interstitial			May-26-2017	09:00 AM	Porgwater	2	R	R	_	_	_	<u> </u>	Щ				\vdash				_	\dashv	_	+	닉
	SED 17-29 - Interstitial			May-26-2017	MA 00:00	Porewater	2	R	R				ļ _		_						_	_	\dashv	-	-+	닉
A STREET, STRE			ļ					<u> </u>	_		<u> </u>								<u> </u>			\dashv	\dashv	_+	+	\dashv
CAN DEPOSE		 -					 		├	-	1	\vdash			—	\vdash					-+		\rightarrow	\dashv	+	\dashv
	"						-		\vdash	\vdash	\vdash	\vdash	 					_			- 	\dashv	-+	+	-+	ᅥ
2011年10日 高級電話所		- -			_ -			├	\vdash	\vdash	\vdash				_	\vdash	_						<u> </u>	<u>_</u> †-	<u> </u>	╛
Destructive on		1				- - -	1 —	ا —	_		1	1			ļ	į	1		ļ				[-			

NAUTILUS ENVIRONMENTAL

ATTN: Jeslin Wijaya 8664 Commerce Court Imperial Square Lake City Burnaby BC V5A 4N7 Date Received: 19-JUN-17

Report Date: 27-JUN-17 17:46 (MT)

Version: FINAL

Client Phone: 604-420-8773

Certificate of Analysis

Lab Work Order #: L1944530
Project P.O. #: NOT SUBMITTED

Job Reference:

C of C Numbers: OL-2524

Legal Site Desc:

Heather McKenzie Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L1944530 CONTD....

PAGE 2 of 8 27-JUN-17 17:46 (MT)

Version: FINAL

WATER Anions and Nutrients Sulphide as S (mg/L) Sulphide as S (mg/L) Sulphide as S (mg/L)	ing Water Overlying Water JUN-17 15-JUN-17 9:00 09:00 17-09 - SED 17-13 - OVERLYING
Anions and Ammonia, Total (as N) (mg/L) Nutrients 3.16 1.18 5.37	
Nutrients	
Sulphide as S (mg/L)	3.58 2.19

PAGE 3 of 8 27-JUN-17 17:46 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1944530-6 Overlying Water 15-JUN-17 09:00 SED 17-17 - OVERLYING	L1944530-7 Overlying Water 15-JUN-17 09:00 SED 17-20 - OVERLYING	L1944530-8 Overlying Water 15-JUN-17 09:00 SED 17-18 - OVERLYING	L1944530-9 Overlying Water 15-JUN-17 09:00 SED 17-19 - OVERLYING	L1944530-10 Overlying Wate 15-JUN-17 09:00 SED 17-24 - OVERLYING
Grouping	Analyte						
WATER							
Anions and Nutrients	Ammonia, Total (as N) (mg/L)		2.21	1.01	1.33	1.59	0.568
	Sulphide as S (mg/L)						

PAGE 4 of 8 27-JUN-17 17:46 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date	L1944530-11 Overlying Water 15-JUN-17	L1944530-12 Overlying Water 15-JUN-17	L1944530-13 Overlying Water 15-JUN-17	L1944530-14 Overlying Water 15-JUN-17	L1944530-15 Overlying Wate 15-JUN-17
		Sampled Time Client ID	09:00 SED 17-12 - OVERLYING	09:00 SED 17-01 - OVERLYING	09:00 SED 17-03 - OVERLYING	09:00 SED 17-29 - OVERLYING	09:00 SED 17-27 - OVERLYING
Grouping	Analyte						
WATER							
Anions and Nutrients	Ammonia, Total (as N) (mg/L))	0.751	1.85	2.56	3.35	5.23
	Sulphide as S (mg/L)						

PAGE 5 of 8 27-JUN-17 17:46 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1944530-16 L1944530-17 L1944530-18 L1944530-19 L1944530-20 Sample ID Description Overlying Water Porewater Porewater Porewater Porewater 15-JUN-17 15-JUN-17 15-JUN-17 15-JUN-17 15-JUN-17 Sampled Date 09:00 09:00 09:00 09:00 Sampled Time 09:00 CONTROL SED 17-08 -SED 17-06 SED 17-09 SED 17-13 Client ID SEDIMENT -INTERSTITIAL INTERSTITIAL INTERSTITIAL INTERSTITIAL INTERSTITIAL Grouping **Analyte WATER** Ammonia, Total (as N) (mg/L) Anions and 1.84 1.11 4.52 4.68 4.15 **Nutrients** Sulphide as S (mg/L) <0.018 <0.018 <0.018 <0.018 0.032

PAGE 6 of 8 27-JUN-17 17:46 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

						VC131011	. IIIAL
	De Sam _l Samp	ample ID escription pled Date oled Time Client ID	L1944530-21 Porewater 15-JUN-17 09:00 SED 17-17 INTERSTITIAL	L1944530-22 Porewater 15-JUN-17 09:00 SED 17-20 INTERSTITIAL	L1944530-23 Porewater 15-JUN-17 09:00 SED 17-18 INTERSTITIAL	L1944530-24 Porewater 15-JUN-17 09:00 SED 17-19 INTERSTITIAL	L1944530-25 Porewater 15-JUN-17 09:00 SED 17-24 INTERSTITIAL
Grouping	Analyte						
WATER							
Anions and Nutrients	Ammonia, Total (as N) (mg/L)		5.66	5.03	4.79	4.07	5.93
	Sulphide as S (mg/L)		<0.018	<0.018	0.018	<0.018	<0.018

PAGE 7 of 8 27-JUN-17 17:46 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1944530-26 Porewater 15-JUN-17 09:00 SED 17-12 INTERSTITIAL	L1944530-27 Porewater 15-JUN-17 09:00 SED 17-01 INTERSTITIAL	L1944530-28 Porewater 15-JUN-17 09:00 SED 17-03 INTERSTITIAL	L1944530-29 Porewater 15-JUN-17 09:00 SED 17-29 INTERSTITIAL	L1944530-30 Porewater 15-JUN-17 09:00 SED 17-27 INTERSTITIAL
Grouping	Analyte						
WATER							
Anions and Nutrients	Ammonia, Total (as N) (mg/L)		1.67	4.68	8.75	4.67	5.90
	Sulphide as S (mg/L)		<0.018	<0.018	0.021	0.049	<0.018

Reference Information

L1944530 CONTD....

PAGE 8 of 8

27-JUN-17 17:46 (MT)

Version: FINAL

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
NH3-F-VA	Water	Ammonia in Water by Fluorescence	APHA 4500 NH3-NITROGEN (AMMONIA)
			ified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of trace levels of ammonium in seawater", Roslyn J. Waston et
NH3-F-VA	Water	Ammonia in Water by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
			ified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of trace levels of ammonium in seawater", Roslyn J. Waston et
S2-T-COL-VA	Water	Total Sulphide by Colorimetric	APHA 4500-S2 Sulphide
This analysis is carried out colourimetric method.	using proce	dures adapted from APHA Method 4500-S2 "Su	ulphide". Sulphide is determined using the methlyene blue
* ALS test methods may inco	orporate mod	lifications from specified reference methods to in	mprove performance.
The last two letters of the a	bove test co	de(s) indicate the laboratory that performed and	alytical analysis for that test. Refer to the list below:
Laboratory Definition Cod	le Labor	atory Location	
VA	ΔISE	NVIRONMENTAL - VANCOUVER, BRITISH C	OLLIMBIA CANADA

Chain of Custody Numbers:

OL-2524

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

II Yes add SIF

L1944530-COFC

FIN 21 JUC

Environmental

16:00

Page 1 of 2 Environmental Reporting Service Requested Report To Distribution: Company: Nautilus Environmental □Fax ⊠Meĭ □ Email Regular (Standard Tumeround Times - Business Days) - R □Ciriteria on Report (salect from Guidelines below) O Priority (3 Days) - surcharge will apply - P Contact: Jeslin Wijaya Address: 8664 Commerce Court □ Excel □ Digital O Priority (2 Days) - surchargo will appty - P2 Report Type: Imperial Square Lake City Report Format: O Emergency (1-2 day) - surcharge will apply - E Burnaby, BC Canada, V5A 4N7 Report Email(s): O Same Day or Weekend Emergency - surcharge will apply - E2. O Specify date required - X Phone: 604-420-8773 Fax: 604-357-1361 Analysis Requests Invoice To MEmail EDD Format. Nautaus Environmental EOD Email(s): Company: Contact: Josiin Wijeye Address: 8664 Commerce Court Imperial Square Lake City Project Infa Burnaby, BC Canada, VSA 4N7 Job #: PO/AFE LSO: Email: jestin@nautriusenvironmental.ca of Containers 604-420-8773 Phone: Quote #; Ammonia Suffide Suffide Lab Work Order # 2011 LS Contact Sampler: (list use only) Number Coordinates Please indicate below Fiftered, Preserved or both(F, P, F/P) Sample Sample Identification Date Time Sample Type (This will appear on the report) Ρ Ρ Ρ Longitudo Latitude Control Sediment - Overlying Jun-15-2017 09:00 AM Overlying Water 1 R SED 17-08 - Overlying Jun-15-2017 09.00 AM Overlying Water SED 17-08 - Overlying Jun-15-2017 09:00 AM Overlying Water R SED 17-09 - Overlying R Jun-15-2017 09:00 AM Overlying Water Short Folding Time R SEO 17-13 - Overlying Jun-15-2017 09:00 AM Overlying Water SEO 17-17 - Overlying Overlying Water Jun-15-2017 09 00 AM R Rus Processing SED 17-20 - Overlying Jun-15-2017 09:00 AM Overlying Water R SED 17-18 - Overlying Jun-15-2017 08:00 AM Overlying Water R (See page 2 for further samples) Special Instructions/Comments The questions below must be answered for water samples (check Yes or No) Guldelines Are any sample taken from a regulated DW system? ☐Yes ☐No If yes, please use an authorized drinking water COC MANUTE CONDITION (lab use only) 正规模编纂的 is the water sampled intended to be potable for human ☐Yes ☐No consumption? □Frozen □Cold ☐Cooling Initiated □ Ambient SHIPMENT VERIFICATION (tab use only) 图解证明的法式的中SHIPMENT RELEASE (client use) 图像图像数据数据 器性能器解析的 Manual Property Reception (lab use only) 器數學學科科學的 Roleased by: Date: Time: Received by: Temperature: Verified by: Date: Time; Observations: June 19 eurifius - Naufilus D Yes (merer

L1944530-COFC

ALS) Environmental Analysis Requests Coordinates Sample Identification Sample Date Time Sample Type (This will appear on the report) Number of Containers Ammonia Sulfide Sulfide Longitude Latitude Please indicate below Filtered, Preserved or both(F, P, F/P) P Р Р SED 17-19 - Overlying 09:00 AM Overlying Water R Jun-15-2017 1 SED 17-24 - Overlying Jup-15-2017 09:00 AM Overlying Water 1 R SED 17-12 - Overlying Jun-15-2017 09:00 AM Overlying Water 1 R R SEO 17-01 - Overlying Jun-15-2017 09:00 AM Overlying Water 1 Jun-15-2017 R SED 17-03 - Overlying 09:00 AM Overlying Water 1 SEO 17-29 - Overlying Jun-15-2017 09:00 AM Overlying Water 1 R SED 17-27 - Overlying R Jun-15-2017 09:00 AM Overlying Water 1 Control Sediment -R R Jun-15-2017 09:00 AM Porewater 2 Interstitial SED 17-08 - Interstitial Jun-15-2017 09:00 AM 2 Ř Ŕ Porewater R R SEO 17-05 - Interstital Jun-15-2017 09:00 AM Porewater 2 1. Oak SED 17-09 - Interstitial Jun-15-2017 09:00 AM 2 R R Porewater R R SCO 17-13 - Interstital Jun-15-2017 09:00 AM Porewater 2 SED 17-17 - Interstitial R Jun-15-2017 09:00 AM Porewater 2 R SEO 17-20 - Interstitlet Jun-15-2017 09:00 AM 2 R R Porewater SED 17-18 - Interstitial 09:00 AM R R Jun-15-2017 Porewater 2 SED 17-19 - Interstitlal Jun-15-2017 2 R R 10.00 09:00 AM Porewater Ż R R SED 17-24 - Interstitial Jun-15-2017 09:00 AM Porowater 45.00 SED 17-12 - Interstitial Jun-15-2017 09:00 AM Porewater 2 R R 2 R R SED 17-01 - Interstitial Jun-15-2017 09:00 AM Porewater SED 17-03 - Interstitial 2 R R Jun-15-2017 09:00 AM Porewater SED 17-29 - Interstitial Jun-15-2017 09:00 AM Porewater 2 R R 10.75 09:00 AM 2 R R SED 17-27 - Interstitial Jun-15-2017 Porewater Carry Line That ships 阿尔特州中

APPENDIX F

Quality Assurance/Quality Control Results

QA/QC Table of Collected Surficial Sediment Sample Name SED17-12 DUP-3 SED17-18 SED17-31 DUP-1 DUP-2 **Method Detection Relative Percent Method Detection Relative Percent Method Detection Relative Percent** 04/05/2017 Sample Date 04/05/2017 02/05/2017 02/05/2017 28/04/2017 28/04/2017 Limit Difference (%) Limit Difference (%) Limit Difference (%) K1704542 K1704542 K1704471 K1704471 K1704415 K1704415 Laboratory Sample ID Physical Parameters (%) Percent Solids 76 77 1.2 66 63 3.9 48 49 2.7 Metals (mg/kg dry wt) Aluminum (Al) 7880 8420 1.7 6.6 13300 13400 0.75 20500 19900 1.7 1.7 3.0 Antimony (Sb) 0.21 0.15 0.043 0.066 0.079 0.043 < 0.068 < 0.068 0.068 Arsenic (As) 3.8 2.6 0.43 37 3.4 3.3 0.43 3.3 5.7 5.8 0.43 2.8 Barium (Ba) 174 166 0.68 4.7 295 299 0.68 1.3 450 439 0.68 2.5 Beryllium (Be) 0.17 0.017 23 0.28 0.24 0.017 12 0.42 0.36 0.017 15 0.14 Cadmium (Cd) 1.3 0.017 4.8 0.61 0.6 0.017 1.6 0.56 0.72 0.017 25 1.2 14300 6750 72 9640 15400 46 12200 13800 12 Calcium (Ca) 3.4 3.4 3.4 0.17 49 17 0.17 8.0 22 0.17 Chromium (Cr) 19 12 16 25 11 Cobalt (Co) 6.9 5.5 0.017 23 8.0 7.3 0.017 9.8 12 11 0.017 10.0 Copper (Cu) 96 89 0.085 7.9 46 38 0.085 19 19 18 0.085 7.7 Iron (Fe) 40600 17000 3.4 82 24700 24600 3.4 0.41 37800 37500 3.4 0.8 0.043 13 0.043 0.043 Lead (Pb) 469 534 119 112 6.1 17 16 4.8 Magnesium (Mg) 5570 5570 1.7 0 8390 8480 1.7 1.1 13200 13200 1.7 Ω Manganese (Mn) 370 370 0.17 0 329 327 0.17 0.61 492 478 0.17 2.9 Mercury (Hg) 0.53 0.46 0.015 15 0.15 0.17 0.015 12 < 0.021 < 0.021 0.021 Nickel (Ni) 15 5.6 0.17 91 8.8 8.2 0.17 7.3 13 12 0.17 8.6 Potassium (K) 3730 3440 34 8.1 6220 6240 34 0.32 9550 9370 34 1.9 Selenium (Se) < 0.99 0.99 1.3 < 0.99 < 1.2 < 1.2 1.2 < 1.3 < 1.3 Silver (Ag) 0.017 2.3 0.017 0.91 0.017 13 0.58 0.57 0.33 0.33 0.26 0.23 Sodium (Na) 4250 3640 34 15 7010 7260 34 3.5 14300 14100 34 1.4 Thallium (TI) 0.22 0.017 10 0.29 0.017 4.0 0.017 0.59 0.2 0.3 0.51 0.51 Vanadium (V) 29 20 56 7.6 36 0.17 52 0.17 78 70 0.17 10 3.8 806 776 240 240 115 0.85 0.87 Zinc (Zn) 0.85 0.85 0 114 Polycyclic Aromatic Hydrocarbons (µg/kg dry wt) Acenaphthene 770 6.4 < 5.8 8.9 5.8 <5.8 <5.8 5.8 < 6.4 2-methylnaphthalene < 6.4 220 6.4 15 17 5.8 < 5.8 <5.8 5.8 Acenaphthylene 136 21 110 6.4 7.9 11 5.8 <5.8 <5.8 5.8 Anthracene 8.2 56 1400 6.4 185 70 76 5.8 <5.8 11 5.8 220 176 260 390 40 20 37 60 3400 6.4 5.8 5.8 Benzo(a)anthracene 179 130 6.4 170 5.8 19 23 Benzo(a)pyrene 2400 140 <5.8 5.8 172 5.8 28 Benzo(b)fluoranthene 270 3600 6.4 330 400 19 28 37 5.8 Benzo(g,h,i)perylene 39 1200 6.4 187 49 59 5.8 19 <5.8 14 5.8 Benzo(k)fluoranthene 97 1100 6.4 168 120 160 5.8 29 <5.8 16 5.8 280 169 290 400 5.8 32 37 Chrysene 3300 6.4 <5.8 5.8 Dibenzo(a,h)anthracene 12 340 6.4 186 16 23 5.8 <5.8 <5.8 5.8 Dibenzofuran 710 6.4 13 22 5.8 <5.8 <5.8 5.8 < 6.4 184 800 5.8 Fluoranthene 370 8900 6.4 1000 22 49 58 5.8 17

52

77

<5.8

380

690

5.8

5.8

5.8

5.8

5.8

57

22

67

21

Pyrene Notes

Fluorene

Naphthalene

Phenanthrene

Indeno(1,2,3-c,d)pyrene

13

47

< 6.4

95

330

1200

1300

460

7000

5800

6.4

6.4

6.4

6.4

6.4

196

186

195

178

29

62

<5.8

190

560

Value Indicates the RPD was greater than 30%

Golder Associates Ltd. 10f1

<5.8

<5.8

<5.8

<5.8

60

<5.8

<5.8

<5.8

12

78

5.8

5.8

5.8

5.8

5.8

26

^{% =} percent; dry wt = dry weight; mg/kg = milligrams per kilogram; μg/kg = micrograms per kilogram.

RPD = Relative Percent Difference = absolute value[100% x (sample - duplicate)/(sample + duplicate)/2]

^{&#}x27;-' Indicates RPD not calculable because one or more value was less than five times the method detection limit.

FACTUAL DATA REPORT - ORE BASIN SEDIMENT ASSESSMENT , SKAGWAY, AK

APPENDIX G

ADEC Checklist

Laboratory Data Review Checklist

Completed by:	
Paddy McManus	
Title:	
Scientist	
Date:	
July 05, 2017	
CS Report Name:	
2017 Skagway Inner Harbour Sediment Sampling Program	
Report Date:	
August 04, 2020	
Consultant Firm:	
Golder Associates Ltd.	
Laboratory Name:	
ALS Environmental	
Laboratory Report Number:	
K1704543, K1704542, K1704473, K1704471, K1704419, K1704415, K1704246/7 (sediment) K1704545 (tissue)	
ADEC File Number:	
1526.38.004	

Hazard Identification Number:

	401
1.	<u>Laboratory</u>
	 a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? Yes No Comments:
	Yes
	168
	b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved?
	Yes No Comments:
	N/A - Samples were not transferred to another laboratory
2.	Chain of Custody (COC)
	a. COC information completed, signed, and dated (including released/received by)?
	☐ Yes ☐ No Comments:
	Initial shipment reception signed for all COCs
	b. Correct analyses requested? • Yes • No Comments:
	Yes
3.	Laboratory Sample Receipt Documentation
	a. Sample/cooler temperature documented and within range at receipt (0° to 6° C)?
	Yes No Comments:
	Samples/ cooler temperatures were within excepted range except at:
	K1704543 - internal temperature of 1/2 coolers was -2.2°C K1704542 - internal temperature of 1/2 coolers was -2.2°C
	K1704542 - Internal temperature of 1/2 coolers was -2.2°C K1704545 - internal temperature of 1/2 coolers was -2.2°C
	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
	• Yes • No Comments:
	Submitted sediment samples contained no head space. Equipment blank dionized water rinsate samples were preserved according to laboratory instructions - water samples were properly preserved in the field with HCL (DRO) and Nitric Acid (dissolved metals) upon laboratory submissions
	c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)?

Samples arrived at the laboratory unbroken and in good condition, tissue samples arrive at the

laboratory frozen

		Yes	□ No	Comments:
	d.		preservation, s	ancies, were they documented? For example, incorrect sample ample temperature outside of acceptable range, insufficient or missing
		• Yes	□No	Comments:
	a	nd submitted	to the analyz	rigerated at 4C prior to being packed along with icepacks into coolers ng laboratory. Sediment samples were confirmed as unfrozen and led as frozen prior to shipment.
	e.	Data quality	or usability	ffected? Comments:
		_		perature of the cooler was below freezing the analyzing lab did not side of DQOs.
4. <u>C</u>	lase I	<u>Narrative</u>		
	a.	Present and	understandab	le?
		Yes	□ No	Comments:
	_	Yes		
	b.	Discrepanci Yes	es, errors or (QC failures identified by the lab? Comments:
	c		ons undertake	e for a summary of the items presented in the case narrative, the n by the analysing lab and the effects on data quality/useability
	c.	Were all con	rrective action No	s documented? Comments:
		Yes - refer to ummary.	the correspon	ding sections appended to this document in the case narrative
	d.	What is the	effect on data	quality/usability according to the case narrative? Comments:
	I	Refer to the c	orresponding	sections appended to this document in the case narrative summary.
5. <u>S</u>	ampl	es Results		
	a.	Correct analyses	lyses perform	ed/reported as requested on COC? Comments:
	7	Yes		
	b.	All applicab	ole holding tir	nes met?

Yes.

		Yes	□ No	Comments:
c.	All soi	s ren	orted on a d	lry weight basis?
		Yes	No	Comments:
Γ,	Yes			
_				
d.	Are the project	-	rted LOQs l	less than the Cleanup Level or the minimum required detection level for t
		Yes	○ No	Comments:
]	No.			
e.	Data qı	ıalitv	or usability	affected?
	1	J	J	Comments:
	No.			
C Sa	amples			
	-			
a.	Method i.			nk reported per matrix, analysis and 20 samples?
		0110	momou oran	in reported for marris, analysis and 20 samples.
	O.	Yes	No	Comments:
Γ,		Yes	No	Comments:
	Yes			
	Yes ii.	All n	nethod blank	k results less than limit of quantitation (LOQ)?
	Yes ii.	All n		
	Yes ii.	All n	nethod blank	k results less than limit of quantitation (LOQ)?
	Yes ii.	All n	nethod blank	k results less than limit of quantitation (LOQ)? Comments: what samples are affected?
	Yes ii. Yes Yes iii.	All n Yes	nethod blank No ove LOQ, w	k results less than limit of quantitation (LOQ)? Comments: what samples are affected? Comments:
	Yes ii. Yes iii.	All n Yes	nethod blank	k results less than limit of quantitation (LOQ)? Comments: what samples are affected? Comments:
	Yes ii. Yes iii. Yes	All n Yes If ab	nethod blank No ove LOQ, wank results a	k results less than limit of quantitation (LOQ)? Comments: what samples are affected? Comments:
	Yes ii. Yes iii. Yes	All new Yes If about the black of the black	nethod blank No ove LOQ, wank results a	k results less than limit of quantitation (LOQ)? Comments: what samples are affected? Comments:
	Yes ii. Yes iii. Yes iii.	All new Yes If about the black of the black	nethod blank No ove LOQ, we he affected s	k results less than limit of quantitation (LOQ)? Comments: what samples are affected? Comments: above LOQ sample(s) have data flags? If so, are the data flags clearly defined? Comments:
	Yes ii. Yes iii. Yes iii. No method iv. N/A- no	All new Yes If about the All of	nethod blank No No No ank results a he affected s No ted samples	k results less than limit of quantitation (LOQ)? Comments: what samples are affected? Comments: above LOQ sample(s) have data flags? If so, are the data flags clearly defined? Comments:
	Yes ii. Yes iii. Yes iii. No method iv. N/A- no	All new Yes If about the All of	nethod blank No No No ank results a he affected s No ted samples	k results less than limit of quantitation (LOQ)? Comments: what samples are affected? Comments: above LOQ sample(s) have data flags? If so, are the data flags clearly defined? Comments:

Yes

	Yes	□ No	Comments:
		als/Inorganics ples?	s – one LCS and one sample duplicate reported per matrix, analysis and 20
	• Yes	□ No	Comments:
Yes			
	And AK1	project speci 102 75%-1259	ercent recoveries (%R) reported and within method or laboratory limits? fied DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, %, AK103 60%-120%; all other analyses see the laboratory QC pages)
	Yes	○ No	Comments:
See	appended	case narative	summary
	labo LCS othe	ratory limits? S/LCSD, MS/I or analyses see	lative percent differences (RPD) reported and less than method or And project specified DQOs, if applicable. RPD reported from MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all e the laboratory QC pages)
	Yes	□ No	Comments:
See	appended	case narative	summary
	v. If %	R or RPD is	outside of acceptable limits, what samples are affected? Comments:
N/A	- no sam	ples affected	
	vi. Do t	the affected sa	ample(s) have data flags? If so, are the data flags clearly defined?
	Yes	O No	Comments:
N/A	- no sam	ples affected	
	vii. Data	quality or us	sability affected? Comments:
No -	data qua	lity is not affe	ected
c. Su	_	- Organics Or surrogate reco	overies reported for organic analyses – field, QC and laboratory samples? Comments:
See	appended	case narative	summary
	And	project speci	ercent recoveries (%R) reported and within method or laboratory limits? fied DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other aboratory report pages) Comments:
Cas			
See	appended	d case narativ	e summary

		he sample res	sults with failed surrogate recoveries have data flags? If so, are the data ned?
	• Yes	No	Comments:
Yes			
	iv. Data	quality or us	sability affected? Comments:
1	rogates co s underwa	-	antified due to sample maxtrix interferences, follow up with the analyzing
d. Tr <u>Sc</u>	.T.	- Volatile ana	llyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and
	i. One	trip blank rej	ported per matrix, analysis and cooler?
	Yes	O No	Comments:
One	trip blank	x was analyze	ed for the project.
	(If n	ot, a commer	to transport the trip blank and VOA samples clearly indicated on the COC? at explaining why must be entered below)
	Yes	□ No	Comments:
No			
	iii. All 1	results less th	an LOQ?
	Yes	O No	Comments:
Mar	nganese is	greater than	the LOQ
	iv. If al	bove LOQ, w	rhat samples are affected? Comments:
1	ow-up wi	th lab in unde	erway, only the water sample matrix is affected so only QA/QC samples
	v. Data	ı quality or us	sability affected? Comments:
No -	- data qua	lity is not affo	ected
	• Yes	field duplica No	te submitted per matrix, analysis and 10 project samples? Comments:
Thre	ee sedime	nt duplicates	were collected

Yes	□ No	Comments:	
Yes			
iii. Pre	cision – A	all relative percent differences (RPD) less than specified	DQOs?
		led: 30% water, 50% soil)	-
RP	D(%) = A	absolute value of: $\frac{(R_1-R_2)}{}$ x 100	
		$((R_1+R_2)/2)$	
		1 = Sample Concentration 2 = Field Duplicate Concentration	
Yes	⊙ No	Comments:	
and Golder (3 Anthracene (1 (172%), Benz Dibenzo(a,h)a (186%), Phen and Chromiun Duplicate pa Golder DQOs (46%), Benzo	80%) DQC 185%), Be zo(g,h,i)pe anthracene nanthrene (m (49%) the ir SED17- s: Fluorene o(a)anthracene	of 12 and DUP-3 reported the following analytes outside to 2s: Calcium (72%), Iron (82%), Nickel (91%), Acenaph enzo(a)anthracene (176%), Benzo(a)pyrene (179%) m Benzo(a)pyrene (187%), Benzo(k)fluoranthene (168%), Chrysene (186%), Fluoranthene (184%), Fluorene (196%), Index (195%) and Pyrene (178%). The duplicate pair also reported the were outside of Golder DQOs. 18 and DUP-2 reported the following analytes outside to 257%) and Phenanthrene (67%). The duplicate pair also rene (40%) and Chrysene (32%) that were outside of Golden Golden DQOs.	thylene (136%), enzo(b)fluoranthene e (169%), no(1,2,3-c,d)pyrene orted Arsenic (37%) both ADEC and so reported Calcium older DQOs.
iv. Dat	ta quality (or usability affected?	
		Comments:	
The values o interpretation		ADEC and Golder DQOs are not expected to adversely a diment data.	affect the
f. Decontam	ination or	Equipment Blank (If not applicable, a comment stating	why must be entered
below.)			
• Yes	No	☐ Not Applicable	
i. All	results les	ss than LOQ?	
Yes	No	Comments:	
Aluminum, C		Copper, Iron, Lead, Magnesium, Manganese and Sodiun blank.	n were all above the

ii. Submitted blind to lab?

	ii. If above LOQ, what samples are affected? Comments:					
	Follow-up with lab in underway, only the water sample matrix is affected so only QA/QC samples are affected.					
	iii. Data quality or usability affected?					
	Comments:					
	The values greater than lab LOQs are not expected to adversely affect the interpretation of the sediment data.					
7. <u>Oth</u>	ner Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)					
	a. Defined and appropriate?					
	Yes No Comments:					
	Yes					

Summary of items presented in the sediment chemistry analysis case narrative by ALS Environmental including the corrective actions and corresponding effects on data quality/usability for each item

K1704545 - tissue

Matrix spike recovery of Iron for sample NF-CRAB-02 was outside control criteria Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. No further corrective action was appropriate.

Matrix spike recovery of Silver for sample REF-CRAB-03 was outside control criteria Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. No further corrective action was appropriate.

K1704545 - water

The matrix spike recovery of Manganese for the Batch QC sample was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicates the analytical batch was in control. No further corrective action was appropriate.

The matrix spike recovery of Mercury for sample Homog. Blank was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicates the analytical batch was in control. No further corrective action was appropriate.

Relative Percent Difference (RPD) for the replicate analysis of Calcium and Iron in sample NF-CRAB-02 was outside the Method control limits The variability in the results was attributed to the heterogeneous distribution of Calcium and Iron in the sample. Freeze drying, grinding in combination with standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

K1704542 - sediment

The control criteria for matrix spike recovery of Aluminum Barium, Iron, and Magnesium for sample SED17-07 were not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Antimony recoveries are generally low for soil and sediment samples when digested using EPA Method 3050B. Antimony results (in conjunction with the matrix spike recovery) from this procedure should only be used as indicators to estimate concentrations. The associated QA/QC results (e.g., control sample, calibration standards, etc.) indicated the analysis was in control.

The matrix spike recovery of Barium and Lead for sample SED17-07 was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. No further corrective action was appropriate.

The Relative Percent Difference (RPD) for the replicate analysis of Copper and Nickel in sample SED17-07 was outside the normal ALS control limits. The variability in the results was attributed to the heterogeneous character of the sample. Standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

The following analytes were flagged as outside the control criterion for Continuing Calibration Verification (CCV) MS11\0515F002.D and MS11\0516F002.D: Fluoranthene and Fluoranthene-d10. In accordance with the EPA Method, 80% or more of the CCV analytes must pass within 20% of the true value. The ALS SOP allows for 40% difference for the remaining analytes. The CCV met these criteria. The quality of the sample data was not significantly affected. No further corrective action was required.

Summary of items presented in the sediment chemistry analysis case narrative by ALS Environmental including the corrective actions and corresponding effects on data quality/usability for each item

K1704473 - sediment

Acid-Volatile Sulfide by EPA Method 821/R-91-100: The matrix spike recoveries for sample Batch QC were outside control criteria because of suspected matrix interference. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. No further corrective action was taken.

Diesel and Residual Range Organics by Method AK102/ AK103: The recovery of n-Triacontane and o-Terphenyl in Continuing Calibration Verification (CCV) KWG1704203-3 were outside the control criteria of \pm 20% listed in the analytical report. The recovery of the analyte was within the 60-120% control criteria for surrogate recoveries in laboratory quality control samples specified in the AK102/103 method. No further corrective action was necessary.

K1704471 - sediment

The control criteria for matrix spike recovery of Aluminum, Calcium, Iron, Magnesium, Potassium, and Sodium for sample SED17-22 were not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Antimony recoveries are generally low for soil and sediment samples when digested using EPA Method 3050B. Antimony results (in conjunction with the matrix spike recovery) from this procedure should only be used as indicators to estimate concentrations. The matrix spike recovery of Antimony for sample SED17-22 was below the ALS control criterion. The associated QA/QC results (e.g. control sample, calibration standards, etc.) indicated the analysis was in control.

The matrix spike recovery of Copper for sample SED17-22 was outside the ALS control criteria as a result of the heterogeneous character of the sample. The Relative Percent Difference (RPD) for the replicate analysis supported this. Since the unspiked samples contained high analyte concentrations relative to the amount spiked, the variability between replicates was sufficient to bias the percent recoveries outside normal ALS control criteria. The associated QA/QC results (e.g., control sample, calibration standards, etc.) indicated the analysis was in control. No further corrective action was appropriate.

The Relative Percent Difference (RPD) for the replicate analysis of Calcium and Copper in sample SED17-22 was outside the normal ALS control limits. The variability in the results was attributed to the heterogeneous character of the sample. Standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

For Polynuclear Aromatic Hydrocarbons by EPA Method 8270:

The control criteria were exceeded for one or more surrogates in the replicate Matrix Spikes (MS/DMS) KWG1703683-1 and KWG1703683-2 of sample Batch QC due to matrix interferences. The presence of non-target background components prevented adequate resolution of the surrogates. Accurate quantitation was not possible. No further corrective action was appropriate

The Matrix Spike (MS) KWG1703683-1 recovery of Fluoranthene for sample Batch QC was outside control criteria. Recoveries in the replicate Laboratory Control Samples (LCS/DLCS) KWG1703683-3 and KWG1703683-4 were acceptable, which indicated the analytical batch was in control. The matrix spike outlier suggested a potential high bias in this matrix. No further corrective action was appropriate.

The Relative Percent Difference (RPD) for Fluoranthene in the replicate Matrix Spikes (MS/DMS) KWG1703683-1 and KWG1703683-2 analyses of Batch QC was outside control criteria. The Relative Percent Difference for the analyte in question in the associated replicate Laboratory Control Samples (LCS/DLCS) KWG1703683-3 and KWG1703683-4 was within acceptance limits, indicating the analytical batch was in control. No further corrective action was appropriate.

Summary of items presented in the sediment chemistry analysis case narrative by ALS Environmental including the corrective actions and corresponding effects on data quality/usability for each item

K1704419 - sediment

Acid-Volatile Sulfide by EPA Method 821/R-91-100: The matrix spike recoveries for sample SED17-09 were outside control criteria because of suspected matrix interference. As a result of the interference, the results for this analyte contained a potential high bias. No further corrective action was taken.

Diesel and Residual Range Organics by Method AK102/ AK103: The recovery of n-Triacontane and o-Terphenyl in Continuing Calibration Verification (CCV) KWG1704203-3 were outside the control criteria of \pm 20% listed in the analytical report. The recovery of the analyte was within the 60-120% control criteria for surrogate recoveries in laboratory quality control samples specified in the AK102/103 method. No further corrective action was necessary.

K1704415 - sediment

The control criteria for matrix spike recovery of Aluminum, Calcium, Iron, Magnesium, Potassium, and Sodium for sample DUP-1 were not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

Antimony recoveries are generally low for soil and sediment samples when digested using EPA Method 3050B. The matrix spike recovery of Antimony for sample DUP-1 was below the ALS control criterion. Antimony results (in conjunction with the matrix spike recovery) from this procedure should only be used as indicators to estimate concentrations. The associated QA/QC results (e.g., control sample, calibration standards, etc.) indicated the analysis was in control.

The Relative Percent Difference (RPD) for the replicate analysis of Cadmium and Calcium in sample DUP-1 was outside the normal ALS control limits. Standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

K1704247 - sediment

The matrix spike recovery of all analyte(s) for sample SED17-05 was outside control criteria. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicated the analytical batch was in control. The matrix spike outlier suggested a potential bias in this matrix. No further corrective action was appropriate.

As a global, employee-owned organisation with over 50 years of experience, Golder Associates is driven by our purpose to engineer earth's development while preserving earth's integrity. We deliver solutions that help our clients achieve their sustainable development goals by providing a wide range of independent consulting, design and construction services in our specialist areas of earth, environment and energy.

For more information, visit golder.com

Africa + 27 11 254 4800
Asia + 86 21 6258 5522
Australasia + 61 3 8862 3500
Europe + 44 1628 851851
North America + 1 800 275 3281
South America + 56 2 3616 2000

solutions@golder.com www.golder.com

Golder Associates Ltd.
Suite 200 - 2920 Virtual Way
Vancouver, BC, V5M 0C4
Canada
T: +1 (604) 296 4200

Golder Associates

SKAGWAY ORE BASIN RISK ASSESSMENT

APPENDIX D

Sediment Coring Field Data Report

REPORT

Skagway Ore Basin Drilling Investigation

Submitted to:

White Pass & Yukon Route

PO Box 435 Skagway, AK 99840

Submitted by:

Golder Associates Ltd.

#13 - 151 Industrial Road Calcite Business Centre, Whitehorse, Yukon Territory, Y1A 2V3, Canada

+1 867 633 6076

1657231-007-R-Rev0

13 July 2018

Executive Summary

This Skagway Ore Basin drilling report was prepared by Golder Associates Ltd. (Golder) on behalf of White Pass & Yukon Route (White Pass) and provides a summary of the field activities conducted in October 2017 in support of the human health and ecological risk assessment (HHERA) and remediation planning. This report provides a detailed description of the drilling program, a summary of analytical results and an updated overview of the metals and hydrocarbon concentrations in subsurface sediments in the Skagway Ore Basin (Ore Basin) that incorporates the data from this program with previous coring work that has occurred.

Based on a review of existing site data, ten locations near the Ore dock were selected for subsurface investigation to complement the surficial sediment sampling completed for the risk assessment and other recent coring data to ultimately provide more information when conducting remediation planning.

Three main sediment units were identified during the subsurface sediment sampling program:

- All sample locations along the dock intersected a layer of black organic mud that transitioned from being very soft to soft. This mud had a hydrogen sulphur odour and commonly contained biota (e.g., mussel shells, tube worms). This layer of organic sediment was found at a thickness ranging from 2.5 to 6.7 feet. The soft mud was not encountered at the three step out sample locations located 75 feet from the dock.
- A unit of brown silt and fine sand ranging between 0.2 to 1.2 feet thick was present beneath the organic mud along the dock and as the surficial unit at the locations 75 feet from the dock. Some mussel shells were also found mixed in with this sediment unit.
- Underlying the silt and fine sand sediment was a light grey, coarse sand and gravel unit extending to the maximum depth investigated.

The majority of samples had one or more ore-related metals that exceeded the SCO values. The highest concentrations were of lead, zinc, mercury, silver and copper, and were typically found in the organic mud (shallow samples) and the silt and fine sand unit (middle samples) collected along the dock, to a maximum depth of approximately 7.7 feet below mudline, with the highest concentrations occurring adjacent to the ship loader. The samples collected at step out locations from the dock, directly across from the ore loader, had high concentrations of lead and zinc present in the silt and fine sand unit (middle unit) to a maximum depth of approximately 5.5 feet below mudline as the organic mud was not present.

The locations with high concentrations of lead correspond with high concentrations of zinc and elevated concentrations of mercury and cadmium. The areas near the loading dock also contained elevated concentrations of copper and silver. The majority of the Ore Basin contains concentrations of lead and zinc less than the SCO guidelines.

At least one individual PAH parameter was detected in 13 of the 14 shallow and middle sediment samples submitted for PAH analysis. Most samples had multiple PAHs detected. None of the 14 samples exceeded the total LPAH criteria defined by the WDOE. For total HPAH, there were seven samples that exceeded the SCO guideline. The primary HPAH parameters included Benz(a)anthracene, Benzo(b,j,k)fluoranthrene, Fluoranthrene, and Pyrene. Previous coring investigations in the Ore basin have measured total HPAH concentrations at

Distribution List

- 1 eCopy White Pass & Yukon Route
- 1 eCopy Alaska Department of Environmental Conservation
- 1 eCopy Golder Associates Ltd.

İ

over 1,200 mg/kg, significantly lower that maximum total HPAH of 58.9 mg/kg observed in 2017. The samples with elevated total HPAH concentrations were located near the Ore loader and in various locations throughout the Ore Basin. The source of hydrocarbons in the Ore Basin is not known.

Total coliforms were recorded in 7 of the 13 core samples submitted for analysis. The samples with detected total coliforms were collected from the shallow and medium depths at locations that appear likely to have receiving inputs from the municipal outfall. As with the surficial sampling, the presence of detected coliforms are simply a qualitative indictor that sewage inputs may be influencing sediment quality.

Study Limitations

This report has been prepared for White Pass & Yukon Route Railroad and Alaska Department of Environmental Conservation, and is intended to provide an indication of groundwater quality at the Site. This report may not be relied upon by any other person(s) or entity without the express written consent of Golder Associates Ltd. and the White Pass & Yukon Route Railroad. The inferences concerning the conditions of the Site contained in this report are based on information obtained during the environmental sampling program conducted by Golder personnel, and are based solely on conditions at the time of the sampling. Therefore, the potential remains for the presence of unknown, unidentified or unforeseen contamination in areas not inspected as part of this study.

Any uses that a third party makes of this report, or any reliance on decisions to be made based on it, are the responsibility of such third parties. Golder Associates Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The findings and conclusions documented in this report have been prepared for the specific application to this project, the services performed as described in this report were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

The content of this report is based on information collected during our environmental sampling, our present understanding of the Site, and our professional judgment in light of such information available at the time of this report. This report provides a professional opinion, and therefore no warranty is either expressed, implied or made as to the conclusions, advice and recommendations offered in this report. This report does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statutes are subject to change.

Table of Contents

1.0	INTR	ODUCTION	1				
	1.1	Objective and Scope of Work	1				
	1.2	Site Description	1				
2.0	SEDI	MENT SCREENING LEVELS	2				
3.0	METHODS						
4.0	4.0 RESULTS						
	4.1	Sediment Classification	5				
	4.2	Laboratory Analytical Results	8				
	4.2.1	Total Metals	8				
	4.2.2	Hydrocarbons	9				
	4.2.3	Sewage Indicator Parameters	9				
	4.3	Quality Assurance/Quality Control	9				
5.0	SEDI	MENT CHARACTERIZATION SUMMARY	11				
	5.1	Metals	11				
	5.2	Hydrocarbons	12				
	5.3	Sewage Indicator Parameters	13				
6.0	CON	CLUSIONS	13				
7.0	CLOSURE1						
8.0	REFERENCES						

TABLES

able 1: Sample Analysis List	4
able 2: Sample Sediment Classification and Interval Depths	7
IGURES	
igure 1: Skagway Harbour Sediment Sample Locations	Text
igure 2: Core sample from location SED17-38 showing the three different sediment classifications	5
igure 3: Stratigraphy along Ore Basin Dock looking northwest (Lynn Canal to the left, Skagway to the right)	6
igure 4: Spatial Distribution of Lead concentrations along Ore Dock and into Ore Basin (looking northeast)	11
igure 5: Spatial Distribution of Zinc Concentrations along Ore Dock and into Ore Basin (looking northeast)	12
igure 6: Spatial Distribution of total HPAH concentrations through Ore Basin (looking northeast)	13

APPENDICES

APPENDIX A

Sediment Borehole Logs

APPENDIX B

Photographic Log

APPENDIX C

Laboratory Certificates of Analysis and Alaska DEC QA Checklists

νi

1.0 INTRODUCTION

This Skagway Ore Basin drilling report was prepared by Golder Associates Ltd. (Golder) on behalf of White Pass & Yukon Route (White Pass) and provides a summary of the field activities conducted in October 2017 in support of the human health and ecological risk assessment (HHERA) and remediation planning. This report provides a detailed description of the drilling program, a summary of analytical results and an updated overview of the metals and hydrocarbon concentrations in subsurface sediments in the Skagway Ore Basin (the "Ore Basin") that incorporates the data from this program with previous coring work that has occurred.

1.1 Objective and Scope of Work

An ecological and human health risk assessment was completed by Golder (Golder, 2018) to determine whether there are unacceptable risks associated with the lead concentrate deposited during the loading activities conducted at the Ore Dock, through a surficial sediment sampling program in the Ore Basin conducted between 25 April and 5 May 2017. A total of 24 stations were sampled for chemistry with select samples selected for toxicity testing. Due to the results of the risk assessment, where surficial chemistry concentrations were lower than previously measured, this additional field program which consisted of coring at deeper depths, was completed to provide additional information for the risk assessment and for remediation planning.

Based on a review of existing Ore Basin data, ten locations near the Ore dock were selected for subsurface investigation to complement the surficial sediment sampling completed for the risk assessment and other recent coring data to ultimately provide supplementary information for remediation planning. The following scope of work was completed for this phase of the project:

- Coring, sediment logging and classification.
- Laboratory analysis for metals, hydrocarbons and sewage indicators.
- A report to summarize the data.

1.2 Site Description

The Skagway Ore Terminal is shown on Figure 1, attached. Skagway Harbour lies at the terminus of a deep fjord (Lynn Canal) on the historical alluvial fan of the Skagway River. The harbour consists of a limited near-shore zone with a typical water depth of between 30 and 40 feet (measured from mean low tide) which transitions rapidly to the deeper waters in Lynn Canal (Anchor 2015). The shoreline of Skagway Harbour was established on the historical alluvial fan through a combination of dredging and filling in the early 1900s (Tetra Tech 2008). Changes to the harbour configuration were made during the construction of the Small Boat Harbour (circa 1958), the State Ferry Terminal (circa 1963), and the expansion of the Ore Terminal (circa 1968), all of which involved dredging and use of the dredged material to expand and reconfigure the shoreline (Anchor 2015).

A brief summary of historical site activities at the Ore Terminal (Anchor 2015) as context for the sampling program:

The Ore Terminal portion of the harbour was leased by White Pass & Yukon Route (WPYR) from the Municipality of Skagway in the late 1960s and was used for the trans-shipment of lead and zinc ore concentrate from the Faro Mine using an open conveyor system between 1967 and 1982.

Sporadic use of the facility for shipping ore concentrates continued between 1982 and 1997 with a variety of terminal operators. The conveyor system was enclosed in 1991.

A concrete dock was added in 2000 to allow the facility to be used by cruise ships, and the historical ore concentrate building was demolished in 2003. A new concentrate building was constructed and has been used for shipment of copper concentrates from the Minto Mine since 2007.

The terminal is currently operated by Alaska Industrial Development and Export Authority (AIDEA). Infrastructure includes a fuel depot (operated by Petro Marine Services) and a container facility (operated by Alaska Marine Lines) in addition to the ore concentrate shipping and cruise ship docking.

2.0 SEDIMENT SCREENING LEVELS

Many jurisdictions establish screening values from a statistical analysis of co-located chemistry and effects data. There are multiple methodologies for deriving empirically-based screening values¹. The selected screening values for the current assessment were from Washington Department of Ecology (WDOE 2015) who used the apparent effect threshold approach to derive sediment clean up objectives (SCO) and contaminant screening limit (CSL) values. In brief, SCOs and CSLs are derived for each individual substance of interest by examining a database of co-located effects and chemistry data (Barrick et al 1988). Barrick et al. (1988) determined the highest concentration that corresponded to a "no effect" level for four different types of data². The SCO was set to the lowest of the apparent effect thresholds, and the CSL was set to the second-lowest of the apparent effect threshold (WDOE 2015). For most of the ore-related metals, the lowest apparent effect threshold from Barrick et al. (1998) was based on the benthic abundance data.

Golder understands ADEC is in general agreement that Washington Department of Ecology (WDOE) Sediment Management Standards provide a reasonable basis for showing compliance with Alaska Regulation 18 AAC 75.340(i)(2)(B). WDOE (2015). SCO and CSL values were approved for use in the current assessment by ADEC. The HHERA that has been conducted for the Ore Basin will endeavour to determine site specific effect thresholds which will be used during remedial planning.

Bulk sediment chemistry (e.g., the total concentration of lead, zinc or other substances in sediment) is an important line of evidence in a sediment risk assessment because it provides readily available information about the magnitude of the hazard associated with different substances in sediment (i.e., it can be readily compared to conservative screening values established by regulatory agencies). However, an exceedance of a screening value does not mean that a risk is present.

² The Barrick et al. (1988) data set is based on n = 50 for Microtox, n = 50 for oyster larval development, n = 201 for benthic abundance and n = 287 for amphipod survival. The decision point (i.e., is there an effect?) is whether a sample demonstrated a statistically significant difference (p > 0.05) relative to reference.

2

¹ ADEC (2001) provides an overview of theoretical and empirical (i.e., derived from databases of co-located samples) approaches for deriving sediment guidelines and discusses their applicability to Alaskan sites.

3.0 METHODS

Sampling was conducted between 28 October and 31 October 2017. Field investigations were conducted in accordance with ADEC guidance documents and as described below. Sediment sampling was conducted by a Qualified Environmental Professional following a specific work instruction. A field log was maintained to record field observations, time of sampling activities, site sketches, station water depth, split spoon sample recovery, weather conditions, records of observations and discussions.

The drill rig operated by Aquasource LLC of Haines, AK was positioned on board a landing craft, with drill rods placed through the gap at the hinge when the 17' long bow ramp was lowered down parallel to the water. The landing craft was tied to the dock and the seven locations (SED17-32 to SED17-35 and SED17-39 to SED17-41) along the ore dock were measured to be at a distance of 17 feet from the dock (i.e., the vessel would position itself such that the ramp was pushing against the dock pilings). A second row of samples (SED17-36 to SED17-38) was collected at a distance of 75 feet (i.e., the length of the vessel held in position by reversing against the pilings) from the dock. Fixed landmarks (e.g., wharf structures) provided visual confirmation of the locations in the field, and final sample locations were obtained from a hand-held Garmin GPS with an accuracy of ±10 feet.

Subsurface sediment samples were collected using a 2- and 5-foot length split spoon sampler. It was necessary to drive the sampler numerous times to identify the various sediment units and collect sufficient sediment volume for the various analyses. The number of spoon samples needed varied depending on lithology and core recovery. Spoon replicates were collected within a few feet of each other at each station. To achieve this, the landing craft remained in position and the rig was tilted very slightly to the left or right from centre. All sediments recovered were sorted by lithology and composited in stainless steel bowls before being transferred to sample jars. A description of the sediment with respect to colour, particle size, odour, depth of sediment horizon, and presence of non-sediment materials (e.g., shells, debris, and biota) was recorded. Any obvious debris (e.g., trash, wood) and large rocks were discarded. Volumes recovered were composited in bowls by gently mixing by hand using disposable nitrile gloves. Aliquots of this composite sample were transferred to laboratory-supplied, glass sample jars that were labelled with the sample control number and date. Sample containers were filled to minimize headspace. All homogenization equipment (bowls and spoons) were decontaminated prior to use at the next sampling station. Decontamination entailed washing with a scrub-brush and laboratory-grade detergent (Liquinox®) followed by rinsing with site water.

Samples were packaged in coolers with ice packs for to their transport and delivery to the ALS laboratory in Burnaby, BC. Coolers were shipped via Air North cargo under chain-of-custody procedures and were delivered within appropriate holding times. ALS's laboratory is certified by the Canadian Association for Laboratory Accreditation and is accredited as conforming to ISO/IEC 17025 for analysis.

A copy of the field logs is presented in Appendix A.

Two 4oz glass jars of each sediment unit were submitted for the analysis of total metals, Polycyclic Aromatic Hydrocarbons (PAHs), total and faecal coliforms, and sewage indicators as listed in Table 1 below. Large plastic containers of remaining sediment material available for further testing were kept refrigerated in Whitehorse, YT.

Table 1: Sample Analysis List

Sample	Sample ID	Laboratory Analysis			
Location		Metals	PAHs	Total and Faecal Coliforms	Coprostanol and Cholestanol
SED17-32	SED17-32S	1	1	✓	✓
	SED17-32M	1		✓	✓
SED17-33	SED17-33S	1	1	✓	✓
	SED17-33M	1		✓	
SED17-34	SED17-34S	1	1		
	SED17-34M	1	1		
	SED17-34D	1			
SED17-35	SED17-35S	1		✓	✓
	SED17-35M	1		✓	✓
	SED17-35D	1			
SED17-36	SED17-36S	1	1		
	SED17-36M	1	1		
	SED17-36D	1			
SED17-37	SED17-37M	1	1	✓	✓
	SED17-37D	1			
SED17-38	SED17-38S	1	1	✓	✓
	SED17-38M	1	1		
	SED17-38D	1			
SED17-39	SED17-39S	1	1	✓	✓
	SED17-39M	1		✓	✓
	SED17-39D	1			
SED17-40	SED17-40M	1	1	✓	✓
	SED17-40D	1			
SED17-41	SED17-41S	1	1	1	✓
	SED17-41M	1	1	✓	✓
	SED17-41D	1			

Notes: ✓ = Parameter analysis performed by ALS laboratory

The locations of all subsurface sediment samples collected in 2017 are provided on Figure 1, attached.

Photographs of the field activities are provided in Appendix B.

4.0 RESULTS

4.1 Sediment Classification

Three main sediment units were identified during the subsurface sediment sampling program:

All sample locations along the dock intersected a layer of black organic mud that transitioned from being very soft to soft. This mud had a hydrogen sulphur odour and commonly contained biota (e.g., mussel shells, tube worms). This layer of organic sediment was found at a thickness ranging from 2.5 to 6.7 feet. The soft mud was not encountered in the three sample locations located 75 feet from the dock.

- A unit of brown silt and fine sand ranging between 0.2 to 1.2 feet thick was present beneath the organic mud near the dock and as the surficial unit in the locations 75 feet from the dock. Some mussel shells were also found mixed in with this sediment unit.
- Underlying the silt and fine sand sediment was a light grey, coarse sand and gravel unit extending to the maximum depth investigated.

Figure 2: Core sample from location SED17-38 showing the three different sediment classifications

The various stratigraphic units encountered in each of the coring samples drilled on the west side of the Ore Basin are shown in the graphic below. The organic mud (purple) is shown to be primarily along the slope adjacent to the Ore Dock and above the general base elevation of the Ore Basin. The base of the Ore basin consists of silt and fine-grained sand, with gravel also encountered below the silt and fine sand in some locations.

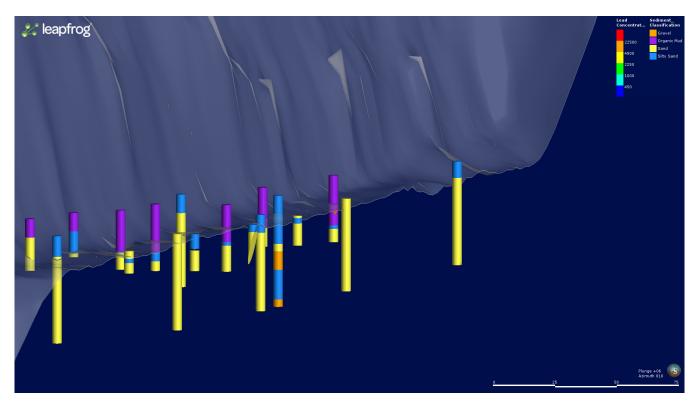


Figure 3: Stratigraphy along Ore Basin Dock looking northwest (Lynn Canal to the left, Skagway to the right)

The maximum investigation depths ranged between 3 and 9 feet below mudline, due to the variation in the thickness of the organic mud. The start of the shallowest sample interval was based on where the sampler would retain sediment. In many cases the top of the organic mud was too soft to be retained in the split spoon sampler. The end depth of the deepest sample interval at each location corresponds to the maximum investigation depth (in feet below mudline) in Table 2.

Table 2: Sample Sediment Classification and Interval Depths

Sample location	Sample ID	Sediment Classification	Sample Interval Start	Sample Interval End
			(feet below mud	line)
SED17-32	SED17-32S	Organic mud and fine sand	2.0	2.5
	SED17-32M	Sand and gravel, some silt	2.5	7.0
SED17-33	SED17-33S	Organic mud	2.0	2.5
	SED17-33M	Silt and fine sand	2.5	3.5
SED17-34	SED17-34S	Organic mud	4.0	5.5
	SED17-34M	Silt and fine sand	5.5	5.7
	SED17-34D	Coarse sand, some gravel	5.7	8.0
SED17-35	SED17-35S	Organic mud	6.0	6.5
	SED17-35M	Silt and fine sand	6.5	7.7
	SED17-35D	Coarse sand, some gravel	7.7	9.0
SED17-36	SED17-36S	Organic mud	4.0	5.0
	SED17-36M	Silt and fine sand	5.0	5.5
	SED17-36D	Coarse sand, some gravel	5.5	9.0
SED17-37	SED17-37M	Organic mud and silt	5.0	5.5
	SED17-37D	Coarse sand, some gravel	5.5	8.0
SED17-38	SED17-38S	Organic mud	6.0	6.7
	SED17-38M	Silt and fine sand	6.7	7.2
	SED17-38D	Coarse sand, some gravel	7.2	9.0
SED17-39	SED17-39S	Coarse sand and mussel shells	1.0	1.1
	SED17-39M	Silt, some fine sand	1.1	1.6
	SED17-39D	Coarse sand some gravel	1.6	3.0
SED17-40	SED17-40M	Silt and fine sand	2.0	2.3
	SED17-40D	Medium to coarse sand	2.3	5.0
SED17-41	SED17-41S	Fine sand	0.0	0.3
	SED17-41M	Silt and fine sand	0.3	1.0
	SED17-41D	Fine to coarse sand	1.0	4.0

4.2 Laboratory Analytical Results

Copies of the ALS analytical reports for the sediment chemistry analyses performed on the samples are provided in Appendix C, and a sediment chemistry data table is provided in Table A-1, attached. These data were screened against the numerical standards (SCO: sediment cleanup objective, and CSL: cleanup screening levels) as described by the Washington State Department of Ecology (WDOE 2015).

4.2.1 Total Metals

The following is a summary of the results by location from along the Ore Dock from south to north:

- SED17-32 no exceedances of the SCO or CSL.
- SED17-33 exceedance of lead (705 mg/kg) of the SCO and CSL and exceedance of mercury (0.428 mg/kg) and zinc (555 mg/kg) of the SCO in the mid-level sample only.
- SED17-39 exceedance of zinc (539 mg/kg) of the SCO in the mid-level sample only.
- SED17-40 no exceedances of the SCO or CSL.
- SED17-34 (adjacent to ore loader) exceedances of cadmium (7.24, 12.8 mg/kg), lead (2500, 4570 mg/kg), mercury (3.19, 5.67 mg/kg) and zinc (4590, 8240 mg/kg) of the SCO and CSL in the shallow and mid-level samples respectively. No exceedances in the deep sample.
- SED 17-35 exceedances of cadmium (34.3, 16.2 mg/kg), copper (465 mg/kg), lead (19500, 14700 mg/kg), mercury (13.7, 6.56 mg/kg), silver (21.9, 14.1 mg/kg), and zinc (21600, 10300 mg/kg) of the SCO and CSL in the shallow and mid-level samples respectively. The deep sample contained exceedances of lead (493 mg/kg) and zinc (458 mg/kg) of the SCO.
- SED17-41 exceedances of cadmium (5.83, 7.31 mg/kg), lead (2200, 3030 mg/kg), mercury (2.18, 2.47 mg/kg) and zinc (3730, 4610 mg/kg) of the SCO and CSL in the mid-level and deep samples respectively.

Three locations were drilled approximately 75' from the Ore dock. Results from south to north contained the following exceedances:

- SED17-38 exceedances of lead (840, 547 mg/kg), mercury (0.96, 0.54 mg/kg) and zinc (1390, 893 mg/kg) of the SCO and/or CSL in the shallow and mid-level samples respectively.
- SED17-37 exceedances of cadmium (30.1 mg/kg), copper (436 mg/kg), lead (14100 mg/kg), mercury (12.7 mg/kg), silver (15.2 mg/kg), and zinc (19400 mg/kg) of the SCO and CSL in the mid-level sample.
- SED17-36 (adjacent to ore loader) exceedances of cadmium (105, 50.6 mg/kg), copper (1400, 472 mg/kg), lead (41900, 14400 mg/kg), mercury (38.7, 20.9 mg/kg), silver (43.6, 15.3 mg/kg), and zinc (73800, 33400 mg/kg) of the SCO and CSL in the shallow and mid-level samples respectively.

4.2.2 Hydrocarbons

At least one individual Polycyclic Aromatic Hydrocarbon (PAH) parameter was detected in 13 of the 14 shallow and middle sediment samples submitted for PAH analysis, with the exception of sample SED17-40M which had no detectable PAHs. Most samples had a minimum of seven detected PAH concentrations with numerous exceedances of the SCO and CSL guidelines. Although there were exceedances of individual low molecular weight PAHs (LPAH), namely in SED17-34M and SED17-36S, there were no exceedances of the total LPAH criteria defined by the WDOE. Primary LPAH parameters included Phenanthrene and Anthracene.

For total high molecular weight PAHs (HPAH), there were seven samples that had exceedances of the SCO guideline (12 mg/kg) and five samples that exceeded the CSL (17 mg/kg) guideline. The primary HPAH parameters included Benzo(a)anthracene, Benzo(b,j,k)fluoranthrene, Fluoranthrene, and Pyrene.

4.2.3 Sewage Indicator Parameters

Shallow and mid-level samples were analyzed for faecal and total coliforms. Total coliforms (>2 colonies) were recorded in 7 of the 13 samples submitted for analysis. The samples with total coliforms were collected from the shallow and medium samples at locations across from the sewage outfall (SED17-32, -33, -37, -38) and from SED17-41.

Two sewage indicator parameters were analyzed in the shallow and middle samples, Cholestanol and Coprastanol. Cholestanol was detected in four of the twelve samples submitted for sewage indicator analysis, with concentrations ranging between 0.066 and 0.415 mg/kg and one detection of Coprastanol (0.062 mg/kg). Cholestanol and Coprastanol are typically degraded in aerobic conditions and would not be expected in subsurface sediment except in an environment with continual loadings such as where a sewage outfall is located nearby.

4.3 Quality Assurance/Quality Control

Standard Golder and industry established field procedures were used throughout the field investigation to improve accuracy, precision and reproducibility of results. The samples were stored in chilled coolers prior to submission to the analytical laboratory and appropriately completed Chain-of-Custody forms accompanied the sample submissions.

Field notes were maintained to document the field sampling program. Additional field QA/QC activities sample collection included the following:

- Sampling equipment such as bowls and spoons were cleaned with a laboratory-grade detergent and rinsed with site water prior to use at each station.
- Sediment samples were collected by hand using single-use disposable nitrile gloves and placed into clean glass sample jars provided by the laboratory that were labelled with the unique sample control number and date.
- Field duplicates were collected from 2 of the 26 sediment samples. Sediment field duplicates were taken as split samples from the composite sample, with samples SED17-34M and SED17-41M selected for QA/QC purposes in this investigation.

Samples were carefully packaged to prevent breakage and shipped with ample ice to maintain the samples at the appropriate temperature.

The relative percent difference (RPD) was calculated to assess variability between field duplicates as follows:

$$RPD = \left(\frac{sample - duplicate}{(sample + duplicate)/2}\right) \times 100$$

The relative percent differences for the field duplicates are provided in Table A-2. A specific limit for RPDs is not specified by ADEC (2016), but in general an RPD of greater than 30% can indicate instances where sample homogenization may have been insufficient. This is not a pass/fail criterion because high RPDs can be generated by "nugget effects" that can impact RPDs despite all reasonable effort for appropriate sample homogenization. RPDs are also only calculated when both the original and field duplicate concentrations are greater than five times the detection due to analytical uncertainty near the method detection limit which does not provide a good measure of variability associated with the collection of field samples. A total of two field duplicates were collected for the subsurface sediment sampling program. Golder concluded that the field duplicate RPDs were acceptable and that there was no impact on sediment quality. RPDs were less than 30% for the main metals of interest in one of the two duplicate pairs. The specific results of the field duplicates and a discussion with respect to data quality are as follows:

- SED17-34M and SED17-34M-DUP had RPDs ranging from 1 to 74%. All of the RPDs that exceeded 30% were associated with individual PAHs. Golder reviewed the field notes for this sample and confirmed that appropriate sample homogenization was conducted. Golder concluded that the high RPDs with respect to PAHs were relevant for site characterization. The original sample had five more exceedances with respect to PAHs than the duplicate sample. Golder will use the PAH concentrations from the original sample to provide a conservative evaluation of this sample.
- SED17-41M and SED17-41M-DUP had RPDs ranging from 0 to 102%. PAHs were not analysed for the duplicate sample. Nine RPDs exceeded the 30% trigger, including all metals of concern frequently exceeding the SCO criteria. Golder reviewed the field notes for this sample and confirmed that appropriate sample homogenization was conducted. Golder concluded that the high RPDs with respect to metals were relevant for site characterization. In one instance, the concentration of cadmium in the original sample had an exceedance where the duplicate did not. Golder will use the concentration from the original sample to provide a conservative evaluation of this sample. In all other instances both the original sample and the duplicate either exceeded the SCO/CSL criteria, or both were less than the criteria.
- Sample SED17-35M exceeded the recommended holding time of 48h for coliform analysis due to an omission by the laboratory. This sample did not have coliforms detected.

The analytical laboratory provided a case narrative for each certificate of analysis which discussed the internal laboratory control measures. There were no deviations described in the case narratives which were considered by the analytical laboratory to impact overall data quality. The ADEC laboratory review checklist was completed by Golder and is provided in Appendix C. Overall, Golder concludes that the sediment data are reliable and suitable for the assessment based on consideration of both the laboratory and field QA/QC components.

5.0 SEDIMENT CHARACTERIZATION SUMMARY

5.1 Metals

The laboratory data was screened against numerical standards (SCO: sediment cleanup objective, and CSL: cleanup screening levels) as described by the Washington State Department of Ecology (WDOE 2015). Data are provided in Table A-1 and Appendix C, but overall, the majority of samples had one or more ore-related metals that exceeded the SCO values. The highest concentrations were associated with lead, zinc, mercury and copper, and were typically found in the organic mud (shallow samples) and the silt and fine sand unit (mid-level samples) collected along the dock, to a maximum depth of approximately 7.7 feet below mudline with the highest concentrations occurring adjacent to the ship loader. In the samples collected in the step out locations from the dock, directly across from the ore loader, high concentrations of lead and zinc were present in the silt and fine sand unit (middle unit) to a maximum depth of approximately 5.5 feet below mudline as the organic mud was not present.

The highest concentrations of metals are co-located. The locations with high concentrations of lead also have high concentrations of zinc and elevated concentrations of mercury and cadmium. The areas near the loading dock also contained elevated concentrations of copper and silver. The following figure shows the spatial distribution of lead concentrations with depth along the Ore Dock (left to right) and across the Ore basin. The figure indicates that the highest concentrations of lead are localized near the Ore loader while the majority of the Ore Basin is less than the SCO (450 mg/kg) and CSLs (530 mg/kg).

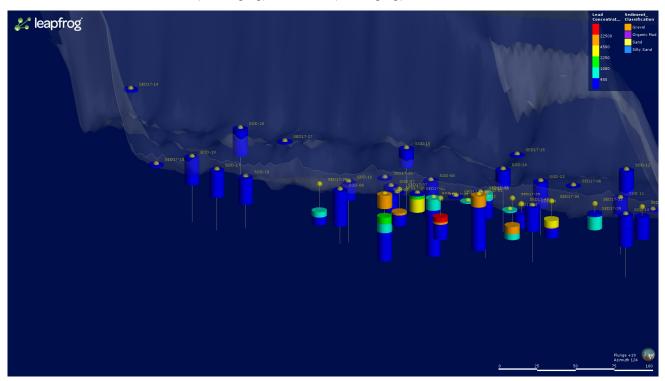


Figure 4: Spatial Distribution of Lead concentrations along Ore Dock and into Ore Basin (looking northeast)

The spatial distribution of zinc concentrations is similar to that of lead. The highest concentrations are in the vicinity of the Ore loader with some elevated concentrations that have migrated along the Ore Dock. The figure also illustrates that the majority of the Ore Basin contains concentrations of zinc less than the SCO (410 mg/kg).

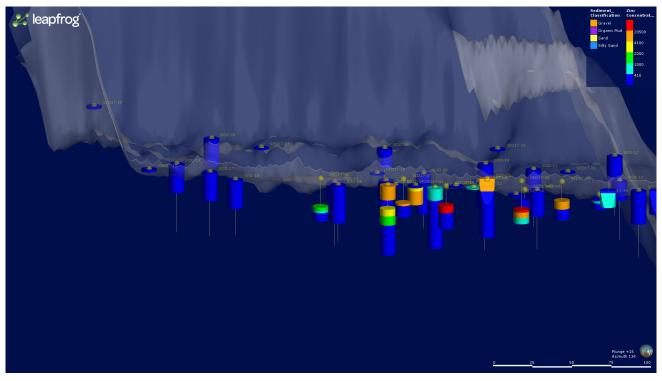


Figure 5: Spatial Distribution of Zinc Concentrations along Ore Dock and into Ore Basin (looking northeast)

Overall, there appears to be a pattern that elevated concentrations of the metals of concern are limited to the shallow and mid-level samples collected primarily near the ore-loader, to a maximum depth of approximately 7.7 feet below mudline.

5.2 Hydrocarbons

At least one individual PAH parameter was detected in 13 of the 14 shallow and mid-level sediment samples submitted for PAH analysis. Most samples had multiple PAHs detected. None of the 14 samples exceeded the total LPAH criteria defined by the WDOE. For total HPAH, there were seven samples that exceeded the SCO guideline (12 mg/kg) and five samples that exceeded the CSL (17 mg/kg) guideline. This was generally consistent with the findings from the surface sampling, although the number and magnitude of exceedances for total HPAHs were greater in the core samples. The highest total HPAH concentration was 58.8 mg/kg in the mid-level sample from SED17-34. Previous coring investigations in the Ore basin have measured total HPAH concentrations at over 1,200 mg/kg. The following figure of total HPAH concentrations shown by depth and spatial distribution indicates that there are high concentrations located near the Ore loader and at various locations throughout the Ore Basin. The source of hydrocarbons in the Ore Basin is not known.

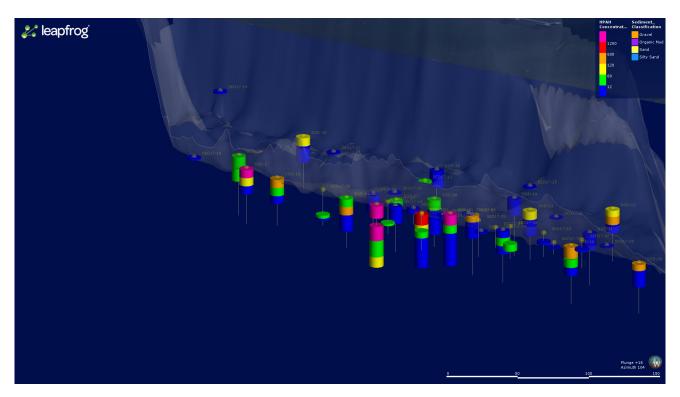


Figure 6: Spatial Distribution of total HPAH concentrations through Ore Basin (looking northeast)

5.3 Sewage Indicator Parameters

Golder also submitted core samples for coprostanol, cholestenol, total and faecal coliforms due to the results of the shallow sediment testing results that indicated that some of the data may have been impacted by the presence of faecal matter. Total coliforms were recorded in 7 of the 13 core samples submitted for analysis. The samples with detected total coliforms were collected from the shallow and medium depths at locations that appear likely to have receiving inputs from the municipal outfall (SED17-32, -33, -37, -38) and from SED17-41.

Cholestanol is a by-product of mammalian gut metabolism similar to coprostanol. Cholestanol was detected in four of the twelve samples submitted for analysis. As noted in the risk assessment report, there are multiple factors that can influence the quantified concentrations of these types of indicators. The purpose of including these indicators in the core sampling was to provide analysis that were not biased by an extended hold time. As with the surficial sampling, the presence of detected concentrations of the substances are simply a qualitative indictor that sewage inputs may be influencing sediment quality.

6.0 CONCLUSIONS

Based on a review of existing site data, ten locations near the Ore dock were selected for subsurface investigation to complement the surficial sediment sampling completed for the risk assessment and other recent coring data to ultimately provide more information when conducting remediation planning.

Three main sediment units were identified during the subsurface sediment sampling program:

All sample locations along the dock intersected a layer of black organic mud that transitioned from being very soft to soft. This mud had a hydrogen sulphur odour and commonly contained biota (e.g., mussel shells, tube worms). This layer of organic sediment was found at a thickness ranging from 2.5 to 6.7 feet. The soft mud was not encountered at the three step out sample locations located 75 feet from the dock.

- A unit of brown silt and fine sand ranging between 0.2 to 1.2 feet thick was present beneath the organic mud along the dock and as the surficial unit at the locations 75 feet from the dock. Some mussel shells were also found mixed in with this sediment unit.
- Underlying the silt and fine sand sediment was a light grey, coarse sand and gravel unit extending to the maximum depth investigated.

The majority of samples had one or more ore-related metals that exceeded the SCO values. The highest concentrations were of lead, zinc, mercury, silver and copper, and were typically found in the organic mud (shallow samples) and the silt and fine sand unit (middle samples) collected along the dock, to a maximum depth of approximately 7.7 feet below mudline, with the highest concentrations occurring adjacent to the ship loader. The samples collected at step out locations from the dock, directly across from the ore loader, had high concentrations of lead and zinc present in the silt and fine sand unit (middle unit) to a maximum depth of approximately 5.5 feet below mudline as the organic mud was not present.

The locations with high concentrations of lead correspond with high concentrations of zinc and elevated concentrations of mercury and cadmium. The areas near the loading dock also contained elevated concentrations of copper and silver. The majority of the Ore Basin contains concentrations of lead and zinc less than the SCO guidelines.

At least one individual PAH parameter was detected in 13 of the 14 shallow and middle sediment samples submitted for PAH analysis. Most samples had multiple PAHs detected. None of the 14 samples exceeded the total LPAH criteria defined by the WDOE. For total HPAH, there were seven samples that exceeded the SCO guideline. The primary HPAH parameters included Benz(a)anthracene, Benzo(b,j,k)fluoranthrene, Fluoranthrene, and Pyrene. Previous coring investigations in the Ore basin have measured total HPAH concentrations at over 1,200 mg/kg, significantly lower that maximum total HPAH of 58.9 mg/kg observed in 2017. Samples with elevated total HPAH concentrations were located near the Ore loader and in various locations throughout the Ore Basin. The source of hydrocarbons in the Ore Basin is not known.

Total coliforms were recorded in 7 of the 13 core samples submitted for analysis. The samples with detected total coliforms were collected from the shallow and medium depths at locations that appear likely to have receiving inputs from the municipal outfall. As with the surficial sampling, the presence of detected coliforms are simply a qualitative indictor that sewage inputs may be influencing sediment quality.

7.0 CLOSURE

We trust this information is sufficient for your needs at this time. Should you have any questions or concerns, please do not hesitate to contact the undersigned at 1-867-633-6076.

Golder Associates Ltd.

Eliane Roy, BSc, EIT Environmental Engineer Tamra Reynolds, MSc, PGeo Associate, Senior Hydrogeologist

ER/TR/syd

Golder and the G logo are trademarks of Golder Associates Corporation

8.0 REFERENCES

Alaska Department of Environmental Conservation (ADEC). 2016. Field sampling guidance. Available online: https://dec.alaska.gov/spar/csp/guidance_forms/docs/Field-Sampling-Guidance-Final-5-13-2016.pdf

- Anchor QEA LLC (Anchor). 2015. Skagway Ore Dock and Small Boat Harbour dredging: Gateway Intermodal Dock Reconstruction Project and Legacy Harbour Contaminant Mitigation Program. Prepared for the Municipality of Skagway. Anchor Project No. 140159-04.01.
- Golder Associates Ltd. (2018). Skagway Ore Basin Risk Assessment. Prepared for White Pass & Yukon Route Railway. Golder Project No. 1657231-006-R-Rev1
- Tetra Tech Inc. (2008). Evaluation of Skagway Harbor and Pullen Creek Sediments and Surface Waters. Prepared for Alaska Department of Environmental Conservation.
- Washington State Department of Ecology (WDOE). 2015. Sediment cleanup users manual II (SCUM II). Available online: https://fortress.wa.gov/ecy/publications/SummaryPages/1209057.html

Table A-1 Summary of Sediment Chemistry Analysis

Sample Name				SED17-32S	SED17-32M	SED17-33S	SED17-33M	SED17-34S	SED17-34M	SED17-34M-DUP	SED17-34D	SED17-35S	SED17-35M	SED17-35D	SED17-36S	SED17-36M	SED17-36D	SED17-37M	SED17-37D	SED17-38S	SED17-38M	SED17-38D	SED17-39S	SED17-39M	SED17-39D	SED17-40M	SED17-40D	SED17-41S	SED17-41M	SED17-41M-DUP	SED17-41D
Sediment classification	·	12		and fine sand	Sand and gravel, some silt	Organic mud	Silt and fine sand	Organic mud	Silt and fine sand 3M	Silt and fine sand	Coarse sand, some gravel 3D	Organic mud	Silt and fine sand 4M	Coarse sand, some gravel	Organic mud	Silt and fine sand 5M	Coarse sand, some gravel	Organic mud and silt 6M	Coarse sand, some gravel	Organic mud	Silt and fine sand	some gravel	Coarse sand and mussel shells	Silt, some fine sand 8M	Coarse sand some gravel	Silt and fine sand 9M	Medium to coarse sand	Fine sand	Silt and fine sand	Silt and fine sand	Fine to coarse sand
Location on map Sample Control Number (SCN)	Marine Sedir	ment AETs ''	Units	1S 7977-01	1M 7977-02 28-Oct-2017	2S 7977-03 28-Oct-2017	2M 7977-04	3S 07979-04 31-Oct-2017	3M 07979-02 31-Oct-2017	3M 07979-05 31-Oct-2017	3D 07979-03 31-Oct-2017	4S 07979-07 31-Oct-2017	07979-06	4D 07979-08	5S 07980-01 31-Oct-2017	5M 07979-12 31-Oct-2017	07980-02	07978-04	6D 07978-03	7S 07979-09 31-Oct-2017	7M 07979-10	7D 07979-11	8S 07979-01 31-Oct-2017	8M 07978-12 31-Oct-2017	8D 07978-11 31-Oct-2017	07978-09	9D 07978-10	10S 07978-07	10M 07978-06 31-Oct-2017	10M 07978-08 31-Oct-2017	10D 07978-05 31-Oct-2017
Sample Date Sample Depth (ft below mudline) Sample Time	sco	CSL		28-Oct-2017 2 - 2.5 14:50	2.5 - 7 14:50	2 - 2.5 18:30	28-Oct-2017 2.5 - 3.5 18:30	4 - 5.5 13:30	5.5 - 5.7 13:30	5.5 - 5.7 13:30	5.7 - 8 13:30	6 - 6.5 14:30	31-Oct-2017 6.5 - 7.7 14:30	31-Oct-2017 7.7 - 9 14:30	2 - 5	5 - 5.5 17:00	31-Oct-2017 5.5 - 9 15:40	30-Oct-2017 5 - 5.5 0:00	30-Oct-2017 5.5 - 8 0:00	6 - 6.7 15:40	31-Oct-2017 6.7 - 7.2 15:40	31-Oct-2017 7.2 - 9 15:40	1 - 1.1	1.1 - 1.6 12:15	1.6 - 3 12:15	31-Oct-2017 2 - 2.3 10:30	31-Oct-2017 2.3 - 5 10:30	31-Oct-2017 0 - 0.3 9:20	0.3 - 1.0 9:20	0.3 - 1.0 9:20	1.0 - 4.0
Physical Tests																															
Moisture pH (1:2 soil:water)	-	-	% pH	23.8 8.58	17.7 8.65	24.1 8.57	22.6 8.59	33.4 8.53	25.8 8.51	26.3 8.60	8.75	35.6 8.42	15.4 8.42	8.18	29.7 8.29	19.2 8.46	8.70	25.2 8.25	14.7 8.02	38.4 8.36	24.6 8.49	8.64	17.6 8.42	20.0 8.33	8.45	15.5 8.41	8.25	17.1 8.28	23.4 8.10	8.08	8.15
Bacteriological Tests Coliform Bacteria - Fecal Coliform Bacteria - Total		-	MPN/g MPN/g	<2 4	<2 4	<2 3	<2 3	- -	-	- -	-	<2 <2	<2 <2	- -	-	-	-	<2 7	-	<2 4	-	-	<2 <2	<2 <2	-	<2 <2	-	<2 3	<2 <2	-	-
Sterols Cholestanol Coprostanol	- -	- -	mg/kg mg/kg	0.099 <0.050	<0.050 <0.050	0.415 0.062	-	-	- -	- -	- -	<0.050 <0.050	<0.050 <0.050	-	-	-	- -	0.074 <0.050	-	<0.050 <0.050	-	- -	<0.050 <0.050	<0.15 <0.15	- -	<0.050 <0.050	-	<0.050 <0.050	0.066 <0.050	- -	- -
Metals Antimony (Sb) Arsenic (As)	- 57	93	mg/kg mg/kg	0.12 1.95	0.11 1.09	0.17 2.31	0.63 1.87	2.65 8.39	5.08 7.79	4.42 6.64	0.13 0.65	23.4 22.8	14.9 10.7	0.54 0.81	50.4 41.2	16.3 12.8	0.22 0.53	15.7 18.8	0.14 0.57	1.02 5.44	0.60 3.02	<0.10 0.52	0.10 1.11	0.24 2.33	<0.10 0.40	<0.10 0.41	0.25 1.16	0.22 1.69	2.45 4.35	1.05 2.69	3.08 3.36
Barium (Ba) Beryllium (Be)	-	-	mg/kg mg/kg	210 0.20	135 0.12	192 0.17	168 0.17	389 0.34	329 0.29	282 0.24	109 0.11	341 0.37	211 0.16	121 <0.10	119 0.28	171 0.15	73.4 0.11	355 0.36	106 <0.10	437 0.41	244 0.21	126 0.10	134 0.13	208 0.18	95.4 <0.10	107 <0.10	138 0.13	202 0.19	274 0.24	230 0.21	169 0.14
Cadmium (Cd) Chromium (Cr) Cobalt (Co)	5.1 260	6.7 270	mg/kg mg/kg mg/kg	0.296 11.2 5.17	0.183 6.53 3.38	0.411 18.9 5.01	0.901 9.16 4.17	7.24 22.6 8.88	12.8 16.9 7.86	9.82 14.6 6.79	0.358 4.64 2.73	21.5 10.7	16.2 8.09 4.93	0.638 5.68 2.97	105 16.3 12.2	50.6 7.83 5.48	0.382 7.18 3.22	21.5 10.6	0.149 4.68 2.75	2.39 21.8 10.1	1.52 12.0 5.89	0.096 6.24 3.09	0.171 6.53 3.19	0.791 10.4 5.24	<0.050 5.00 2.56	<0.050 4.95 2.76	0.217 6.52 3.40	0.416 9.69 4.58	5.83 12.4 6.15	2.09 11.3 5.61	7.31 7.84 4.07
Copper (Cu) Lead (Pb)	390 450	390 530	mg/kg mg/kg	33.1 57.9	11.3 72.5	43.4 159	32.4 705	339 2500	162	123 3280	6.33 115	465 19500	185 14700	10.2	1400 41900	472 14400	7.77 188	436 14100	5.36 82.4	55.1 840	28.0 547	5.33 34.7	17.7 80.1	33.9 223	5.19 7.18	2.54 6.88	14.0 338	16.2 195	90.1	36.9 866	75.0 3030
Mercury (Hg) Molybdenum (Mo)	0.41	0.59	mg/kg mg/kg	0.075 1.00	0.074 0.48	0.136 0.97	0.428 1.59	3.19 2.17	5.67 2.40	4.39 1.72	0.139 0.40	13.7 4.44	6.56 1.31	0.268 0.35	38.7 6.30	20.9 1.71	0.122 0.22	12.7 3.29	0.0486 0.34	0.959 2.27	0.553 1.76	0.0254 0.48	0.106 0.45	0.404 0.98	0.0100 0.24	<0.0050 0.17	0.210 0.71	0.206 0.96	2.18 1.86	0.712 1.79	2.47 1.10
Nickel (Ni) Selenium (Se) Silver (Ag)	6.1	6.1	mg/kg mg/kg ma/ka	6.04 <0.20 0.13	3.13 <0.20 0.10	8.22 <0.20 0.21	4.22 <0.20 0.72	10.6 0.34 3.28	8.39 0.33 5.21	7.45 0.24 3.99	2.26 <0.20 0.15	11.6 0.98 21.9	3.97 0.55 14.1	2.48 <0.20 0.51	9.72 3.02 >43.6	3.91 0.74 15.3	4.09 <0.20 0.22	10.8 0.91 15.2	2.32 <0.20 0.13	11.7 0.28 1.42	6.07 <0.20 0.81	2.59 <0.20 <0.10	3.30 <0.20 0.11	5.26 <0.20 0.34	2.38 <0.20 <0.10	2.72 <0.20 <0.10	2.82 <0.20 0.34	4.60 <0.20 0.25	6.07 0.22 2.31	5.49 <0.20 1.02	3.73 <0.20 3.32
Thallium (TI) Tin (Sn)	-	-	mg/kg mg/kg	0.179 <2.0	0.114 <2.0	0.179 <2.0	0.205 <2.0	0.614 25.9	0.956 3.6	0.726 6.9	0.103 <2.0	3.96 6.7	2.44	0.182 <2.0	7.44 9.1	2.36 3.0	0.098 <2.0	2.48 4.2	0.097 <2.0	0.473 2.1	0.269 <2.0	0.091 <2.0	0.106 <2.0	0.188 <2.0	0.069 <2.0	0.078 <2.0	0.126 <2.0	0.196 <2.0	0.531 <2.0	0.345 <2.0	0.568 <2.0
Uranium (U) Vanadium (V)	-	-	mg/kg mg/kg	1.37 37.9	1.09 24.8	1.36 34.0	1.39 30.5	2.04 63.9	1.86 52.0	1.76 45.0	1.58 19.2	2.53 68.6	1.24 29.7	0.672 21.1	1.92 51.2	0.989 26.4	0.515 20.6	2.62 67.4	0.871 20.2	2.71 71.8	1.40 39.3	0.575 23.2	1.51 23.4	1.29 37.9	0.910 17.7	0.512 19.0	1.08 26.0	2.20 34.2	2.07 42.8	1.55 40.3	1.53 27.8
Zinc (Zn) Polycyclic Aromatic Hydrocarbons	410	960	mg/kg	165	141	231	555	4590	8240	6180	242	21600	10300	458	73800	33400	261	19400	120	1390	893	79.4	139	534	35.4	28.5	191	251	3730	1310	4610
Acenaphthene Acenaphthylene	0.5 1.3	0.5 1.3	mg/kg mg/kg	<0.050 <0.050	- -	<0.050 <0.050	-	0.0503 0.129	0.142 0.0888	0.149 0.0686	- -	-	-	-	0.0861 0.0596	0.0228 0.0291	-	0.0080 0.0397	-	<0.030 0.0894	0.0080 0.0320	-	<0.0050 0.0077	-	-	<0.0050 <0.0050	-	<0.0050 0.0165	<0.0050 0.0108	-	-
Anthracene Fluorene Naphthalene	0.96 0.54 2.1	0.96 0.54 2.1	mg/kg mg/kg	<0.050 <0.050 0.098	-	0.069 <0.050 0.148	-	0.428 0.178 0.013	1.58 0.62 0.015	0.728 0.448 0.019	-	-	-	-	0.466 0.223 0.011	0.373 0.146	-	0.258 0.175 <0.010	-	0.304 0.074 0.012	0.236 0.094 <0.010	-	0.0171 <0.010 <0.010	-	-	<0.0040 <0.010 <0.010	-	0.0810 0.011 <0.010	0.0261 <0.010 <0.010	-	-
Phenanthrene 2-Methylnaphthalene	1.5 0.67	1.5	mg/kg mg/kg mg/kg	0.311 <0.050	- - -	0.614 <0.050	- - -	0.720 0.017	2.02 0.020	1.20 0.017	- - -	-	-	- - -	2.19 0.012	<0.010 1.36 <0.010	- - -	0.626 <0.010	-	0.481 <0.010	0.303 <0.010	- - -	0.031 <0.010	-	-	<0.010 <0.010 <0.010	-	0.084 <0.010	0.051 <0.010	-	-
Total LPAH Benz(a)anthracene	5.2 1.3	5.2 1.6	mg/kg mg/kg	0.409 0.112	-	0.831 0.237	-	1.5353 2.90	4.4888 8.09	2.6296 4.48	<u> </u>	-	-	-	3.0477 2.28	1.9309 2.37	- [-	1.1067 2.21] -	0.9604 1.36	0.673 1.14	- -	0.0558 0.045	-	-	<i>N/A</i> <0.010	-	0.1925 0.257	0.0879 0.106	-	-
Benzo(a)pyrene Benzo(k)fluoranthene	1.6	1.6	mg/kg mg/kg	0.074 0.289 0.186	-	0.109 0.287 0.250	-	1.25 1.27 3.75	3.08 8.79	1.89 1.67 5.67	 -	-	-	-	1.54 1.32 4.03	1.09 0.958 2.67	-	1.20 0.893 3.12	-	0.638 0.707 1.70	0.575 0.508 1.52	-	0.038 0.037 0.091	-	-	<0.010 <0.010	-	0.165 0.132 0.343	0.102 0.093 0.260	-	-
Benzo(b&j)fluoranthene Benzo(b+j+k)fluoranthene Benzo(g,h,i)perylene	3.2 0.67	3.6 0.72	mg/kg mg/kg mg/kg	<0.050 0.073	-	<0.050 <0.050 0.097	-	5.02 0.278	8.79 11.90 0.554	7.34 0.402	ı :	-	-	-	5.36 0.484	3.63 0.302		4.02 0.266]	1.70 2.4 0.156	1.52 2.03 0.144	-	0.091 0.128 0.011	-	-	<0.010 <0.015 <0.010	-	0.343 0.475 0.049	0.260 0.353 0.027	-	-
Chrysene Dibenz(a,h)anthracene	1.4 0.23	2.8 0.23	mg/kg mg/kg	<0.050 0.177	-	<0.050 0.503] -	<2.0 0.143	6.94 0.370	<3.0 0.223	- -	-	-	-	2.34 0.193	1.78 0.130	<u>-</u>	<2.0 0.146	-	1.27 0.0703	1.23 0.0605	-	0.061 <0.0050	-	-	<0.010 <0.0050	-	0.273 0.0188	<0.20 0.0122	-	-
Fluoranthene Indeno(1,2,3-c,d)pyrene	1.7 0.6	2.5 0.69	mg/kg mg/kg	<0.050 <0.050	-	<0.050 <0.050	-	5.21 0.368	15.8 0.706	10.1 0.490	<u> </u>	-	-	-	4.20 0.631	3.13 0.407	- -	1.03 0.356	- - 1	2.01 0.201	1.36 0.196	- -	0.055 0.014	-	-	<0.010 <0.010	-	0.432	0.131 0.035	-	-
Pyrene Total HPAH 1-Methylnaphthalene	12	3.3 17	mg/kg mg/kg mg/kg	<0.050 0.436 <0.050	-	<0.050 0.946 <0.050	-	7.89 23.059 <0.050	11.6 58.810 <0.050	8.32 33.245 <0.050	. .	-	-	-	7.24 24.268 <0.050	4.35 17.189 <0.050	- - -	4.00 13.228 <0.050]	4.73 12.835 <0.050	3.14 9.876 <0.050	-	0.091 0.443 <0.050	-	-	<0.010 N/A <0.050	-	0.606 2.338 <0.050	0.402 1.168 <0.050	-	-
Quinoline	-	-	mg/kg	86.5	-	89.6	-	<0.050	<0.050	<0.050	-	-	-	-	<0.050	<0.050	-	<0.050	-	<0.050	<0.050	-	<0.050	-	-	<0.050	-	<0.050	<0.050	-	-

Notes:

AET: Apparent Effect Threshold
SCO: Sediment Cleanup Objective
CSL: Cleanup Screening Level
LPAH: Low Molecular Weight Polycyclic Aromatic Hydrocarbons
HPAH: High Molecular Weight Polycyclic Aromatic Hydrocarbons
1. Department of Egology, State of Washington, Sediment Cleanup Users Manual II,
March 2015

March 2015

2. The SCO represents the long-term sediment quality goal, while the CSL is the maximum chemical concentration or biological effects level allowed as a sediment cleanup level. They are used in conjunction for sediment risk management and remedial planning. The final sediment clean up level (i.e., the basis of design of remediation) is initially set at the more conservative SCO but can be adjusted upwards towards the CSL based on technical feasibility and net adverse environmental impacts as part of the selection of the remedial option.

Value

Detected value is greater than marine sedim

Table A-2 Summary of Quality Assurance/Quality Control Analysis

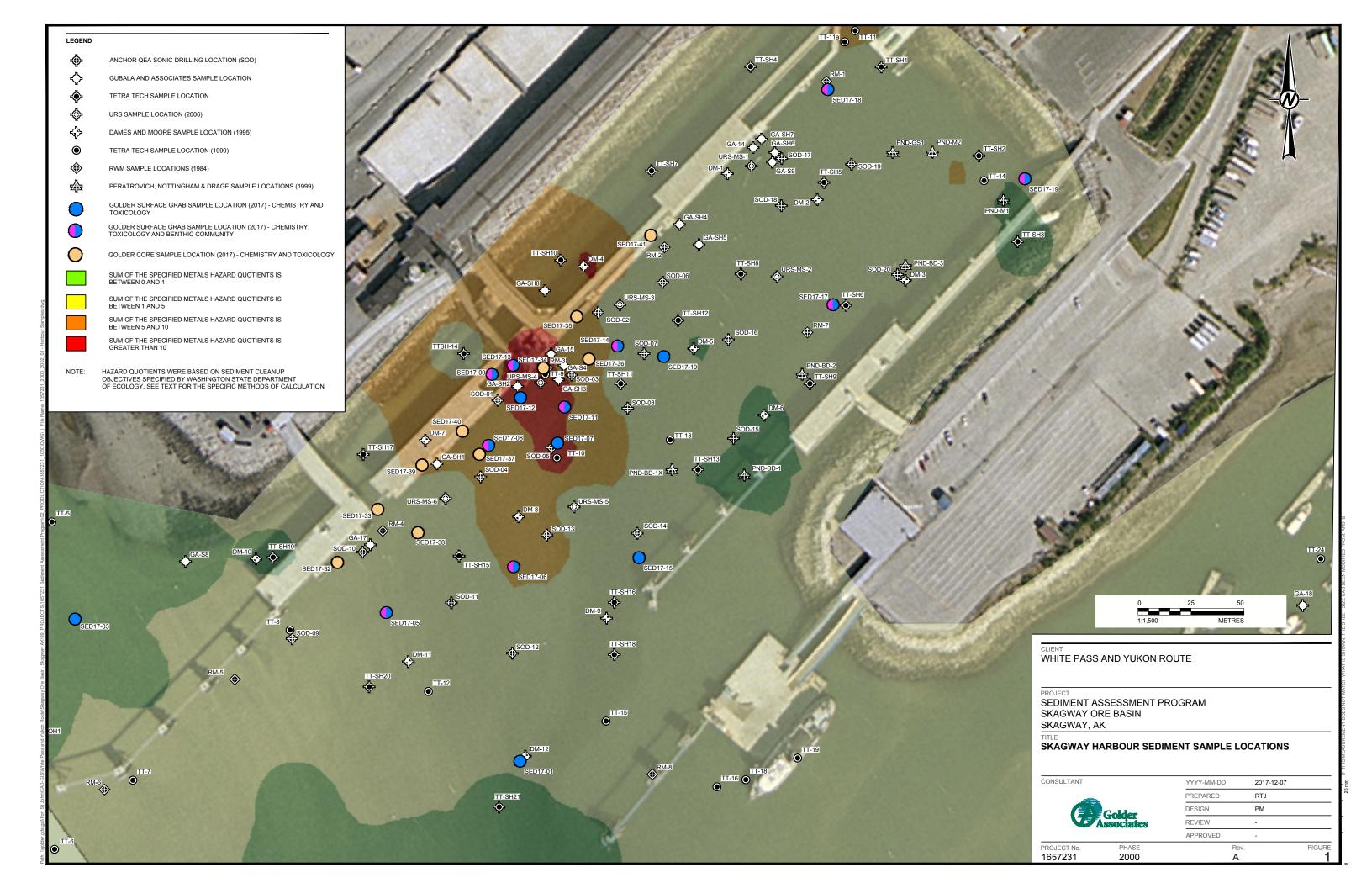
Sample Name	SED17-34M	SED17-34M-DUP					SED17-41M	SED17-41M-DUP				
Sample Date	31-Oct-2017	31-Oct-2017	Method	lı	Relative	Difference	31-Oct-2017	31-Oct-2017	Method	lı	Relative	Difference
Sample Time	13:30	13:30	Detection	Mean	Percent	Factor	9:20	9:20	Detection	Mean	Percent	Factor
Physical Tests												
Moisture (%)	25.8	26.3	0.25	26.1	1.9%	NA	23.4	-	0.25	NC	NC	NA
pH (1:2 soil:water)	8.51	8.60	0.1	8.6	1.1%	NA	8.10	8.08	0.1	8.1	0.2%	NA
, , ,									-			
Metals	1											
Antimony (Sb)	5.08	4.42	0.1	4.8	13.9%	NA	2.45	1.05	0.1	1.8	80.0%	NA
Arsenic (As)	7.79	6.64	0.1	7.2	15.9%	NA	4.35	2.69	0.1	3.5	47.2%	NA
Barium (Ba)	329	282	0.5	305.5	15.4%	NA	274	230	0.5	252.0	17.5%	NA
Beryllium (Be)	0.29	0.24	0.1	0.3	NA	0.5	0.24	0.21	0.1	0.2	NA	0.3
Cadmium (Cd)	12.8	9.82	0.05	11.3	26.3%	NA	5.83	2.09	0.05	4.0	94.4%	NA
Chromium (Cr)	16.9	14.6	0.5	15.8	14.6%	NA	12.4	11.3	0.5	11.9	9.3%	NA
Cobalt (Co)	7.86	6.79	0.1	7.3	14.6%	NA	6.15	5.61	0.1	5.9	9.2%	NA
Copper (Cu)	162	123	0.5	142.5	27.4%	NA	90.1	36.9	0.5	63.5	83.8%	NA
Lead (Pb)	4570	3280	0.5	3925.0	32.9%	NA	2200	866	0.5	1533.0	87.0%	NA
Mercury (Hg)	5.67	4.39	0.025	5.0	25.4%	NA	2.18	0.712	0.025	1.4	101.5%	NA
Molybdenum (Mo)	2.40	1.72	0.1	2.1	33.0%	NA	1.86	1.79	0.1	1.8	3.8%	NA
Nickel (Ni)	8.39	7.45	0.5	7.9	11.9%	NA	6.07	5.49	0.5	5.8	10.0%	NA
Selenium (Se)	0.33	0.24	0.2	0.3	NA	0.5	0.22	<0.20	0.2	0.2	NA	NA
Silver (Ag)	5.21	3.99	0.1	4.6	26.5%	NA	2.31	1.02	0.1	1.7	77.5%	NA
Thallium (TI)	0.956	0.726	0.05	0.8	27.3%	NA	0.531	0.345	0.05	0.4	42.5%	NA
Tin (Sn)	3.6	6.9	2	5.3	NA	1.7	<2.0	<2.0	2	NC	NC	NA
Uranium (U)	1.86	1.76	0.05	1.8	5.5%	NA	2.07	1.55	0.05	1.8	28.7%	NA
Vanadium (V)	52.0	45.0	0.2	48.5	14.4%	NA	42.8	40.3	0.2	41.6	6.0%	NA
Zinc (Zn)	8240	6180	2	7210.0	28.6%	NA	3730	1310	2	2520.0	96.0%	NA
Polycyclic Aromatic Hydrocarbons	•											
Acenaphthene	0.142	0.149	0.005	0.1	4.8%	NA	< 0.0050	-	0.005	NC	NC	NA
Acenaphthylene	0.0888	0.0686	0.005	0.1	25.7%	NA	0.0108	-	0.005	NC	NC	NA
Anthracene	1.58	0.728	0.004	1.2	73.8%	NA	0.0261	_	0.004	NC	NC	NA
Fluorene	0.62	0.448	0.01	0.5	32.7%	NA	<0.010	-	0.01	NC	NC	NA
Naphthalene	0.015	0.019	0.01	0.0	NA	0.4	<0.010	-	0.01	NC	NC	NA
Phenanthrene	2.02	1.20	0.01	1.6	50.9%	NA	0.051	-	0.01	NC	NC	NA
2-Methylnaphthalene	0.020	0.017	0.01	0.0	NA	0.3	<0.010	-	0.01	NC	NC	NA
Benz(a)anthracene	8.09	4.48	0.01	6.3	57.4%	NA	0.106	-	0.01	NC	NC	NA
Benzo(a)pyrene	2.85	1.89	0.01	2.4	40.5%	NA	0.102	-	0.01	NC	NC	NA
Benzo(k)fluoranthene	3.08	1.67	0.01	2.4	59.4%	NA	0.093	-	0.01	NC	NC	NA
Benzo(b&i)fluoranthene	8.79	5.67	0.01	7.2	43.2%	NA	0.260	_	0.01	NC	NC	NA
Benzo(b+j+k)fluoranthene	11.90	7.34	0.015	9.6	47.4%	NA	0.353	_	0.015	NC	NC	NA
Benzo(g,h,i)perylene	0.554	0.402	0.01	0.5	31.8%	NA	0.027	_	0.01	NC	NC	NA NA
Chrysene	6.94	<3.0	3	6.9	NA	NA	<0.20	_	0.01	NC	NC	NA
Dibenz(a,h)anthracene	0.370	0.223	0.005	0.3	49.6%	NA	0.0122	_	0.005	NC	NC	NA NA
Fluoranthene	15.8	10.1	0.003	13.0	44.0%	NA NA	0.131	_	0.003	NC NC	NC NC	NA NA
Indeno(1,2,3-c,d)pyrene	0.706	0.490	0.01	0.6	36.1%	NA NA	0.035		0.01	NC NC	NC NC	NA
Pyrene	11.6	8.32	0.01	10.0	32.9%	NA NA	0.402		0.01	NC NC	NC NC	NA NA
1-Methylnaphthalene	< 0.050	<0.050	0.01	NC	NC	NA NA	<0.050		0.05	NC NC	NC NC	NA NA
Quinoline	<0.050	<0.050	0.05	NC NC	NC NC	NA NA	<0.050	-	0.05	NC NC	NC NC	NA NA
Quilloulle	<0.050	<0.000	0.05	INC	NC	INA	<0.050	-	0.05	INC	INC	INA
			I	i			<u> </u>					

Notes:

Results expressed in milligrams per kilogram (mg/kg), unless otherwise indicated.

Method Detection Limit indicates the minimum concentration that could be measured by laboratory instrumentation for a specific sample.

Mean indicates the mean or average value calculated for a field duplicate pair (the FDA and the FD).


Relative Percent Difference is calculated when the mean value is greater than five times the method detection limit; Golder's internal QA/QC target is less than 35%.

Difference Factor is calculated when the mean value is less than five times the method detection limit; Golder's internal QA/QC target is less than 2.

QA/QC = quality assurance/quality control

"-" = Not analysed; NC = Not Calculated; NA = not applicable

BOLD font indicates the parameter analysed exceeds Golder's internal QA/QC targets.

APPENDIX A

Sediment Borehole Logs

RECORD OF SEDIMENT CORE: SED17-32

CLIENT: White Pass and Yukon Route PROJECT: Skagway Ore Basin Drilling Program LOCATION: Skagway Harbour N: 21621237.6 E: 1579248.7

DRILLING DATE: October 28, 2017 DRILLING CONTRACTOR: AquaSource LLC SHEET 1 OF 1

DATUM: NAD 83 Zone 8V

	щ	ري 9	SOIL PROFILE					H SA				EMISTRY SAMP	LES					ı Đ i	DYNA RESI:	MIC F	PENET	TRATI	ON S/ft	, CO	PIEZOMETER, STANDPIPE
	DEPTH SCALE FEET	DRILLING RIG DRILLING METHOD		LOT		:R		s/ft	O	% ⊁	æ		ED	C) 0	0			20) 4	0 6	0	₈₀ \	ADDITIONAL LAB. TESTING	OR I
	표	RILLI	DESCRIPTION		LEV. EPTH	NUMBER	TYPE	BLOWS/ft	CORE No.	CORE RECOVERY %	JMBE	SCN	ANALYSED						W	ATEF	R COI	NTEN		DDIT	THERMISTOR INSTALLATION
	<u> </u>	DRIL		STR/	(ft)	Ŋ		H H	8	REC	ž		AN						Wp	⊢)W 0 3	80	- WI 40	45	
	- 0		Below Mean Sea Level		-37.60																				_
			(OL) Organic mud and silt		0.00																				
L																									
L																									
	- 2																								
	-						SS				325	7977-01													
L					-40.10						020	7577-01													
			(SP) Coarse sand, some gravel		2.50																				
]
	- 4																								
	7																								
							SS				3214	7977-02													
							33				SZIVI	1911-02													
ſ]
L																									
L	- 6																								
	Ü																								
		Rotary																							
6/7/18		ed Air t Push			-44.60																				
James		Mount	End of Sediment Core.		7.00																				
30) RY.		Truck Mounted Air Rota Direct Push																							
O/ENVIR																									
OLE (GE	- 8																								
SOREHO																									
m:BC_E																									
utput Fo																									
ct ID: Ò																									
ue Proje																									
IM Uniq																									
TIONAL																									
SAL_NA	- 10																								_
National IM Server:GINT_GAL_NATIONALIM Unique Project ID: Output Form:BC_BOREHOLE (GEO/ENVIRO) RYJames 16/7/18																									
M Server	DE	PTH S	CALE					4		7		Golder ssociate			S	OIL C	CLAS	SIFI	CAT	ION S			GAC		
ational III		n to 1 f						(Ī			Golder Scociate	26										ED: EH ED: TF		
ž _									4		11	33UCIAU	-0								J. II			•	

RECORD OF SEDIMENT CORE: SED17-33

CLIENT: White Pass and Yukon Route PROJECT: Skagway Ore Basin Drilling Program LOCATION: Skagway Harbour N: 21621310.1 E: 1579320.5

1 in to 1 ft

DRILLING DATE: October 28, 2017 DRILLING CONTRACTOR: AquaSource LLC SHEET 1 OF 1

CHECKED: TR

DATUM: NAD 83 Zone 8V

	П	٥	SOIL PROFILE					LINA NA SZ		\neg		EMISTRY SAMP	DI ES					DYN	AMIC	PENE ICE, B	TRAT	ION	1	PIEZOMETER,
DEPTH SCALE		DRILLING RIG DRILLING METHOD	SOILTROFILE	T -		OLO	ILO		_	\dashv	_	LIVIIOTICI OAIVII	Т									١	ADDITIONAL LAB. TESTING	STANDPIPE
SC	<u>.</u>	S S		STRATA PLOT	ELEV.	띪		s/ft	CORE No.	CORE RECOVERY %	监		ANALYSED	0	0 0	0				10 (OR THERMISTOR
I E	-		DESCRIPTION	Ϋ́	DEPTH	NUMBER	TYPE	BLOWS/ft	쮼		MB	SCN	ILY8					V	/ATE	R CO	NTEN		B.T	INSTALLATION
B		ᆔ		TRA	(ft)	2	-	B	8		3		ANA					W	—	⊖W		– W	ı∣₹≾	
	\dashv			S	-		-		\dashv	\dashv				_			_	1	0 2	20 ;	30 T	40	+	-
-	0		Below Mean Sea Level (OH) Organic mud	///	-37.50 0.00				-													+		
			(Oil) Organic mad		1																			
				///	1																			
-				1//	3																			1
					1																			
					1																			
Γ																								
				1//	1																			
F					7																			_
					1																			
-	2			1//	1		-			ŀ														-
					3		ss				338	7977-03												
L				\mathbb{Z}	-40.00					Į														
			(SM) Silt and fine sand		2.50																			
					1																			
H				14	1																			-
					1																			
1					-41.00																			
			(SP) Coarse sand, some gravel		3.50																			1
_	4				1							7977-04												-
							ss				33M													
					1						JOIVI													
-																								
					1																			
_																								
					`																			
					.]																			
F		ary			·]																			-
		r Rot			.]																			
L	6	ed Ai			-43.50 6.00																			
		Truck Mounted Air Rotary Direct Push	End of Sediment Core.		6.00																			
		- K	2.10 0. 000																					
-		Ĕ																						-
3/7/18																								
nes 1																								1
RYJar																								
- (RO)																								-
O/EN/																								
E (GE																								
FED	8																							1
BOR																								
- iii.B																								_
put Fo																								
D: Ou																								
oject																								1
dne Di																								
M -																								
ONALI																								
NATK																								
g 1	10																							-
na IM Sever GINT, GAL, NATIONALIM Unque Propet ID: Output FormBC, BOREHOLE (GEOFENVIRO) RYJames 167/18																								
Server	_							_	À	Š				5	SOIL	CLA	SSIF	FICA	ΓΙΟN	SYS	ГЕМ:	GA	CS	
nal ∏	DEI	PTH S	CALE						Ħ			Golder								LC	OGG	ED: I	ΕH	
ol .											- 4													

RECORD OF SEDIMENT CORE: SED17-34

CLIENT: White Pass and Yukon Route PROJECT: Skagway Ore Basin Drilling Program LOCATION: Skagway Harbour

N: 21621371.3 E: 1579395.0

1 in to 1 ft

DRILLING DATE: October 31, 2017 DRILLING CONTRACTOR: AquaSource LLC SHEET 1 OF 1

CHECKED: TR

DATUM: NAD 83 Zone 8V

00	SOIL PROFILE		Į,				ON: PLES	$\overline{}$	EMISTRY SAMF	PLES					D	/NAN	/IC F	ENE	TRATI	ION	Т		PIEZOMETER,
FEET DRILLING RIG DRILLING METHOD		5					_	-				0 0	0		₽RI				LOWS 30	١	∖ ∣₫	LAB. TESTING	STANDPIPE OR
IEET I		STRATA PLOT	ELEV.	NUMBER	TYPE PLOWS#	CORE No.	CORE RECOVERY %	HH.		ANALYSED	_	1 1	Ĭ	Ĭ	+				NTEN		1	TES	OR THERMISTOR INSTALLATION
	DESCRIPTION	ATA.	DEPTH	I ME	TYPE	S S	88	Ĭ N N	SCN	MLY					Ι,			W		√1 /0 W	, 6	AB.	INSTALLATION
DRI		STR	(ft)	z	٩	0	Ä	Z		A								0 3		40	"	` _	
0	Below Mean Sea Level		-38.40																				
	(OH) Organic mud		0.00																				
		1//																					
		1//3																					
		1//																					
2																							
		1//																					
4																							
1																							
					ss			348	7979-04														
			-43.90																				
	(SM) Silt and fine sand	1111	5.50 -44.10		ss			34M	7979-02														
	(SP) Coarse sand, some gravel		5.70																				
6																							
					ss			34D	7979-03														
Rotar																							
d Air			-46.40																				
Truck Mounted Air Rotary Direct Push	End of Sediment Core.		8.00		\top								\top	\top		T					T		
uck №	2 01 0001110111 0010.																						
F																							
0																							
·	20415						\$		Golder			S	OIL C	CLAS	SIFIC	ATIO	ON S						
EPTH S	DUALE						∄≜	E,	Golder									LC	OGGE	ED: I	ER		

RECORD OF SEDIMENT CORE: SED17-35

CLIENT: White Pass and Yukon Route PROJECT: Skagway Ore Basin Drilling Program LOCATION: Skagway Harbour N: 21621432.3 E: 1579452.7

DRILLING DATE: October 31, 2017 DRILLING CONTRACTOR: AquaSource LLC SHEET 1 OF 1

DATUM: NAD 83 Zone 8V

l,		0	SOIL PROFILE			GEO		CH SA		$\overline{}$		EMISTRY SAMP	LES					⊕	DYN	AMIC I STAN	PENE.	TRAT	ION S/ft	Τ.,	PIEZOMETER,
	DEPTH SCALE FEET	DRILLING RIG DRILLING METHOD		Ь		~				%	~		D	() (0	0	ື		0 4			١,	ADDITIONAL LAB TESTING	STANDPIPE OR
1	2 2	LLING NG N	DESCRIPTION	'A PL	ELEV.	NUMBER	TYPE	BLOWS/ft	S N	ZERY /ERY	/BER	SCN	YSE.			i		+	W	ATE	R CO				THERMISTOR INSTALLATION
i	ļ.	DRI	BEOGRAFI FIGURE	STRATA PLOT	DEPTH (ft)	N	₹	BLO	CORE No.	CORE RECOVERY %	Š	33.1	ANALYSED						Wp	<u> </u>	∋ <mark>W</mark>		–ı w	I AD	
H		Ω		S						-			_				$\overline{}$	+	1	0 2	0 3	30	40	+	-
H	0		Below Mean Sea Level (OH) Organic mud	///	-38.00 0.00												+	+							
F																									-
L																									
r	2																								
ŀ																									-
-																									-
}																									-
F	4																								-
ŀ																									_
L																									
L																									
L	6																								
	Ü						SS				250	7979-07													
					-44.50		33				333	1919-01													
Ī			(SM) Silt and fine sand		6.50																				
77/18																									
mes 16							SS				35M	7979-06													
) RYJa																									
ENVIRC					-45.70																				
National IM Server:GINT_CAL_NATIONALIM Unique Project ID: Output Form:BC_BOREHOLE (GEO/ENVIRO) RYJames 16'77'18			(SP) Coarse sand, some gravel		7.70																				
EHOLE	8																								1
3C_BOR							SS				35D	7979-08													
Form:E		otary																							-
Outpu		Air R																							
roject ID		Truck Mounted Air Rotary Direct Push	End of Codiment C	1,1.4	-47.00 9.00										Н	\dashv	+	\dagger						+	
nique P		uck M	End of Sediment Core.																						
ALIM U		F																							-
NATION																									
T_GAL_	10																								-
ver:GIN:									<u>ا</u> مو								CLAS	SIE	IC A T	IONI	976-	EV4	. GA	<u>`</u>	
I IM Sen	DE	PTH S	CALE					1		7 <u>A</u>		Golder ssociate			5	UIL (JLA3	OIT.	iUA l	IUN			ED: E		
National	1 ir	n to 1 fl						_ 1	J	9	Ā	Sociate	es.										ED:		
														_	_	_		_							

RECORD OF SEDIMENT CORE: SED17-36

CLIENT: White Pass and Yukon Route PROJECT: Skagway Ore Basin Drilling Program LOCATION: Skagway Harbour N: 21621538.7 E: 1579567.7

DRILLING DATE: October 30, 2017 DRILLING CONTRACTOR: AquaSource LLC SHEET 1 OF 1

DATUM: NAD 83 Zone 8V

		٥	SOIL PROFILE			GEC		LINA		\neg		EMISTRY SAMP	I ES				Ti	DYN/	AMIC F	PENE	TRAT	ION	\top		PIEZOMETER,
DEPTH SCALE		DRILLING RIG DRILLING METHOD	OOIL I NOTICE	5					_	\dashv	_	LIVIIOTICI GAIVII		D 0	0 0		ا∣⊕		STAN 0 4			S/ft 80	Į	LAB. TESTING	STANDPIPE OR
E S		ILING MG M	DECODIDATION	STRATA PLOT	ELEV.	NUMBER	JE I	BLOWS/ft	CORE No.	CORE RECOVERY %	BER	CON	ANALYSED		, ų	Ŭ	+		ATE				1	TES	THERMISTOR INSTALLATION
DEP		DRIL 31LLIN	DESCRIPTION	RAT/	DEPTH (ft)	NUM	TYPE	BLO\	SORE	88	NON	SCN	NAL					Wp	⊢	_W		w	/I A	LAB.	
F		占		ST	(ft)			4	_	æ			⋖				+	1	0 2	0 3	30 T		+		
F	0		Below Mean Sea Level (OH) Organic mud	///	-38.70 0.00			-	-	\dashv					+	+	+					+	+		
			(,g																						
L																									
Ī																									1
_	2																								-
-																									-
+																									-
-																									_
-	4																								_
_							ss				368	7980-01													
					-43.70																				
			(SM) Silt and fine sand		5.00		SS				2614	7979-12													
					-44.20		33				JOIVI	1919-12													
			(SP) Coarse sand, some gravel		5.50																				1
	6																								
-																									-
2/18																									
les 16/.																									-
RYJan							SS				36D	7980-02													
IVIRO)																									-
GEO/EI																									
HOLE (8																								-
BORE																									
-om:BC		ary																							-
Output F		ir Rot																							
ect ID: (unted A ect Pus			-47.70 9.00										+	+	+				\vdash	+	+		
due Proj		Truck Mounted Air Rotary Direct Push	End of Sediment Core.																						
IM Unit		Ĭ																							-
TIONAL																									
SAL_NA	10																								_
GINT																									
National IM Server GINT_GAL_NATIONALM Unque Proper ID: Output FormBC_BOREHOLE (GEOCENVIRO), RVJames 1677/18	חרי	DTUC	CALE							Š	3	Golder ssociate		S	OIL C	LAS	SIFI	CAT	ION						
ional IM		PTH S							F			Golder	• -									ED: I			
Nat	ıın	to 1 ft							4		A	ssociate	:S							CH	∟CK	ED:	IK		

1 in to 1 ft

RECORD OF SEDIMENT CORE: SED17-37

CLIENT: White Pass and Yukon Route PROJECT: Skagway Ore Basin Drilling Program LOCATION: Skagway Harbour N: 21621603.6 E: 1579628.1

DRILLING DATE: October 30, 2017 DRILLING CONTRACTOR: AquaSource LLC SHEET 1 OF 1

CHECKED: TR

DATUM: NAD 83 Zone 8V

	9	SOIL PROFILE			GEO				DN: LES	$\overline{}$	EMISTRY SAM	PLES						DYN. RES	AMIC	PENE	TRAT	ION	Т		PIEZOMETER,
FEET DRILLING RIG	計		15					_	_	⊢		1	1	0 (- 1		51AN 0 4			١	ADDITIONAL		STANDPIPE OR
ING EET	_ნ		. PL0	ELEV.	NUMBER	ш	BLOWS/ft	CORE No.	CORE RECOVERY %	Ä		ANALYSED		1		Ĭ						NT %	18	IES	OR THERMISTOR INSTALLATION
	Š	DESCRIPTION	ATA	DEPTH	NB	TYPE	δ	J.R.	88	8	SCN	ALY							/ATE					e Bi	INSTALLATION
	DRII		STRATA PLOT	(ft)	Z		圖	ŏ	M M	Ž		A							0 2			W 40	' [*]	۱	
	T	Below Mean Sea Level		-37.80																	Ī	Ť			
0	T	(OL) Organic mud and silt	_	0.00																					
			_																						
			\vdash	-																					
				1																					
			_																						
2																									
-			<u> </u>	1																					
			_																						
			\vdash	-																			1		
			-	1																					
				-																					
			-																						
]																					
4																									
			-																						
			_																						
			<u> </u>																						
			_	1																					
						SS				37M	7978-04														
	ŀ	(SP) Coarse sand, some gravel	7,50	-43.30 5.50						-															
		(C.) course carra, como grave.																							
6																									
						ss				270	7978-03														
						33				3/10	7970-03														
				1																					
otany																							1		
Air R	ush			1																					
o Truck Mounted Air Rotary	Direct Push		13.55	-45.80 8.00						-			\vdash	1	\vdash	+					+	+	+	+	
k Mou	ă	End of Sediment Core.																							
Truc																							1		
																							1		
0																									
									Ŧ	_	I	1	·	S	OIL (CLAS	SSIF	FICAT	ION	SYS	TEM	: GA(CS		
EPTH	H SC	CALE					1		7 <u>A</u>	F	Golder											ED: E			
							1	1	=	E,	Antrict														

RECORD OF SEDIMENT CORE: SED17-38

CLIENT: White Pass and Yukon Route PROJECT: Skagway Ore Basin Drilling Program LOCATION: Skagway Harbour N: 21621728.6 E: 1579746.0

DRILLING DATE: October 31, 2017 DRILLING CONTRACTOR: AquaSource LLC SHEET 1 OF 1

DATUM: NAD 83 Zone 8V

f	ш	3 40D	SOIL PROFILE						MPL	\neg		EMISTRY SAMP	LES					Ð	DYNA RESI:	MIC F	PENET	TRATI	ON S/ft	ניי	PIEZOMETER, STANDPIPE
	DEPTH SCALE FEET	DRILLING RIG DRILLING METHOD		LOT		œ		#	o.	%	ĸ		ED	(0 0) 0	0				0 6		١,	ADDITIONAL LAB. TESTING	OR
	HH.	RILLIN	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/ft	CORE No.	RECOVERY %	JMBE	SCN	ANALYSED					Ī	W	ATEF	100 s	NTEN		B. TE	THERMISTOR INSTALLATION
	8	DRIL		STR/	(ft)	ž		H ا	8	REC	ž		Ą								<u>w</u> 0 3		- WI 40	∢	
Ī	- 0		Below Mean Sea Level		-38.20																				
			(OH) Organic mud		0.00																				
L																									
L																									
L																									_
L	- 2																								
L																									
-																									_
-																									-
-	- 4																								-
ŀ																									-
ŀ																									-
ŀ																									-
f	- 6									ł															-
							ss				385	7979-09													
l					-44.90																				=
/1/18			(SM) Silt and fine sand		6.70		SS			[.	38M	7979-10													
ames 16					-45.40																				1
O) RYJa			(SP) Coarse sand, some gravel		7.20																				
/ENVIR																									
-E (GEO	- 8																								
OREHOI	Ü						SS				38D	7979-11													
n:BC_B(
tput For		Rotar																							
et ID: O		nted Air			-47.20 9.00					_								1							
ue Proje		Truck Mounted Air Rotary Direct Push	End of Sediment Core.		5.00																				
LIM Uniq		Truc																							-
ATIONAL																									
National IM Server GINT_GAL_NATIONALIM Unique Project ID: Output Form:BC_BOREHOLE (GEO/ENVIRO) RYJames 16/7/18	_ 10																								_
er:GINT_															$\bigsqcup_{}$		01.45		0.4	101	2).//2		010	<u> </u>	
IM Serv	DE	PTH S	CALE					1		A		Golder ssociate			S	UIL (ULAS	SIF	ιcΑΤ	ION S			GACS D: EF		
National	1 ir	n to 1 ft	<u> </u>					_\	J	J	Ā	Goiger <u>ssoci</u> ate	28		_	_		_					ED: TF		
_																		_							

RECORD OF SEDIMENT CORE: SED17-39

CLIENT: White Pass and Yukon Route PROJECT: Skagway Ore Basin Drilling Program LOCATION: Skagway Harbour N: 21621269.4 E: 1579387.5

1 in to 1 ft

DRILLING DATE: October 31, 2017 DRILLING CONTRACTOR: AquaSource LLC SHEET 1 OF 1

CHECKED: TR

DATUM: NAD 83 Zone 8V

	_		SOIL PROFILE					CLINA			$\overline{}$							I DV) DEA	ıcte	DATIC			DIEZOMETER
Щ	9	E HOL	SOIL PROFILE			GEC	OTEC	CH S	AMP	LES	СН	EMISTRY SAME	PLES				6	RE	NAMIO SISTA	NCE,	BLC	DWS	/ft	-19 19	PIEZOMETER, STANDPIPE
DEPTH SCALE	. i	DRILLING RIG DRILLING METHOD		STRATA PLOT		~				%	2		n.	(o o	o o	Ō		20	40	60	8 (, ₀ \	ADDITIONAL LAB. TESTING	OR THERMISTOR
I E		NG	DESCRIPTION	ΑPI	ELEV.	NUMBER	TYPE	BLOWS/ft	CORE No.	CORE RECOVERY %	l BE	SCN	ANALYSED						WAT	ER C	ON	TEN	Γ%	EE.	INSTALLATION
DEP	1	DRI 3ILLI		RAT	DEPTH (ft)	NUN		BLO	SOR	SSS	1		¥					V	/p 	- 0V	V		WI	AD	1
	\perp	DF		ST	(11)				_	22			<					\perp	10	20	30) 4	0		1
	0		Below Mean Sea Level		-42.04																				
			(SP) Sand		0.00																				1
																									1
H]																				
																									1
					1																				1
-					-43.14		SS				39S	7979-01													
			(SM) Silt and fine sand		1.10																				1
							SS				39M	7978-12													1
			(SP) Coarse sand, some gravel	111	-43.64 1.60						-														
			(Of) Course suria, some graver		:																				1
_	2				-																				
																									1
					-		SS				39D	7978-11													1
-	į	ary																							-
	٥	8 -																							
	3	I ruck Mounted Air Kotary Direct Push			-45.04										Ш			\perp		\perp					
	1	Mount	End of Sediment Core.		3.00																				1
	100	nck I																							1
-	F	=																							-
																									1
	4																								
	1																								1
																									1
-																									
																									1
																									1
_																									,
																									1
-																									1
																									1
																									1
-	6																								1
																									1
_																									1
																									1
18																									1
- 16/7																									1
James																									1
ê O L																									1
N N																									1
.0E0/I																									1
— IOLE	8																								1
SORE																									1
BC_E																									1
T Fom																									1
Outp																									1
_ gt																									1
e Proje																									1
Uniqu																									1
MINI																									1
ATION																									1
[™] – 1	0																								1
EAST IN Several IN Sev																									•
Sec: C			l			1				Ē	_		1	!	 Si		LAS	SIFICA	I MOITA	I SY	STF	M· (L GACS	 S	
δ <u>Σ</u> [EΡ	TH S	CALE					4		7Ā	F	Golder			0	J C		10/					D: EF		
ie i								- 1	4	Ē	<u>"</u>	Golder									_00	ノリビ	ט. ⊑ר	`	

RECORD OF SEDIMENT CORE: SED17-40

CLIENT: White Pass and Yukon Route PROJECT: Skagway Ore Basin Drilling Program LOCATION: Skagway Harbour N: 21621380.8 E: 1579496.1

DRILLING DATE: October 31, 2017 DRILLING CONTRACTOR: AquaSource LLC SHEET 1 OF 1

DATUM: NAD 83 Zone 8V

DESCRIPTION TYPE BLOWS/ff CORE No. NUMBER	ENETRATION 15E, BLOWS/ft	STANDPIPE OR OR THERMISTOR INSTALLATION
Below Mean Sea Level -40.80	W WI	INSTALLATION NSTALLATION
Below Mean Sea Level -40.80) 30 40	44
Below Mean Sea Level -40.80	30 40	
(SP) Coarse sand, some gravel		-
SS 40D 7978-10 SS 40D 7978-10 End of Sediment Core.		-
End of Sediment Core. - 6		-
Δ		_
DEPTH SCALE 1 in to 1 ft SOIL CLASSIFICATION S SOIL CLASSIFICATION S SOIL CLASSIFICATION S SOIL CLASSIFICATION S		-
Š SOIL CLASSIFICATION S	SYSTEM: GACS	I I
DEPTH SCALE Golder	LOGGED: EF	
DEPTH SCALE 1 in to 1 ft SOIL CLASSIFICATION S ASSOCIATES	CHECKED: TF	

RECORD OF SEDIMENT CORE: SED17-41

CLIENT: White Pass and Yukon Route PROJECT: Skagway Ore Basin Drilling Program LOCATION: Skagway Harbour

N: 21621534.9 E: 1579662.4

1 in to 1 ft

DRILLING DATE: October 31, 2017 DRILLING CONTRACTOR: AquaSource LLC SHEET 1 OF 1

CHECKED: TR

DATUM: NAD 83 Zone 8V

_			INCLINATION:								$\overline{}$									DENE	TDAT	1011		DIEZONAETES
Щ	DEP IN SCALE FEET	일본	SOIL PROFILE			GEOTECH S			AMPLES	LES	СН	CHEMISTRY SAMP		÷S			Э	RE	DYNAMIC PENETRATION RESISTANCE, BLOWS/ft					PIEZOMETER, STANDPIPE
SCA		DRILLING RIG DRILLING METHOD		STRATA PLOT		œ		_E	o.	%	<u>س</u>		e.	(o o	o o	Ō		20	40	60	80	ADDITIONAL LAB. TESTING	OR THERMISTOR
Ŧ		NG IE	DESCRIPTION	ΑPI	ELEV.	4BEI	TYPE	/S/	Ž	吊兜	la la	SCN	YSE						WATE	R CC	NTE	NT %	Ē	INSTALLATION
DEP	j 1	温		RAT	DEPTH (ft)	NUMBER	~	BLOWS/ft	CORE No.	CORE RECOVERY %	Į		ANALYSED					V	′p I —	\circ^{W}		- wi	PB PB	
		占		ST	(11)				_	22			<						10	20	30	40		
L	0		Below Mean Sea Level	ļ.,,	-40.40																			
			(SP) Sand		0.00 -40.65		SS				41S	7978-07												
			(SM) Silt and fine sand		0.25																			
F							SS				11M	7978-06												-
							33				4 1101	7370-00												
					-41.40																			_
			(SP) Coarse sand, some gravel		1.00)																		
H																								=
L	2																							
	-																							
-					-		SS				41D	7978-05												-
L																								-
		otary																						-
		Air Ro																						
\vdash	4	Truck Mounted Air Rotary Direct Push			-44.40 4.00											-	+					-		_
		Mou	End of Sediment Core.																					
		Truck																						_
-																								-
L																								-
	6																							-
F																								-
16/7/18																								
. sames																								
RYJ.																								
NVIRO -																								-
3E0/E																								
OLE (C	8																							
OREH																								
IBC_B																								
ut Fom																								
Outp																								
oject IE																								
que Pro																								
M Unic																								
ONAL																								
NAT																								
T_GAL	10																							-
onal IM Server.GINT_GAL_NATIONALIM Unique Project ID: Output Form:BC_BOREHOLE (GEOTENVIRO) RYJames 1677/18		<u> </u>				1			Щ		<u></u>					O! 6	1 400	JEIC	TION	900	TEN4	640		
M Sen	DE	PTH S	SCALE					4		7 A		Golder			50	UIL (LASS	oiriC/	TION			: GAC ED: EI		
onal								(4		E.	Golder								L	JUG	LD. E		

APPENDIX B

Photographic Log

A PPENDIX B 1657231-007-R-Rev0 Photographic Log 13 July 2018

Photo 1: Drill rig boarding the landing craft at the Skagway harbour.

Photo 2: Sample location SED17-32 looking southwest.

APPENDIX B 1657231-007-R-Rev0 Photographic Log 13 July 2018

Photo 3: Sample location SED17-32 looking southwest.

Photo 4: Core recovered at sample location SED17-32.

A PPENDIX B
Photographic Log

1657231-007-R-Rev0
13 July 2018

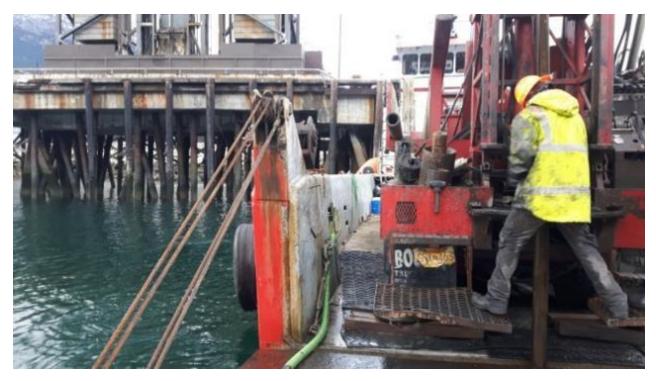


Photo 5: Sample location SED17-41 relative to ship loader

Photo 6: Sample location SED17-41, core recovered in the 4th spoon.

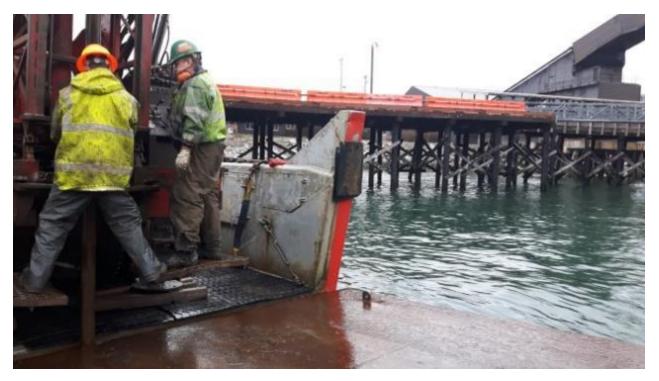


Photo 7: Sample location SED17-40 relative to ship loader.

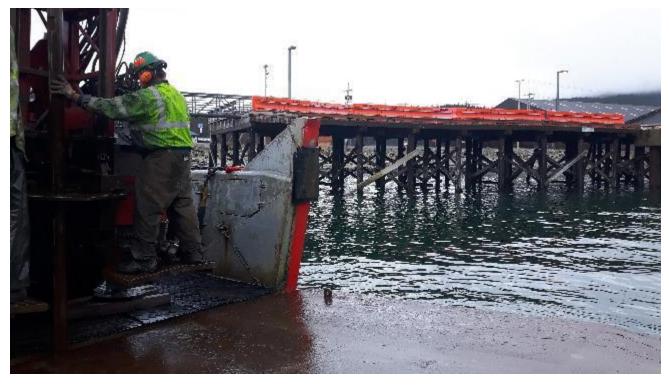


Photo 8: Sample location SED17-39 relative to wharf infrastructures.

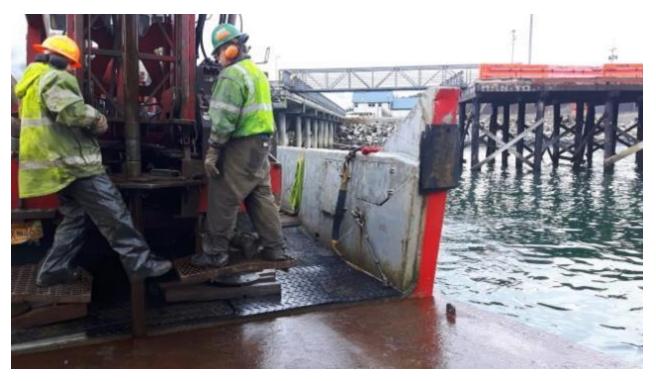


Photo 9: Sample location SED17-39 relative to metal walkway.

Photo 10: Sample location SED17-39, samples SED17-39M (SCN 7978-12) and SED17-39D (SCN 7978-11).

Photo 11: Sample location SED17-34 relative to wharf.

Photo 12: Sample location SED17-34, core recovered in the 3rd spoon

Photo 13: Sample location SED17-35, core recovered in the 1st spoon.

Photo 14: Sample location SED17-35 relative to wharf and ship loader.

A PPENDIX B
Photographic Log

1657231-007-R-Rev0
13 July 2018

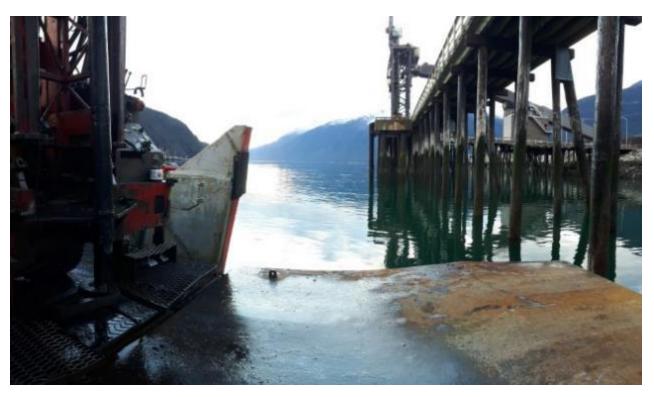


Photo 15: Sample location SED17-38 relative to wharf and ship loader.

Photo 16: Sample location SED17-38, core recovered in the 2nd spoon; obvious difference in sediment classifications.

A PPENDIX B
Photographic Log

1657231-007-R-Rev0
13 July 2018

Photo 17: Sample location SED17-37 relative to ship loader.

Photo 18: Sample location SED17-37, core recovered in the 4th spoon.

APPENDIX B 1657231-007-R-Rev0 Photographic Log 13 July 2018

Photo 19: Sample location SED17-33 relative to wharf and ship loader.

Photo 20: Sample location SED17-33, core recovered in the 1st spoon.

13 July 2018 1657231-007-R-Rev0

APPENDIX C

Laboratory Certificates of Analysis and Alaska DEC QA Checklists

GOLDER ASSOCIATES LTD.

ATTN: Tamra Reynolds # 203, 170 Titanium Way Whitehorse YT Y1A 0G1 Date Received: 30-OCT-17

Report Date: 24-NOV-17 10:42 (MT)

Version: FINAL

Client Phone: 867-633-6076

Certificate of Analysis

Lab Work Order #: L2015183
Project P.O. #: NOT SUBMITTED

Job Reference: 1657231 C of C Numbers: 07977

Legal Site Desc:

ambu Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Version: FINAL

PAGE 2 of 4 24-NOV-17 10:42 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L2015183-1 SE 28-OCT-17 14:50 7977-01	L2015183-2 SE 28-OCT-17 14:50 7977-02	L2015183-3 SE 28-OCT-17 18:30 7977-03	L2015183-4 SE 28-OCT-17 18:30 7977-04	
Grouping	Analyte					
SOIL	,,					
Physical Tests	Moisture (%)	22.0	17.7	04.4	22.6	
ye.cu rocco	pH (1:2 soil:water) (pH)	23.8		24.1	22.6	
Bacteriological	Coliform Bacteria - Fecal (MPN/g)	8.58 <2	8.65 <2	8.57 <2	8.59 <2	
Tests	Coliform Bacteria - Total (MPN/g)	4	4	3	3	
Metals	Antimony (Sb) (mg/kg)	0.12	0.11	0.17	0.63	
	Arsenic (As) (mg/kg)	1.95	1.09	2.31	1.87	
	Barium (Ba) (mg/kg)	210	135	192	168	
	Beryllium (Be) (mg/kg)	0.20	0.12	0.17	0.17	
	Cadmium (Cd) (mg/kg)	0.20	0.12	0.17	0.17	
	Chromium (Cr) (mg/kg)	0.296 11.2	6.53	18.9	9.16	
	Cobalt (Co) (mg/kg)	5.17	3.38	5.01	4.17	
	Copper (Cu) (mg/kg)	33.1	11.3	43.4	32.4	
	Lead (Pb) (mg/kg)	57.9	72.5	159	705	
	Mercury (Hg) (mg/kg)	0.075	0.074	0.136	0.428	
	Molybdenum (Mo) (mg/kg)	1.00	0.48	0.130	1.59	
	Nickel (Ni) (mg/kg)	6.04	3.13	8.22	4.22	
	Selenium (Se) (mg/kg)	<0.20	<0.20	<0.20	<0.20	
	Silver (Ag) (mg/kg)	0.13	0.10	0.21	0.72	
	Thallium (Tl) (mg/kg)	0.13	0.10	0.179	0.205	
	Tin (Sn) (mg/kg)	<2.0	<2.0	<2.0	<2.0	
	Uranium (U) (mg/kg)	1.37	1.09	1.36	1.39	
	Vanadium (V) (mg/kg)	37.9	24.8	34.0	30.5	
	Zinc (Zn) (mg/kg)	165	141	231	555	
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.050	141	<0.050	333	
	Acenaphthylene (mg/kg)	<0.050		<0.050		
	Anthracene (mg/kg)	<0.050		0.069		
	Benz(a)anthracene (mg/kg)	0.112		0.237		
	Benzo(a)pyrene (mg/kg)	0.074		0.109		
	Benzo(b&j)fluoranthene (mg/kg)	0.186		0.250		
	Benzo(g,h,i)perylene (mg/kg)	<0.050		<0.050		
	Benzo(k)fluoranthene (mg/kg)	0.073		0.097		
	Chrysene (mg/kg)	0.289		0.287		
	Dibenz(a,h)anthracene (mg/kg)	<0.050		<0.050		
	Fluoranthene (mg/kg)	0.177		0.503		
	Fluorene (mg/kg)	<0.050		<0.050		

<0.050

<0.050

Indeno(1,2,3-c,d)pyrene (mg/kg)

L2015183 CONTD....

PAGE 3 of 4 24-NOV-17 10:42 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2015183-1 SE 28-OCT-17 14:50 7977-01	L2015183-2 SE 28-OCT-17 14:50 7977-02	L2015183-3 SE 28-OCT-17 18:30 7977-03	L2015183-4 SE 28-OCT-17 18:30 7977-04	
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	1-Methylnaphthalene (mg/kg)	<0.050		<0.050		
	2-Methylnaphthalene (mg/kg)	<0.050		<0.050		
	Naphthalene (mg/kg)	<0.050		<0.050		
	Phenanthrene (mg/kg)	0.098		0.148		
	Pyrene (mg/kg)	0.311		0.614		
	Quinoline (mg/kg)	<0.050		<0.050		
	Surrogate: Acenaphthene d10 (%)	86.5		89.6		
	Surrogate: Chrysene d12 (%)	107.3		107.2		
	Surrogate: Naphthalene d8 (%)	89.1		93.3		
	Surrogate: Phenanthrene d10 (%)	102.5		104.3		
	B(a)P Total Potency Equivalent (mg/kg)	0.126		0.187		
	IACR (CCME) (mg/kg)	2.35		3.39		
Miscellaneous	Cholestanol (mg/kg)	0.099	<0.050	0.415		
	Coprostanol (mg/kg)	<0.050	<0.050	0.062		

Reference Information

L2015183 CONTD....

PAGE 4 of 4

24-NOV-17 10:42 (MT)

Version: FINAL

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

FCOLI-DRY-MTF-VA Soil Fecal coliform by MPN EPA Method 1680

This analysis is carried out using procedures adapted from EPA Method 1680 "Fecal Coliforms in Sewage Sludge (Biosolids) by Multiple Tube Fermentation using Lauryl Tryptose Broth (LTB) and EC medium". Serial dilutions of the sample are incubated with the appropriate growth medium, and fecal coliforms are quantified by a statistical estimation of bacteria density (most probable number). The test involves initial 48 hour incubation (presumptive test), positive results are further tested (up to an additional 24 hours) to confirm and quantify fecal coliforms.

HG-200.2-CVAF-VA Soil Mercury in Soil by CVAFS EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAFS.

MET-200.2-CCMS-VA Soil Metals in Soil by CRC ICPMS EPA 200.2/6020A (mod)

This method uses a heated strong acid digestion with HNO3 and HCl and is intended to liberate metals that may be environmentally available. Silicate minerals are not solubilized. Dependent on sample matrix, some metals may be only partially recovered, including Al, Ba, Be, Cr, Sr, Ti, Tl, V, W, and Zr. Volatile forms of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. Analysis is by Collision/Reaction Cell ICPMS.

MOISTURE-VA Soil Moisture content CWS for PHC in Soil - Tier 1

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

PAH-TMB-H/A-MS-VA Soil PAH - Rotary Extraction (Hexane/Acetone) EPA 3570/8270

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3570 & 8270, published by the United States Environmental Protection Agency (EPA). The procedure uses a mechanical shaking technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene. The final extract is analysed by capillary column gas chromatography with mass spectrometric detection (GC/MS). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation. Because the two isomers cannot be readily chromatographically separated, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

PH-1:2-VA Soil pH in Soil (1:2 Soil:Water Extraction) BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

STEROLS-SOX-MS-VA Soil Sterols by GCMS EPA 3570 & 8270 / J. OF CHROM. 1108

TCOLI-DRY-MTF-VA Soil Total coliform by MPN TMECC 07.00 PATHOGENS

This analysis is carried out using procedures adapted from TMECC 07.00 PATHOGENS. This method describes multiple-tube fermentation technique for the detection and enumeration of total coliforms. Serial dilutions of the sample are incubated with the appropriate growth medium, and total coliforms are quantified by a statistical estimation of bacteria density (most probable number). The test involves initial 48 hour incubation (presumptive test); positive results do not require further testing for confirmation of total coliforms.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location

VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

07977

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2015183 Report Date: 24-NOV-17 Page 1 of 9

Client: GOLDER ASSOCIATES LTD.

203, 170 Titanium Way Whitehorse YT Y1A 0G1

Contact: Tamra Reynolds

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
FCOLI-DRY-MTF-V	/A	Soil							
Batch R3	873245								
WG2652201-1 Coliform Bacter	DUP ia - Fecal		L2015183-4 <2	<2	RPD-NA	MPN/g	N/A	65	30-OCT-17
WG2652201-2 Coliform Bacter	MB ia - Fecal			<2		MPN/g		2	30-OCT-17
HG-200.2-CVAF-VA	4	Soil							
Batch R3	872797								
WG2653362-4 Mercury (Hg)	CRM		VA-CANMET-	TILL1 96.9		%		70-130	02-NOV-17
WG2653362-3 Mercury (Hg)	LCS			102.9		%		70-130	02-NOV-17
WG2653362-1 Mercury (Hg)	MB			<0.0050		mg/kg		0.005	02-NOV-17
	875281					0 0			02
WG2655767-4	CRM		VA-CANMET-	TILL 1					
Mercury (Hg)	O		VA GAMMET	95.0		%		70-130	05-NOV-17
WG2655767-3 Mercury (Hg)	LCS			104.7		%		70-130	05-NOV-17
WG2655767-1 Mercury (Hg)	MB			<0.0050		mg/kg		0.005	05-NOV-17
MET-200.2-CCMS-	VA	Soil							
Batch R3	874008								
WG2653362-4	CRM		VA-CANMET-						
Antimony (Sb)				106.9		%		70-130	02-NOV-17
Arsenic (As)				102.3		%		70-130	02-NOV-17
Barium (Ba)				101.2		%		70-130	02-NOV-17
Beryllium (Be)				0.55		mg/kg		0.34-0.74	02-NOV-17
Cadmium (Cd)				96.0		%		70-130	02-NOV-17
Chromium (Cr)				109.3		%		70-130	02-NOV-17
Cobalt (Co)				103.7		%		70-130	02-NOV-17
Copper (Cu)				103.3		%		70-130	02-NOV-17
Lead (Pb)				97.9		%		70-130	02-NOV-17
Molybdenum (M	No)			99.0		%		70-130	02-NOV-17
Nickel (Ni)				105.3		%		70-130	02-NOV-17
Selenium (Se)				0.36		mg/kg		0.11-0.51	02-NOV-17
Silver (Ag)				0.24		mg/kg		0.13-0.33	02-NOV-17
Thallium (TI)				0.125		mg/kg		0.077-0.18	02-NOV-17

Workorder: L2015183 Report Date: 24-NOV-17 Page 2 of 9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-VA	Soil							
Batch R3874008	1							
WG2653362-4 CRM Tin (Sn)		VA-CANMET	-TILL1 1.1		mg/kg		0-3	02-NOV-17
Uranium (U)			102.5		%		70-130	02-NOV-17
Vanadium (V)			108.3		%		70-130	02-NOV-17
Zinc (Zn)			103.2		%		70-130	02-NOV-17
WG2653362-3 LCS Antimony (Sb)			101.3		%		80-120	02-NOV-17
Arsenic (As)			94.5		%		80-120	02-NOV-17
Barium (Ba)			104.5		%		80-120	02-NOV-17
Beryllium (Be)			99.7		%		80-120	02-NOV-17
Cadmium (Cd)			100.8		%		80-120	02-NOV-17
Chromium (Cr)			103.6		%		80-120	02-NOV-17
Cobalt (Co)			99.98		%		80-120	02-NOV-17
Copper (Cu)			101.3		%		80-120	02-NOV-17
Lead (Pb)			99.8		%		80-120	02-NOV-17
Molybdenum (Mo)			91.1		%		80-120	02-NOV-17
Nickel (Ni)			101.7		%		80-120	02-NOV-17
Selenium (Se)			96.3		%		80-120	02-NOV-17
Silver (Ag)			102.4		%		80-120	02-NOV-17
Thallium (TI)			99.3		%		80-120	02-NOV-17
Tin (Sn)			93.6		%		80-120	02-NOV-17
Uranium (U)			102.9		%		80-120	02-NOV-17
Vanadium (V)			103.7		%		80-120	02-NOV-17
Zinc (Zn)			92.3		%		80-120	02-NOV-17
WG2653362-1 MB								
Antimony (Sb)			<0.10		mg/kg		0.1	02-NOV-17
Arsenic (As)			<0.10		mg/kg		0.1	02-NOV-17
Barium (Ba)			<0.50		mg/kg		0.5	02-NOV-17
Beryllium (Be)			<0.10		mg/kg		0.1	02-NOV-17
Cadmium (Cd)			<0.020		mg/kg		0.02	02-NOV-17
Chromium (Cr)			<0.50		mg/kg		0.5	02-NOV-17
Cobalt (Co)			<0.10		mg/kg		0.1	02-NOV-17
Copper (Cu)			<0.50		mg/kg		0.5	02-NOV-17
Lead (Pb)			<0.50		mg/kg		0.5	02-NOV-17
Molybdenum (Mo)			<0.10		mg/kg		0.1	02-NOV-17
Nickel (Ni)			< 0.50		mg/kg		0.5	02-NOV-17

Workorder: L2015183 Report Date: 24-NOV-17

Page 3 of 9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-VA	Soil							
Batch R3874008								
WG2653362-1 MB			0.00				0.0	
Selenium (Se)			<0.20		mg/kg		0.2	02-NOV-17
Silver (Ag)			<0.10		mg/kg		0.1	02-NOV-17
Thallium (TI)			<0.050		mg/kg		0.05	02-NOV-17
Tin (Sn)			<2.0		mg/kg		2	02-NOV-17
Uranium (U)			<0.050		mg/kg		0.05	02-NOV-17
Vanadium (V)			<0.20		mg/kg		0.2	02-NOV-17
Zinc (Zn)			<2.0		mg/kg		2	02-NOV-17
Batch R3875567								
WG2655767-3 LCS			400.7		0/			
Antimony (Sb)			100.7		%		80-120	05-NOV-17
Arsenic (As)			99.9		%		80-120	05-NOV-17
Barium (Ba)			100.1		%		80-120	05-NOV-17
Beryllium (Be)			94.9		%		80-120	05-NOV-17
Cadmium (Cd)			102.9		%		80-120	05-NOV-17
Chromium (Cr)			97.4		%		80-120	05-NOV-17
Cobalt (Co)			99.4		%		80-120	05-NOV-17
Copper (Cu)			101.2		%		80-120	05-NOV-17
Lead (Pb)			92.5		%		80-120	05-NOV-17
Molybdenum (Mo)			91.4		%		80-120	05-NOV-17
Nickel (Ni)			97.8		%		80-120	05-NOV-17
Selenium (Se)			100.9		%		80-120	05-NOV-17
Silver (Ag)			94.9		%		80-120	05-NOV-17
Thallium (TI)			92.1		%		80-120	05-NOV-17
Tin (Sn)			96.0		%		80-120	05-NOV-17
Uranium (U)			96.1		%		80-120	05-NOV-17
Vanadium (V)			100.0		%		80-120	05-NOV-17
Zinc (Zn)			97.5		%		80-120	05-NOV-17
WG2655767-1 MB								
Antimony (Sb)			<0.10		mg/kg		0.1	05-NOV-17
Arsenic (As)			<0.10		mg/kg		0.1	05-NOV-17
Barium (Ba)			<0.50		mg/kg		0.5	05-NOV-17
Beryllium (Be)			<0.10		mg/kg		0.1	05-NOV-17
Cadmium (Cd)			<0.020		mg/kg		0.02	05-NOV-17
Chromium (Cr)			<0.50		mg/kg		0.5	05-NOV-17
Cobalt (Co)			<0.10		mg/kg		0.1	05-NOV-17

MOISTURE-VA

Soil

Quality Control Report

Workorder: L2015183 Report Date: 24-NOV-17

Page 4 of 9

Test Matrix Reference Result Qualifier Units **RPD** Limit Analyzed MET-200.2-CCMS-VA Soil **Batch** R3875567 WG2655767-1 MB Copper (Cu) < 0.50 mg/kg 0.5 05-NOV-17 Lead (Pb) < 0.50 mg/kg 0.5 05-NOV-17 Molybdenum (Mo) < 0.10 mg/kg 0.1 05-NOV-17 Nickel (Ni) < 0.50 mg/kg 0.5 05-NOV-17 Selenium (Se) <0.20 mg/kg 0.2 05-NOV-17 Silver (Ag) < 0.10 mg/kg 0.1 05-NOV-17 Thallium (TI) < 0.050 mg/kg 0.05 05-NOV-17 Tin (Sn) <2.0 mg/kg 2 05-NOV-17 Uranium (U) < 0.050 mg/kg 0.05 05-NOV-17 Vanadium (V) < 0.20 mg/kg 0.2 05-NOV-17 Zinc (Zn) <2.0 mg/kg 2 05-NOV-17 Batch R3877568 WG2655767-4 **VA-CANMET-TILL1** CRM % Antimony (Sb) 112.7 70-130 06-NOV-17 Arsenic (As) 103.9 % 70-130 06-NOV-17 Barium (Ba) 101.4 % 70-130 06-NOV-17 Beryllium (Be) 0.56 mg/kg 0.34-0.74 06-NOV-17 Cadmium (Cd) 101.2 % 70-130 06-NOV-17 Chromium (Cr) 104.8 % 70-130 06-NOV-17 Cobalt (Co) 103.9 % 70-130 06-NOV-17 Copper (Cu) 102.5 % 70-130 06-NOV-17 Lead (Pb) 107.2 % 70-130 06-NOV-17 Molybdenum (Mo) 103.4 % 70-130 06-NOV-17 Nickel (Ni) 100.9 06-NOV-17 % 70-130 Selenium (Se) 0.30 mg/kg 0.11-0.51 06-NOV-17 Silver (Ag) 0.25 mg/kg 0.13-0.33 06-NOV-17 Thallium (TI) 0.143 mg/kg 0.077-0.18 06-NOV-17 Tin (Sn) 1.1 mg/kg 0-3 06-NOV-17 Uranium (U) 108.5 % 70-130 06-NOV-17 Vanadium (V) 104.9 % 70-130 06-NOV-17 104.2 Zinc (Zn) % 70-130 06-NOV-17

Workorder: L2015183

Report Date: 24-NOV-17 Page 5 of 9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MOISTURE-VA	Soil							
Batch R3869951								
WG2652567-2 LCS Moisture			100.0		%		90-110	30-OCT-17
WG2652567-6 LCS Moisture			100.4		%		90-110	30-OCT-17
WG2652567-1 MB Moisture			<0.25		%		0.25	30-OCT-17
WG2652567-5 MB Moisture			<0.25		%		0.25	30-OCT-17
Batch R3871481								
WG2653318-8 DUP Moisture		L2015183-3 24.1	23.3		%	3.6	20	31-OCT-17
WG2653318-11 LCS Moisture			99.9		%		90-110	31-OCT-17
WG2653318-7 LCS Moisture			100.0		%		90-110	31-OCT-17
WG2653318-10 MB Moisture			<0.25		%		0.25	31-OCT-17
WG2653318-6 MB Moisture			<0.25		%		0.25	31-OCT-17
PAH-TMB-H/A-MS-VA	Soil							
Batch R3876148								
WG2655782-2 LCS Acenaphthene			92.7		%		60-130	06-NOV-17
Acenaphthylene			92.6		%		60-130	06-NOV-17
Anthracene			94.1		%		60-130	06-NOV-17
Benz(a)anthracene			104.1		%		60-130	06-NOV-17
Benzo(a)pyrene			105.1		%		60-130	06-NOV-17
Benzo(b&j)fluoranthene			113.3		%		60-130	06-NOV-17
Benzo(g,h,i)perylene			93.9		%		60-130	06-NOV-17
Benzo(k)fluoranthene			112.5		%		60-130	06-NOV-17
Chrysene			105.3		%		60-130	06-NOV-17
Dibenz(a,h)anthracene			99.6		%		60-130	06-NOV-17
Fluoranthene			104.9		%		60-130	06-NOV-17
Fluorene			92.2		%		60-130	06-NOV-17
Indeno(1,2,3-c,d)pyrene			102.0		%		60-130	06-NOV-17
2-Methylnaphthalene			93.8		%		60-130	06-NOV-17
Naphthalene			93.6		%		50-130	06-NOV-17

Page 6 of 9

Workorder: L2015183 Report Date: 24-NOV-17

Test Matrix Reference Result Qualifier Units **RPD** Limit Analyzed PAH-TMB-H/A-MS-VA Soil **Batch** R3876148 WG2655782-2 LCS 96.5 Phenanthrene % 60-130 06-NOV-17 Pyrene 105.6 % 60-130 06-NOV-17 WG2655782-1 MB Acenaphthene < 0.0050 mg/kg 0.005 06-NOV-17 Acenaphthylene < 0.0050 mg/kg 0.005 06-NOV-17 Anthracene < 0.0040 mg/kg 0.004 06-NOV-17 < 0.010 Benz(a)anthracene mg/kg 0.01 06-NOV-17 < 0.010 Benzo(a)pyrene mg/kg 0.01 06-NOV-17 Benzo(b&j)fluoranthene < 0.010 mg/kg 0.01 06-NOV-17 Benzo(g,h,i)perylene < 0.010 mg/kg 0.01 06-NOV-17 Benzo(k)fluoranthene < 0.010 mg/kg 0.01 06-NOV-17 < 0.010 Chrysene mg/kg 0.01 06-NOV-17 Dibenz(a,h)anthracene <0.0050 mg/kg 0.005 06-NOV-17 Fluoranthene < 0.010 mg/kg 0.01 06-NOV-17 Fluorene < 0.010 mg/kg 0.01 06-NOV-17 Indeno(1,2,3-c,d)pyrene < 0.010 mg/kg 0.01 06-NOV-17 1-Methylnaphthalene < 0.050 mg/kg 0.05 06-NOV-17 2-Methylnaphthalene < 0.010 mg/kg 0.01 06-NOV-17 Naphthalene <0.010 mg/kg 0.01 06-NOV-17 Phenanthrene < 0.010 mg/kg 0.01 06-NOV-17 Pyrene < 0.010 mg/kg 0.01 06-NOV-17 Quinoline < 0.050 mg/kg 0.05 06-NOV-17 Surrogate: Naphthalene d8 93.0 % 50-130 06-NOV-17 Surrogate: Acenaphthene d10 87.9 % 60-130 06-NOV-17 Surrogate: Phenanthrene d10 94.0 % 60-130 06-NOV-17 Surrogate: Chrysene d12 108.5 % 60-130 06-NOV-17 PH-1:2-VA Soil **Batch** R3872470 WG2653362-5 IRM VA-ALP-SRS1507 pH (1:2 soil:water) 6.41 pΗ 6.2-6.8 02-NOV-17 **Batch** R3875958 WG2655767-5 VA-ALP-SRS1507 IRM pH (1:2 soil:water) рΗ 6.49 6.2-6.8 06-NOV-17

Workorder: L2015183

Report Date: 24-NOV-17 Page 7 of 9

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
STEROLS-SOX-MS-VA	Soil							
Batch R3893768 WG2660089-1 MB								
Coprostanol			<0.050		mg/kg		0.05	23-NOV-17
Cholestanol			< 0.050		mg/kg		0.05	23-NOV-17
TCOLI-DRY-MTF-VA	Soil							
Batch R3872334								
WG2652193-1 DUP		L2015183-4						
Coliform Bacteria - Total	1	3	3		MPN/g	0.0	65	30-OCT-17
WG2652193-2 MB								
Coliform Bacteria - Total			<2		MPN/g		2	30-OCT-17

Workorder: L2015183 Report Date: 24-NOV-17 Page 8 of 9

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate
IRM CRM CCV CVS	Internal Reference Material Certified Reference Material Continuing Calibration Verification Calibration Verification

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2015183 Report Date: 24-NOV-17 Page 9 of 9

Hold Time Exceedances:

Sampling Date	e Date Processed	Rec. HT	Actual HT	Units	Qualifier
				Unito	Qualifier
1 28-OCT-17 14:	:50 08-NOV-17 16:53	7	11	days	EHT
2 28-OCT-17 14:	:50 08-NOV-17 16:53	7	11	days	EHT
3 28-OCT-17 18:	:30 08-NOV-17 16:53	7	11	days	EHT
	28-OCT-17 14		2 28-OCT-17 14:50 08-NOV-17 16:53 7	2 28-OCT-17 14:50 08-NOV-17 16:53 7 11	2 28-OCT-17 14:50 08-NOV-17 16:53 7 11 days

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2015183 were received on 30-OCT-17 11:35.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

CHAIN OF CUSTODY RECORD/ANALYSIS REQUEST

No. 07977 page L of _ [

GO ASSO				7231				····		Laboratory Name: ALS							
200 – 2920 Virtual W	ev in the same of			Short 1	Title: 5 K	aguay	Horbour		Golder C	Contac	eynolds	Address: Van lo uver					
Vancouver, British Co Felephone (604) 296-				Golder EA	E-mail Ac	ldress 1: @	golder.con	Golder 7 X	E-mail Addre	ss 2:	@golder.com	Telepho	ne/Fax:	1,46		ontact:	r Springer
Office Name:	ik-lahorse	:			EQuIS Facility Code: EQuIS upload:			,			Analyses Required 😤						
Turnaround Time Criteria: CSR	: □ 241∳r ⊠ cci		☐ 48 hr ☐ BC Wa	iter Qualit	□ 72 h y	or Other	[] ((ob)	Regular (5	5 Days) (8' h/TAT	ers	tore	-		Catily		JVB)	
Note: Final Repor	ts to be issued	by e-mail	İ		Quote l	ło.:			 	of Containers	prostave			100	3	TAT abo	
Sample Control Number (SCN)	Sample Location	Sa.#	Sample Depth (m)	Sample Matrix (over)	Date Sampled (D / M / Y		1	QAQC Code (over)	Related SCN (over)	Number of C	udes C	45	STA	17.87.7	Hetalo (CCME	RUSH (Select TAT above)	Remarks (over)
7977 - 01	SCD 17-32	! 	0-64	Se 2	18/10/17	7 14:5	O SERVE		<u>.</u> .	1		.) le	UT 2	1		
	2003-33		6-18"		}	14:50	>			a	1:1			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1		
- 03	26013-27		0-64			18:30)	1		1	74		12	M	1		
₩ - 04	5ED7-33		6-13"	V		18:50	, 4			1		POX		V	1/		
- 05					•						DE TOTAL Y	1					
- 06		1] `						
- 07																	•
- 08																	
- 09				I			 		_								
- 10						BIB 4 4 4 10 10 10 1	83-COFC) —								
- 11				:		L20151	83-00-0		_								
- 12					<u> </u>	1	1	!									
Sampler's Signature: Relinquished by: Signature M					ar	Compa	Le C	Date OXX	29	Sine Time	.	Receive	d by: Sign	ature	Corr	npany	
Comments: Method of Shipment:								Received for L	· · · · · · · · · · · · · · · · · · ·			Date Time					
Shipped by: Nort				nh		1 '				Temp (°C) (Temp (*C) Cooler opened by:			Date OCT 3 0 2017 Time 135Ah			

CHAIN OF CUSTODY RECORD/ANALYSIS REQUEST

No. 07977 page 1 of 1

Go Asso	lder			Project Number: 1657231									Labo	Laboratory Name: ALS				ha:	
ASSO 200 – 2920 Virtual W Vancouver, British Co	ay		5 4	Short	Title: 5 Kg	gway t			Golder		tennola	U	Addr I/O/	ess: 16000C			3		
Telephone (604) 296				Golde	r E-mail Add	ress 1: @go	older.con	n Golder	E-mail Addre	ess 2:	ss 2: Telephone/Fax: @golder.com				Contact: Springer				
Office Name:	uh-lehors	c				EQuis Facility Code:					Analyses Required								
Turnaround Time Criteria: CSR			☐ 48 hr ☐ BC W	ater Qualit	☐ 72 hr					Sis								(e)	
Note: Final Repor	ts to be issue	d by e-mai	l		Quote No	D.:	<u> </u>			Containers								TAT above)	
Sample Control Number (SCN)	Sample Location	Sa. #	Sample Depth (m)	Sample Matrix (over)	Date Sampled (D / M / Y)	Time Sampled (HH:MM)	Sample Type (over)	QAQC Code (over)	Related SCN (over)	Number of Co	}	tha	14	513 13		21	·u	RUSH (Select T	Remarks (over)
7977 - 01	5<017-32		0-6	5E 6	18/10/17	14:50	(22)			1			1	4	act			1	<u> </u>
	5ED(2.12	·	6-18"	}	1	14:50	COM P			2		1:1	4	ノ"					
- 03	<u>seq</u> i-su		ე -6"			18:30				1		7		A	\sim				
- 04	SED17-33		6-13"	V	V	18:20	Ą						\ (\rangle \)						
- 05					V						h	12/2							
- 06																			, -
- 07		7										İ							
- 08												_	1			1			1.0
- 09					 	81 618 1 6 3 3				+									
- 10												-	1		<u> </u>				
- 11						L2015	183-COF	FC											W-11
- 12					- -	<u></u>		<u>_</u> "	T		-								
Sampler's Signature: Relinquished by: Signature A						Compar	ly 2	Date OCT &	<u> </u>	212	Time	ر	Receive	ed by:	Signatu	re	Comp	pany	
Comments: Method of Shipment:					Waybill			-,	Received for La						Date		Time		
Shipped by: North						Shipment Condition: Temp (°C) Co			cooler opened by: Date OCT 3			3 0,20	117	Time 113517~					
£ .															*				

Laboratory Data Review Checklist

Completed by:	Erin Adshead		
Title:	Environmental Geoscientist	Date:	July 13, 2018
CS Report Name:	Ore Basin Drilling Investigation	Report 1	Date: July 13, 2018
Consultant Firm:	Golder Associates Ltd.		
Laboratory Name	: ALS Environmental	Laboratory Repo	rt Number: L2015183
ADEC File Numb	per: 1526.38.004	ADEC Harzard	ID:
	n ADEC CS approved laboratory receives □ No □NA (Please explain.)	ve and <u>perform</u> all c Comme	¥ *
labora	samples were transferred to another "n tory, was the laboratory performing the Yes \square No \square NA (Please explain.)	2	S approved?
Samples	were not transferred to another labora	atory.	
	ody (COC) nformation completed, signed, and da Yes □ No □NA (Please explain.)	ted (including releas Comme	<u> </u>
	et analyses requested? Yes No NA (Please explain.)	Comme	ents:
Sterols r	results added 24 November 2017		
a. Sampl	mple Receipt Documentation e/cooler temperature documented and Yes No No NA (Please explain.)	within range at rece Comme	1

	b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?
	■Yes □ No □NA (Please explain.) Comments:
	c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? ■Yes □ No □NA (Please explain.) Comments:
	Samples arrived in good condition and properly documented by the laboratory.
	d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.?
	□Yes □ No □NA (Please explain.) Comments:
	No discrepancies were identified.
	e. Data quality or usability affected? (Please explain.) Comments:
	Data quality unaffected.
	e Narrative a. Present and understandable? □ Yes □ No □NA (Please explain.) Comments:
	Reference information included for data qualifiers, and Quality Control Report. This is considered sufficient for QAQC purposes.
	 Discrepancies, errors or QC failures identified by the lab? □Yes □ No □NA (Please explain.) Comments:
	1) Laboratory RPD could not be calculated for one fecal coliform analysis due to the result being less than detection limit
	e. Were all corrective actions documented? □ Yes □ No □NA (Please explain.) Comments:
	Corrective actions were not necessary
	d. What is the effect on data quality/usability according to the case narrative? Comments:
Data is	considered usable for the purposes of this report.
·	

ე. <u>ა</u>	ampies Results		
		performed/reported as requested □NA (Please explain.)	d on COC? Comments:
	b. All applicable he	olding times met? □NA (Please explain.)	Comments:
		d on a dry weight basis? □NA (Please explain.)	Comments:
	d. Are the reported project?	PQLs less than the Cleanup Lev	el or the minimum required detection level for the
	Yes \square No	□NA (Please explain.)	Comments:
	yes		
	e. Data quality or u	sability affected?	Comments:
	Practical Quantita	ion Limit (PQL)/ Method Repor	ting Limit (MRL) sufficient for assessment.
6. <u>C</u>		nod blank reported per matrix, ar □NA (Please explain.)	nalysis and 20 samples? Comments:
	_		
		od blank results less than PQL? □NA (Please explain.)	Comments:
	iii. If above	PQL, what samples are affected?	
			Comments:
	All method blank r	esults were non-detect (ND) by t	he laboratory.
		fected sample(s) have data flags NA (Please explain.)	and if so, are the data flags clearly defined? Comments:
	No samples affect	-d	

Comments: Data quality not affected. b. Laboratory Control Sample/Duplicate (LCS/LCSD) i. Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846) **Yes** \square No \square NA (Please explain.) Comments: LCS/LCSD reported as per AK methods for organics, all results met acceptable criteria. ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples? \square Yes \square No \square NA (Please explain.) Comments: iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) **Yes** \square No \square NA (Please explain.) Comments: iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) \square **Yes** \square No \square NA (Please explain.) Comments: v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? \Box Yes \Box No \Box NA (Please explain.) Comments: No samples effected. vii. Data quality or usability affected? (Use comment box to explain.) Comments: Data quality not affected.

v. Data quality or usability affected? (Please explain.)

i. Are surrogate recoveries reported for organic ■Yes □ No □NA (Please explain.)	analyses – field, QC and laboratory samples? Comments:
 ii. Accuracy – All percent recoveries (%R) report And project specified DQOs, if applicable. (A analyses see the laboratory report pages) ■Yes □ No □NA (Please explain.) 	
iii. Do the sample results with failed surrogate reflags clearly defined?	_
\Box Yes \Box No \Box NA (Please explain.)	Comments:
Surrogate recoveries met acceptable criteria by laborat	ory.
iv. Data quality or usability affected? (Use the c	omment box to explain.) Comments:
Data quality not affected.	
 d. Trip blank – Volatile analyses only (GRO, BTEX, V Soil i. One trip blank reported per matrix, analysis a (If not, enter explanation below.) 	Volatile Chlorinated Solvents, etc.): Water and and for each cooler containing volatile samples
$\square \mathbf{Yes} \square \mathbf{No} \square \mathbf{NA}$ (Please explain.)	Comments:
ii. Is the cooler used to transport the trip blank a	and VOA samples clearly indicated on the COC
(If not, a comment explaining why must be e \Box Yes \Box No \Box NA (Please explain.)	ntered below) Comments:
No trip blank collected	
iii. All results less than PQL? □Yes □ No □NA (Please explain.)	Comments:
iv. If above PQL, what samples are affected?	

c. Surrogates – Organics Only

Version 2.7 Page 5 of 7 1/10

	om			4
	$\alpha \mathbf{r}$	ım	Δn	TC.
$\mathbf{\mathcal{L}}$	OH.	ши	UI	us.

v. Data	a quality o	r usability	affected?	(Please	explain.)	,
---------	-------------	-------------	-----------	---------	-----------	---

Comments:

resures.	
e. Field Duplicate	
i. One field duplicate submitted per ma	atrix, analysis and 10 project samples?
■Yes □ No □NA (Please explain.)	Comments:
ii. Submitted blind to lab? ■ Yes □ No □NA (Please explain.)	Comments:
iii. Precision – All relative percent differ (Recommended: 30% water, 50% so	• •
RPD (%) = Absolute value of: (R_1)	$(-R_2)$

Volatiles not analyzed therefore not considered to have a significant effect on the quality of

Duplicate pairs reported several analytes outside Golder DQOs, RPDs above 20%: This is indicative of sample matrix heterogeneity and reflective of the composite sample collection method.

 $((R_1+R_2)/2)$

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

x 100

Comments:

These results will affect the interpretation of the data set.

f. Decontamination or Equipment Blank (If not used explain why).

 \square **Yes** \square No \square NA (Please explain.)

Comments:

Given the nature of the sampling program (composite samples from split spoons) and equipment blank was not collected. Drill spoons were decontaminated prior to sample collection.

i. All results less than PQL?

 \square **Yes** \square No \square NA (Please explain.)

Comments:

	n. If above FQL, what samples are affected?	
		Comments:
	iii. Data quality or usability affected? (Please ex	xplain.)
		Comments:
7. <u>Oth</u>	ther Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, a. Defined and appropriate?	, etc.)
	$\Box \mathbf{Yes} \Box \mathbf{No} \Box \mathbf{NA} \text{ (Please explain.)}$	Comments:

GOLDER ASSOCIATES LTD.

ATTN: Tamra Reynolds # 203, 170 Titanium Way Whitehorse YT Y1A 0G1 Date Received: 01-NOV-17

Report Date: 24-NOV-17 13:43 (MT)

Version: FINAL

Client Phone: 867-633-6076

Certificate of Analysis

Lab Work Order #: L2016641
Project P.O. #: NOT SUBMITTED

Job Reference: 1657231

C of C Numbers: 07978, 07979, 07980

Legal Site Desc:

Comments:

24-NOV-2017 Sterols data is included.

Amber Springer, B.Sc Account Manager

ambu Springer

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2016641 CONTD.... PAGE 2 of 13

24-NOV-17 13:43 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2016641-1 SE 30-OCT-17 07978-03	L2016641-2 SE 30-OCT-17 07978-04	L2016641-3 SE 31-OCT-17 09:20 07978-05	L2016641-4 SE 31-OCT-17 09:20 07978-06	L2016641-5 SE 31-OCT-17 09:20 07978-07
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)	14.7	25.2		23.4	17.1
	pH (1:2 soil:water) (pH)	8.02	8.25	8.15	8.10	8.28
Bacteriological Tests	Coliform Bacteria - Fecal (MPN/g)		<2		<2	<2
	Coliform Bacteria - Total (MPN/g)		7		<2	3
Metals	Antimony (Sb) (mg/kg)	0.14	15.7	3.08	2.45	0.22
	Arsenic (As) (mg/kg)	0.57	18.8	3.36	4.35	1.69
	Barium (Ba) (mg/kg)	106	355	169	274	202
	Beryllium (Be) (mg/kg)	<0.10	0.36	0.14	0.24	0.19
	Cadmium (Cd) (mg/kg)	0.149	30.1	7.31	5.83	0.416
	Chromium (Cr) (mg/kg)	4.68	21.5	7.84	12.4	9.69
	Cobalt (Co) (mg/kg)	2.75	10.6	4.07	6.15	4.58
	Copper (Cu) (mg/kg)	5.36	436	75.0	90.1	16.2
	Lead (Pb) (mg/kg)	82.4	14100	3030	2200	195
	Mercury (Hg) (mg/kg)	0.0486	12.7	2.47	2.18	0.206
	Molybdenum (Mo) (mg/kg)	0.34	3.29	1.10	1.86	0.96
	Nickel (Ni) (mg/kg)	2.32	10.8	3.73	6.07	4.60
	Selenium (Se) (mg/kg)	<0.20	0.91	<0.20	0.22	<0.20
	Silver (Ag) (mg/kg)	0.13	15.2	3.32	2.31	0.25
	Thallium (TI) (mg/kg)	0.097	2.48	0.568	0.531	0.196
	Tin (Sn) (mg/kg)	<2.0	4.2	<2.0	<2.0	<2.0
	Uranium (U) (mg/kg)	0.871	2.62	1.53	2.07	2.20
	Vanadium (V) (mg/kg)	20.2	67.4	27.8	42.8	34.2
	Zinc (Zn) (mg/kg)	120	19400	4610	3730	251
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)		0.0080		<0.0050	<0.0050
	Acenaphthylene (mg/kg)		0.0397		0.0108	0.0165
	Anthracene (mg/kg)		0.258		0.0261	0.0810
	Benz(a)anthracene (mg/kg)		2.21		0.106	0.257
	Benzo(a)pyrene (mg/kg)		1.20		0.102	0.165
	Benzo(b&j)fluoranthene (mg/kg)		3.12		0.260	0.343
	Benzo(b+j+k)fluoranthene (mg/kg)		4.02		0.353	0.475
	Benzo(g,h,i)perylene (mg/kg)		0.266		0.027	0.049
	Benzo(k)fluoranthene (mg/kg)		0.893		0.093	0.132
	Chrysene (mg/kg)		<2.0 DLCI		<0.20	0.273
	Dibenz(a,h)anthracene (mg/kg)		0.146		0.0122	0.0188
	Fluoranthene (mg/kg)		1.03		0.131	0.432
	Fluorene (mg/kg)		0.175		<0.010	0.011

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2016641 CONTD.... PAGE 3 of 13

24-NOV-17 13:43 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2016641-6 SE 31-OCT-17 09:20 07978-08	L2016641-7 SE 31-OCT-17 10:30 07978-09	L2016641-8 SE 31-OCT-17 10:30 07978-10	L2016641-9 SE 31-OCT-17 12:15 07978-11	L2016641-10 SE 31-OCT-17 12:15 07978-12
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)		15.5			20.0
	pH (1:2 soil:water) (pH)	8.08	8.41	8.25	8.45	8.33
Bacteriological Tests	Coliform Bacteria - Fecal (MPN/g)		<2			<2
	Coliform Bacteria - Total (MPN/g)		<2			<2
Metals	Antimony (Sb) (mg/kg)	1.05	<0.10	0.25	<0.10	0.24
	Arsenic (As) (mg/kg)	2.69	0.41	1.16	0.40	2.33
	Barium (Ba) (mg/kg)	230	107	138	95.4	208
	Beryllium (Be) (mg/kg)	0.21	<0.10	0.13	<0.10	0.18
	Cadmium (Cd) (mg/kg)	2.09	<0.050	0.217	<0.050	0.791
	Chromium (Cr) (mg/kg)	11.3	4.95	6.52	5.00	10.4
	Cobalt (Co) (mg/kg)	5.61	2.76	3.40	2.56	5.24
	Copper (Cu) (mg/kg)	36.9	2.54	14.0	5.19	33.9
	Lead (Pb) (mg/kg)	866	6.88	338	7.18	223
	Mercury (Hg) (mg/kg)	0.712	<0.0050	0.210	0.0100	0.404
	Molybdenum (Mo) (mg/kg)	1.79	0.17	0.71	0.24	0.98
	Nickel (Ni) (mg/kg)	5.49	2.72	2.82	2.38	5.26
	Selenium (Se) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Silver (Ag) (mg/kg)	1.02	<0.10	0.34	<0.10	0.34
	Thallium (TI) (mg/kg)	0.345	0.078	0.126	0.069	0.188
	Tin (Sn) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Uranium (U) (mg/kg)	1.55	0.512	1.08	0.910	1.29
	Vanadium (V) (mg/kg)	40.3	19.0	26.0	17.7	37.9
	Zinc (Zn) (mg/kg)	1310	28.5	191	35.4	534
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)		<0.0050			
	Acenaphthylene (mg/kg)		<0.0050			
	Anthracene (mg/kg)		<0.0040			
	Benz(a)anthracene (mg/kg)		<0.010			
	Benzo(a)pyrene (mg/kg)		<0.010			
	Benzo(b&j)fluoranthene (mg/kg)		<0.010			
	Benzo(b+j+k)fluoranthene (mg/kg)		<0.015			
	Benzo(g,h,i)perylene (mg/kg)		<0.010			
	Benzo(k)fluoranthene (mg/kg)		<0.010			
	Chrysene (mg/kg)		<0.010			
	Dibenz(a,h)anthracene (mg/kg)		<0.0050			
	Fluoranthene (mg/kg)		<0.010			
	Fluorene (mg/kg)		<0.010			

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2016641 CONTD.... PAGE 4 of 13

24-NOV-17 13:43 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2016641-11 SE 31-OCT-17 12:15 07979-01	L2016641-12 SE 31-OCT-17 13:30 07979-02	L2016641-13 SE 31-OCT-17 13:30 07979-03	L2016641-14 SE 31-OCT-17 13:30 07979-04	L2016641-15 SE 31-OCT-17 13:30 07979-05
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)	17.6	25.8		33.4	26.3
	pH (1:2 soil:water) (pH)	8.42	8.51	8.75	8.53	8.60
Bacteriological Tests	Coliform Bacteria - Fecal (MPN/g)	<2				
	Coliform Bacteria - Total (MPN/g)	<2				
Metals	Antimony (Sb) (mg/kg)	0.10	5.08	0.13	2.65	4.42
	Arsenic (As) (mg/kg)	1.11	7.79	0.65	8.39	6.64
	Barium (Ba) (mg/kg)	134	329	109	389	282
	Beryllium (Be) (mg/kg)	0.13	0.29	0.11	0.34	0.24
	Cadmium (Cd) (mg/kg)	0.171	12.8	0.358	7.24	9.82
	Chromium (Cr) (mg/kg)	6.53	16.9	4.64	22.6	14.6
	Cobalt (Co) (mg/kg)	3.19	7.86	2.73	8.88	6.79
	Copper (Cu) (mg/kg)	17.7	162	6.33	339	123
	Lead (Pb) (mg/kg)	80.1	4570	115	2500	3280
	Mercury (Hg) (mg/kg)	0.106	5.67	0.139	3.19	4.39
	Molybdenum (Mo) (mg/kg)	0.45	2.40	0.40	2.17	1.72
	Nickel (Ni) (mg/kg)	3.30	8.39	2.26	10.6	7.45
	Selenium (Se) (mg/kg)	<0.20	0.33	<0.20	0.34	0.24
	Silver (Ag) (mg/kg)	0.11	5.21	0.15	3.28	3.99
	Thallium (TI) (mg/kg)	0.106	0.956	0.103	0.614	0.726
	Tin (Sn) (mg/kg)	<2.0	3.6	<2.0	25.9	6.9
	Uranium (U) (mg/kg)	1.51	1.86	1.58	2.04	1.76
	Vanadium (V) (mg/kg)	23.4	52.0	19.2	63.9	45.0
	Zinc (Zn) (mg/kg)	139	8240	242	4590	6180
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.0050	0.142		0.0503	0.149
•	Acenaphthylene (mg/kg)	0.0077	0.0888		0.129	0.0686
	Anthracene (mg/kg)	0.0171	1.58		0.428	0.728
	Benz(a)anthracene (mg/kg)	0.045	8.09		2.90	4.48
	Benzo(a)pyrene (mg/kg)	0.038	2.85		1.25	1.89
	Benzo(b&j)fluoranthene (mg/kg)	0.091	8.79		3.75	5.67
	Benzo(b+j+k)fluoranthene (mg/kg)	0.128	11.9		5.02	7.34
	Benzo(g,h,i)perylene (mg/kg)	0.011	0.554		0.278	0.402
	Benzo(k)fluoranthene (mg/kg)	0.037	3.08		1.27	1.67
	Chrysene (mg/kg)	0.061	6.94		<2.0	<3.0
	Dibenz(a,h)anthracene (mg/kg)	<0.0050	0.370		0.143	0.223
	Fluoranthene (mg/kg)	0.055	15.8		5.21	10.1
	Fluorene (mg/kg)	<0.010	0.623		0.178	0.448

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2016641 CONTD.... PAGE 5 of 13

24-NOV-17 13:43 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2016641-16 SE 31-OCT-17 14:30 07979-06	L2016641-17 SE 31-OCT-17 14:30 07979-07	L2016641-18 SE 31-OCT-17 14:30 07979-08	L2016641-19 SE 31-OCT-17 15:40 07979-09	L2016641-20 SE 31-OCT-17 15:40 07979-10
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)	15.4	35.6		38.4	24.6
	pH (1:2 soil:water) (pH)	8.42	8.42	8.18	8.36	8.49
Bacteriological Tests	Coliform Bacteria - Fecal (MPN/g)	PEHT <2	<2		<2	
	Coliform Bacteria - Total (MPN/g)	<2	<2		4	
Metals	Antimony (Sb) (mg/kg)	14.9	23.4	0.54	1.02	0.60
	Arsenic (As) (mg/kg)	10.7	22.8	0.81	5.44	3.02
	Barium (Ba) (mg/kg)	211	341	121	437	244
	Beryllium (Be) (mg/kg)	0.16	0.37	<0.10	0.41	0.21
	Cadmium (Cd) (mg/kg)	16.2	34.3	0.638	2.39	1.52
	Chromium (Cr) (mg/kg)	8.09	21.5	5.68	21.8	12.0
	Cobalt (Co) (mg/kg)	4.93	10.7	2.97	10.1	5.89
	Copper (Cu) (mg/kg)	185	465	10.2	55.1	28.0
	Lead (Pb) (mg/kg)	14700	19500	493	840	547
	Mercury (Hg) (mg/kg)	6.56	13.7	0.268	0.959	0.553
	Molybdenum (Mo) (mg/kg)	1.31	4.44	0.35	2.27	1.76
	Nickel (Ni) (mg/kg)	3.97	11.6	2.48	11.7	6.07
	Selenium (Se) (mg/kg)	0.55	0.98	<0.20	0.28	<0.20
	Silver (Ag) (mg/kg)	14.1	21.9	0.51	1.42	0.81
	Thallium (TI) (mg/kg)	2.44	3.96	0.182	0.473	0.269
	Tin (Sn) (mg/kg)	2.5	6.7	<2.0	2.1	<2.0
	Uranium (U) (mg/kg)	1.24	2.53	0.672	2.71	1.40
	Vanadium (V) (mg/kg)	29.7	68.6	21.1	71.8	39.3
	Zinc (Zn) (mg/kg)	10300	21600	458	1390	893
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)				<0.030	0.0080
	Acenaphthylene (mg/kg)				0.0894	0.0320
	Anthracene (mg/kg)				0.304	0.236
	Benz(a)anthracene (mg/kg)				1.36	1.14
	Benzo(a)pyrene (mg/kg)				0.638	0.575
	Benzo(b&j)fluoranthene (mg/kg)				1.70	1.52
	Benzo(b+j+k)fluoranthene (mg/kg)				2.40	2.03
	Benzo(g,h,i)perylene (mg/kg)				0.156	0.144
	Benzo(k)fluoranthene (mg/kg)				0.707	0.508
	Chrysene (mg/kg)				1.27	1.23
	Dibenz(a,h)anthracene (mg/kg)				0.0703	0.0605
	Fluoranthene (mg/kg)				2.01	1.36
	Fluorene (mg/kg)				0.074	0.094

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2016641 CONTD.... PAGE 6 of 13

ALS ENVIRONMENTAL ANALYTICAL REPORT

24-NOV-17 13:43 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2016641-21 SE 31-OCT-17 15:40 07979-11	L2016641-22 SE 31-OCT-17 17:00 07979-12	L2016641-23 SE 31-OCT-17 15:40 07980-01	L2016641-24 SE 31-OCT-17 15:40 07980-02	
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)		19.2	29.7		
	pH (1:2 soil:water) (pH)	8.64	8.46	8.29	8.70	
Bacteriological Tests	Coliform Bacteria - Fecal (MPN/g)					
	Coliform Bacteria - Total (MPN/g)					
Metals	Antimony (Sb) (mg/kg)	<0.10	16.3	50.4	0.22	
	Arsenic (As) (mg/kg)	0.52	12.8	41.2	0.53	
	Barium (Ba) (mg/kg)	126	171	119	73.4	
	Beryllium (Be) (mg/kg)	0.10	0.15	0.28	0.11	
	Cadmium (Cd) (mg/kg)	0.096	50.6	105	0.382	
	Chromium (Cr) (mg/kg)	6.24	7.83	16.3	7.18	
	Cobalt (Co) (mg/kg)	3.09	5.48	12.2	3.22	
	Copper (Cu) (mg/kg)	5.33	472	1400	7.77	
	Lead (Pb) (mg/kg)	34.7	14400	41900	188	
	Mercury (Hg) (mg/kg)	0.0254	20.9	38.7	0.122	
	Molybdenum (Mo) (mg/kg)	0.48	1.71	6.30	0.22	
	Nickel (Ni) (mg/kg)	2.59	3.91	9.72	4.09	
	Selenium (Se) (mg/kg)	<0.20	0.74	3.02	<0.20	
	Silver (Ag) (mg/kg)	<0.10	15.3	>43.6	0.22	
	Thallium (TI) (mg/kg)	0.091	2.36	7.44	0.098	
	Tin (Sn) (mg/kg)	<2.0	3.0	9.1	<2.0	
	Uranium (U) (mg/kg)	0.575	0.989	1.92	0.515	
	Vanadium (V) (mg/kg)	23.2	26.4	51.2	20.6	
	Zinc (Zn) (mg/kg)	79.4	33400	73800	261	
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)		0.0228	0.0861		
	Acenaphthylene (mg/kg)		0.0291	0.0596		
	Anthracene (mg/kg)		0.373	0.466		
	Benz(a)anthracene (mg/kg)		2.37	2.28		
	Benzo(a)pyrene (mg/kg)		1.09	1.54		
	Benzo(b&j)fluoranthene (mg/kg)		2.67	4.03		
	Benzo(b+j+k)fluoranthene (mg/kg)		3.63	5.36		
	Benzo(g,h,i)perylene (mg/kg)		0.302	0.484		
	Benzo(k)fluoranthene (mg/kg)		0.958	1.32		
	Chrysene (mg/kg)		1.78	2.34		
	Dibenz(a,h)anthracene (mg/kg)		0.130	0.193		
	Fluoranthene (mg/kg)		3.13	4.20		
	Fluorene (mg/kg)		0.146	0.223		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2016641 CONTD.... PAGE 7 of 13

24-NOV-17 13:43 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2016641-1 SE 30-OCT-17 07978-03	L2016641-2 SE 30-OCT-17 07978-04	L2016641-3 SE 31-OCT-17 09:20 07978-05	L2016641-4 SE 31-OCT-17 09:20 07978-06	L2016641-5 SE 31-OCT-17 09:20 07978-07
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Indeno(1,2,3-c,d)pyrene (mg/kg)		0.356		0.035	0.062
	1-Methylnaphthalene (mg/kg)		<0.050		<0.050	<0.050
	2-Methylnaphthalene (mg/kg)		<0.010		<0.010	<0.010
	Naphthalene (mg/kg)		<0.010		<0.010	<0.010
	Phenanthrene (mg/kg)		0.626		0.051	0.084
	Pyrene (mg/kg)		4.00		0.402	0.606
	Quinoline (mg/kg)		<0.050		<0.050	<0.050
	Surrogate: Acenaphthene d10 (%)		80.5		80.3	88.3
	Surrogate: Chrysene d12 (%)		95.8		103.1	109.6
	Surrogate: Naphthalene d8 (%)		79.3		83.7	92.8
	Surrogate: Phenanthrene d10 (%)		98.4		97.7	103.3
	B(a)P Total Potency Equivalent (mg/kg)		2.01		0.165	0.266
	IACR (CCME) (mg/kg)		36.3		2.92	4.43
Miscellaneous	Cholestanol (mg/kg)		0.074		0.066	<0.050
	Coprostanol (mg/kg)		<0.050		<0.050	<0.050

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2016641 CONTD....

PAGE 8 of 13 24-NOV-17 13:43 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2016641-6 SE 31-OCT-17 09:20 07978-08	L2016641-7 SE 31-OCT-17 10:30 07978-09	L2016641-8 SE 31-OCT-17 10:30 07978-10	L2016641-9 SE 31-OCT-17 12:15 07978-11	L2016641-10 SE 31-OCT-17 12:15 07978-12
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Indeno(1,2,3-c,d)pyrene (mg/kg)		<0.010			
	1-Methylnaphthalene (mg/kg)		<0.050			
	2-Methylnaphthalene (mg/kg)		<0.010			
	Naphthalene (mg/kg)		<0.010			
	Phenanthrene (mg/kg)		<0.010			
	Pyrene (mg/kg)		<0.010			
	Quinoline (mg/kg)		<0.050			
	Surrogate: Acenaphthene d10 (%)		81.3			
	Surrogate: Chrysene d12 (%)		102.6			
	Surrogate: Naphthalene d8 (%)		86.9			
	Surrogate: Phenanthrene d10 (%)		85.1			
	B(a)P Total Potency Equivalent (mg/kg)		<0.020			
	IACR (CCME) (mg/kg)		<0.15			
Miscellaneous	Cholestanol (mg/kg)		<0.050			<0.15
	Coprostanol (mg/kg)		<0.050			<0.15

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2016641 CONTD.... PAGE 9 of 13

Version: FINAL

PAGE 9 of 13 24-NOV-17 13:43 (MT)

	Sample ID Description Sampled Date Sampled Time Client ID	L2016641-11 SE 31-OCT-17 12:15 07979-01	L2016641-12 SE 31-OCT-17 13:30 07979-02	L2016641-13 SE 31-OCT-17 13:30 07979-03	L2016641-14 SE 31-OCT-17 13:30 07979-04	L2016641-15 SE 31-OCT-17 13:30 07979-05
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Indeno(1,2,3-c,d)pyrene (mg/kg)	0.014	0.706		0.368	0.490
	1-Methylnaphthalene (mg/kg)	<0.050	<0.050		<0.050	<0.050
	2-Methylnaphthalene (mg/kg)	<0.010	0.020		0.017	0.017
	Naphthalene (mg/kg)	<0.010	0.015		0.013	0.019
	Phenanthrene (mg/kg)	0.031	2.02		0.720	1.20
	Pyrene (mg/kg)	0.091	11.6		7.89	8.32
	Quinoline (mg/kg)	<0.050	<0.050		<0.050	<0.050
	Surrogate: Acenaphthene d10 (%)	81.1	85.0		84.6	89.1
	Surrogate: Chrysene d12 (%)	99.4	89.9		92.6	98.3
	Surrogate: Naphthalene d8 (%)	85.8	78.0		79.6	83.7
	Surrogate: Phenanthrene d10 (%)	93.2	96.8		99.4	104.0
	B(a)P Total Potency Equivalent (mg/kg)	0.060	5.36		2.24	3.36
	IACR (CCME) (mg/kg)	1.08	112		44.8	66.5
Miscellaneous	Cholestanol (mg/kg)	<0.050				
	Coprostanol (mg/kg)	<0.050				

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2016641 CONTD.... PAGE 10 of 13

Version: FINAL

PAGE 10 of 13 24-NOV-17 13:43 (MT)

Sample ID Description Sampled Date Sampled Time Client ID	L2016641-16 SE 31-OCT-17 14:30 07979-06	L2016641-17 SE 31-OCT-17 14:30 07979-07	L2016641-18 SE 31-OCT-17 14:30 07979-08	L2016641-19 SE 31-OCT-17 15:40 07979-09	L2016641-20 SE 31-OCT-17 15:40 07979-10
Analyte					
Indeno(1,2,3-c,d)pyrene (mg/kg)				0.201	0.196
1-Methylnaphthalene (mg/kg)				<0.050	<0.050
2-Methylnaphthalene (mg/kg)				<0.010	<0.010
Naphthalene (mg/kg)				0.012	<0.010
Phenanthrene (mg/kg)				0.481	0.303
Pyrene (mg/kg)				4.73	3.14
Quinoline (mg/kg)					<0.050
Surrogate: Acenaphthene d10 (%)					87.6
Surrogate: Chrysene d12 (%)					99.7
Surrogate: Naphthalene d8 (%)				93.9	88.6
Surrogate: Phenanthrene d10 (%)				108.0	100.8
B(a)P Total Potency Equivalent (mg/kg)				1.12	0.985
IACR (CCME) (mg/kg)				21.9	18.6
Cholestanol (mg/kg)	<0.050	<0.050		<0.050	
Coprostanol (mg/kg)	<0.050	<0.050			
	Indeno(1,2,3-c,d)pyrene (mg/kg) 1-Methylnaphthalene (mg/kg) 2-Methylnaphthalene (mg/kg) Naphthalene (mg/kg) Phenanthrene (mg/kg) Pyrene (mg/kg) Quinoline (mg/kg) Surrogate: Acenaphthene d10 (%) Surrogate: Chrysene d12 (%) Surrogate: Naphthalene d8 (%) Surrogate: Phenanthrene d10 (%) B(a)P Total Potency Equivalent (mg/kg) IACR (CCME) (mg/kg) Cholestanol (mg/kg)	Description Sampled Date Sampled Time Client ID Analyte Indeno(1,2,3-c,d)pyrene (mg/kg) 1-Methylnaphthalene (mg/kg) 2-Methylnaphthalene (mg/kg) Phenanthrene (mg/kg) Pyrene (mg/kg) Quinoline (mg/kg) Surrogate: Acenaphthene d10 (%) Surrogate: Chrysene d12 (%) Surrogate: Naphthalene d8 (%) Surrogate: Phenanthrene d10 (%) B(a)P Total Potency Equivalent (mg/kg) IACR (CCME) (mg/kg) Cholestanol (mg/kg) <a 07979-06"="" 14:30="" href="mailto:31-OCT-17"> 14:30 07979-06 SE 31-OCT-17 14:30 07979-06 SE 31-OCT-17 14:30 0799-06 SE 31-OCT-17 14:30 0799-06 SE 31-OCT-17 14:30 0799-06 SE 31-OCT-17 14:30 0799-06 SE 31-OCT-17 14:30 0799-06 SE 31-OCT-17 14:30 0799-06 SE 31-OCT-17 14:30 0799-06 SE 31-OCT-17 14:30 07 14:30 07 14:30 07 14:30 07 14:30 07 14:30 07 14:30 07 14:30 07 14:30 07 14:30 07 14:30 07 14:30 07 14	Description Sampled Date Sampled Time Client ID Analyte Indeno(1,2,3-c,d)pyrene (mg/kg) 1-Methylnaphthalene (mg/kg) 2-Methylnaphthalene (mg/kg) Phenanthrene (mg/kg) Pyrene (mg/kg) Quinoline (mg/kg) Surrogate: Acenaphthene d10 (%) Surrogate: Chrysene d12 (%) Surrogate: Naphthalene d8 (%) Surrogate: Phenanthrene d10 (%) B(a)P Total Potency Equivalent (mg/kg) IACR (CCME) (mg/kg) Cholestanol (mg/kg) Cholestanol (mg/kg) Sampled Time 31-OCT-17 14:30 31-OCT-17 14:30 07979-06 SE 31-OCT-17 14:30 07979-06 Phenanthrene (mg/kg) 14:30 07979-07 Phenanthrene (mg/kg) Surrogate: Acenaphthene d10 (%) Surrogate: Phenanthrene d10 (%) Surrogate: Phenanthrene d10 (%) Sourrogate: Phenanthrene d10 (%) Surrogate: Phenanthrene d10 (%)	Description Sampled Date Sampled Time Client ID Analyte Indeno(1,2,3-c,d)pyrene (mg/kg) 1-Methylnaphthalene (mg/kg) Phenanthrene (mg/kg) Pyrene (mg/kg) Quinoline (mg/kg) Surrogate: Acenaphthene d10 (%) Surrogate: Chrysene d12 (%) Surrogate: Naphthalene d8 (%) Surrogate: Phenanthrene d10 (%) B(a)P Total Potency Equivalent (mg/kg) Indeno(1,2,3-c,d)pyrene (mg/kg) SE 31-OCT-17 14:30 07979-08 SE 31-OCT-17 14:30 07979-07 14:30 07979-08 SE 31-OCT-17 14:30 07979-08 SE 31-OCT-17 14:30 07979-08 SE 31-OCT-17 14:30 07979-08 SE 31-OCT-17 14:30 07979-08 SE 31-OCT-17 14:30 07979-08 SE 31-OCT-17 14:30 07979-08 SE 31-OCT-17 14:30 07979-08 SE 31-OCT-17 14:30 07979-08 SE 31-OCT-17 14:30 07979-08 SE 31-OCT-17 14:30 07979-08 SE 31-OCT-17 14:30 07979-08 SE 31-OCT-17 14:30 07979-08 SE 31-OCT-17 14:30 07979-08 SE 31-OCT-17 14:30 07979-08 SE 31-OCT-17 14:30 07979-08 SE 31-OCT-17 14:30 07979-08 SE 31-OCT-17 14:30 07979-07 Selection of the standard of the st	Description Sampled Date Sampled Time Client ID

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2016641 CONTD.... PAGE 11 of 13

24-NOV-17 13:43 (MT) Version: FINAL

SOIL Polycyclic Aromatic Hydrocarbons Indeno(1,2,3-c,d)pyrene (mg/kg) 0.407 0.631 0.407 0.631	
Polycyclic Aromatic Hydrocarbons Indeno(1,2,3-c,d)pyrene (mg/kg) 0.407 0.631 1-Methylnaphthalene (mg/kg) <0.050 <0.050 2-Methylnaphthalene (mg/kg) <0.010 0.012 Naphthalene (mg/kg) <0.010 0.011 Phenanthrene (mg/kg) 1.36 2.19 Pyrene (mg/kg) 4.35 7.24 Quinoline (mg/kg) <0.050 <0.050 Surrogate: Acenaphthene d10 (%) 81.0 78.9 Surrogate: Chrysene d12 (%) 92.1 88.4	
Aromatic Hydrocarbons 1-Methylnaphthalene (mg/kg) 2-Methylnaphthalene (mg/kg) Naphthalene (mg/kg) Naphthalene (mg/kg) Naphthalene (mg/kg) Pyrene (mg/kg) Pyrene (mg/kg) Quinoline (mg/kg) Surrogate: Acenaphthene d10 (%) Surrogate: Chrysene d12 (%) Solo Solo Solo Solo Solo Solo Solo Sol	
1-Methylnaphthalene (mg/kg) 2-Methylnaphthalene (mg/kg) Naphthalen	
Naphthalene (mg/kg) <0.010	
Naphthalene (mg/kg) <0.010	
Phenanthrene (mg/kg) 1.36 2.19 Pyrene (mg/kg) 4.35 7.24 Quinoline (mg/kg) <0.050	
Pyrene (mg/kg) 4.35 7.24 Quinoline (mg/kg) <0.050	
Quinoline (mg/kg) <0.050	
Surrogate: Acenaphthene d10 (%) 81.0 78.9 Surrogate: Chrysene d12 (%) 92.1 88.4	
Surrogate: Chrysene d12 (%) 92.1 88.4	
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Surrogate: Phenanthrene d10 (%) 96.5 93.5	
B(a)P Total Potency Equivalent (mg/kg) 1.88 2.59	
IACR (CCME) (mg/kg) 34.4 46.8	
Miscellaneous Cholestanol (mg/kg)	
Coprostanol (mg/kg)	

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2016641 CONTD.... PAGE 12 of 13

24-NOV-17 13:43 (MT)

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Duplicate	Mercury (Hg)	DUP-H	L2016641-1, -10, -13, -16, -17, -18, -21, -24, -3, -6, -8, -9
Duplicate	Antimony (Sb)	DUP-H	L2016641-10
Duplicate	Arsenic (As)	DUP-H	L2016641-10
Duplicate	Lead (Pb)	DUP-H	L2016641-11, -12, -14, -15, -19, -2, -20, -22, -23, -4, -5, -7
Duplicate	Molybdenum (Mo)	DUP-H	L2016641-11, -12, -14, -15, -19, -2, -20, -22, -23, -4, -5, -7
Duplicate	Tin (Sn)	DUP-H	L2016641-10
Duplicate	Uranium (U)	DUP-H	L2016641-11, -12, -14, -15, -19, -2, -20, -22, -23, -4, -5, -7
Duplicate	Benz(a)anthracene	DUP-H	L2016641-11, -12, -14, -15, -19, -2, -20, -22, -23, -4, -5, -7
Duplicate	Dibenz(a,h)anthracene	DUP-H	L2016641-11, -12, -14, -15, -19, -2, -20, -22, -23, -4, -5, -7
Duplicate	Fluoranthene	DUP-H	L2016641-11, -12, -14, -15, -19, -2, -20, -22, -23, -4, -5, -7
Duplicate	Fluorene	DUP-H	L2016641-11, -12, -14, -15, -19, -2, -20, -22, -23, -4, -5, -7

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLCI	Detection Limit Raised: Chromatographic Interference due to co-elution.
DUP-H	Duplicate results outside ALS DQO, due to sample heterogeneity.
PEHT	Parameter Exceeded Recommended Holding Time Prior to Analysis

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
FCOLI-DRY-MTF-VA	Soil	Fecal coliform by MPN	EPA Method 1680

This analysis is carried out using procedures adapted from EPA Method 1680 "Fecal Coliforms in Sewage Sludge (Biosolids) by Multiple Tube Fermentation using Lauryl Tryptose Broth (LTB) and EC medium". Serial dilutions of the sample are incubated with the appropriate growth medium, and fecal coliforms are quantified by a statistical estimation of bacteria density (most probable number). The test involves initial 48 hour incubation (presumptive test), positive results are further tested (up to an additional 24 hours) to confirm and quantify fecal coliforms.

HG-200,2-CVAF-VA Soil Mercury in Soil by CVAFS EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAFS.

MET-200.2-CCMS-VA Soil Metals in Soil by CRC ICPMS EPA 200.2/6020A (mod)

This method uses a heated strong acid digestion with HNO3 and HCl and is intended to liberate metals that may be environmentally available. Silicate minerals are not solubilized. Dependent on sample matrix, some metals may be only partially recovered, including Al, Ba, Be, Cr, Sr, Ti, Tl, V, W, and Zr. Volatile forms of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. Analysis is by Collision/Reaction Cell ICPMS.

MOISTURE-VA Soil Moisture content CWS for PHC in Soil - Tier 1

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

PAH-TMB-H/A-MS-VA Soil PAH - Rotary Extraction (Hexane/Acetone) EPA 3570/8270

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3570 & 8270, published by the United States Environmental Protection Agency (EPA). The procedure uses a mechanical shaking technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene. The final extract is analysed by capillary column gas chromatography with mass spectrometric detection (GC/MS). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation. Because the two isomers cannot be readily chromatographically separated, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

PH-1:2-VA Soil pH in Soil (1:2 Soil:Water Extraction) BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe

STEROLS-SOX-MS-VA Soil Sterols by GCMS EPA 3570 & 8270 / J. OF CHROM. 1108

TCOLI-DRY-MTF-VA Soil Total coliform by MPN TMECC 07.00 PATHOGENS

This analysis is carried out using procedures adapted from TMECC 07.00 PATHOGENS. This method describes multiple-tube fermentation technique

Reference Information

L2016641 CONTD....
PAGE 13 of 13
24-NOV-17 13:43 (MT)
Version: FINAL

for the detection and enumeration of total coliforms. Serial dilutions of the sample are incubated with the appropriate growth medium, and total coliforms are quantified by a statistical estimation of bacteria density (most probable number). The test involves initial 48 hour incubation (presumptive test); positive results do not require further testing for confirmation of total coliforms.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

07978 07979 07980

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2016641 Report Date: 24-NOV-17 Page 1 of 12

Client: GOLDER ASSOCIATES LTD.

203, 170 Titanium Way Whitehorse YT Y1A 0G1

Contact: Tamra Reynolds

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
FCOLI-DRY-MTF-VA	Soil							
Batch R38754	174							
WG2654667-1 DU Coliform Bacteria - F		L2016641-19 <2	<2	RPD-NA	MPN/g	N/A	65	01-NOV-17
WG2654667-2 ME Coliform Bacteria - F			<2		MPN/g		2	01-NOV-17
Batch R38786 WG2656594-2 ME Coliform Bacteria - F	3		<2		MPN/g		2	03-NOV-17
HG-200.2-CVAF-VA	Soil							
Batch R38780	063							
WG2656735-4 CR Mercury (Hg)	М	VA-CANMET-	TILL1 102.0		%		70-130	07-NOV-17
WG2656735-2 DU Mercury (Hg)	P	L2016641-5 0.206	0.142		mg/kg	37	40	07-NOV-17
WG2656735-3 LC Mercury (Hg)	s		104.9		%		70-130	07-NOV-17
WG2656735-1 MB Mercury (Hg)	3		<0.0050		mg/kg		0.005	07-NOV-17
Batch R38784	162							
WG2656742-4 CR Mercury (Hg)	М	VA-CANMET-	TILL1 101.5		%		70-130	07-NOV-17
WG2656742-2 DU Mercury (Hg)	P	L2016641-10 0.404	0.611	DUP-H	mg/kg	41	40	07-NOV-17
WG2656742-3 LC Mercury (Hg)	S		99.7		%		70-130	07-NOV-17
WG2656742-1 ME Mercury (Hg)	3		<0.0050		mg/kg		0.005	07-NOV-17
MET-200.2-CCMS-VA	Soil							
Batch R38787								
WG2656735-4 CR Antimony (Sb)	М	VA-CANMET-	TILL1 104.3		%		70-130	06-NOV-17
Arsenic (As)			97.3		%		70-130	06-NOV-17
Barium (Ba)			95.1		%		70-130	06-NOV-17
Beryllium (Be)			0.53		mg/kg		0.34-0.74	06-NOV-17
Cadmium (Cd)			98.9		%		70-130	06-NOV-17
Chromium (Cr)			98.8		%		70-130	06-NOV-17
Cobalt (Co)			97.9		%		70-130	06-NOV-17

Workorder: L2016641 Report Date: 24-NOV-17 Page 2 of 12

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-VA	Soil							
Batch R3878	766							
	RM	VA-CANMET						
Copper (Cu)			97.5		%		70-130	06-NOV-17
Lead (Pb)			99.3		%		70-130	06-NOV-17
Molybdenum (Mo)			99.3		%		70-130	06-NOV-17
Nickel (Ni)			100.5		%		70-130	06-NOV-17
Selenium (Se)			0.33		mg/kg		0.11-0.51	06-NOV-17
Silver (Ag)			0.22		mg/kg		0.13-0.33	06-NOV-17
Thallium (TI)			0.126		mg/kg		0.077-0.18	06-NOV-17
Tin (Sn)			1.0		mg/kg		0-3	06-NOV-17
Uranium (U)			102.1		%		70-130	06-NOV-17
Vanadium (V)			101.4		%		70-130	06-NOV-17
Zinc (Zn)			98.2		%		70-130	06-NOV-17
	JP	L2016641-5						
Antimony (Sb)		0.22	0.15	J	mg/kg	0.06	0.2	06-NOV-17
Arsenic (As)		1.69	1.47		mg/kg	14	30	06-NOV-17
Barium (Ba)		202	194		mg/kg	4.3	40	06-NOV-17
Beryllium (Be)		0.19	0.17		mg/kg	12	30	06-NOV-17
Cadmium (Cd)		0.416	0.365		mg/kg	13	30	06-NOV-17
Chromium (Cr)		9.69	9.50		mg/kg	1.9	30	06-NOV-17
Cobalt (Co)		4.58	4.45		mg/kg	2.9	30	06-NOV-17
Copper (Cu)		16.2	14.1		mg/kg	13	30	06-NOV-17
Lead (Pb)		195	127	DUP-H	mg/kg	43	40	06-NOV-17
Molybdenum (Mo)		0.96	0.62	DUP-H	mg/kg	44	40	06-NOV-17
Nickel (Ni)		4.60	4.75		mg/kg	3.2	30	06-NOV-17
Selenium (Se)		<0.20	<0.20	RPD-NA	mg/kg	N/A	30	06-NOV-17
Silver (Ag)		0.25	0.20		mg/kg	24	40	06-NOV-17
Thallium (TI)		0.196	0.175		mg/kg	11	30	06-NOV-17
Tin (Sn)		<2.0	<2.0	RPD-NA	mg/kg	N/A	40	06-NOV-17
Uranium (U)		2.20	1.33	DUP-H	mg/kg	49	30	06-NOV-17
Vanadium (V)		34.2	32.5		mg/kg	5.2	30	06-NOV-17
Zinc (Zn)		251	225		mg/kg	11	30	06-NOV-17
WG2656735-3 LC Antimony (Sb)	cs		107.1		%		80-120	06-NOV-17
Arsenic (As)			99.9		%		80-120	06-NOV-17
Barium (Ba)			99.3		%		80-120	
Beryllium (Be)			98.9		%			06-NOV-17
beryllium (be)			90.9		/0		80-120	06-NOV-17

Workorder: L2016641 Report Date: 24-NOV-17 Page 3 of 12

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-VA	Soil							
Batch R3878766								
WG2656735-3 LCS								
Cadmium (Cd)			100.8		%		80-120	06-NOV-17
Chromium (Cr)			98.2		%		80-120	06-NOV-17
Cobalt (Co)			96.6		%		80-120	06-NOV-17
Copper (Cu)			96.6		%		80-120	06-NOV-17
Lead (Pb)			98.7		%		80-120	06-NOV-17
Molybdenum (Mo)			96.6		%		80-120	06-NOV-17
Nickel (Ni)			97.7		%		80-120	06-NOV-17
Selenium (Se)			101.2		%		80-120	06-NOV-17
Silver (Ag)			97.5		%		80-120	06-NOV-17
Thallium (TI)			96.3		%		80-120	06-NOV-17
Tin (Sn)			100.4		%		80-120	06-NOV-17
Uranium (U)			100.5		%		80-120	06-NOV-17
Vanadium (V)			100.7		%		80-120	06-NOV-17
Zinc (Zn)			92.1		%		80-120	06-NOV-17
WG2656735-1 MB								
Antimony (Sb)			<0.10		mg/kg		0.1	06-NOV-17
Arsenic (As)			<0.10		mg/kg		0.1	06-NOV-17
Barium (Ba)			< 0.50		mg/kg		0.5	06-NOV-17
Beryllium (Be)			<0.10		mg/kg		0.1	06-NOV-17
Cadmium (Cd)			<0.020		mg/kg		0.02	06-NOV-17
Chromium (Cr)			< 0.50		mg/kg		0.5	06-NOV-17
Cobalt (Co)			<0.10		mg/kg		0.1	06-NOV-17
Copper (Cu)			<0.50		mg/kg		0.5	06-NOV-17
Lead (Pb)			< 0.50		mg/kg		0.5	06-NOV-17
Molybdenum (Mo)			<0.10		mg/kg		0.1	06-NOV-17
Nickel (Ni)			<0.50		mg/kg		0.5	06-NOV-17
Selenium (Se)			<0.20		mg/kg		0.2	06-NOV-17
Silver (Ag)			<0.10		mg/kg		0.1	06-NOV-17
Thallium (TI)			< 0.050		mg/kg		0.05	06-NOV-17
Tin (Sn)			<2.0		mg/kg		2	06-NOV-17
Uranium (U)			< 0.050		mg/kg		0.05	06-NOV-17
Vanadium (V)			<0.20		mg/kg		0.2	06-NOV-17
Zinc (Zn)			<2.0		mg/kg		2	06-NOV-17
, ,					0 0			

Workorder: L2016641 Report Date: 24-NOV-17 Page 4 of 12

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-VA	Soil							
Batch R3879144								
WG2656742-4 CRM		VA-CANMET						
Antimony (Sb)			105.4		%		70-130	07-NOV-17
Arsenic (As)			101.0		%		70-130	07-NOV-17
Barium (Ba)			94.2		%		70-130	07-NOV-17
Beryllium (Be)			0.54		mg/kg		0.34-0.74	07-NOV-17
Cadmium (Cd)			103.8		%		70-130	07-NOV-17
Chromium (Cr)			100.1		%		70-130	07-NOV-17
Cobalt (Co)			100.0		%		70-130	07-NOV-17
Copper (Cu)			97.1		%		70-130	07-NOV-17
Lead (Pb)			98.8		%		70-130	07-NOV-17
Molybdenum (Mo)			93.5		%		70-130	07-NOV-17
Nickel (Ni)			99.6		%		70-130	07-NOV-17
Selenium (Se)			0.29		mg/kg		0.11-0.51	07-NOV-17
Silver (Ag)			0.24		mg/kg		0.13-0.33	07-NOV-17
Thallium (TI)			0.124		mg/kg		0.077-0.18	07-NOV-17
Tin (Sn)			1.1		mg/kg		0-3	07-NOV-17
Uranium (U)			102.5		%		70-130	07-NOV-17
Vanadium (V)			101.7		%		70-130	07-NOV-17
Zinc (Zn)			99.4		%		70-130	07-NOV-17
WG2656742-3 LCS								
Antimony (Sb)			102.6		%		80-120	07-NOV-17
Arsenic (As)			101.8		%		80-120	07-NOV-17
Barium (Ba)			97.7		%		80-120	07-NOV-17
Beryllium (Be)			100.4		%		80-120	07-NOV-17
Cadmium (Cd)			99.8		%		80-120	07-NOV-17
Chromium (Cr)			96.7		%		80-120	07-NOV-17
Cobalt (Co)			97.9		%		80-120	07-NOV-17
Copper (Cu)			96.5		%		80-120	07-NOV-17
Lead (Pb)			97.7		%		80-120	07-NOV-17
Molybdenum (Mo)			98.2		%		80-120	07-NOV-17
Nickel (Ni)			97.2		%		80-120	07-NOV-17
Selenium (Se)			96.5		%		80-120	07-NOV-17
Silver (Ag)			100.5		%		80-120	07-NOV-17
Thallium (TI)			96.8		%		80-120	07-NOV-17
Tin (Sn)			101.3		%		80-120	07-NOV-17

Workorder: L2016641 Report Date: 24-NOV-17 Page 5 of 12

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-VA	Soil							
Batch R3879144								
WG2656742-3 LCS			400.0		0/			
Uranium (U) Vanadium (V)			102.0 100.5		%		80-120	07-NOV-17
					%		80-120	07-NOV-17
Zinc (Zn)			95.8		%		80-120	07-NOV-17
WG2656742-1 MB Antimony (Sb)			<0.10		mg/kg		0.1	07-NOV-17
Arsenic (As)			<0.10		mg/kg		0.1	07-NOV-17
Barium (Ba)			<0.50		mg/kg		0.5	07-NOV-17
Beryllium (Be)			<0.10		mg/kg		0.1	07-NOV-17
Cadmium (Cd)			<0.020		mg/kg		0.02	07-NOV-17
Chromium (Cr)			<0.50		mg/kg		0.5	07-NOV-17
Cobalt (Co)			<0.10		mg/kg		0.1	07-NOV-17
Copper (Cu)			<0.50		mg/kg		0.5	07-NOV-17
Lead (Pb)			<0.50		mg/kg		0.5	07-NOV-17
Molybdenum (Mo)			<0.10		mg/kg		0.1	07-NOV-17
Nickel (Ni)			<0.50		mg/kg		0.5	07-NOV-17
Selenium (Se)			<0.20		mg/kg		0.2	07-NOV-17
Silver (Ag)			<0.10		mg/kg		0.1	07-NOV-17
Thallium (TI)			< 0.050		mg/kg		0.05	07-NOV-17
Tin (Sn)			<2.0		mg/kg		2	07-NOV-17
Uranium (U)			<0.050		mg/kg		0.05	07-NOV-17
Vanadium (V)			<0.20		mg/kg		0.2	07-NOV-17
Zinc (Zn)			<2.0		mg/kg		2	07-NOV-17
Batch R3880111								
WG2660087-4 CRM		VA-CANMET-	TILL1					
Antimony (Sb)			106.0		%		70-130	09-NOV-17
Arsenic (As)			106.2		%		70-130	09-NOV-17
Barium (Ba)			100.0		%		70-130	09-NOV-17
Beryllium (Be)			0.51		mg/kg		0.34-0.74	09-NOV-17
Cadmium (Cd)			106.2		%		70-130	09-NOV-17
Chromium (Cr)			102.9		%		70-130	09-NOV-17
Cobalt (Co)			105.9		%		70-130	09-NOV-17
Copper (Cu)			105.3		%		70-130	09-NOV-17
Lead (Pb)			100.4		%		70-130	09-NOV-17
Molybdenum (Mo)			93.6		%		70-130	09-NOV-17
Nickel (Ni)			106.1		%		70-130	09-NOV-17

Workorder: L2016641 Report Date: 24-NOV-17 Page 6 of 12

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-VA	Soil							
Batch R3880111 WG2660087-4 CRM	I	VA-CANMET	-TILL1					
Selenium (Se)		-	0.30		mg/kg		0.11-0.51	09-NOV-17
Silver (Ag)			0.24		mg/kg		0.13-0.33	09-NOV-17
Thallium (TI)			0.127		mg/kg		0.077-0.18	09-NOV-17
Tin (Sn)			1.1		mg/kg		0-3	09-NOV-17
Uranium (U)			103.7		%		70-130	09-NOV-17
Vanadium (V)			107.2		%		70-130	09-NOV-17
Zinc (Zn)			107.9		%		70-130	09-NOV-17
WG2660087-7 DUP		L2016641-10						
Antimony (Sb)		0.24	0.25		mg/kg	4.2	30	09-NOV-17
Arsenic (As)		2.33	2.31		mg/kg	1.2	30	09-NOV-17
Barium (Ba)		208	193		mg/kg	7.3	40	09-NOV-17
Beryllium (Be)		0.18	0.19		mg/kg	5.7	30	09-NOV-17
Cadmium (Cd)		0.791	0.945		mg/kg	18	30	09-NOV-17
Chromium (Cr)		10.4	10.2		mg/kg	2.1	30	09-NOV-17
Cobalt (Co)		5.24	5.13		mg/kg	2.2	30	09-NOV-17
Copper (Cu)		33.9	35.6		mg/kg	4.8	30	09-NOV-17
Lead (Pb)		223	216		mg/kg	2.9	40	09-NOV-17
Molybdenum (Mo)		0.98	1.06		mg/kg	7.1	40	09-NOV-17
Nickel (Ni)		5.26	5.19		mg/kg	1.4	30	09-NOV-17
Selenium (Se)		<0.20	<0.20	RPD-NA	mg/kg	N/A	30	09-NOV-17
Silver (Ag)		0.34	0.32		mg/kg	5.8	40	09-NOV-17
Thallium (TI)		0.188	0.178		mg/kg	5.8	30	09-NOV-17
Tin (Sn)		<2.0	<2.0	RPD-NA	mg/kg	N/A	40	09-NOV-17
Uranium (U)		1.29	1.18		mg/kg	8.9	30	09-NOV-17
Vanadium (V)		37.9	36.7		mg/kg	3.2	30	09-NOV-17
Zinc (Zn)		534	639		mg/kg	18	30	09-NOV-17
WG2660087-3 LCS Antimony (Sb)			106.4		%		80-120	09-NOV-17
Arsenic (As)			108.1		%		80-120	09-NOV-17
Barium (Ba)			105.7		%		80-120	09-NOV-17
Beryllium (Be)			96.9		%		80-120	09-NOV-17
Cadmium (Cd)			104.4		%		80-120	09-NOV-17
Chromium (Cr)			98.0		%		80-120	09-NOV-17
Cobalt (Co)			103.4		%		80-120	09-NOV-17
Copper (Cu)			104.2		%		80-120	09-NOV-17
,							· - •	

Page 7 of 12

Workorder: L2016641 Report Date: 24-NOV-17

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-VA	Soil							
Batch R3880111								
WG2660087-3 LCS Lead (Pb)			99.2		%		80-120	09-NOV-17
Molybdenum (Mo)			94.2		%		80-120	09-NOV-17
Nickel (Ni)			103.6		%		80-120	09-NOV-17
Selenium (Se)			104.8		%		80-120	09-NOV-17
Silver (Ag)			99.9		%		80-120	09-NOV-17
Thallium (TI)			97.7		%		80-120	09-NOV-17
Tin (Sn)			102.0		%		80-120	09-NOV-17
Uranium (U)			99.5		%		80-120	09-NOV-17
Vanadium (V)			107.7		%		80-120	09-NOV-17
Zinc (Zn)			99.2		%		80-120	09-NOV-17
WG2660087-1 MB Antimony (Sb)			<0.10		ma/ka		0.4	00 NOV 47
Arsenic (As)			<0.10		mg/kg		0.1	09-NOV-17
			<0.10		mg/kg		0.1	09-NOV-17
Barium (Ba)			<0.10		mg/kg		0.5	09-NOV-17
Beryllium (Be)			<0.10		mg/kg		0.1	09-NOV-17
Cadmium (Cd)			<0.020		mg/kg		0.02	09-NOV-17
Chromium (Cr)			<0.30		mg/kg		0.5	09-NOV-17
Cobalt (Co)					mg/kg		0.1	09-NOV-17
Copper (Cu)			<0.50		mg/kg		0.5	09-NOV-17
Lead (Pb)			<0.50 <0.10		mg/kg		0.5	09-NOV-17
Molybdenum (Mo)					mg/kg		0.1	09-NOV-17
Nickel (Ni) Selenium (Se)			<0.50 <0.20		mg/kg		0.5	09-NOV-17
					mg/kg		0.2	09-NOV-17
Silver (Ag)			<0.10		mg/kg		0.1	09-NOV-17
Thallium (TI) Tin (Sn)			<0.050		mg/kg		0.05	09-NOV-17
			<2.0		mg/kg		2	09-NOV-17
Uranium (U)			<0.050 <0.20		mg/kg		0.05	09-NOV-17
Vanadium (V) Zinc (Zn)			<2.0		mg/kg		0.2	09-NOV-17
ZINC (ZN)			<2.0		mg/kg		2	09-NOV-17
MOISTURE-VA	Soil							
Batch R3878483 WG2658106-3 DUP Moisture		L2016641-23 29.7	29.5		%	0.5	20	07-NOV-17
WG2658106-4 DUP			20.0		,,	0.5	20	07-1400-17
Moisture		L2016641-10 20.0	19.5		%	2.6	20	07-NOV-17

Workorder: L2016641 Report Date: 24-NOV-17 Page 8 of 12

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MOISTURE-VA	Soil							
Batch R3878483								
WG2658106-2 LCS Moisture			100.1		%		90-110	07-NOV-17
WG2658106-6 LCS Moisture			99.7		%		90-110	07-NOV-17
WG2658106-1 MB Moisture			<0.25		%		0.25	07-NOV-17
WG2658106-5 MB Moisture			<0.25		%		0.25	07-NOV-17
Batch R3878635								
WG2658724-2 LCS Moisture			99.9		%		90-110	07-NOV-17
WG2658724-6 LCS Moisture			99.9		%		90-110	07-NOV-17
WG2658724-1 MB Moisture			<0.25		%		0.25	07-NOV-17
WG2658724-5 MB Moisture			<0.25		%		0.25	07-NOV-17
PAH-TMB-H/A-MS-VA	Soil							
Batch R3876148								
WG2656734-4 DUP Acenaphthene		L2016641-2 0.0080	0.0072		mg/kg	10	50	08-NOV-17
Acenaphthylene		0.0397	0.0283		mg/kg	34	50	08-NOV-17
Anthracene		0.258	0.195		mg/kg	28	50	08-NOV-17
Benz(a)anthracene		2.21	1.21	DUP-H	mg/kg	58	50	08-NOV-17
Benzo(a)pyrene		1.20	0.806		mg/kg	39	50	08-NOV-17
Benzo(b&j)fluoranthene		3.12	2.04		mg/kg	42	50	08-NOV-17
Benzo(g,h,i)perylene		0.266	0.165		mg/kg	47	50	08-NOV-17
Benzo(k)fluoranthene		0.893	0.658		mg/kg	30	50	08-NOV-17
Chrysene		<2.0	<1.5	RPD-NA	mg/kg	N/A	50	08-NOV-17
Dibenz(a,h)anthracene		0.146	0.0850	DUP-H	mg/kg	53	50	08-NOV-17
Fluoranthene		1.03	0.551	DUP-H	mg/kg	60	50	08-NOV-17
Fluorene		0.175	0.101	DUP-H	mg/kg	54	50	08-NOV-17
Indeno(1,2,3-c,d)pyrene	9	0.356	0.225		mg/kg	45	50	08-NOV-17
1-Methylnaphthalene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	08-NOV-17
2-Methylnaphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	08-NOV-17
Naphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	08-NOV-17
Phenanthrene		0.626	0.397		mg/kg	45	50	08-NOV-17

Workorder: L2016641 Report Date: 24-NOV-17 Page 9 of 12

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA	Soil							
Batch R3876148								
WG2656734-4 DUP Pyrene		L2016641-2 4.00	3.15		mg/kg	24	50	08-NOV-17
Quinoline		< 0.050	< 0.050	RPD-NA	mg/kg	N/A	50	08-NOV-17
WG2656734-2 LCS Acenaphthene			84.8		%		60-130	08-NOV-17
Acenaphthylene			84.6		%		60-130	08-NOV-17
Anthracene			82.6		%		60-130	08-NOV-17
Benz(a)anthracene			97.4		%		60-130	08-NOV-17
Benzo(a)pyrene			99.1		%		60-130	08-NOV-17
Benzo(b&j)fluoranthene			109.2		%		60-130	08-NOV-17
Benzo(g,h,i)perylene			83.9		%		60-130	08-NOV-17
Benzo(k)fluoranthene			106.3		%		60-130	08-NOV-17
Chrysene			94.3		%		60-130	08-NOV-17
Dibenz(a,h)anthracene			92.7		%		60-130	08-NOV-17
Fluoranthene			101.4		%		60-130	08-NOV-17
Fluorene			85.0		%		60-130	08-NOV-17
Indeno(1,2,3-c,d)pyrene	:		93.1		%		60-130	08-NOV-17
2-Methylnaphthalene			84.9		%		60-130	08-NOV-17
Naphthalene			86.5		%		50-130	08-NOV-17
Phenanthrene			92.8		%		60-130	08-NOV-17
Pyrene			102.2		%		60-130	08-NOV-17
WG2656734-1 MB							00 100	00 110 1 17
Acenaphthene			<0.0050		mg/kg		0.005	08-NOV-17
Acenaphthylene			<0.0050		mg/kg		0.005	08-NOV-17
Anthracene			<0.0040		mg/kg		0.004	08-NOV-17
Benz(a)anthracene			<0.010		mg/kg		0.01	08-NOV-17
Benzo(a)pyrene			<0.010		mg/kg		0.01	08-NOV-17
Benzo(b&j)fluoranthene			<0.010		mg/kg		0.01	08-NOV-17
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	08-NOV-17
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	08-NOV-17
Chrysene			<0.010		mg/kg		0.01	08-NOV-17
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	08-NOV-17
Fluoranthene			<0.010		mg/kg		0.01	08-NOV-17
Fluorene			<0.010		mg/kg		0.01	08-NOV-17
Indeno(1,2,3-c,d)pyrene	•		<0.010		mg/kg		0.01	08-NOV-17
1-Methylnaphthalene			< 0.050		mg/kg		0.05	08-NOV-17

Workorder: L2016641 Report Date: 24-NOV-17 Page 10 of 12

L2016641-5 8.28	<0.010 <0.010 <0.010 <0.010 <0.050 88.8 83.0 88.8 104.0		mg/kg mg/kg mg/kg mg/kg % %		0.01 0.01 0.01 0.05 50-130 60-130 60-130	08-NOV-17 08-NOV-17 08-NOV-17 08-NOV-17 08-NOV-17 08-NOV-17 08-NOV-17
	<0.010 <0.010 <0.010 <0.050 88.8 83.0 88.8		mg/kg mg/kg mg/kg mg/kg %		0.01 0.01 0.01 0.05 50-130 60-130	08-NOV-17 08-NOV-17 08-NOV-17 08-NOV-17 08-NOV-17 08-NOV-17
	<0.010 <0.010 <0.010 <0.050 88.8 83.0 88.8		mg/kg mg/kg mg/kg mg/kg %		0.01 0.01 0.01 0.05 50-130 60-130	08-NOV-17 08-NOV-17 08-NOV-17 08-NOV-17 08-NOV-17 08-NOV-17
	<0.010 <0.010 <0.050 88.8 83.0 88.8		mg/kg mg/kg mg/kg mg/kg %		0.01 0.01 0.01 0.05 50-130 60-130	08-NOV-17 08-NOV-17 08-NOV-17 08-NOV-17 08-NOV-17 08-NOV-17
	<0.010 <0.050 88.8 83.0 88.8		mg/kg mg/kg mg/kg % %		0.01 0.01 0.05 50-130 60-130	08-NOV-17 08-NOV-17 08-NOV-17 08-NOV-17 08-NOV-17
	<0.050 88.8 83.0 88.8		mg/kg mg/kg % %		0.01 0.05 50-130 60-130	08-NOV-17 08-NOV-17 08-NOV-17 08-NOV-17
	88.8 83.0 88.8		mg/kg % %		50-130 60-130 60-130	08-NOV-17 08-NOV-17 08-NOV-17 08-NOV-17
	83.0 88.8		% %		60-130 60-130	08-NOV-17 08-NOV-17
	88.8		%		60-130	08-NOV-17
						08-NOV-17
	104.0		%		60-130	08-NOV-17
	8.33	J	рН	0.05	0.2	07-NOV-17
VA-ALP-SRS	1507					
	6.41		рН		6.2-6.8	07-NOV-17
L2016641-10 8.33	8.41	J	рН	0.08	0.2	07-NOV-17
VA-ALP-SRS	1507					
	6.49		рН		6.2-6.8	07-NOV-17
L2016641-2	~ 0.050	DDD NA	ma/ka	NI/A	E0	23-NOV-17
		RFD-NA				23-NOV-17 23-NOV-17
0.074	0.095		mg/kg	25	50	23-NOV-17
	<0.050		mg/kg		0.05	23-NOV-17
	<0.050		mg/kg		0.05	23-NOV-17
L2016641-19 4	2		MPN/g	59	65	01-NOV-17
	<2		MPN/a		2	01-NOV-17
	<0.050 0.074 L2016641-19	<0.050 <0.050 0.074 0.095 <0.050 <0.050 <0.050	<0.050 <0.050 RPD-NA 0.074 0.095 <0.050 <0.050 <0.050 L2016641-19 4 2	<0.050 <0.050 RPD-NA mg/kg 0.074 0.095 mg/kg <0.050 mg/kg <0.050 mg/kg <0.050 mg/kg <0.050 mg/kg MPN/g	<0.050 <0.050 RPD-NA mg/kg <25 <0.050 <mg kg<="" p=""> <0.050 mg/kg <0.050 mg/kg <0.050 mg/kg <0.050 MPN/g 59</mg>	<0.050

Workorder: L2016641 Report Date: 24-NOV-17 Page 11 of 12

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
DUP-H	Duplicate results outside ALS DQO, due to sample heterogeneity.
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2016641 Report Date: 24-NOV-17 Page 12 of 12

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifie
Bacteriological Tests							
Fecal coliform by MPN							
	2	30-OCT-17	01-NOV-17 15:30	48	52	hours	EHTR
	16	31-OCT-17 14:30	03-NOV-17 17:00	48	74	hours	EHT
Total coliform by MPN							
	2	30-OCT-17	01-NOV-17 15:30	48	52	hours	EHTR
	16	31-OCT-17 14:30	03-NOV-17 17:00	48	74	hours	EHT
Miscellaneous							
Sterols by GCMS							
	2	30-OCT-17	08-NOV-17 16:53	7	9	days	EHT
	4	31-OCT-17 09:20	08-NOV-17 16:53	7	8	days	EHT
	5	31-OCT-17 09:20	08-NOV-17 16:53	7	8	days	EHT
	7	31-OCT-17 10:30	08-NOV-17 16:53	7	8	days	EHT
	10	31-OCT-17 12:15	08-NOV-17 16:53	7	8	days	EHT
	11	31-OCT-17 12:15	08-NOV-17 16:53	7	8	days	EHT
	16	31-OCT-17 14:30	08-NOV-17 16:53	7	8	days	EHT
	17	31-OCT-17 14:30	08-NOV-17 16:53	7	8	days	EHT
	19	31-OCT-17 15:40	08-NOV-17 16:53	7	8	days	EHT

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2016641 were received on 01-NOV-17 12:50.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

CHAIN OF CUSTODY RECORDIANALYSIS REQUEST

No. 07978 ===

Separatery Name (ddestr. agolder com Tana Bernalds Golder E-mail Address 2: Colder E-mail Address 1: Inmid. YTI Anal J. (@goldoe: com Pliane_mu Short The Sta Star Oct bron 1657231 roject Number:

Report of the Check (ozoda IAI toolek) HEUR Received by: Signature coved for Lab by 20 31422) (2014) Number of Containers TO 18-18-18-18 TR-18-00 Related (over) SCN ☐ Regular (5 Days) lover OAOC Code Sample (over) Type EQUIS Facility Code: EQuIS upload: 1030 Sampled Sampled (HH:MM) 1030 2120 026 026 1/ 1215 1 72 ns Other 326 Time Quote No. (DIMIT) Date Refindushed by, Signed Method of Shapmen D 48 hr D 90 Water Oyality Sample Sample Matrix (over) Depth (E) SUBNIT elephone (604) 296-4200 Fax (604) 298-5253 Whitehrse Vancouver, British Columbia, Canada VSM 0C4 COLOR Note: Final Reports to be issued by e-mail Sa th Turnercood Times: 0.24 in Location Sample TON M 6 60 --05 100 - 06 IU M - 08 16 M -12 3 M -04 COM -10 9 D -07 10 S -1180 -03 60 2920 Vertusi Way - 62 spiech Signature. 10-Samole Control NUMBER SCN 名中のた

Date Temp ("G) Cooler opened by Shipment Condition くんとして The sensitive. Sample. Back.

YELLOW: Lab Copy Golder Copy WHITE CHAIN OF CUSTODY RECORDIANALYSIS REQUEST

No. 07979 page 2

		-	
		100	
		45.5	
		100	
	200	1000	
	Table 1	Seed.	
	200	_	
	-		
	-	1999	
	No. of		
		-	
100	mary of	100	
-	-		
	400		
	_	100	
		10	
	7		
		74	
	-	SEC.	
		200	
1	6000	-	
	STORE .	- 60	
40000	-000	200	
سعو الطالك			
	1100	•	
HEET MAIN		•	
	, 110	•	
1000	- 10		
E C Pau			
E11-40			
Telephone (1)			
-			
	-00		

F Golder	der			Project	Project Number:	0 40	6						Laboratory Name.	Same 15 D.	1.0	
- 2870 Virtual Wilm	ciares			Short Title.	1				Golder Contact	contact			Address:			13/18
OXXVVII. British Columbus, Canada VSM 0Cs ophone (604) 296-4200 Fax (504) 295-5555	umbin, Canex 200 Fex (SOM 285 S	n (8)	Golder	Golder E-mad Address	-	@golder.com		l Golder E-mail Address 2	A4 2	@golder.com	moo.re	Telephone/Fax.	8	Contact	
Office Name	Whitehorse	283			EQuit	EQUIS Facility Code:	ode:					ハチン	Analyses Required	ired		
Furnaccural tiene: Dischin Detrante: Dicone;	Dah	1	D 48 m	D 48 hr	0	72 hr C) Other		D. Regular (5 Days)	Days)	219	(31	270	gad		(0/0)	
Notes. Final Reports to be issued by e-med	Senser on or s	BATHS			Õ					nistno	122)	fere	4521		ds TAT	
Sample Coatroi Number (SCN)	Sample	S. S.	Sample Depth (m)	Sample Matrix (over)	Date Sampled (D / M / Y)	Time Sampled (HH:MM)	Sample Type (over)	QAQC Code (over)	Related SCN (over)	O lo sedmuk	HARD	12401	04) 12450/5 ⁶⁰)		DaleS) HZUR	Rem. (ov
10-640	5	To the last		4	SING	12151	1			5-7	2	>	>			
- 02	Z M		100 100	1000		(550		FOA	SO LITTLE	7	>					
- 03	30				200 100 100 100 100 100 100 100 100 100	1330				1	7					
- 04	8					1530				(1)	>					
- 05	こい					1330		10	777-02	6-7	>					
90 -	2			20		1430		E.F.		2	>	>	>			
- 07	(A)					1430				7	5	1	>			
- 08	0					1430		1		7	>	1815				
- 00	35					1540				1	>	>	2			
- 10	2					0hS1	100			2	2					
-11	0					の天				U	2					10 - 10 24 - 17
V -12	Z	III S		>	7	MOO	>			را	2	/				
ryers Syraine	3		Relinqu	Relinquished by. Sign.	Signature		Compan	2	Date	-		Time	// Received	Received by. Signature	Company	Ñ.
	20100		Method	Method of Shipment:	of Dir		Waybill No.	No.			Receiv	Received for Lab by	Skoj q	Date	Time	ne
	-		Shipped by	by:	-	The state of the s	Shipmen	Shipment Concition.	00		Temp (C)		Coaler apened by:	Date	Time	an eu

YELLOW: Lab Copy WHITE: Golder Copy

Seal Intact:

CHAIN OF CUSTODY RECORDIANALYSIS REQUEST

Laboratory Name Project Number

					Remarks (over)													Сотралу	Time
o de la companya de l	Contact			ds TAT	RUSH (59lect													Signalure	Date
	elephone/Fax	Analyses Required	מין	W7Ks	*1047								5.00					Received by Signature	0
	@golder.com	midin A	History Veneza	روز در روز در	(2450) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1													Time (pm)	Received for Lab by:
Ornaci.	200		(3)	nntaino	o chitch this contract of the	7	2 4												Recei
Color College	Golder E-mail Address 2		Regular (5 Days)	*	Related SCN (over)		01									/		Date	
	Ggolder.com	Je:			Sample QAQC Type Code (over) (over)	SS						174	The state of the s	1	1			Company	Waybill No
13		EQUIS Facility Code:	72 hr	10.:	Time Sampled (HH:MM)	001							/	/				12	
Short Little.	Golder E-mail Address 1	EQ		Quote	ole Date ix Sampled r) (D/M/Y)	310TT						/						oy: Signature	pment 1
	æ		U 48 hr		Sample Sample Depth Matrix (m) (over)	للا	->				1							Relinquished by:	Method of Shipment
	Canada V5M 0C4 Fax (604) 298-5253	Sim		e-mai	S.e.s.														
ay	Numbia, Cana -4200 Fax (Sylvin Tehning	24 hr	rts to be issue	Sample	SV	CV		/					1	Acres a le	4.0000		T	
200 - 2920 Virtual Way	Vancotiver, Bribsh Columbia, Canada V5M 0С4 Текорлояе (604), 296-4200 — Fax (604) 298-525	Office Name:	Turnaround Time: 24 hr	Note: Final Reports to be issued by e-mail	Sample Control Number (SCN)	10-0865	- 02	03	- 04	- 05	90 -	-07	- 08	60 -	- 10	-11	- 12	Sampier's Signature	Comments

YELLOW: Lab Copy

WHITE: Golder Copy

Laboratory Data Review Checklist

Completed by: Erin Adshead	
Title: Environmental Geoscientist Date: July 13, 202	18
CS Report Name: Ore Basin Drilling Investigation Report Date: July 13	3, 2018
Consultant Firm: Golder Associates Ltd.	
Laboratory Name: ALS Environmental Laboratory Report Number: L20	016641
ADEC File Number: 1526.38.004 ADEC Harzard ID:	
 1. <u>Laboratory</u> a. Did an ADEC CS approved laboratory receive and <u>perform</u> all of the submitted s ■Yes □ No □NA (Please explain.) Comments: 	ample analyses?
b. If the samples were transferred to another "network" laboratory or sub-contracted laboratory, was the laboratory performing the analyses ADEC CS approved?	l to an alternate
Samples were not transferred to another laboratory.	
 2. Chain of Custody (COC) a. COC information completed, signed, and dated (including released/received by)? ■Yes □ No □NA (Please explain.) Comments: 	
b. Correct analyses requested? ■Yes □ No □NA (Please explain.) Comments:	
Sterols results added 24 November 2017	
3. <u>Laboratory Sample Receipt Documentation</u> a. Sample/cooler temperature documented and within range at receipt (4° ± 2°C)? ■Yes □ No □NA (Please explain.) Comments:	

c. Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? Yes \ No \NA (Please explain.)	b.	. Sample preservation acceptable – acidified waters, Methanol preserved VOC so Volatile Chlorinated Solvents, etc.)?	oil (GRO, BTEX
Samples arrived in good condition and properly documented by the laboratory. d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or miss samples, etc.? Yes □ No □NA (Please explain.) Comments: e. Data quality or usability affected? (Please explain.) Comments: Data quality unaffected. Case Narrative a. Present and understandable? □ Yes □ No □NA (Please explain.) Comments: Reference information included for data qualifiers, and Quality Control Report. This is considustificated for QAQC purposes. b. Discrepancies, errors or QC failures identified by the lab? ■ Yes □ No □NA (Please explain.) Comments: 1) The detection limit was raised for select PAH parameters as a results of chromatographic interference due to co-elution. 2) Coliform Fecal and total parameters were received outside of the laboratory holding times to one sample (7979-06). 3) Several laboratory duplicate samples were outside the ALS data quality objectives (DQO) at to sample heterogeneity for metals and select PAH (Hg. Sb, As, Pb, Mo, Sn, U, benz (a) anthracene, dibenz (a,h) anthracene, fluoranthene and fluorine. c. Were all corrective actions documented? ■ Yes □ No □ NA (Please explain.) Comments: Yes, detection limit was raised due to co-elution. d. What is the effect on data quality/usability according to the case narrative?			
Samples arrived in good condition and properly documented by the laboratory. d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or miss samples, etc.? Yes □ No □NA (Please explain.) Comments: e. Data quality or usability affected? (Please explain.) Comments: Data quality unaffected. Case Narrative a. Present and understandable? □ Yes □ No □NA (Please explain.) Comments: Reference information included for data qualifiers, and Quality Control Report. This is considustificated for QAQC purposes. b. Discrepancies, errors or QC failures identified by the lab? ■ Yes □ No □NA (Please explain.) Comments: 1) The detection limit was raised for select PAH parameters as a results of chromatographic interference due to co-elution. 2) Coliform Fecal and total parameters were received outside of the laboratory holding times to one sample (7979-06). 3) Several laboratory duplicate samples were outside the ALS data quality objectives (DQO) at to sample heterogeneity for metals and select PAH (Hg. Sb, As, Pb, Mo, Sn, U, benz (a) anthracene, dibenz (a,h) anthracene, fluoranthene and fluorine. c. Were all corrective actions documented? ■ Yes □ No □ NA (Please explain.) Comments: Yes, detection limit was raised due to co-elution. d. What is the effect on data quality/usability according to the case narrative?			
d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or miss samples, etc.? Yes No NA (Please explain.) Comments: Data quality or usability affected? (Please explain.) Comments: Data quality unaffected. Case Narrative	c.		OC vials)?
containers/preservation, sample temperature outside of acceptable range, insufficient or miss samples, etc.? Yes No NA (Please explain.) Comments: Data quality or usability affected? (Please explain.)	S	Samples arrived in good condition and properly documented by the laboratory.	
e. Data quality or usability affected? (Please explain.) Comments: Data quality unaffected. Lase Narrative a. Present and understandable? LYes No No Na (Please explain.) Reference information included for data qualifiers, and Quality Control Report. This is consident for QAQC purposes. b. Discrepancies, errors or QC failures identified by the lab? LYes No Na (Please explain.) Comments: 1) The detection limit was raised for select PAH parameters as a results of chromatographic interference due to co-elution. 2) Coliform Fecal and total parameters were received outside of the laboratory holding times to one sample (7979-06). 3) Several laboratory duplicate samples were outside the ALS data quality objectives (DQO) of to sample heterogeneity for metals and select PAH (Hg, Sb, As, Pb, Mo, Sn, U, benz (a) anthracene, dibenz (a,h) anthracene, fluoranthene and fluorine. c. Were all corrective actions documented? LYes No NA (Please explain.) Comments: Yes, detection limit was raised due to co-elution. d. What is the effect on data quality/usability according to the case narrative?	d.	containers/preservation, sample temperature outside of acceptable range, insuff samples, etc.?	
Data quality unaffected. Case Narrative a. Present and understandable? □Yes ■ No □NA (Please explain.) Comments: Reference information included for data qualifiers, and Quality Control Report. This is consident for QAQC purposes. b. Discrepancies, errors or QC failures identified by the lab? ■Yes □ No □NA (Please explain.) Comments: 1) The detection limit was raised for select PAH parameters as a results of chromatographic interference due to co-elution. 2) Coliform Fecal and total parameters were received outside of the laboratory holding times to one sample (7979-06). 3) Several laboratory duplicate samples were outside the ALS data quality objectives (DQO) to sample heterogeneity for metals and select PAH (Hg, Sb, As, Pb, Mo, Sn, U, benz (a) anthracene, dibenz (a,h) anthracene, fluoranthene and fluorine. c. Were all corrective actions documented? ■Yes □ No □NA (Please explain.) Comments: Yes, detection limit was raised due to co-elution. d. What is the effect on data quality/usability according to the case narrative?		■Yes □ No □NA (Please explain.) Comments:	
Comments: Data quality unaffected. Pase Narrative a. Present and understandable? □ Yes □ No □ NA (Please explain.) Comments: Reference information included for data qualifiers, and Quality Control Report. This is consident for QAQC purposes. b. Discrepancies, errors or QC failures identified by the lab? ■ Yes □ No □ NA (Please explain.) Comments: 1) The detection limit was raised for select PAH parameters as a results of chromatographic interference due to co-elution. 2) Coliform Fecal and total parameters were received outside of the laboratory holding times to one sample (7979-06). 3) Several laboratory duplicate samples were outside the ALS data quality objectives (DQO) to sample heterogeneity for metals and select PAH (Hg, Sb, As, Pb, Mo, Sn, U, benz (a) anthracene, dibenz (a,h) anthracene, fluoranthene and fluorine. c. Were all corrective actions documented? ■ Yes □ No □ NA (Please explain.) Comments: Yes, detection limit was raised due to co-elution. d. What is the effect on data quality/usability according to the case narrative?			
Data quality unaffected. ase Narrative a. Present and understandable? □Yes □No □NA (Please explain.) Comments: Reference information included for data qualifiers, and Quality Control Report. This is considerable for QAQC purposes. b. Discrepancies, errors or QC failures identified by the lab? ■Yes □No □NA (Please explain.) Comments: 1) The detection limit was raised for select PAH parameters as a results of chromatographic interference due to co-elution. 2) Coliform Fecal and total parameters were received outside of the laboratory holding times to one sample (7979-06). 3) Several aboratory duplicate samples were outside the ALS data quality objectives (DQO) to sample heterogeneity for metals and select PAH (Hg, Sb, As, Pb, Mo, Sn, U, benz (a) anthracene, dibenz (a,h) anthracene, fluoranthene and fluorine. c. Were all corrective actions documented? ■Yes □ No □NA (Please explain.) Comments: Yes, detection limit was raised due to co-elution. d. What is the effect on data quality/usability according to the case narrative?	e.		
a. Present and understandable? Yes No NA (Please explain.) Comments: Reference information included for data qualifiers, and Quality Control Report. This is consident for QAQC purposes. Discrepancies, errors or QC failures identified by the lab? Yes No NA (Please explain.) Comments: 1) The detection limit was raised for select PAH parameters as a results of chromatographic interference due to co-elution. 2) Coliform Fecal and total parameters were received outside of the laboratory holding times to one sample (7979-06). 3) Several laboratory duplicate samples were outside the ALS data quality objectives (DQO) of to sample heterogeneity for metals and select PAH (Hg, Sb, As, Pb, Mo, Sn, U, benz (a) anthracene, dibenz (a,h) anthracene, fluoranthene and fluorine. Yes No NA (Please explain.) Comments: Yes, detection limit was raised due to co-elution. d. What is the effect on data quality/usability according to the case narrative?	<u>r</u>		
 a. Present and understandable?	Da	Data quality unaffected.	
b. Discrepancies, errors or QC failures identified by the lab? Yes No NA (Please explain.) Comments: 1) The detection limit was raised for select PAH parameters as a results of chromatographic interference due to co-elution. 2) Coliform Fecal and total parameters were received outside of the laboratory holding times to one sample (7979-06). 3) Several laboratory duplicate samples were outside the ALS data quality objectives (DQO) to sample heterogeneity for metals and select PAH (Hg, Sb, As, Pb, Mo, Sn, U, benz (a) anthracene, dibenz (a,h) anthracene, fluoranthene and fluorine. c. Were all corrective actions documented? Yes, detection limit was raised due to co-elution. d. What is the effect on data quality/usability according to the case narrative?	R	□ Yes □ No □NA (Please explain.) Comments: Reference information included for data qualifiers, and Quality Control Report.	This is consider
Tes □ No □ NA (Please explain.) Comments: 1) The detection limit was raised for select PAH parameters as a results of chromatographic interference due to co-elution. 2) Coliform Fecal and total parameters were received outside of the laboratory holding times to one sample (7979-06). 3) Several laboratory duplicate samples were outside the ALS data quality objectives (DQO) to sample heterogeneity for metals and select PAH (Hg, Sb, As, Pb, Mo, Sn, U, benz (a) anthracene, dibenz (a,h) anthracene, fluoranthene and fluorine. c. Were all corrective actions documented? Tes □ No □ NA (Please explain.) Comments: Yes, detection limit was raised due to co-elution. d. What is the effect on data quality/usability according to the case narrative?	su	sufficient for QAQC purposes.	
 The detection limit was raised for select PAH parameters as a results of chromatographic interference due to co-elution. Coliform Fecal and total parameters were received outside of the laboratory holding times to one sample (7979-06). Several laboratory duplicate samples were outside the ALS data quality objectives (DQO) of to sample heterogeneity for metals and select PAH (Hg, Sb, As, Pb, Mo, Sn, U, benz (a) anthracene, dibenz (a,h) anthracene, fluoranthene and fluorine. Were all corrective actions documented? Yes No NA (Please explain.) Comments: Yes, detection limit was raised due to co-elution. What is the effect on data quality/usability according to the case narrative? 	b.		
interference due to co-elution. 2) Coliform Fecal and total parameters were received outside of the laboratory holding times to one sample (7979-06). 3) Several laboratory duplicate samples were outside the ALS data quality objectives (DQO) of to sample heterogeneity for metals and select PAH (Hg, Sb, As, Pb, Mo, Sn, U, benz (a) anthracene, dibenz (a,h) anthracene, fluoranthene and fluorine. c. Were all corrective actions documented? ■Yes □ No □NA (Please explain.) Comments: Yes, detection limit was raised due to co-elution. d. What is the effect on data quality/usability according to the case narrative?		Tes and the comments.	
 2) Coliform Fecal and total parameters were received outside of the laboratory holding times to one sample (7979-06). 3) Several laboratory duplicate samples were outside the ALS data quality objectives (DQO) of to sample heterogeneity for metals and select PAH (Hg, Sb, As, Pb, Mo, Sn, U, benz (a) anthracene, dibenz (a,h) anthracene, fluoranthene and fluorine. c. Were all corrective actions documented? Yes, detection limit was raised due to co-elution. Yes, detection limit was raised due to co-elution. d. What is the effect on data quality/usability according to the case narrative? 	1)	·	atographic
 3) Several laboratory duplicate samples were outside the ALS data quality objectives (DQO) of to sample heterogeneity for metals and select PAH (Hg, Sb, As, Pb, Mo, Sn, U, benz (a) anthracene, dibenz (a,h) anthracene, fluoranthene and fluorine. c. Were all corrective actions documented? Yes □ No □NA (Please explain.) Comments: Yes, detection limit was raised due to co-elution. d. What is the effect on data quality/usability according to the case narrative? 	2)	2) Coliform Fecal and total parameters were received outside of the laboratory ho	olding times for
c. Were all corrective actions documented? ■Yes □ No □NA (Please explain.) Comments: Yes, detection limit was raised due to co-elution. d. What is the effect on data quality/usability according to the case narrative?	3)	3) Several laboratory duplicate samples were outside the ALS data quality object to sample heterogeneity for metals and select PAH (Hg, Sb, As, Pb, Mo, Sn, U	/
Yes, detection limit was raised due to co-elution. d. What is the effect on data quality/usability according to the case narrative?		, , , , , , , , , , , , , , , , , , , ,	
d. What is the effect on data quality/usability according to the case narrative?	c.	_	
is someidened weekle for the grown sees of this generat		Yes, detection limit was raised due to co-elution.	
is considered usable for the nurnoses of this report	d.	. What is the effect on data quality/usability according to the case narrative?	
A A CHIMIUCIUAL UMADIC TUL UIC DUHDUMCA CHIMINA INDUNIA	is can	ansidered usable for the purposes of this report.	1/10

Comments: 5. Samples Results a. Correct analyses performed/reported as requested on COC? \square Yes \square No \square NA (Please explain.) Comments: b. All applicable holding times met? \square **Yes** \square No \square NA (Please explain.) Comments: Hold times were exceeded for fecal coliforms and total coliforms for two samples, and for sterols analysis of 9 samples. Hold time were only marginally exceeded, in the case of coliforms the hold times were exceeded by 4 hrs and 26 hours respectively. In the case of Sterols analysis exceeded hold times by 1 to 2 days. c. All soils reported on a dry weight basis? \square Yes \square No \square NA (Please explain.) Comments: d. Are the reported PQLs less than the Cleanup Level or the minimum required detection level for the project? \square Yes \square No \square NA (Please explain.) Comments: yes e. Data quality or usability affected? Comments: Practical Quantitation Limit (PQL)/ Method Reporting Limit (MRL) sufficient for assessment. 6. QC Samples a. Method Blank i. One method blank reported per matrix, analysis and 20 samples? \square Yes \square No \square NA (Please explain.) Comments: ii. All method blank results less than PQL? \square Yes \square No \square NA (Please explain.) Comments:

iii. If above PQL, what samples are affected?

All method blank results were non-detect (ND) by the laboratory.

Comments:

iv. Do the affected sample(s) have data flags and if \Box Yes \Box No \blacksquare NA (Please explain.)	f so, are the data flags clearly defined? Comments:
No samples affected.	
v. Data quality or usability affected? (Please expl	ain.) Comments:
Data quality not affected.	
b. Laboratory Control Sample/Duplicate (LCS/LCSD)	
 i. Organics – One LCS/LCSD reported per matrix required per AK methods, LCS required per SV 	V846)
Yes \square No \square NA (Please explain.)	Comments:
LCS/LCSD reported as per AK methods for org	ganics, all results met acceptable criteria.
	-
 ii. Metals/Inorganics – one LCS and one sample d samples? ■Yes □ No □NA (Please explain.) 	uplicate reported per matrix, analysis and 20 Comments:
Tes I no Ina (Flease explain.)	Comments.
iii. Accuracy – All percent recoveries (%R) reported And project specified DQOs, if applicable. (AK AK102 75%-125%, AK103 60%-120%; all oth ■Yes □ No □NA (Please explain.)	X Petroleum methods: AK101 60%-120%,
 iv. Precision – All relative percent differences (RP laboratory limits? And project specified DQOs, LCS/LCSD, MS/MSD, and or sample/sample d other analyses see the laboratory QC pages) ■Yes □ No □NA (Please explain.) 	if applicable. RPD reported from
4) RPDs for MS/MSD were greater than laboratory DQC (a) anthracene, dibenz (a,h) anthracene, fluoranthene a	. •
v. If %R or RPD is outside of acceptable limits, w	chat samples are affected? Comments:
L2016641-1, L2016641-3 through -6; L20166414-8 thro	ough -23

	vi. Do the affected sample(s) have data flags? If so ■Yes □ No □NA (Please explain.)	o, are the data flags clearly defined? Comments:
	vii. Data quality or usability affected? (Use comme	ent box to explain.) Comments:
Data	quality not affected. Indication of sample heterogen	eity
c. Su	urrogates – Organics Only	
	i. Are surrogate recoveries reported for organic a ☐ Yes ☐ No ☐ NA (Please explain.)	nalyses – field, QC and laboratory samples? Comments:
	 ii. Accuracy – All percent recoveries (%R) reported And project specified DQOs, if applicable. (AF analyses see the laboratory report pages) ■Yes □ No □NA (Please explain.) 	•
	 iii. Do the sample results with failed surrogate reconflags clearly defined? □Yes □ No □NA (Please explain.) 	overies have data flags? If so, are the data Comments:
Surr	rogate recoveries met acceptable criteria by laborator	y.
	iv. Data quality or usability affected? (Use the con	nment box to explain.) Comments:
	Data quality not affected.	
d. Tr <u>Sc</u>	rip blank – Volatile analyses only (GRO, BTEX, Vol oil	atile Chlorinated Solvents, etc.): Water and
	 i. One trip blank reported per matrix, analysis and (If not, enter explanation below.) □Yes □ No □NA (Please explain.) 	d for each cooler containing volatile samples? Comments:

ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COC? (If not, a comment explaining why must be entered below)

□ Yes □ No □NA (Please exp	plain.) Comments:
No trip blank collected	
iii. All results less than PQL? □ Yes □ No ■NA (Please exp	plain.) Comments:
iv. If above PQL, what samples	are affected? Comments:
v. Data quality or usability affe	ccted? (Please explain.) Comments:
Volatiles not analyzed therefore not coresults.	onsidered to have a significant effect on the quality of
e. Field Duplicate	
i. One field duplicate submitted ■Yes □ No □NA (Please exp	d per matrix, analysis and 10 project samples? lain.) Comments:
ii. Submitted blind to lab? ☐ Yes ☐ No ☐NA (Please exp	plain.) Comments:
iii. Precision – All relative perce (Recommended: 30% water,	ent differences (RPD) less than specified DQOs? 50% soil)
RPD (%) = Absolute value o	of: $\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$
Where $R_1 = Sample Con$ $R_2 = Field Duplic$ $\square Yes $	cate Concentration
	es outside Golder DQOs, RPDs above 20%: This is eity and reflective of the composite method of sample
iv. Data quality or usability affe	ected? (Use the comment box to explain why or why not.)
These results will affect the interpretat	ion of the data set.

f. Decontamination or Equipment Blank (If not used explain why). \square **Yes** \square No \square NA (Please explain.) Comments: Given the nature of the sampling program (composite samples from split spoons) and equipment blank was not collected. Drill spoons were decontaminated prior to sample collection. i. All results less than PQL? \square **Yes** \square No \square NA (Please explain.) Comments: ii. If above PQL, what samples are affected? Comments: iii. Data quality or usability affected? (Please explain.) Comments: 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.) a. Defined and appropriate? \Box **Yes** \Box No \Box NA (Please explain.) Comments:

Comments:

golder.com

SKAGWAY ORE BASIN RISK ASSESSMENT

APPENDIX E

Supplemental Information for Risk Assessment

GOLDER ASSOCIATES LTD.

ATTN: Vance Mercer

203, 170 Titanium Way Whitehorse YT Y1A 0G1

Date Received: 26-JUL-17

Report Date: 01-SEP-17 12:48 (MT)

Version: FINAL

Client Phone: 867-334-7423

Certificate of Analysis

Lab Work Order #: L1964789

Project P.O. #: NOT SUBMITTED

Job Reference: 1657231 C of C Numbers: 07908

Legal Site Desc:

ambu Springer

Amber Springer, B.Sc Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L1964789 CONTD....

PAGE 2 of 4 01-SEP-17 12:48 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1964789-1 SE 04-MAY-17 07908-01	L1964789-2 SE 29-APR-17 07908-02	L1964789-3 SE 02-MAY-17 07908-03	L1964789-4 SE 26-APR-17 07908-04	L1964789-5 SE 25-APR-17 07908-05
Grouping	Analyte						
SOIL							
Physical Tests	Moisture (%)		24.8	45.6	34.6	20.2	23.0
Miscellaneous	Coprostanol (mg/kg)		0.355	0.216	0.270	<0.050	0.075
1							

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1964789 CONTD....

PAGE 3 of 4 01-SEP-17 12:48 (MT)

Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L1964789-6 SE 04-MAY-17 07908-06	L1964789-7 SE 30-APR-17 07908-07	L1964789-8 SE 01-MAY-17 07908-08	L1964789-9 SE 02-MAY-17 07908-09	L1964789-10 SE 05-MAY-17 07908-10
Grouping	Analyte						
SOIL							
Physical Tests	Moisture (%)		16.5	19.6	46.7	21.9	14.9
Miscellaneous	Coprostanol (mg/kg)		<0.050	<0.050	<0.10	<0.050	<0.050

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

L1964789 CONTD....

PAGE 4 of 4

01-SEP-17 12:48 (MT)

Version: FINAL

Qualifiers for Individual Parameters Listed:

 Qualifier
 Description

 DLCI
 Detection Limit Raised: Chromatographic Interference due to co-elution.

Test Method References:

ALS Test Code Matrix Test Description Method Reference**

MOISTURE-VA Soil Moisture content CWS for PHC in Soil - Tier 1

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

STEROLS-SOX-MS-VA Soil Sterols by GCMS EPA 3570 & 8270 / J. OF CHROM. 1108

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

 Laboratory Definition Code
 Laboratory Location

 VA
 ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

07908

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L1964789

Report Date: 01-SEP-17

Page 1 of 3

Client:

GOLDER ASSOCIATES LTD.

203, 170 Titanium Way

Whitehorse YT Y1A 0G1

Contact: Vance Mercer

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MOISTURE-VA		Soil							
Batch R3 WG2582197-2 Moisture	786288 LCS			99.7		%		90-110	31-JUL-17
WG2582197-6 Moisture	LCS			99.6		%		90-110	31-JUL-17
WG2582197-1 Moisture	MB			<0.25		%		0.25	31-JUL-17
WG2582197-5 Moisture	MB			<0.25		%		0.25	31-JUL-17
STEROLS-SOX-MS	S-VA	Soil							
Batch R3 WG2604838-3 Coprostanol	816846 DUP		L1964789-5 0.075	<0.050	RPD-NA	mg/kg	N/A	50	01-SEP-17
WG2604838-1 Coprostanol	MB			<0.050		mg/kg		0.05	01-SEP-17

Workorder: L1964789 Report Date: 01-SEP-17 Page 2 of 3

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1964789 Report Date: 01-SEP-17 Page 3 of 3

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifie
Physical Tests							
Moisture content							
	1	04-MAY-17	31-JUL-17 08:26	14	88	days	EHTR
	2	29-APR-17	31-JUL-17 08:26	14	93	days	EHTR
	3	02-MAY-17	31-JUL-17 08:26	14	90	days	EHTR
	4	26-APR-17	31-JUL-17 08:26	14	96	days	EHTR
	5	25-APR-17	31-JUL-17 08:26	14	97	days	EHTR
	6	04-MAY-17	31-JUL-17 08:26	14	88	days	EHTR
	7	30-APR-17	31-JUL-17 08:26	14	92	days	EHTR
	8	01-MAY-17	31-JUL-17 08:26	14	91	days	EHTR
	9	02-MAY-17	31-JUL-17 08:26	14	90	days	EHTR
	10	05-MAY-17	31-JUL-17 08:26	14	87	days	EHTR
Miscellaneous							
Sterols by GCMS							
	1	04-MAY-17	28-AUG-17 15:34	7	116	days	EHTR
	2	29-APR-17	28-AUG-17 15:34	7	121	days	EHTR
	3	02-MAY-17	28-AUG-17 15:34	7	118	days	EHTR
	4	26-APR-17	28-AUG-17 15:34	7	124	days	EHTR
	5	25-APR-17	28-AUG-17 15:34	7	125	days	EHTR
	6	04-MAY-17	28-AUG-17 15:34	7	116	days	EHTR
	7	30-APR-17	28-AUG-17 15:34	7	120	days	EHTR
	8	01-MAY-17	28-AUG-17 15:34	7	119	days	EHTR
	9	02-MAY-17	28-AUG-17 15:34	7	118	days	EHTR
	10	05-MAY-17	28-AUG-17 15:34	7	115	days	EHTR

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1964789 were received on 26-JUL-17 10:40.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Golder

Vancouver, British Columbia, Canada V5M 0C4

Telephone (604) 296-4200 Fax (604) 298-5253

200 - 2920 Virtual Way

CHAIN OF CUSTODY RECORD.

No. 07908 page 1 of 1

Short Title: 1657:731

Short Title: 1657:731

Short Title: 1657:731

Solder Contact: 1500 Address: Burnshy

Golder E-mail Address 1: Golder E-mail Address 2: Telephone/Eax: 1500 Contact: 1600 Address 2: Telephone/Eax:

		Carlo		VAN	U Mu	TOUT WE	Jiuei .coi	Diair	-mevin	Ma	wy.	Jidei , Ci	om Jeo	7. 03.	3.411	00	000	MILL LEE								
Office Name:	Vhilehe	rse			EQu EQu	IS Facility (Code:						A	nalyses R	equired											
Turnaround Time Criteria: CSR			☐ 48 hr ☐ BC W			Other	R	Regular (5 Days)	ers							above)									
Note: Final Report	rts to be issued	by e-mai			Quote No	Quote No.:				ontain	ontain	ontain	ontain	ontain	ontain	ontain	ontain	ontain	nous			4		Î	TAT abo	
Sample Control Number (SCN)	Sample Location	Sa. #	Sample Depth (m)	Sample Matrix (over)	Date Sampled (D / M / Y)	Time Sampled (HH:MM)	Sample Type (over)	QAQC Code (over)	Related SCN (over)	Number of Containers	Coprostano		W				RUSH (Select	Remarks (over)								
7908 - 01	SED-17-0]	-	1-1	SE	4 Mans	1	anb.			1	X	F														
	SED 17-13				29 APR																					
	SED-17-18		11		2MAY	1/																				
- 04	SED-17-00	9 -	121	P 128	26 APP	V	200																			
- 05	SED-17-05	5-			25 APR		27/21			li li						FI FI	1 11									
- 06	SED-17-63	-			4 MAY							7														
- 07	€D:17-11	-	1	5	BOAPR	11						13/5						MEETS,								
	SED-17-20		Λ		VANI		ML	111					1	1-1		7 15										
	SED17-24		II		2MAY		Layer 1	2:49	-5 4						ME											
	SED-17-27		11	V	SMan	1 1	V	1111		V	J			-	jej											
- 11	(Y-5)							calli.									-0									
- 12			-			-2911				F		F. T			Y=1											
Sampler's Signature: Relinquished by: 9		Signature	50	Compan	Jes .	Date	52	6	Time	30	Receive	ed by: Si	gnature	Com	pany											
Comments:			C	of Shipme	nt:	21	Waybill	No.:		<i></i>	Rec	eived for	Lab by:		Date	July	2017	Time 10:40								
		Shipped	by:			Shipmen Seal Inta	nt Condition	on:		9.	p (°C)	Cooler o	pened by:	Date			Time									

WHITE: Golder Copy

YELLOW: Lab Copy

Alex 4.9/5.7/6.1 27/07/2017 12:20

ESE

7/13/2018 1657231

Results Summary L1964789

Job Reference 1657231

Report To Vance Mercer, GOLDER ASSOCIATES LTD.

 Date Received
 26-Jul-2017 10:40

 Report Date
 1-Sep-2017 12:48

Report Version 1

Golder ID	Sample Location	Sample Date	ALS ID	Coprostanol (mg.kg)
07908-01	SED17-01	4-May-2017	L1964789-1	0.355
07908-02	SED17-13	29-Apr-2017	L1964789-2	0.216
07908-03	SED17-18	2-May-2017	L1964789-3	0.270
07908-04	SED17-06	26-Apr-2017	L1964789-4	<0.050
07908-05	SED17-05	25-Apr-2017	L1964789-5	0.075
07908-06	SED17-03	4-May-2017	L1964789-6	<0.050
07908-07	SED17-11	30-Apr-2017	L1964789-7	<0.050
07908-08	SED17-20	1-May-2017	L1964789-8	<0.10
07908-09	SED17-24	2-May-2017	L1964789-9	< 0.050
07908-10	SED17-27	5-May-2017	L1964789-10	<0.050

SPEARMAN RANK CORRELATION TABLES GENERATED FROM THE PRINCIPLE COMPONENTS ANALYSIS (PCA) OF SEDIMENT DATA

Data from the June 2017 Sampling Program

Metals

Parameter	METALSPC1	METALSPC2
Aluminum (Al)	0.865	0.428
Arsenic (As)	0.931	0.201
Barium (Ba)	0.955	0.257
Beryllium (Be)	0.894	0.259
Cadmium (Cd)	0.873	-0.217
Calcium (Ca)	0.58	0.357
Chromium (Cr)	0.913	0.353
Cobalt (Co)	0.955	0.318
Copper (Cu)	0.267	-0.8
Iron (Fe)	0.931	0.087
Lead (Pb)	0.175	-0.913
Magnesium (Mg)	0.958	0.28
Manganese (Mn)	0.974	0.103
Mercury (Hg)	0.194	-0.848
Nickel (Ni)	0.904	0.23
Potassium (K)	0.945	0.243
Silver (Ag)	0.771	-0.356
Sodium (Na)	0.907	0.381
Thallium (TI)	0.967	0.217
Vanadium (V)	0.913	0.263
Zinc (Zn)	0.509	-0.691

Notes

Significant correlations (p<0.05; n= 24; r_s = 0.406) are bold Strong correlations (p<0.001; n= 24; r_s = 0.642) are bold and gray shaded

APPENDIX E-2

Statistical Analyses

PAHs

Parameter	PAHSPC1
Anthracene	0.956
Fluorene	0.738
Phenanthrene	0.952
Benzo(a)anthracene	0.968
Benzo(a)pyrene	0.962
Benzo(b)fluoranthene	0.961
Benzo(g,h,i)perylene	0.944
Benzo(k)fluoranthene	0.963
Chrysene	0.971
Fluoranthene	0.978
Indeno(1,2,3-c,d)pyrene	0.968
Pyrene	0.977
Total benzofluoranthenes	0.964
Total LPAH	0.951
Total HPAH	0.994

Notes

Significant correlations (p<0.05; n= 24; r_s = 0.406) are bold Strong correlations (p<0.001; n= 24; r_s = 0.642) are bold and gray shaded

Conventional Parameters

Paramter	CONVPC1	CONVPC2
Ps	0.934	0.003
Toc	-0.832	-0.021
Clay	-0.81	-0.097
Silt	-0.944	0.055
Sandvery_fine	-0.169	-0.68
Sandfine	0.463	-0.772
Sandmedium	0.714	-0.306
Sandcoarse	0.877	-0.039
Sandvery_coarse	0.821	0.304
Gravelfine	0.528	0.777
Gravelmedium	0.582	0.494

Notes

Significant correlations (p<0.05; n= 24; r_s = 0.406) are bold Strong correlations (p<0.001; n= 24; r_s = 0.642) are bold and gray shaded

<u>Data from the June and October 2017 Sampling Programs Combined</u> Metals

Parameter	METALSPC1	METALSPC2
Antimony (Sb)	0.497	0.179
Arsenic (As)	0.986	-0.535
Barium (Ba)	0.781	-0.879
Beryllium (Be)	0.82	-0.809
Cadmium (Cd)	0.861	-0.238
Chromium (Cr)	0.779	-0.894
Cobalt (Co)	0.868	-0.788
Copper (Cu)	0.817	-0.257
Lead (Pb)	0.551	0.163
Mercury (Hg)	0.586	0.105
Nickel (Ni)	0.763	-0.876
Silver (Ag)	0.82	-0.173
Thallium (TI)	0.969	-0.471
Vanadium (V)	0.803	-0.853
Zinc (Zn)	0.674	0.013

Notes

Significant correlations (p<0.05; n= 50; r_s = 0.279) are bold Strong correlations (p<0.001; n= 50; r_s = 0.456) are bold and gray shaded

PAHs

Parameter	PAHSPC1
Anthracene	0.986
Phenanthrene	0.983
Benzo(a)anthracene	0.991
Benzo(a)pyrene	0.99
Benzo(b)fluoranthene	0.989
Benzo(g,h,i)perylene	0.983
Benzo(k)fluoranthene	0.989
Chrysene	0.991
Fluoranthene	0.99
Indeno(1,2,3- c,d)pyrene	0.991
Pyrene	0.983
Total benzofluoranthenes	0.9
Total LPAH	0.826
Total HPAH	0.931

Notes

Significant correlations (p<0.05; n= 50; r_s = 0.279) are bold Strong correlations (p<0.001; n= 50; r_s = 0.456) are bold and gray shaded

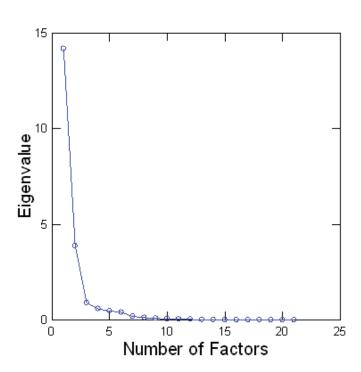
SYSTAT 13 RAW OUTPUT FROM THE PCA OF SEDIMENT DATA

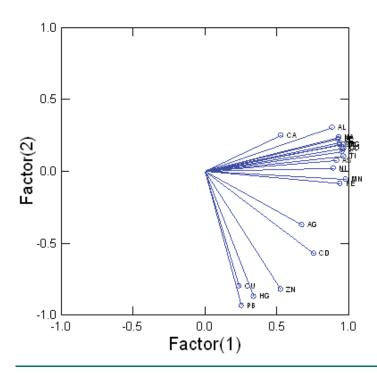
SYSTAT 13 PCA Output of Metals Data from the June 2017 Sampling Program

Ī	Latent Roots (Eigenvalues)																				
ŀ	l	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
ľ	14.170	3.875	0.899	0.586	0.472	0.410	0.185	0.125	0.090	0.055	0.048	0.033	0.020	0.010	0.008	0.006	0.004	0.002	0.001	0.000	0.000

•									
	Component Loadings								
Loud	1	2							
AL	0.885	0.303							
AS	0.916	0.074							
ВА	0.954	0.156							
BE	0.927	0.224							
CD	0.756	-0.573							
CA	0.530	0.250							
CR	0.936	0.184							
CO	0.965	0.158							
CU	0.238	-0.799							
FE	0.939	-0.086							
PB	0.254	-0.935							
MG	0.962	0.185							
MN	0.981	-0.057							
HG	0.338	-0.870							
NI	0.894	0.020							
K	0.954	0.134							
AG	0.674	-0.374							
NA	0.931	0.235							
TI	0.965	0.103							
V	0.936	0.198							
ZN	0.527	-0.822							

Variance Explained by Components						
1	2					
14.170 3.875						


Percent of Total Variance Explained						
1	2					
67.476	18.452					


July 2018

Scree Plot

Factor Loadings Plot

Dimensional Scores Generated During the PCA

Station ID	MetalsPC1	MetalsPC2	Tsquare	Prob
SED17-07	-3.269812141	-1.00949426	1.017535	0.621146
SED17-11	-4.625023192	-0.65371687	1.619887	0.472998
SED17-12	0.616094604	-4.32305933	4.849937	0.121882
SED17-13	6.768451553	-2.4848211	4.8265	0.123016
SED17-06	-3.731414995	-0.21830303	0.994908	0.627619
SED17-08	-1.267203472	-3.18867468	2.737355	0.290271
SED17-09	5.494997979	-4.37405393	7.068536	0.052453
SED17-10	-4.276646028	-0.49875306	1.354942	0.53278
SED17-14	-1.843062243	-0.77146594	0.393322	0.829842
SED17-05	-1.583294232	-0.00097385	0.176912	0.919168
SED17-17	-0.717878156	-0.0257223	0.03654	0.98269
SED17-18	1.174457939	0.026226	0.097521	0.954524
SED17-01	1.447020201	0.98202835	0.396653	0.828543
SED17-03	-5.991287294	0.70223959	2.660495	0.299979
SED17-15	-3.37516724	0.37616434	0.840459	0.673822
SED17-19	1.114388428	1.06338226	0.379469	0.835267
SED17-20	5.059886562	1.27119897	2.22386	0.362309
SED17-21	3.872980286	1.67996403	1.786945	0.43909
SED17-22	2.125296586	0.58987159	0.408564	0.823917
SED17-24	-1.870058162	1.82806987	1.109249	0.595642
SED17-27	-4.644095742	1.38893723	2.019942	0.396147
SED17-28	-0.883862548	2.05157449	1.141365	0.586984
SED17-29	4.981009992	2.76425115	3.722913	0.191993
SED17-31	5.424221312	2.82513045	4.13619	0.162169

SYSTAT 13 PCA Output of PAH Data from the June 2017 Sampling Program

Latent	atent Roots (Eigenvalues)													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
14.248	0.365	0.189	0.076	0.058	0.024	0.013	0.011	0.008	0.004	0.003	0.001	0.000	0.000	0.000

Component Loadings						
	1					
ANTHRACENE	0.975					
FLUORENE	0.945					
PHEN	0.976					
BAANTH	0.994					
BAP	0.992					
BENZBF	0.990					
BENZGHIP	0.970					
BENZKF	0.992					
CHRY	0.988					
FLUORANT	0.954					
INDENO	0.976					
PYRENE	0.986					
TBENZOFLUO	0.982					
LPAH	0.951					
HPAH	0.946					

Variance Explained by Components 14.248

Percent of Total Variance Explained 94.988

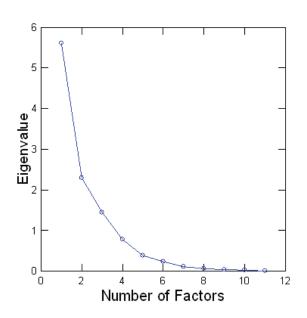
Dimensional Scores Generated During the PCA

Station ID	PAHsPC1	Tsquare	Prob	
SED17-07	-1.25603	0.110724	0.742335	
SED17-11	-1.38444	0.134519	0.717144	
SED17-12	1.50969	0.159961	0.692883	
SED17-13	10.6217	7.918216	0.009849	
SED17-06	-1.71567	0.206589	0.653715	
SED17-08	-0.61542	0.026581	0.871913	
SED17-09	10.78468	8.163068	0.008916	
SED17-10	0.10178	0.000727	0.978721	
SED17-14	0.723296	0.036717	0.849723	
SED17-05	-0.30446	0.006506	0.936411	
SED17-17	-0.04898	0.000168	0.989758	
SED17-18	2.710972	0.515809	0.479867	
SED17-01	-2.12866	0.318018	0.578259	
SED17-03	-3.18548	0.712179	0.407413	
SED17-15	-0.90708	0.057748	0.812221	
SED17-19	3.706955	0.964436	0.33629	
SED17-20	0.121724	0.00104	0.974553	
SED17-21	-2.27091	0.361942	0.553314	
SED17-22	-1.63992	0.18875	0.668008	
SED17-24	-3.2111	0.723681	0.403709	
SED17-27	-3.23452	0.734274	0.400342	
SED17-28	-3.17056	0.70552	0.409582	
SED17-29	-2.69523	0.509837	0.482393	
SED17-31	-2.51233	0.442988	0.512304	

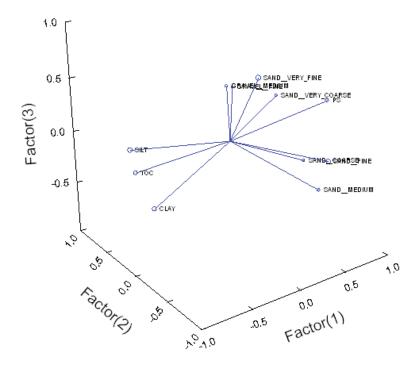
SYSTAT 13 PCA Output of Physical Parameter Data from the June 2017 Sampling Program

Laten	Latent Roots (Eigenvalues)										
1	2	3	4	5	6	7	8	9	10	11	
5.611	2.296	1.447	0.783	0.383	0.236	0.110	0.064	0.036	0.027	0.005	

Component Loadings								
	1	2	3					
PS	0.889	-0.248	0.254					
TOC	-0.816	0.231	-0.167					
CLAY	-0.797	-0.024	-0.409					
SILT	-0.967	0.046	0.145					
SANDVERY_FINE	-0.140	-0.574	0.770					
SANDFINE	0.421	-0.809	-0.011					
SAND_MEDIUM	0.735	-0.355	-0.542					
SAND_COARSE	0.860	0.004	-0.412					
SANDVERY_COARSE	0.774	0.329	0.159					
GRAVELFINE	0.581	0.759	0.164					
GRAVELMEDIUM	0.411	0.620	0.242					


Variance Explained by								
Components 1 2 3								
5.611	2.296	1.447						

Percent of Total Variance Explained							
1 2 3							
51.010 20.877 13.153							



Scree Plot

Factor Loadings Plot

Dimensional Scores Generated During the PCA

Station ID	ConvPC1	ConvPC2	ConvPC3	Tsquare	Prob
SED17-07	2.482507	2.655209	1.565873	5.863009	0.180983
SED17-11	2.994881	0.503856	0.11286	1.717851	0.671291
SED17-12	2.726145	1.263247	-0.60234	2.27015	0.567749
SED17-13	-2.71913	0.08698	-0.35622	1.40869	0.73452
SED17-06	2.815819	0.759967	0.084967	1.669551	0.680946
SED17-08	1.350455	-1.42873	-0.17487	1.235031	0.771299
SED17-09	-2.24329	-0.1879	-0.62232	1.179907	0.78311
SED17-10	2.452058	-1.81336	-1.84776	4.863199	0.248734
SED17-14	1.507032	-2.06142	-1.44979	3.70792	0.360203
SED17-05	0.176507	-2.12407	0.858489	2.479551	0.531991
SED17-17	0.214407	-1.79453	-0.12215	1.420815	0.731981
SED17-18	-1.05552	-1.05994	0.128724	0.69923	0.886391
SED17-01	-1.24706	-1.40771	0.679805	1.459474	0.723916
SED17-03	3.883884	1.556259	-1.1838	4.711555	0.261099
SED17-15	2.787668	0.261583	-1.05162	2.179104	0.583907
SED17-19	-2.74562	-0.41038	0.124633	1.427561	0.73057
SED17-20	-1.76567	3.022034	0.460788	4.679213	0.263816
SED17-21	-1.86412	0.319696	-0.65392	0.959351	0.830704
SED17-22	-2.32161	0.230373	-0.36258	1.074548	0.805805
SED17-24	-0.37699	-0.61109	0.82365	0.656819	0.89527
SED17-27	1.580844	0.851955	3.246874	8.047707	0.091897
SED17-28	-1.36765	-1.97317	2.499909	6.34814	0.155345
SED17-29	-3.63223	1.297087	-0.91211	3.658877	0.365908
SED17-31	-3.63333	2.06407	-1.24707	5.282747	0.217567

SYSTAT 13 PCA Output of Metals Data from the June and October 2017 Sampling Programs

Matı	Matrix to be Factored														
	SB	AS	BA	BE	CD	CR	CO	CU	PB	HG	NI	AG	TL	V	ZN
SB	1.000														
AS	0.959	1.000													
ВА	-0.017	0.226	1.000												
BE	0.214	0.459	0.905	1.000											
CD	0.976	0.939	-0.012	0.209	1.000										
CR	0.134	0.389	0.874	0.909	0.132	1.000									
СО	0.385	0.611	0.832	0.942	0.384	0.928	1.000								
CU	0.866	0.909	0.221	0.389	0.885	0.330	0.520	1.000							
PB	0.807	0.794	0.150	0.258	0.807	0.148	0.333	0.881	1.000						
HG	0.972	0.934	-0.024	0.197	0.999	0.122	0.374	0.882	0.800	1.000					
NI	0.149	0.395	0.818	0.863	0.146	0.971	0.915	0.328	0.138	0.136	1.000				
AG	0.999	0.965	0.019	0.244	0.975	0.162	0.411	0.881	0.825	0.970	0.175	1.000			
TL	0.993	0.975	0.062	0.299	0.962	0.220	0.471	0.866	0.784	0.957	0.235	0.993	1.000		
V	0.173	0.420	0.926	0.981	0.166	0.932	0.954	0.357	0.205	0.155	0.884	0.203	0.263	1.000	
ZN	0.815	0.821	0.214	0.321	0.833	0.217	0.398	0.891	0.983	0.826	0.213	0.833	0.795	0.264	1.000

Latent Roots (Eigenvalues)														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
9.174	4.723	0.602	0.209	0.100	0.074	0.055	0.025	0.021	0.007	0.006	0.003	0.002	0.000	0.000

Empirical Upper Bound for the First Eigenvalue: 10.796

Chi-Square Test that All Eigenvalues are Equal

N : 50.000 Chi-Square : 2,354.926 df : 105.000 p-Value : 0.000

Chi-Square Test that the Last 13 Eigenvalues are Equal

Chi-Square : 1,071.693 df : 93.071 p-Value : 0.000

July 2018

Project No. 1657231 **12/20**

APPENDIX E-2

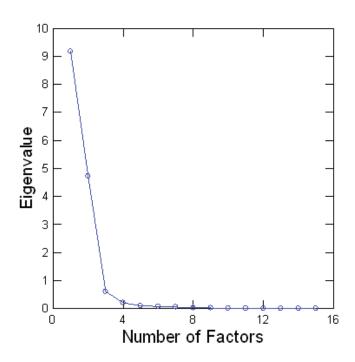
Statistical Analyses

	Vectors	
(Eigen	vectors) 1	2
SB	0.295	0.190
	0.321	0.073
	0.134	-0.392
	0.197	-0.353
	0.294	0.191
	0.173	-0.378
	0.239	-0.308
CU	0.305	0.089
	0.273	0.147
HG	0.291	0.195
NI	0.172	-0.363
AG	0.300	0.178
TL V	0.303	0.149
V	0.186	-0.371
ZN	0.285	0.120

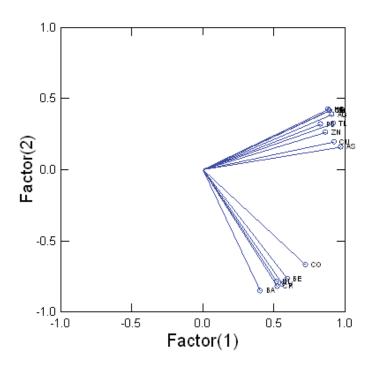
Standard I Element	Standard Error for Each Eigenvector						
Licinoni	1	2					
SB	0.041	0.063					
AS	0.017	0.068					
ВА	0.084	0.036					
BE	0.075	0.044					
CD	0.041	0.063					
CR	0.080	0.039					
CO	0.065	0.051					
CU	0.024	0.068					
PB	0.038	0.067					
HG	0.042	0.063					
NI	0.078	0.042					
AG	0.038	0.064					
TL	0.033	0.066					
V	0.078	0.041					
ZN	0.033	0.068					

Com	Component							
Load	Loadings							
	1	2						
	0.893	0.413						
AS	0.972	0.158						
ВА	0.404	-0.853						
	0.596	-0.768						
CD	0.890	0.415						
CR	0.524	-0.822						
CO	0.723	-0.670						
	0.925	0.194						
	0.828	0.319						
	0.883	0.423						
	0.521	-0.789						
AG	0.908	0.387						
AG TL	0.918	0.323						
	0.562	-0.807						
ZŃ	0.864	0.261						

Variance Explained by Components						
1 2						
9.174 4.723						


Percent of Total Variance Explained							
1 2							
61.159 31.487							

Diff	Differences: Original Minus Fitted Correlations or Covariances														
	SB	AS	BA	BE	CD	CR	CO	CU	PB	HG	NI	AG	TL	V	ZN
SB	0.033														
AS	0.026	0.029													
ВА	-0.026	-0.032	0.109												
BE	0.000	0.001	0.009	0.055											
CD	0.010	0.008	-0.019	-0.003	0.035										
CR	0.006	0.009	-0.039	-0.034	0.006	0.050									
CO	0.016	0.014	-0.032	-0.003	0.018	-0.001	0.028								
CU	-0.039	-0.021	0.012	-0.013	-0.019	0.005	-0.019	0.107							
РΒ	-0.064	-0.062	0.087	0.009	-0.063	-0.024	-0.053	0.053	0.213						
HG	0.009	0.008	-0.020	-0.004	0.038	0.007	0.019	-0.017	-0.066	0.041					
NI	0.010	0.013	-0.066	-0.053	0.009	0.050	0.010	0.000	-0.041	0.010	0.107				
AG	0.028	0.021	-0.019	0.000	0.006	0.003	0.012	-0.034	-0.051	0.005	0.007	0.026			
TL	0.040	0.031	-0.034	0.000	0.011	0.004	0.023	-0.046	-0.079	0.010	0.011	0.034	0.052		
V	0.004	0.000	0.010	0.026	0.000	-0.026	0.006	-0.007	-0.003	0.000	-0.046	0.004	0.007	0.032	
ZN	-0.064	-0.060	0.087	0.007	-0.044	-0.021	-0.052	0.042	0.184	-0.047	-0.031	-0.053	-0.082	-0.011	0.186



Scree Plot

Factor Loadings Plot

APPENDIX E-2Statistical Analyses

	Factor							
Coe	Coefficients 1 2							
SB	0.097	0.087						
AS	0.106	0.033						
ВА	0.044	-0.181						
BE	0.065	-0.163						
CD	0.097	0.088						
CR	0.057	-0.174						
CO	0.079	-0.142						
CU	0.101	0.041						
РΒ	0.090	0.067						
HG	0.096	0.090						
NI	0.057	-0.167						
AG	0.099	0.082						
TL	0.100	0.068						
V	0.061	-0.171						
ΖŃ	0.094	0.055						

Dimensional Scores Generated During the PCA

Station ID	MetalsPC1	MetalsPC2	Tsquare	Prob
SED17-07	-1.614264762	0.78787093	0.415482	0.816569
SED17-11	-1.817378336	0.97185522	0.560011	0.761294
SED17-12	-0.016179704	-0.68219635	0.098565	0.952916
SED17-13	1.870728206	-3.98578591	3.745098	0.17074
SED17-06	-1.530788563	0.406851	0.290483	0.867745
SED17-08	-0.17869628	-0.08908279	0.005161	0.997475
SED17-09	1.203632018	-2.56894939	1.555221	0.472413
SED17-10	-1.824811167	0.99345797	0.571951	0.756906
SED17-14	-0.936331066	-0.2922566	0.113652	0.945916
SED17-05	-1.174892691	-0.25456269	0.16419	0.922853
SED17-17	-0.771424202	-0.87899701	0.228458	0.894368
SED17-18	-0.075771067	-1.87319304	0.743549	0.696664
SED17-01	0.088876075	-2.64703335	1.484395	0.488578
SED17-03	-2.433475861	1.36694058	1.041133	0.603746
SED17-15	-1.548294215	0.20672809	0.27036	0.876291
SED17-19	-0.426969271	-1.68335042	0.61984	0.739567
SED17-20	0.87764874	-3.86008183	3.238763	0.215217
SED17-21	0.82116873	-3.55092979	2.743207	0.270536
SED17-22	0.031987432	-1.9848753	0.834263	0.666857

July 2018

APPENDIX E-2

Statistical Analyses

Station ID	MetalsPC1	MetalsPC2	Tsquare	Prob
SED17-24	-1.232281906	-0.78897538	0.297325	0.864859
SED17-27	-2.141880713	0.64273865	0.58755	0.751211
SED17-28	-1.116169705	-1.13101209	0.406644	0.820082
SED17-29	0.855280706	-4.09541549	3.630934	0.179854
SED17-31	1.126162199	-4.56423752	4.549023	0.11876
SED17-32S	-1.334243481	-0.08661669	0.195642	0.908797
SED17-32M	-2.373828705	1.610457	1.163389	0.569405
SED17-33S	-0.965351017	-0.39289018	0.134266	0.936437
SED17-33M	-1.253643458	1.07372198	0.415414	0.816596
SED17-34S	2.920737472	-2.0830529	1.848612	0.411157
SED17-34M	2.701502696	-0.52526402	0.853957	0.660564
SED17-34D	-2.61270263	2.26236541	1.827788	0.415219
SED17-35S	7.980432184	0.13853532	6.946377	0.041512
SED17-35M	3.000467467	3.04917409	2.949897	0.245852
SED17-35D	-2.163650465	2.24130293	1.573904	0.468242
SED17-36S	13.3012477	5.19216786	24.99363	5.06E-05
SED17-36M	4.939524605	4.38947689	6.739107	0.04538
SED17-36D	-2.395460677	2.07683083	1.538735	0.476125
SED17-37M	6.61868446	-0.42480369	4.813443	0.105518
SED17-37D	-2.74918005	2.22233353	1.869544	0.407115
SED17-38S	1.795116522	-3.4355343	2.850272	0.257443
SED17-38M	-0.524759249	-0.10239512	0.032237	0.984339
SED17-38D	-2.680701981	1.81437523	1.480337	0.489522
SED17-39S	-2.343223317	1.62959506	1.160781	0.570116
SED17-39M	-1.084103488	0.28433563	0.14523	0.931436
SED17-39D	-3.011276245	2.24950761	2.05985	0.372218
SED17-40M	-2.958374654	2.08205648	1.871854	0.406672
SED17-40D	-2.107399435	1.68161253	1.08284	0.591795
SED17-41S	-1.480165307	0.44385709	0.280533	0.87196
SED17-41M	0.783946229	0.09231305	0.068796	0.966888
SED17-41D	-0.039469771	2.0710309	0.908308	0.643514

SYSTAT 13 PCA Output of PAH Data from the June and October 2017 Sampling Programs

Latent Roots (Eigenvalues)													
1	2	3	4	5	6	7	8	9	10	11	12	13	14
13.463	0.281	0.120	0.059	0.030	0.018	0.011	0.010	0.004	0.002	0.001	0.001	0.000	0.000

Component Loadings	
, , , , , , , , , , , , , , , , , , ,	1
ANTHRACENE	0.979
Phenanthrene	0.981
Benzo(a)anthracene	0.996
Benzo(a)pyrene	0.992
Benzo(b)fluoranthene	0.993
Benzo(g,h,i)perylene	0.969
Benzo(k)fluoranthene	0.993
Chrysene	0.992
Fluoranthene	0.966
Indeno(1,2,3-c,d)pyrene	0.974
Pyrene	0.989
Total benzofluoranthenes	0.987
LPAH	0.962
HPAH	0.954

Variance Explained by Components 13.463

Percent of Total Variance Explained 96.166

Dimensional Scores Generated During the PCA

Station ID	PAHsPC1	Tsquare	Prob	
SED17-07	0.03364521	8.40808E-05	0.992734	
SED17-11	-0.11147511	0.000923009	0.975931	
SED17-12	3.05042759	0.691148948	0.411254	
SED17-13	12.3924501	11.40681944	0.001769	
SED17-06	-0.48538438	0.017499345	0.895495	
SED17-08	0.62261497	0.02879316	0.866207	
SED17-09	12.7326664	12.04173121	0.001368	
SED17-10	1.41672962	0.14908164	0.701687	
SED17-14	2.20236326	0.360270015	0.552116	

July 2018

Project No. 1657231

APPENDIX E-2

Statistical Analyses

Station ID	PAHsPC1	Tsquare	Prob
SED17-05	1.09504436	0.089066346	0.767083
SED17-17	1.33324101	0.132028454	0.718463
SED17-18	4.19400083	1.306493446	0.260575
SED17-01	-0.95712787	0.068044047	0.795693
SED17-03	-2.1192664	0.333596371	0.567144
SED17-15	0.38174057	0.010823977	0.917716
SED17-19	5.34501948	2.122016686	0.153863
SED17-20	1.30744821	0.126969438	0.723675
SED17-21	-1.15843065	0.099675929	0.754042
SED17-22	-0.41991867	0.013097264	0.909522
SED17-24	-2.15000173	0.34334271	0.561562
SED17-27	-2.17060259	0.349953904	0.557836
SED17-28	-2.11413556	0.33198302	0.568079
SED17-29	-1.63182674	0.197787255	0.659175
SED17-31	-1.4422136	0.154493204	0.696596
SED17-32S	-2.48985038	0.460465092	0.501746
SED17-32M			
SED17-33S	-2.48419085	0.458374158	0.502712
SED17-33M			
SED17-34S	-2.34110293	0.407090745	0.527488
SED17-34M	-2.1273959	0.336160627	0.565665
SED17-34D			
SED17-35S			
SED17-35M			
SED17-35D			
SED17-36S	-2.32186741	0.400428558	0.530867
SED17-36M	-2.37460453	0.41882519	0.521629
SED17-36D			
SED17-37M	-2.39155571	0.424826124	0.518679
SED17-37D			
SED17-38S	-2.41413973	0.432887473	0.514761
SED17-38M	-2.43230736	0.439427386	0.511621
SED17-38D			
SED17-39S	-2.4965053	0.462929861	0.500611
SED17-39M			

July 2018

APPENDIX E-2

Statistical Analyses

Station ID	PAHsPC1	Tsquare	Prob
SED17-39D			
SED17-40M	-2.49973771	0.464129417	0.50006
SED17-40D			
SED17-41S	-2.48335698	0.458066485	0.502855
SED17-41M	-2.49039346	0.460665983	0.501653
SED17-41D			

^{. =} a PAH sample was not analysed and so no dimensional scores could be generated

Toxicity Identification Evaluation for Sediment Porewaters SED17-09 and SED17-13

Final Report

January 12, 2018

Submitted to: **Golder Associates Ltd.**Burnaby, BC

TABLE OF CONTENTS

			Page
Sign	ature	Page	iii
1.0	Intro	oduction	1
2.0	Met	hods	2
	2.1	Porewater generation	2
	2.2	Testing methods	2
	2.3	TIE procedures	3
	2.4	Ammonia and copper tests	3
	2.5	Analytical chemistry	4
3.0	Resi	ults	6
4.0	Disc	ussion	11
5.0	QA/	QC	13
6.0	Refe	erences	.14

List of Tables

Table 1.	Results: Whole sediment test results for SED17-09 and SED17-13
Table 2.	Summary of TIE test conditions: 96-h echinoderm (S. purpuratus) larval survival
	and development
Table 3.	S. purpuratus larval development: combined proportion normal in SED17-09 and
	SED17-13 undiluted porewater and TIE treatments (Round 1: May 26, 2017)
Table 4.	S. purpuratus larval development: combined proportion normal in SED17-09,
	SED17-13 and SED17-22 porewater and TIE treatment dilution series (Round 2:
	July 7, 2017)
Table 5.	Results: 96-h echinoderm (S. purpuratus) larval survival and development test
	with ammonia (July 7, 2017)
Table 6.	Dissolved trace metal concentrations of porewaters and treatments
Table 7.	Total and unionized ammonia concentrations (as N)10
Table 8.	Reference toxicant test results.

List of Appendices

APPENDIX A – Strongylocentrotus purpuratus Toxicity Test Data

APPENDIX B - Analytical Chemistry

APPENDIX C – Chain-of-Custody Form

SIGNATURE PAGE

Report By:

Josh Baker, M.Sc., P.Chem.

Josh Baker

Environmental Chemist

Reviewed By:

Howard Bailey, Ph.D., R.P.Bio.

Harried C. Gailey

Environmental Toxicologist

This report has been prepared by Nautilus Environmental Company Inc. based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party. The results presented here relate only to the sample tested.

1.0 INTRODUCTION

Whole sediment samples were collected between April 26 and May 5, 2017, and delivered to the Nautilus Environmental laboratory in Burnaby, BC on May 15, 2017. Whole sediment toxicity tests were performed on these samples, including: 96-h echinoderm (*Strongylocentrotus purpuratus*) larval survival and development, 10-d marine amphipod (*Eohaustorius estuarius*) survival and 20-d marine polychaete (*Neanthes arenaceodentata*) survival and growth. Porewaters were also generated from two of the whole sediment samples, using methods described below, and a Toxicity Identification Evaluation (TIE) was conducted on these porewaters using the 96-h echinoderm (*Strongylocentrotus purpuratus*) larval survival and development water-only test.

The samples explored in the TIE, SED17-09 and SED17-13, were observed to cause reduced survival of *Eohaustaurius estuarius* and development of *Strongylocentrotus purpuratus* in the baseline whole sediment testing (Table 1). The porewater TIE was performed to elucidate the cause of this reduced performance.

Table 1. Results: Whole sediment test results for SED17-09 and SED17-13.

Sample ID	10-d <i>N.</i> arenaceodentata survival (%) (Mean ± SD)	10-d <i>E. estuarius</i> survival (Mean ± SD)	S. purpuratus Combined Proportion Normal (%) (Mean ± SD)		
Control Seawater	96.0 ± 8.9	97.0 ± 4.5	71.6 ± 3.7		
SED17-09	92.0 ± 11.0	35.0 ± 7.9	2.6 ± 3.2		
SED17-13	100.0 ± 0.0	40.0 ± 12.8	0.1 ± 0.2		

SD = Standard Deviation

TIE procedures involve physico-chemical manipulations of the sample, followed by toxicity tests on the treated and untreated samples, to provide information on the type of contaminant responsible for toxicity. Each of the treatments alters the toxicity of a subset of contaminants; thus, a change in toxicity as a result of the treatment provides an indication of the identity of the toxicant. General procedures are provided in USEPA guidance documents (USEPA 1991, and 1992a and b).

Constituents of concern, per communication with Golder Associates, were specified as divalent trace metals, PAHs and ammonia. Therefore, treatments targeting these constituents were incorporated into the evaluation to obtain information on their role in toxicity. This report presents the TIE treatments of the porewaters, the toxicity test methods and results, and an interpretation of the test results.

2.0 METHODS

The initial TIE testing on the undiluted SED17-09 and SED17-13 porewaters and TIE treatments of these porewaters were performed concurrent with the whole sediment testing on May 26, 2017 (Round 1). Porewaters were generated again for the SED17-09 and SED17-13 samples for a follow-up round of TIE testing on July 7, 2017 (Round 2). An additional porewater sample, SED17-22, was added to this round.

2.1 Porewater generation

The whole sediment samples were each transported in two 4-L plastic containers and received at temperatures ranging from 4.0 to 8.5° C. The samples were stored in the dark at $4 \pm 2^{\circ}$ C prior to and after testing was performed. Nitrogen gas was used to fill the headspace of containers after sediment/porewater was removed.

Upon opening of the 4-L plastic container, porewater extracted from sediment was centrifuged at 2500 rpm for 20 minutes, followed by the supernatant being decanted and collected for testing. Porewater was generated the day before testing, water quality (pH, salinity and DO) measured to ensure that the sample was appropriate for the test method and then stored at $4\pm2^{\circ}$ C overnight for TIE treatments and toxicity testing the following day. The first 4-L container (1of2) was used in Round 1 testing while a new container (2of2) was opened for Round 2 testing.

2.2 Testing methods

Methods for the toxicity tests are summarized in Table 2. The original whole sediment testing with *S. purpuratus* was conducted according to procedures described by the Puget Sound Estuary Program (PSEP, 1995). TIE porewater tests were performed in a similar manner, except that no sediment was added to the test solutions (U.S. EPA 1995, Section 15). In addition, the porewater test was extended from 72 hours (US EPA, 1995) to 96 hours to match the test

duration of the whole sediment test (PSEP, 1995). Water quality was performed only at test initiation, and not at termination, due to limited porewater volume. In addition, due to the limited volume, test replication was reduced from four to three.

Statistical analyses for the tests were performed using CETIS (Tidepool Scientific Software, 2013). Combined proportion normal (%) was the most sensitive endpoint for the baseline tests and, therefore, was used for comparison in TIE treatments of the porewater test. Test datasheets and statistical printouts can be found in Appendix A.

2.3 TIE procedures

The following TIE treatments were performed on the undiluted porewater samples the day of testing in both Round 1 and 2.

EDTA chelation: EDTA is a chelating agent that binds to metal cations, such as copper, cadmium and zinc, and reduces their bioavailability. Thus, a reduction in toxicity following treatment with EDTA indicates that a metal that can be chelated with EDTA contributed to toxicity. The porewater samples were treated with two concentrations of EDTA (i.e., 20 mg/L and 100 mg/L) during Round 1, and with 100 mg/L only during Round 2. The porewater samples were allowed to equilibrate for 2 hours after EDTA addition and any alteration in sample pH was re-adjusted with 1M NaOH. EDTA control(s) were prepared by adding EDTA, at the same concentration(s), to natural seawater.

C18 filtration: This treatment is used to remove non-polar organic toxicants from the sample by sorption to the column substrate. The sample was pumped through a 6 mL J.T. Baker C18 SPE column (Sigma-Aldrich, Oakville, ON) at 10 mL/min. Removal of toxicity by C18 filtration would indicate organic toxicants were likely present in the sample. A C18 control was prepared by filtering natural seawater through a C18 column in the same manner as the samples.

2.4 Ammonia and copper tests

S. purpuratus survival and development was tested in natural seawater solutions spiked with ammonium chloride, added using an analytically-confirmed stock solution (1,000 mg/L as N) to produce nominal total ammonia concentrations of 0, 1.6, 3.1, 6.2, 12.5 and 25 mg/L (as N). Toxicity of ammonia is directly related to the unionized form of the compound and therefore conversions from total ammonia to unionized ammonia were performed. Copper chloride was

added into natural seawater in a similar manner, using an analytically-confirmed stock solution (10 mg/L as Cu) to produce nominal concentrations of 0, 2.5, 5, 10, 20 and 40 μ g/L (as Cu). The results from these spiked seawater solutions were used to compare against the concentrations in the porewater samples to determine the likelihood of effects from ammonia and copper on *S. purpuratus* survival and development in the porewaters, respectively.

2.5 Analytical chemistry

Ammonia analysis was performed on the porewaters using an in-house colorimetric method measured on a HACH spectrophotometer. Ammonia measurements were not initially conducted on the porewaters during Round 1 testing, but a subsample of porewater from the same 4-L container was used to determine an ammonia concentration two weeks after Round 1 testing. Ammonia was measured on the porewaters during Round 2 testing.

Porewaters in Round 2 were filtered through 0.45µm syringe-filters, preserved with nitric acid and sent to Brooks Applied Laboratories (Bothell, WA, USA) for analysis of dissolved Cu, Pb and Zn by ICP-QQQ-MS. Similarly, porewaters were filtered through 0.45µm syringe-filters and sent to Brooks Applied Labs for dissolved Hg by EPA Method 1631E. The Brooks Applied Labs report can be found in Appendix B.

Table 2. Summary of TIE test conditions: 96-h echinoderm (*S. purpuratus*) larval survival and development.

Test species Strongylocentrotus purpuratus

Organism source Nautilus Environmental, San Diego, CA

Organism age <2-h post-fertilization

Test type Static
Test duration 96 hours

Test vessel 30-mL glass vials

Test volume of overlying water 10 mL

Test replicates 3 per sample

Number of organisms Approximately 200 embryos per replicate

Control/dilution water Natural seawater

Test solution renewal None
Test temperature $15 \pm 1^{\circ}$ C
Feeding None

Light intensity Ambient laboratory lighting
Photoperiod 16 hours light / 8 hours dark

Aeration None

Test measurements

Temperature, dissolved oxygen, pH and salinity measured at

test initiation

Test protocol PSEP (1995)/ U.S. EPA (1995)

Statistical software CETIS Version 1.8.7

Test endpoints Survival, proportion normal, combined proportion normal

Test acceptability criteria for controls ≥70% combined proportion normal

Reference toxicant Copper (added as CuCl₂)

3.0 RESULTS

Copies of laboratory data sheets and printouts of statistical analyses for the *S. purpuratus* test are provided in Appendix A. Analytical chemistry is provided in Appendix B and the chain-of-custody form is provided in Appendix C.

Results of the Round 1 TIE tests conducted on undiluted SED17-09 and SED17-13 porewater, concurrently with whole sediment tests on May 26, 2017, are displayed in Table 3. Adverse effects on development and survival of the echinoderms in the undiluted and untreated porewaters were observed. The combined proportion normal (i.e., fraction of larvae which survived and developed normally) was significantly lower in the for SED17-09 and SED17-13 porewaters than observed in natural seawater. This was similar to the effect observed on echinoderm development in the whole sediment sample tests (Table 1). Treatments of the samples targeting metals (EDTA addition) and organics (C18 filtration) did not improve the performance of *S. purpuratus*.

Table 3. *S. purpuratus* larval development: combined proportion normal in SED17-09 and SED17-13 undiluted porewater and TIE treatments (Round 1: May 26, 2017).

6 1 10	Combined Proportion Normal (%) Mean ± SD						
Sample ID	Untreated	C18 Treated -	EDTA Treated				
	Ontreated	Cro rreated -	20 mg/L	100 mg/L			
Control [Natural Seawater]	71.9 ± 5.3	71.4 ± 4.2	70.1 ± 4.9	70.7 ± 2.1			
SED17-09	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0			
SED17-13	3.0 ± 1.8	3.6 ± 0.8	4.5 ± 2.4	6.2 ± 1.9			

Follow-up testing (Round 2) with the SED17-09 and SED17-13 porewaters demonstrated that the toxicity was limited to the full-strength and 50% dilution of the SED17-09 sample and the full-strength of the SED17-13 sample, respectively. This resulted in EC50s for combined proportion normal of 42.1 and 75.7 % (v/v) for SED17-09 and SED17-13, respectively.

Similar to Round 1, no improvement from the metal and organic-targeted TIE treatments employed (Table 4) was observed. Effect concentrations determined in these treated samples were not significantly higher than the untreated samples, demonstrating no removal of toxicity.

An additional porewater sample, SED17-22, tested during Round 2 exhibited more toxicity than the SED17-09 and SED1713 porewaters; an EC50 of 15.9 % v/v was determined for this porewater.

Testing of ammonia and copper-spiked seawater during Round 2 determined median effect concentrations (EC50) of 0.080 mg/L unionized ammonia and 27.4 μ g/L Cu, respectively. The copper EC50 was within the historical range EC50s determined in copper toxicant tests completed in-house using this test method and the ammonia EC50 was similar to that observed elsewhere (Greenstein *et al.*, 1996).

Concentrations of dissolved trace metals from Round 2 porewater subsamples were determined to be very low (*i.e.*, below or close to analytical detection limits) (Table 6). Little difference was observed in the dissolved metal concentrations between untreated and treated samples of SED17-09, although the majority of concentrations were below their respective detection limits making comparisons immaterial. Total ammonia concentrations determined were higher in Round 2 than Round 1 (Table 7), potentially indicating generation of ammonia during sample storage.

Table 4. S. purpuratus larval development: combined proportion normal in SED17-09, SED17-13 and SED17-22 porewater and TIE treatment dilution series (Round 2: July 7, 2017).

				Combined	Proportion N				
Concentration (%	(Mean ± SD)								
v/v)	SED17-09 SED17-13				SED17-22				
	Untreated	C18	EDTA	Untreated	C18	EDTA	Untreated	C18	EDTA
Control [Natural Seawater]	87.8 ± 7.9	85.4± 11.2	82.1 ± 6.9	81.6 ± 2.6	85.4 ± 11.2	82.1 ± 6.9	80.4 ± 3.8	85.4 ± 11.2	82.0 ± 6.9
6.2	77.4 ± 4.0	85.8 ± 1.5	78.0 ± 5.2	81.8 ± 5.4	82.4 ± 6.8	74.8 ± 4.8	85.5 ± 8.2	85.5 ± 6.0	81.8 ± 2.3
12.5	83.3 ± 8.2	83.9 ± 3.5	86.1 ± 2.1	83.6 ± 2.1	86.7 ± 3.8	81.9 ± 7.5	63.2 ± 2.0	80.8 ± 4.3	76.6± 8.5
25	87.3 ± 9.8	88.7 ± 2.4	88.5 ± 5.1	81.8 ± 2.0	86.6 ± 8.2	87.5 ± 6.7	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
50	31.0 ± 3.4	5.0 ± 0.7	1.8 ± 1.2	91.9 ± 9.1	88.4 ± 7.9	82.1 ± 7.8	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
100	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	13.6 ± 4.0	32.4 ± 1.7	13.9 ± 4.1	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
EC50 (% v/v) [95% Confidence Limits]	42.1 (37.0 – 47.4)	36.2 (32.3 - 36.5)	35.7 (34.3 - 36.4)	75.7 (71.7 – 78.8)	87.3 (77.4 – 90.2)	75.8 (67.4 – 79.1)	15.9 (14.9 – 16.7)	17.4 (15.6 – 18.1)	17.3 (15.6 – 18.2)
EC50 (mg/L unionized ammonia)	0.034	0.029	0.029	0.034	0.039	0.034	0.067	0.074	0.073

[EDTA]: 100 mg/L

SD = Standard Deviation; EC: Effect Concentration

Table 5. Results: 96-h echinoderm (*S. purpuratus*) larval survival and development test with ammonia (July 7, 2017).

Concentration (Total ammonia, mg/L	Combined Proportion Normal (%)	
as N)	(Mean ± SD)	
Control [Natural Seawater]	73.3± 5.3	
0.8	80.2± 5.5	
1.6	74.7± 7.1	
3.2	78.4± 6.5	
6.5	66.4± 3.8	
13	0.0 ± 0.0	
26	0.0 ± 0.0	
as mg/L total ammonia as N		
EC25 (95% Confidence Limits)	7.1 (6.4 - 7.7)	
EC50 (95% Confidence Limits)	8.8 (8.1 – 9.2)	
as mg/L unionized ammonia as N		
EC25 (95% Confidence Limits)	0.065 (0.058 – 0.070)	
EC50 (95% Confidence Limits)	0.080 (0.074 – 0.084)	

SD = Standard Deviation; EC: Effect Concentration

 Table 6.
 Dissolved trace metal concentrations of porewaters and treatments.

Analyte		SED17-09		- SED17-13	SED17-22	S. purpuratus Thresholds [EC50, µg/L]	
Allalyte	Untreated	C18	EDTA	32017-13	32017-22		
Cu (µg/L)	0.229	<0.2	0.374	0.516	0.608	28 ^[1]	
Hg (ng/L)	< 0.51	< 0.51	< 0.51	1.10	0.62	N/A	
Pb (μg/L)	< 0.125	< 0.125	< 0.125	< 0.125	< 0.125	74 ^[2]	
Zn (µg/L)	<1.5	<1.5	2.35	< 1.5	<1.5	151 ^[2]	

^{[1]:} In-house testing concurrent with porewater testing

Table 7. Total and unionized ammonia concentrations (as N)

Date Measured	Porewater ID	Temperature (°C)	рН	Salinity (ppt)	Total Ammonia (mg/L)	рКа	Unionized Ammonia (mg/L)
23-Jun-17	SED17-09	15	7.4	29	0.60 [1]	9.74	0.003 [1]
	SED17-13	15	7.7	29	5.50 ^[1]	9.74	0.050 [1]
7-Jul-17	SED17-09	15	7.6	29	11.0	9.74	0.080
	SED17-13	15	7.7	29	5.00	9.74	0.045
	SED17-22	15	7.8	29	37.0	9.74	0.423
7-Jul-17	25 mg/L ammonia solution	15	7.7	29	26.0	9.74	0.237

^{[1]:} Concentrations determined from analysis of porewaters remaining in sample containers following May 26 testing.

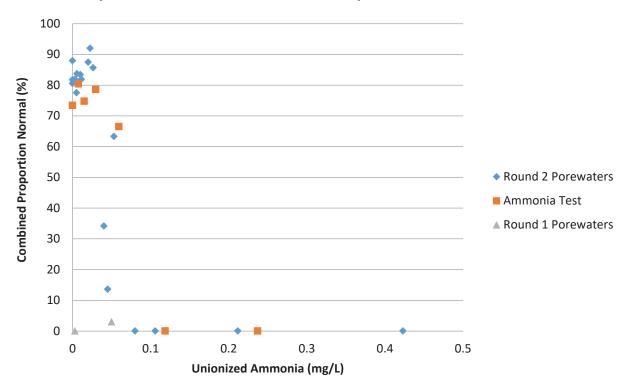
^{[2]:} Nadella et al. 2013

SD = Standard Deviation; EC: Effect Concentration

4.0 DISCUSSION

The lack of improvement observed in the EDTA-addition and C18-filtration treatments indicates a toxicant other than a divalent metal or organic compound caused effects to *S. purpuratus* development in SED17-09 and SED17-13. In both rounds of TIE testing, the magnitude of adverse effects was similar between untreated and metal/organic treated samples, demonstrating the inability of the targeted treatments to remove the component causing adverse effects.

Concentrations of Pb, Cu and Zn were well below toxic thresholds for *S. purpuratus* (Table 5) providing further evidence that these trace metals were not contributing to toxicity. While no threshold for mercury was available for *S. purpuratus*, sensitivity of another purple sea urchin, *P. lividus*, to mercury was determined to be an order of magnitude higher than mercury concentrations observed in these porewaters (Fernandez and Beiras, 2001).


The testing with ammonia-spiked seawater determined significant effects on *S. purpuratus* development above unionized ammonia concentrations of 0.06 mg/L (as N). Calculating the EC50s of the SED17-09 and SED17-13 Round 2 porewater samples based on their unionized ammonia concentrations determined similar effect concentrations (Table 4) which were within a factor of two of the effect concentrations determined in the ammonia-only test. The agreement between ammonia endpoints in seawater-only and porewater samples suggests that ammonia could account for the toxicity observed in Round 2 TIE testing. In corroboration with this, an additional sediment porewater tested, SED17-22, was significantly more toxic than the porewaters of interest, SED17-09 and SED17-13, and contained a higher ammonia concentration. The impaired development observed in SED17-22 based on unionized ammonia, 0.067 mg/L, was also in general agreement with those expected based on the confidence interval for the threshold for unionized ammonia in seawater (i.e., 0.058 – 0.070 mg N/L).

Round 2 porewater samples exhibited a dose-response with unionized ammonia, with effects occurring approximate to and increasing above the ammonia threshold determined in the seawater spiked ammonia test (Figure 1). Meanwhile, ammonia concentrations determined in the Round 1 porewaters (May 26, 2017) were not above ammonia thresholds and appeared to deviate from the unionized ammonia dose response (Figure 1). Nevertheless, treatments for divalent metal and organic compounds were not effective during Round 1 porewater testing, pointing to ammonia as a more likely toxicant.

The lines of evidence presented support ammonia as the most likely cause of toxicity observed in the porewater TIE testing of SED17-09 and SED17-13, particularly in Round 2. The overall dose-response curve shown in Figure 1 appears to fit all tested samples, with the exception of the lower concentration of ammonia determined for SED17-09 in the Round 1 porewater testing. In addition, a lower concentration of ammonia was observed in the whole sediment tests (Nautilus Environmental, 2017), which makes it problematic to definitively identify ammonia as the cause of reduced performance of *S. purpuratus* in the whole sediment test. Interestingly, SED17-09 and SED17-13 samples both exhibited reduced survival of *E. estaurius* in whole sediment testing, despite *E. estaurius'* reduced sensitivity to ammonia in comparison to *S. purpuratus* (Bailey *et al.*, 1997).

Figure 1. Combined proportion normal development of *S. purpuratus* vs unionized ammonia concentrations in different concentrations of Round 1 and 2 porewaters, as well as the ammonia-spiked seawater.

5.0 QA/QC

The health history of the test organisms used in both rounds of testing were acceptable and met requirements of the protocols. The tests met all control acceptability criteria, and water quality parameters remained within ranges specified in the protocol at initiation of the test. Note that water quality was not measured throughout testing as is required by the protocol due to the limited porewater volume available to run an additional water quality test replicate.

Although proportion normal echinoderm larval counts were not presented in the results of this report, all controls resulted in > 80% proportion normal and the percent minimum significant difference relative to the controls was less than 20% as is required by the US EPA (1995) protocol.

Results of the reference toxicant tests conducted during the testing program are summarized in Table 8. Results for these tests fell within the range for organism performance of mean +/- two standard deviations, based on historical results obtained by the laboratory with this test. Thus, the sensitivity of the organisms used in these tests were appropriate. The reference toxicant test was performed under the same conditions as those used for the sample.

Table 8. Reference toxicant test results.

Test Species	Endpoint	Historical Mean (2 SD Range)	CV (%)	Test Date	
S. purpuratus -	Proportion normal (EC50): 17.8 μg/L Cu	21.8 (14.7 – 32.3)	22	May 26, 2017	
	Proportion normal (EC50): 27.4 μg/L Cu	μg/L Cu		July 7, 2017	

EC = Effect Concentration, SD = Standard Deviation, CV = Coefficient of Variation

6.0 REFERENCES

- Bailey *et al.* 1997. Sensitivity of the amphipod *Eohaustorius estuarius* and the polychaete *Neanthes arenoceodentata* to ammonia, a potentially toxic component of sediments. ATW, October 7-9 1996.
- Fernandez, N. and R. Beiras. 2001. Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the *Paracentrotus lividus* sea-urchin. Ecotoxicology, 10, 263-271.
- Greenstein, D., Alzadjali, S., Bay, S. 1996. Toxicity of ammonia to purple sea urchins. In: Southern California Coastal Research Project Annual Report.
- Nadella *et al.* 2013. Toxicity of lead and zinc to developing mussel and sea urchin embryos: critical tissue residues and effects of dissolved organic matter and salinity. Physiol C Toxicol Pharmacol, 158(2), 72-83.
- Nautilus Environmental. 2017. Marine Sediment Toxicity Testing: Skagway Ore Basin- Samples collected April 26 May 5, 2017. WO# 170469-471. Draft Report. Prepared for Golder Associates, August 28, 2017.
- Puget Sound Estuary Program (PSEP). 1995. Recommended guidelines for conducting laboratory bioassays on Puget Sound sediments. Prepared for US Environmental Protection Agency, Region 10, Office of Pugent Sound, Seattle, WA. Final Report, July 1995. 89 pp.
- Tidepool Scientific Software. 2013. CETIS comprehensive environmental toxicity information system, version 1.8.7.16 Tidepool Scientific Software, McKinleyville, CA. 275 pp.
- USEPA.1991. Methods for aquatic toxicity identification evaluations: Phase I. Toxicity characterization procedures. Second edition. EPA/600/6-91/003. Environmental Research Laboratory. Duluth, MN
- USEPA.1992a. Methods for aquatic toxicity identification evaluations: Phase II. Toxicity identification procedures for samples exhibiting acute and chronic toxicity. EPA/600/6-92/080. Environmental Research Laboratory. Duluth, MN.

USEPA.1992b. Methods for aquatic toxicity identification evaluations: Phase III. Toxicity confirmation procedures for samples exhibiting acute and chronic toxicity.: EPA/600/R-92/081. Environmental Research Laboratory. Duluth, MN

USEPA.1995. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to West Coast marine and estuarine organisms. EPA/600/R-95/136. National Exposure Research Laboratory. Cincinnati, Ohio.

APPENDIX A – Strongylocentrotus purpuratus Toxicity Test Data

Echinoderm Larvae Development Toxicity Test Data Sheet Larval Counts - percuater

Client: Work Order#:	60lc	469-TIE	_ Start Date/Time:	bly 7/17e1600h	
Sample ID:			Test species: _S	. purpuratus	
Sample ID.	JEU	7-09			
			Initial Density/ 10m	L. ddl	
Concentration	Rep	No. Normal	No. Abnormal	Comments	Initia
	Α	164	5		JAB
6.2	В	168	4		1
6.2	С	i81	6		
	D				
	Α	203	2		
12.5	В	167			
10.5	С	167	5		
	D				
	Α	196	3		
25	В	213	4		
	С	170	5		
	D				
	Α	38761	39H-91		
50	В	76	126		
50	С	69	109		
	D		0		
0)	Α	O	112		1
100	В	0	171		
100	С	0	167		V
	D				
	A				
	В				
	С				
	D				
0	Α	195	2		J49
Control	В	30195 211	300		
	С	V21 176	73		V
	D				
comments:					

CETIS Analytical	Report
-------------------------	--------

Report Date: Test Code: 30 Aug-17 12:56 (p 1 of 2) GAPWTIE-1 | 10-9356-9596

Echino	id Emb	ryo-Larval Surv	ival and D	evelopr	ment Test					-27	Na	autilus E	nvironmenta
Analys		02-4100-6171	-	dpoint:	Combined Prop	ortion Norm	nal		CETIS	Version:	CETISV1	1.8.7	
Analyz		30 Aug-17 12:5		alysis:	Linear Interpola					al Results:		2.000	
Batch	ID:	01-9840-0287	Tes	st Type:	Development-S	Survival			Analy	st:			
Start D	GARLE .	07 Jul-17 16:00	Pro	tocol:	EPA/600/R-95/	136 (1995)			Diluer	nt: Natu	iral seawate	er	
Ending	Date:	11 Jul-17 16:00	Sp	ecies:	Strongylocentro	otus purpura	itus		Brine:				
Duratio	on:	96h	So	urce:	San Diego Lab				Age:				
Sample		09-1217-9424		de:	365EC0E0			10	Client	: Gold	ler Associa	tes	
		29 Apr-17 17:00) Ma	terial:	Porewater				Proje	ct:			
		15 May-17		urce:	Golder								
Sample	e Age:	68d 23h	Sta	tion:	SED17-09		elo.						
Linear	Interpo	lation Options											
X Tran		Y Transform	Se	ed	Resamples	Exp 95%	CL M	lethod			-		
Log(X+	1)	Linear	115	3096	200	Yes	T	wo-Point I	nterpo	lation			
Point E	Estimate	es											
Level	%	95% LCL	95% UCI	TU	95% LCL	95% UCL							
EC5	4.417	N/A	50.75	22.64	1.97	NA							
EC10	26.27	N/A	30	3.807		NA							
EC15	27.88		31.7	3.587		4.552							
EC20	29.58		33.5	3.38	2.985	4.206							
EC25	31.39	10315	35.4	3.186		3.9							
EC40	37.46	100000000000000000000000000000000000000	42.17	2.669		3.106							
EC50	42.14	37.01	47.44	2.373	2.108	2.702							
Combi	ned Pro	portion Normal	Summar			Calcu	lated Va	ariate(A/B	-				
C-%		ontrol Type	Count	Mean		Max	Std Er	r Std I	Dev	CV%	%Effect	Α	В
0	N	egative Control	3	0.877		0.9548	0.0457			9.03%	0.0%	582	663
6.2			3	0.773		0.819	0.0232			5.2%	11.86%	513	663
12.5			3	0.832		0.9186	0.0472			9.83%	5.16%	552	663
25 50			3	0.873		0.9638	0.0565			11.22%	0.52%	579	663
100			3	0.310	7 0.276 0	0.3439	0.0196	0.033	96	10.93%	64,6% 100.0%	206	663 663
A 2	ned Dro	portion Normal					_	74			1-9.97	_14	
C-%		The second		D									
0-%		ontrol Type	Rep 1	Rep 2									
6.2	IV	egative Control	0.8824	0.954									
12.5			0.7421	0.760									
25			0.9186	0.755									
50			0.8869	0.963									
100			0.276	0.343	9 0.3122 0								
	nod Dra	nortion Name -	7						_				
		portion Normal			5.72								
C-%		Control Type	Rep 1	Rep 2									
		Negative Control		211/2									
5.2			164/221	168/2									
12.5			203/221	167/2									
25 50	31	3.0	196/221	213/2									
100			61/221	76/22									
100			0/221	0/221	0/221								

Report Date:

30 Aug-17 12:56 (p 2 of 2)

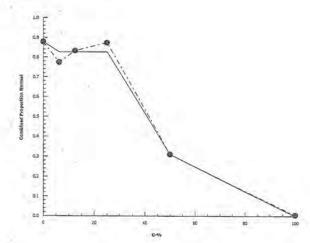
Test Code:

GAPWTIE-1 | 10-9356-9596

Echinoid Embryo-Larval Survival and Development Test

Nautilus Environmental

Analysis ID: Analyzed:


02-4100-6171 30 Aug-17 12:56

Endpoint: Combined Proportion Normal Analysis: Linear Interpolation (ICPIN)

CETIS Version: Official Results: Yes

CETISv1.8.7

Graphics

Echinoderm Larvae Development Toxicity Test Data Sheet Larval Counts

Client:	Golde	1	Start Date/Time:	Dly 7/17 @ 1600h	
Work Order #:		59-TIE		5. purpuratus	
Sample ID:	SEDIT	-09 C18	Test set up by:		
			Initial Density/ 10r		
Concentration					
Concentration	Rep	No. Normal	No. Abnormal	Comments	Initials
	А	186	3		yne
6.2	В	192	80		
4.2	C	191	8		
	D				
0.	A	194	6		
12.5	В	179	3		
145	С	183	2		
	D				
	A	200	5		
25	В	198	3		
	С	190	4		
	D				
	Α	13	189		
50	В	12	184		
50	С	8	180	Te.	
	D				
	A	2	94		
100	В	0	104		
	C	2	107		V
	D				
	Α			t-	
	В				
	С				
	D				
	Α	217	3		JAB
Central	В	192			1
O	С	177	6		V
	D				
Comments:					
	17	100			
Reviewed by:		I Gh	Date Reviewed:	Fegn-11/17	

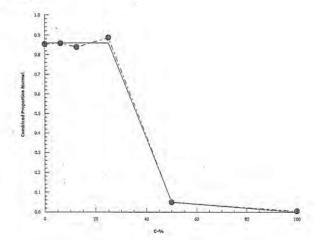
Report Date: Test Code: 28 Aug-17 11:33 (p 1 of 2) GAPWTIE-2 | 19-7137-6996

Echino	id Emb	ryo-Larval Survi	val and De	velopn	nent Test					Na	utilus Er	vironmenta
Analysi		12-9104-9952	3-	ooint:	Combined Pro	portion Norm	al	CET	IS Version:	CETISv1	.8.7	
Analyze		28 Aug-17 11:26		ysis:	Linear Interpola	ation (ICPIN)		Offi	cial Results	Yes		
Batch I	D;	18-7959-8686	Test	Type:	Development-S	Survival		Ana	lyst:	.60-0		
Start D	ate:	07 Jul-17 16:00	Prote	ocol:	EPA/600/R-95	/136 (1995)		Dilu	ent: Nati	ural seawate	er	
nding	Date:	11 Jul-17 16:00	Spec	cies:	Strongylocentr	otus purpura	tus	Brin	ie:			
Duratio	n:	96h	Sour	rce:	San Diego Lab			Age	:			
Sample	ID:	16-4847-7160	Code	e:	6241C3E8			Clie		der Associat	tes	
		29 Apr-17 17:00	Mate	erial:	Porewater			Pro	ject:			
		15 May-17	Soul		Golder							
Sample	Age:	68d 23h	Stati	on:	SED17-09 C18	3						
inear	Interpo	lation Options										
(Trans		Y Transform	Seed		Resamples	Exp 95%						
Log(X+	1)	Linear	1646	390	200	Yes	Two-	Point Inter	polation			
oint E	stimate	es										
evel	%	95% LCL	95% UCL	TU	95% LCL							
EC5	25.95		25.97	3.854		NA						
EC10	26.93	N/A	26.97	3.714		NA						
C15	27.94	22.91	28.01	3.579		4.364						
C20	29	24.08	29.09	3,449		4.153						
C25	30.09	25.3	30.21	3.323		3.953						
C40 C50	33.61 36.18	29.31 32.31	33.83 36.47	2.975		3.412 3.095						
		0.71.0.11.11.1		2.104	2.742		V 20. 25 - 27 - 27 - 27 - 27 - 27 - 27 - 27 -	- 155.23e-				
		portion Normal		-	-	26	lated Varia	te(A/B)	30000		J. 1	
C-%		ontrol Type	Count	Mear		Max	Std Err	Std Dev	CV%	%Effect	A	В
)	N	egative Control	3	0.853		0.9819	0.06443	0.1116	13.07%	0.0%	566	663
5.2			3	0.858		0.8688	0.008398	0.01455	1.7%	-0.53%	569	663 663
12.5 25			3	0.838		0.8778	0.02029	0.03515	4.19%	1.77% -3.89%	556 588	663
50			3	0.049		0.905	0.01302	0.02394	24.05%	94.17%	33	663
100			3	0.043	0	0.00002	0.000312	0	24.0070	100.0%	0	663
	and Dec	\ 	700	_			-					-
		portion Normal		2								
C-%		ontrol Type	Rep 1	Rep :								
)	- N	egative Control	0.9819	0.778								
5.2			0.8416	0.868								
12.5			0.8778	0.81	0.8281							
25			0.905	0.895								
50			0.05882	0.054								
100		S. A. C. C.	0	0	0							
		portion Normal	Binomials									
C-%		Control Type	Rep 1	Rep								
0		Negative Control		172/2								
6.2			186/221	192/2								
12.5			194/221	179/2								
25			200/221	198/2								
50			13/221	12/22								
100			0/221	0/221	0/221							

Report Date: Test Code: 28 Aug-17 11:33 (p 2 of 2) GAPWTIE-2 | 19-7137-6996

Echinoid Embryo-Larval Survival and Development Test

Nautilus Environmental


Analysis ID: Analyzed:

12-9104-9952 28 Aug-17 11:26 Endpoint: Combined Proportion Normal Analysis: Linear Interpolation (ICPIN)

CETIS Version: CET Official Results: Yes

CETISv1.8.7 Yes

Graphics

Analyst: JAB QA: Jen 11/17

Echinoderm Larvae Development Toxicity Test Data Sheet **Larval Counts**

Client:	Cold	es	_ Start Date/Time	July 7/17@1600 h	
Work Order #:	1709	69-TIE 7-09 EDT	Test species:	3-purpuratus	
Sample ID:	2 FDI	1-09 ED11	Test set up by:	7AB	
			Initial Density/ 10r	mL: 221	
Concentration	Rep	No. Normal	No. Abnormal	Comments	Initials
	A	180	2		yw
1. 2	В	178	4	14	
6.2	С	159	4		
	D				
	A	185	6		
12.5	В	185	3		
10-3	С	193	4		
	D				
	Α	183	10		
25	В	205	6		
2	C	199	3		
	D				
	Α	3	183		
20	В	9	195		
	С	o'	198		
	D		The second second		
	Α	0	142		
60	В	0	159		
	C	0	146		V
	D				
	A				
	В				
	C				
	A	165	3		73.0
011	В	184	4		JAB
Control	C	195	6		
	D	119	6		
Comments:					
		<i>V</i> .		A 3477	
Reviewed by:		JGL	Date Reviewed	fen. 11/17	

Date Reviewed:

Reviewed by:

CETIS	Analy	ytical	Re	port
		,	20.00	

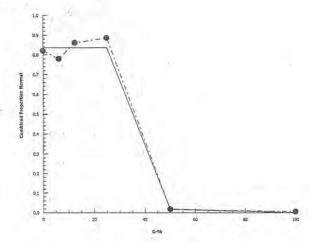
Report Date: Test Code: 28 Aug-17 11:33 (p 1 of 2) GAPWTIE-3 | 01-9045-0125

Echino	id Emb	ryo-Larval Survi	val and De	velopm	ent Test					Na	utilus En	vironmenta
Analysi Analyze		00-9498-9150 28 Aug-17 11:24		ooint: ysis:	Combined Prop Linear Interpola				S Version: ial Results		.8.7	
Batch I	D:	14-6162-2264	Test	Type:	Development-S	urvival		Anal	yst:	*		
Start D	ate:	07 Jul-17 16:00	Prote	ocol:	EPA/600/R-95/	136 (1995)		Dilu	ent: Nat	ural seawate	r	
Ending	Date:	11 Jul-17 16:00	Spec	ies:	Strongylocentro	tus purpurat	tus	Brin	e:			
Duratio	n:	96h	Sour	ce:	San Diego Lab			Age:	1			
Sample		12-8864-0841	Code		4CCF1949			Clier	170	lder Associat	es	
		29 Apr-17 17:00	Mate		Porewater			Proj	ect:			
		15 May-17	Sour		Golder	· A						
Sample	e Age:	68d 23h	Stati	on:	SED17-09 EDT	A					_	
inear	Interpo	lation Options										
(Trans		Y Transform	Seed		Resamples	Exp 95%			01/2007			
Log(X+	1)	Linear	1751	169	200	Yes	Two-	Point Interp	olation			
oint E	stimate	es										
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL						
EC5	25.91	24.11	25.97	3.859		4.148						
EC10	26.85	25.09	26.97	3.724		3.985						
EC15	27.83	26.12	28.01	3.593		3:829						
EC20	28.84	27.18	29.08	3.468		3.679						
EC25	29.88	28.26	30.2	3.346		3.538						
EC40 EC50	33.25 35.69		33.8 36.44	3.008 2.802		3.146 2.915						
200		0.5 . 51/4: 7. 4		2.002	2.144	2.7.75477	Lorentz A	3 5 1 1 1 1				
		portion Normal				112	lated Varia	Maria Augustina	Soula	7.642.0		1.5
C-%		ontrol Type	Count	Mean		Max	Std Err	Std Dev	CV%	%Effect	A	B
0	N	egative Control	3	0.820		0.8824	0.03965	0.06867	8.37%	0.0%	544	663 663
6.2			3	0.779		0.8145	0.03028	0.05244	6.73% 2.43%	4.96% -4.96%	517 571	663
12.5 25			3	0.861		0.8733	0.01207	0.0209	5.81%	-7.9%	587	663
50			3	0.018	C-100 - 100	0.04072	0.02371	0.02074	114.6%	97.79%	12	663
100			3	0.010	0	0.04072	0	0.02014	114.070	100.0%	0	663
	and Do	was the same		-		-	- 27			2000000		
		portion Normal										
C-%		ontrol Type	Rep 1	Rep 2								
0	N	legative Control	0.7466	0.832								
6.2			0.8145	0.805								
12.5			0.8371	0.873								
25			0.8281	0.927								
50 100			0.01357	0.040	0 0							
	1 . 2	CONTRACTOR OF										
		portion Normal										
C-%		Control Type	Rep 1	Rep :								
0		Negative Control		184/2								
6.2			180/221	178/2								
12.5			185/221	193/2								
25			183/221	205/2								
50			3/221	9/221								
100			0/221	0/221	0/221							

Analyst: JAB QA: Jen 11/17

Report Date: Test Code: 28 Aug-17 11:33 (p 2 of 2) GAPWTIE-3 | 01-9045-0125

Echinoid Embryo-Larval Survival and Development Test


Nautilus Environmental

Analysis ID: Analyzed: 00-9498-9150 28 Aug-17 11:24 Endpoint: Combined Proportion Normal Analysis: Linear Interpolation (ICPIN)

CETIS Version: CET Official Results: Yes

CETISv1.8.7

Graphics

Echinoderm Larvae Development Toxicity Test Data Sheet Larval Counts

Client: Work Order#:	60lde	69-TIE	Start Date/Time: Jul Test species: 5-A	Jan webs	
		7-13	Test set up by:	orporation	
Sample ID:	ocp1	f-15	Test set up by:		
			Initial Density/ 10mL:	231	
Concentration	Rep	No. Normal	No. Abnormal	Comments	Initials
Control	А	178	4		JAY
	В	176			1
	С	187	3		Ü
	D				
	A	180 193 169			JAB
6.2	В	193	3		1
0.0	С	169	3 2		
	D				
	A	183	0		
12.5	В	181	5		
10.0	C	190	7		
	D				
	A	176			
25	- B	185	1		
0.)	C	181	5		
	D				7/=
	A	218	1		
50	В	180	0		
20	C	211	5		1111
	D	2.2			
	A	37 33	173		
100	В	53	181		
	С	20	149		
	D				1
	A				
	В				
	C				
	D				

Date Reviewed:

Reviewed by:

Report Date: Test Code: 30 Aug-17 12:20 (p 1 of 2) GAPWTIE-4 | 21-4329-3312

Echino	oid Embr	yo-Larval Surv	ival and De	evelopr	nent Test						Na	utilus E	nyironmental
Analys Analyz		12-5584-1574 30 Aug-17 12:2		point: lysis:						Version I Result		.8.7	
Batch Start D Ending Duration	ate: g Date:	03-4438-4222 07 Jul-17 16:00 11 Jul-17 16:00 96h	Prot	ocol: cies:	cies: Strongylocentrotus		utus	1	Analys Diluen Brine: Age:	and the same	tural seawate	er	
Receiv	e Date:	17-1142-9369 29 Apr-17 17:00 15 May-17 68d 23h	Cod Mate Sou Stat	erial; rce:	660256F9 Porewater Golder SED17-13				Client: Projec		older Associa	tes	
Linear	Interpola	ation Options											
X Tran	sform	Y Transform	See	d	Resamples	Exp 95%	CL Me	ethod					
Log(X+	-1)	Linear	7322	224	200	Yes		vo-Point In	terpol	ation			
Point I	Estimates	s											
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL							
EC5	52.12	50.17	52.33	1.919		1.993			_	-			
EC10	54.33	52.63	54.77	1.841		1.9							
EC15	56.63	55.14	57.33	1.766		1.813							
EC20	59.03	57.56	59.99	1.694		1.737							
EC25	61.52	59.84	62.78	1.625	1.593	1.671							
EC40	69.65	66.69	71.94	1.436	1.39	1.499							
EC50	75.65	71.66	78.76	1.322	1.27	1.395							
Combi	ned Prop	portion Normal	Summary			Calcu	lated Var	riate(A/B)					
C-%	Co	ontrol Type	Count	Mean	Min	Max	Std Err	Std D	ev	CV%	%Effect	Α	В
0	Ne	gative Control	3	0.816		0.8462	0.01531	0.026	51	3.25%	0.0%	541	663
6.2			3	0.817		0.8733	0.03139	0.054	36	6.65%	-0.18%	542	663
12.5			3	0.835		0.8597	0.01235			2.56%	-2.4%	554	663
25			3	0.817		0.8371	0.01178			2.5%	-0.18%	542	663
50 100			3	0.918		0.9864	0.05283			9.96%	-12.57%	609	663
				0.135	7 0.0905	0.1674	0.02322	0.040	22	29.63%	83.36%	90	663
Combi	ned Prop	portion Normal	Detail										
C-%	Co	ontrol Type	Rep 1	Rep 2	Rep 3								
0	Ne	gative Control	0.8054	0.796	4 0.8462								
6.2			0.8145	0.873	3 0.7647								
12.5			0.8281	0.819	0.8597								
25			0.7964	0.837	1 0.819								
50			0.9864	0.814	5 0.9548								
100			0.1674	0.149	3 0.0905								
Combi	ned Prop	ortion Normal	Binomials	9									
C-%	- 0	Control Type	Rep 1	Rep 2	Rep 3								
0	N	legative Control	178/221	176/2									
6.2			180/221	193/2									
12.5			183/221	181/2	21 190/221								
25			176/221	185/2	21 181/221								
50			218/221	180/2									
100			37/221	33/22									

Analyst: JAB QA: Sep-11/12

000-469-187-1

CETIS™ v1.8.7.16

Report Date: Test Code:

30 Aug-17 12:20 (p 2 of 2)

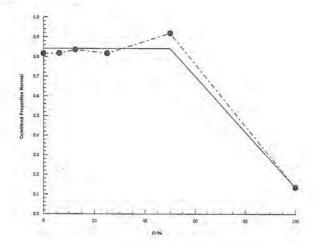
GAPWTIE-4 | 21-4329-3312

Echinoid Embryo-Larval Survival and Development Test

Nautilus Environmental

Analysis ID: Analyzed:

12-5584-1574 30 Aug-17 12:20


Analysis:

Endpoint: Combined Proportion Normal Linear Interpolation (ICPIN)

CETIS Version: Official Results: Yes

CETISv1.8.7

Graphics

Echinoderm Larvae Development Toxicity Test Data Sheet Larval Counts

Client:	Golde		_ Start Date/Time: _ 5	oly7/17e 1600h	
Work Order #:			Test species: 5	purpuratus	
Sample ID:	SEDI	169-TIE 7-13 C18	Test set up by:	6	
			Initial Density/ 10mL		
Concentration	Rep	No. Normal	No. Abnormal	Comments	Initials
	A	166	3		JAB.
10	В	166	5		
6.2	С	184			
	D				
	A	183			
12.5	В	192	3		
10.0	С	200	2		
	D				
1	A	178	6		0
25	В	212	6		
40	C	184	5		
	D				
50	Α	195	2		
	В	213	2		
00	С	178	9		
50	D				
	A	69	148		
100	В	76	132		
100	C	70	139		V
	D				
	A				
N H	В				
	С				
	D				
2. 4.	A	217	2		JAB
Control	В		5		
(C(8)	C	177	6		V
	D				
Comments:					
Reviewed by:		JON	Date Reviewed:	Sen. 11/17	

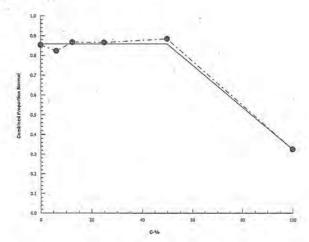
Report Date: Test Code: 28 Aug-17 11:32 (p 1 of 2) GAPWTIE-5 | 03-0120-8937

							lest	Code:	GAP	AA LIE-2	03-0120-093
Echino	id Embryo-Larval Surv	ival and De	evelopn	nent Test	4	8			Na	utilus Er	nvironmenta
Analysi Analyze			point: lysis:	Combined Prop Linear Interpola				S Version: ial Results	CETISv1 : Yes	.8.7	
Batch I	D: 11-9935-0211	Test	Type:	Development-S	Survival		Anal	yst:			
Start Da	ate: 07 Jul-17 16:00	Prof	tocol:	EPA/600/R-95/	136 (1995)		Dilu	ent: Nati	ural seawate	er .	
Ending	Date: 11 Jul-17 16:00	Spe	cies:	Strongylocentro	otus purpura	tus	Brin	e:			
Duratio	on: 96h	Sou	rce:	San Diego Lab			Age:				
Sample	D: 04-9151-1923	Cod	e:	1D4BE073			Clien		der Associa	tes	
	Date: 29 Apr-17 15:0) Mat	erial:	Porewater			Proj	ect:			
	e Date: 15 May-17		rce:	Golder							
Sample	e Age: 69d 1h	Stat	ion:	SED17-13 C18							
Linear	Interpolation Options										
(Trans				Resamples	Exp 95%						
Log(X+	1) Linear	157	2337	200	Yes	Two-	Point Interp	olation			
Point E	stimates										
Level	% 95% LCL	95% UCL	TU	95% LCL							
EC5	52.88 N/A	53.05	1.891		NA						
EC10	55.92 43.74	56.28	1.788		2.286						
EC15	59.13 47.14	59.71	1.691		2.121						
EC20	62.52 50.43	63.34	1.599		1.983						
EC25 EC40	66.11 53.95 78.12 67.33	67.19 80,17	1.513	1.488 1.247	1.485						
EC50	87.3 77.43	90.16	1.145		1.291						
	ned Proportion Norma			74.44.61		lated Varia	te(A/R)	_			
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α .	В
0	Negative Control	3	0.853		0.9819	0.06443	0.1116	13.07%	0.0%	566	663
6.2	nogame como	3	0.823		0.8869	0.03945	0.06832	8.3%	3.53%	546	663
12.5		3	0.867		0.905	0.02222	0.03848	4.44%	-1.59%	575	663
25		3	0.865	0.8054	0.9593	0.04741	0.08212	9.49%	-1.41%	574	663
50		3	0.883	0.8054	0.9638	0.04572	0.0792	8.96%	-3.53%	586	663
100		3	0.324	3 0.3122	0.3439	0.009891	0.01713	5.28%	62.01%	215	663
Combi	ned Proportion Norma	I Detail									
C-%	Control Type	Rep 1	Rep :	2 Rep 3							
0	Negative Control	0.9819	0.778								
6.2		0.7511	0.886	0.8326							
12.5		0.8281	0.868	0.905							
25		0.8054	0.959								
50	30 E 15	0.8824	0.963								
100		0.3122	0.343	9 0,3167							
Combi	ned Proportion Norma	l Binomials	S								
C-%	Control Type	Rep 1	Rep :	2 Rep 3							
0	Negative Contro	ol 217/221	172/2	221 177/221							
6.2		166/221	196/2	221 184/221							
12.5		183/221	192/2	221 200/221							
		178/221	212/2								
		195/221	213/2								
100		69/221	76/22	21 70/221							
25 50 100		178/221 195/221	212/2 213/2	221 184/221 221 178/221							

Analyst: JAB QA: 41.11/2

Report Date: Test Code: 28 Aug-17 11:32 (p 2 of 2) GAPWTIE-5 | 03-0120-8937

Echinoid Embryo-Larval Survival and Development Test


Nautilus Environmental

Analysis ID: Analyzed: 02-9387-1800 28 Aug-17 11:30 Endpoint: Combined Proportion Normal Analysis: Linear Interpolation (ICPIN)

CETIS Version: CET Official Results: Yes

CETISv1.8.7 Yes

Graphics

Analyst: TAB QA: Sep. 11/7

Echinoderm Larvae Development Toxicity Test Data Sheet Larval Counts

Client:	Colder	Start Date/Time: July 7/17 @ 1600 h
Work Order #:	170469-TIE	Test species: 5 nurpuratus
Sample ID:	SEDI7-13 EDTA	Test set up by: AB
		Initial Density/ 10mL: 221

Concentration	Rep	No. Normal	No. Abnormal	Comments	Initials
	А	15438	to JAS		
6.2	В	167			JAB
6.0	С	175	6		TAB
	D	154	(0)		JAB
	A	7			
12.5	В	180	4		JAB
14.5	C	198	7		JAB
	D	i65	5		JAB
	А				
26	В	188	}		JAB
25	С	310	1		TAB
	D	182	8		JAB
	A				
50	В	195	6		SAB
30	С	187	6 5 7		JAB
	D	187	7		TAB
	A				
100	В	22	164		JAB
3.7	C	30	142		JAB
	D	30	141		JAB
	Α				
	В				
	C				
	D				
	A	165	3		JAB
6.11	В	184	4		SAB
Control (EOTA)	С	195	6		JAB
(4103)	D				

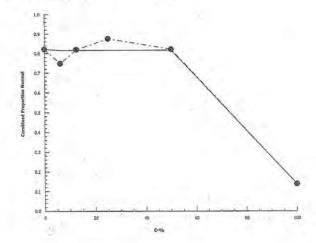
Comments:				
Reviewed by:	JGU	Date Reviewed:	Sep. 11/17	

Report Date: Test Code: 28 Aug-17 11:33 (p 1 of 2) GAPWTIE-6 | 20-1461-0908

								100	L OOUC.	5.11	W. CO.	A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Echino	id Emb	ryo-Larval Survi	val and De	velopn	nent Test					Na	utilus En	vironmenta
Analysi		08-3614-5779 28 Aug-17 11:31		point: lysis:	Combined Prop Linear Interpola		al	32,00	TIS Version: cial Results	CETISv1: Yes	8.7	
3atch I	D:	02-9632-9862	Test	Type:	Development-S	urvival		Ana	ılyst:			
Start D	ate:	07 Jul-17 16:00		ocol:	EPA/600/R-95/			Dilu	ent: Nat	ural seawate	г	
Ending	Date:	11 Jul-17 16:00	Spe	cies:	Strongylocentro	tus purpurat	us	Brit	ne:			
Duratio		96h	Sou	rce:	San Diego Lab			Age):			
Sample	e ID:	12-7550-0243	Cod	e:	4C0696D3			Clie	ent: Gol	der Associat	es	
Sample	e Date:	29 Apr-17 15:00	Mat	erial:	Porewater			Pro	ject:			
Receiv	e Date:	15 May-17	Sou	rce:	Golder							
Sample	e Age:	69d 1h	Stat	ion:	SED17-13 EDT	Α						
inear	Interpo	lation Options										
(Tran	sform	Y Transform	See	d	Resamples	Exp 95%	CL Me	thod				
Log(X+	1)	Linear	895	213	200	Yes	Tw	o-Point Inter	polation			
Point E	Estimate	es										
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL						
EC5	51.89	N/A	52,62	1,927	1.901	NA						
EC10	54.13	31.31	55.06	1.847	1.816	3.194						
EC15	56.46		57.62	1.771		2.148						
EC20	58.89		60.29	1.698		2.044						
EC25	61.42		63.08	1.628		1.941						
EC40	69.68	The state of the s	72.25	1.435		1.648						
EC50	75.79	67.4	79.08	1.319	1.265	1.484						
Combi	ned Pro	portion Normal	Summary			Calcu	lated Var	iate(A/B)				
C-%		ontrol Type	Count	Mear		Max	Std Err	Std Dev		%Effect	Α	В
0	N	legative Control	3	0.820		0.8824	0.03965			0.0%	544	663
6.2			3	0.748		0.7919	0.02769			8.82%	496	663
12.5		4	3	0.819		0.8959	0.04316			0.18% -6.62%	543 580	663 663
25 50			3	0.874		0.9502 0.8824	0.03851		7.63% 9.49%	0.0%	544	663
100		E.J. 114	3	0.020		0.181	0.02356			83.09%	92	663
1,70	- 03			0.150	0.00000	0.101	0.02000	0.04001	20.1174	00.0070		
		portion Normal			0 0							
C-%		ontrol Type	Rep 1	Rep								
0	V	legative Control	0.7466	0.832								
6.2			0.7557	0.79								
12.5			0.8145	0.895								
25			0.8507	0.950								
50			0.8824	0.846								
100			0.09955	0.181	0.1357	_						
	ined Pro	oportion Normal										
C-%		Control Type	Rep 1	Rep								
0		Negative Control		184/2								
6.2			167/221	175/2								
12.5			180/221	198/2								
25			188/221	210/2								
			105/221	107/	224 462/224							
50 100			195/221 22/221	187/2								

Report Date: Test Code: 28 Aug-17 11:33 (p 2 of 2) GAPWTIE-6 | 20-1461-0908

Echinoid Embryo-Larval Survival and Development Test


Nautilus Environmental

Analysis ID: Analyzed: 08-3614-5779 28 Aug-17 11:31 Endpoint: Combined Proportion Normal Analysis: Linear Interpolation (ICPIN)

CETIS Version: CET Official Results: Yes

CETISv1.8.7

Graphics

Echinoderm Larvae Development Toxicity Test Data Sheet Larval Counts

			Larval Counts	J48	
Client:	6010	er	Start Date/Time: Mac	26/17 @ July 7/	17@1600
Work Order #:		69-TIE	Test species: 5.0	urpuratus	
Sample ID:		17- 22	Test set up by: TAB		
*			Initial Density/ 10mL:	221	
Concentration	Rep	No. Normal	No. Abnormal	Comments	Initials
Control	A	171	4		YUL
	В	175	6		1
	С	187	4		
	D	~	- Long-Ward - Control - Co		
	A	208	3		
6.3	В	187	5 4		
V. 3	C	172	4		
	D				
	А	135	55 32		
12-5	В	144	32		
123	C	140	65		
	D		and the state of t		
	A	0	109		
25	В	O			
25	С	0	103		
	D		and constructed the production of the		
	Α	O	81		
So	В	0	72		
50	C	0	64		
	D	-			
	Α	0	90		
100.	В	0	112		
100	C	0	95		
	D				V
	Α				
	В				
	C				
Ue III	D			4	
Comments:		JOh	Date Reviewed:	Sep. 11/17	

Echinoderm Development Toxicity Test Data Sheet

Client: Colder SEDIA Pore water TIE Test No.: 170469-TE

Start Date & Time: Joly 7/17 @ 1600w End Date & Time: July 11/17 @ 1600w Test species: Sylvpuratus

1.4	9.0	" "						
15.0 24 48 15.0 15.0 15.0 15.0	0.0	(mg/L)		xy-7 (units)			(ppt)	
- 9	000	24 48	72 96	1 0 gay 24 48 72	96	0 24	48 72	98
	8.0			* State of the sta		38		
9	7.9			3.8		38		
SAR	7.9			3.60		38		
7	4.7	۲		3.6		18 S.		
-0d C18 115.0	7.4			7.6		35.0%		
-09 EDTAD 15.0	7.	3		37.6		130m		
56017-13 15.0	4.3	1		<i>も</i> 'た		17.30		
-13 Ct8 15.0	7.3	2		7.6		36		
-13 EDTAD 15.0	7.2	2	± 1	4.6	1	30		
SED17 - 28 15.0	7.4			2.8		30		
-32 CIS 15.0	7.6			7.8		30		
- 22 EOTA D 15.0	7.4			7.80		30		
				100				
Analyst Initials 36	38			3xB		JARS		
Initial Water Quality	- Quality			<		1		
Conc. Temp DO	Hd	Salinity	Sample	Sample Description: Creumfers			4)	
Control								
100% sample			ĭ	Test Set up by: JAB / YYL	K			

24 hrs. 48 hrs. John

Reviewed by:

Date Reviewed:

Jen. 117

CETIS Analytical Report	CETIS	Analy	ytical	Re	port
--------------------------------	--------------	-------	--------	----	------

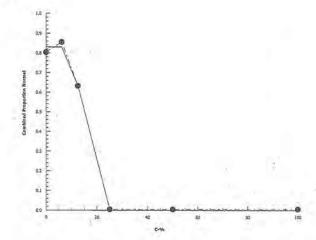
Report Date: Test Code: 01 Sep-17 10:28 (p 1 of 2) GAPWTIE-7 | 00-8231-9270

								rest	Code:	GAF	AN LITTLE !	00-0231-3211
Echino	id Embr	ryo-Larval Survi	val and De	velopr	nent Test		,			Na	utilus En	vironmental
Analysi Analyze		19-2295-7373 01 Sep-17 10:28		ooint: ysis:	Combined Prop Linear Interpola				S Version: ial Results:	CETISv1 Yes	.8.7	
Batch I	D;	11-8007-2458	Test	Type:	Development-S	urvival		Anal	yst:			
Start D	ate:	07 Jul-17 16:00	Prot	ocol:	EPA/600/R-95/	136 (1995)		Dilue	ent: Natu	ral seawate	er	
Ending	Date:	11 Jul-17 16:00	Spec	ies:	Strongylocentro	tus purpura	itus	Brin	e:			
Duratio	n:	96h	Sour	ce:	San Diego Lab			Age:				
Sample	ID:	06-9083-5900	Code	e:	292D51BC			Clien	nt: Gold	er Associat	tes	
Sample	Date:	01 May-17 17:00) Mate	rial:	Porewater			Proje	ect:			
		15 May-17 10:30	Sou	rce:	Golder							
Sample	Age:	66d 23h	Stati	on:	SED17-22							
Linear	Interpol	lation Options										
X Trans	sform	Y Transform	Seed	1	Resamples	Exp 95%	CL Meth	od				
Log(X+	1)	Linear	6203	5	200	Yes	Two-	Point Interp	olation			
Point E	stimate	es					*					
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCL						
EC5	7.216	3.385	7.585	13.86	13.18	29.54	~					
EC10	8.375		9.367	11.94		14.96						
EC15	9.697		11.56	10.31		12.23						
EC20	11.21	9.011	14.01	8.924		11.1						
EC25	12.64	10.21	13.62	7.913		9.798						
EC40	14.52		15.41	6.889		7.454						
EC50	15.91	14.91	16.72	6.285	5.982	6.708						
Combi	ned Pro	portion Normal	Summary			Calcu	ılated Varia	te(A/B)				
C-%		ontrol Type	Count	Mean		Max	Std Err	Std Dev	CV%	%Effect	Α	В
0	N	egative Control	3	0.803		0.8462	0.02175	0.03768	4.69%	0.0%	533	663
6.2			3	0.855		0.9412	0.04724	0.08182	9.57%	-6.38%	567	663
12.5 25			3	0.632		0.6516	0.01178	0.0204	3.23%	21.39%	419	663 663
50			3	0	0	0	0	0		100.0%	0	663
100			3	0	0	0	0	0		100.0%	0	663
	nod Dro	nortion Normal		- 21			e				-	
		portion Normal		Dec.	D 0							
C-%		egative Control	Rep 1 0.7738	Rep :								
6.2	146	egative Control	0.7738	0.791								
12.5			0.6109	0.651								
25			0.6109	0.651	0.6335							
50			0	0	0							
100			0	0	0							
	ned Pro	portion Normal		0				_				
C-%		Control Type	Rep 1	Rep :	2 Rep 3							
0		Negative Control		175/2								
6.2			208/221	187/2								
			135/221	144/2								
				14/2	- I TOILL							
12.5			0/221	0/221	0/221							
			0/221	0/221								

Analyst: TAB QA: Jen 11/12

Report Date: Test Code: 01 Sep-17 10:28 (p 2 of 2) GAPWTIE-7 | 00-8231-9270

Echinoid Embryo-Larval Survival and Development Test


Nautilus Environmental

Analysis ID: Analyzed: 19-2295-7373 01 Sep-17 10:28 Endpoint: Combined Proportion Normal Analysis: Linear Interpolation (ICPIN)

CETIS Version: CET Official Results: Yes

CETISv1.8.7 Yes

Graphics

Analyst: SAB QA: JGU 11/17

Echinoderm Larvae Development Toxicity Test Data Sheet Larval Counts

Vork Order #:	1704	69-TIE	Start Date/Time: July Test species: S.p.	irpuratus	
ample ID:	SEDI	7-22 (18	Test set up by: JAB		
			Initial Density/ 10mL:	221	
Concentration	Rep	No. Normal	No. Abnormal	Comments	Initial
Control W	Α	204	4		446
	В	184	5		
6.3	С	179	7		
	D				La Vide
	A	170	18		
126	В	177	14		
125	С	189	21		
	D				
	Α	0	170		77
25	В	0	175		
25	С	0	154		
	D				
	А	0	134		
50	В	Ö	150		
20	С	0	105		
	D.				
	A	٥	141		
100	В	0	141		
100	С	0	126		
	D				U
	Α				
	В				
	С				
	D	0.7			7.0
South Land	A	217	2 5		JAB
Control	B	172			1
Control (CIB)	D	177	6		- 4
comments:					

CETIS Analytica	Report
------------------------	--------

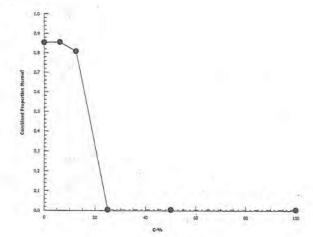
Report Date: Test Code: 01 Sep-17 10:36 (p 1 of 2) GAPWTIE-9 | 00-6906-4916

								163	. Coue.	Ont	AA LIFTO	00 0000 401
Echino	id Emb	ryo-Larval Survi	ival and	Develop	ment Test					Na	utilus E	nvironmenta
Analys Analyz		16-9232-7540 01 Sep-17 10:3		ndpoint: nalysis:	Combined Prop Linear Interpola			100	'IS Version: cial Results:	CETISv1	.8.7	
Batch	D:	00-2824-7501	1	est Type:	Development-S	urvival		Ana	lyst:			
Start D	ate:	07 Jul-17 16:00	P	rotocol:	EPA/600/R-95/	The second second		Dilu	ent: Natu	ural seawate	er	
Ending	Date:	11 Jul-17 16:00	S	pecies:	Strongylocentro	tus purpura	itus	Brin	e:			
Duratio	n:	96h	S	ource:	San Diego Lab	101		Age	1			
Sample		08-0477-7846		ode:	2FF7EF76			Clie		der Associa	tes	
		01 May-17 17:00		laterial:	Porewater			Pro	ect:			
		15 May-17 10:30		ource:	Golder							
Sampli	e Age:	66d 23h	5	tation:	SED17-22 C18							
		lation Options										
X Tran		Y Transform		eed	Resamples	Exp 95%	A	ethod				
Log(X+	1)	Linear	1	914546	200	Yes	Tw	o-Point Interp	oolation			
Point E	Estimate	es										
Level	%	95% LCL		CL TU	95% LCL	95% UCL						
EC5	11.91	N/A	14.1	8.398	7.095	NA						
EC10	12.94	N/A	13.94	7.729		NA						
EC15	13.43		14.41	7.446		11.49						
EC20	13.94	11.7	14.89	7.174		8.546						
EC25 EC40	14.46 16.16	12.29 14.21	15.39	6.913		8.138						
EC50	17.39		16.97 18.12	6.189 5.751		7.036 6.392						
		portion Normal				E.A. 1.6.	laked Ma			-	_	
C-%		ontrol Type	Count	Mear	Min	Max	Std Err	riate(A/B)	CV%	%Effect		В
0		egative Control	3	0.853		0.9819	0.06443		13.07%	0.0%	A 566	663
6.2	1.5	oguaro control	3	0.855		0.9231	0.03456		7.0%	-0.18%	567	663
12.5			3	0.808		0.8552	0.0251	0.04348	5.38%	5.3%	536	663
25			3	0	0	0	0	0		100.0%	0	663
50			3	0	0	0	0	0		100.0%	0	663
100			3	0	0	0	0	0		100.0%	0	663
Combi	ned Pro	portion Normal	Detail						-			
C-%	C	ontrol Type	Rep 1	Rep	2 Rep 3							
0		egative Control	0.9819									
6.2			0.9231	0.832	26 0.81							
12.5			0.7692	0.800	0.8552							
25			0	0	0							
50			0	0	0							-
100			0	0	0							
Combi	ned Pro	portion Normal	Binomi	als								
C-%		Control Type	Rep 1	Rep :	2 Rep 3							
0		Negative Control	217/22	1 172/2	21 177/221							
			204/22	1 184/2	21 179/221							
			470/00	1 177/0	221 189/221							
6.2 12.5			170/22	1 177/2	103/22/							
12.5 25			0/221	0/221								
12.5					0/221							

1

Report Date: Test Code: 01 Sep-17 10:36 (p 2 of 2) GAPWTIE-9 | 00-6906-4916

Echinoid Embryo-Larval Survival and Development Test


Nautilus Environmental

Analysis ID: Analyzed: 16-9232-7540 01 Sep-17 10:35 Endpoint: Combined Proportion Normal Analysis: Linear Interpolation (ICPIN)

CETIS Version: CET Official Results: Yes

CETISv1.8.7

Graphics

Echinoderm Larvae Development Toxicity Test Data Sheet Larval Counts

Concentration Rep Control A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C C D C C C D C C C	No. Normal 176 186 180 191 158 159	Test species: S. Test set up by: JA4 Initial Density/ 10mL: No. Abnormal 8 2 4 34 32 28 148 137 114		Initials
Concentration Rep	No. Normal 176 186 180 191 158 159 0	Initial Density/ 10mL: No. Abnormal 8 2 4 34 32 28 148 137	221	
Rep	176 186 180 191 158 159	No. Abnormal 8 2 4 34 32 28 148 137		
Rep	176 186 180 191 158 159	8 2 4 34 32 28 148 137	Comments	Initials
6.3 B C D A 12-5 B C D A 25 B C D A 8 C	186 180 191 158 159 0	34 32 28 148 137		
6.3 B C D A 12-5 B C D A 25 B C D A 8 C	186 180 191 158 159 0	34 32 28 148 137		
12-5 B C D A 12-5 B C D A A B C D A S C D C	180 191 158 159 0	34 32 28 148 137		
12-5 B C D A 25 B C D A B C D A S C C C C C C C C C C C C C C C C C C	191 158 159 0 0	28 148 137		
12-5 C D A 25 C D A 8 C D A 8 C	158 159 0 0	28 148 137		
25 C D A B C C D B C	158 159 0 0	28 148 137		
25 B C D A B C C	0 0	28 148 137		
25 A B C D A B C	0	148		
25 B C D A B C	0	137		
C D A B C	0	137		
D A B C				
So B C	0			
SO B	0	- I		
C		81		
C	0	60		
	O	69		
. 9- D				
A	0	103		11 11 11
(00 B	8	98		
C	0	113		V
D				
A				
В				
С				
D	-	Carried V		
A	165	3		JAB
Control B	184	Ч		
(EDTA) C	195	6		V
(cam) D				
Comments:				

Report Date: Test Code: 30 Aug-17 13:43 (p 1 of 2) GAPWTIE-8 | 19-5395-0338

									162	t Code:	GAI	ANTIE-0	19-5395-03
Echino	id Emb	ryo-Larval Surv	vival and	d Develo	pment Test						N	autilus E	nvironment
Analys Analyz		05-1129-3496 30 Aug-17 13:4		Endpoin Analysis		tological field and the second second				IS Versio		1.8.7	
Batch I	D:	06-7881-5727	19	Test Typ	e: Development	-Survival	-		Ana	lyst:		_	
Start D	ate:	07 Jul-17 16:00		Protocol							latural seawat	or	
Ending	Date:	11 Jul-17 16:00		Species:		Company of the compan	atus		Brir	The state of the	vaturai scawai	.61	
Duratio		96h		Source:	San Diego La	the state of the s	aruo		Age				
Sample	e ID:	17-7372-0021		Code:	69B8D1D5				Clie		National Associa	C.L	
		01 May-17 17:0		Material:						ect:	Bolder Associa	ites	
		15 May-17 10:3		Source:	Golder				FIO	ect.			
		66d 23h		Station:	SED17-22 ED	ATC							
Linear	Interpol	ation Options	1				-		_				
X Trans		Y Transform		Seed	Resamples	Exp 95%	CI	Meth	od				
Log(X+	1)	Linear		289294	200	Yes	OL	DETERMINE	Point Interp	olation		_	_
Point E	stimate					- 1,50	-	1,40	out more	Joiation			
Level	%	The same of the	050/ 11	01 711		View coas							
EC5	10.47	95% LCL			95% LCI		_						
EC10	12.82	2.644	15.67 14.06	9.5		NA 37.80							
EC15	13.32	8.378	14.53	7.7		37.82 11.94							
C20	13.83	11.7	15.01	7.2		8.546							
C25	14.36	12.29	15.5	6.96		8.138							
EC40	16.06	14.21	17.08	6.2		7.037							
EC50	17.3	15.64	18.21	5.7		6.393							
Combin	ned Pro	portion Normal	Summa	arv		Calcu	lated	Variat	e(A/R)	_	_	-	
C-%		ontrol Type	Count	300	n Min	Max	Std		Std Dev	CV%	%Effect		-
)		egative Control	3	0.82		0.8824	0.03		0.06867	8.37%	0.0%	A 544	В
5.2		Story South	3	0.8		0.8416	0.01		0.02277	2.79%	0.37%	542	663 663
2.5			3	0.76		0.8643	0.04		0.08493	11.08%		508	663
25			3	0	0	0	0	2.5	0		100.0%	0	663
50			3	0	0	0	0		0		100.0%	0	663
00			3	0	0	0	0		0	-	100.0%	0	663
Combin	ed Prop	ortion Normal	Detail		-								
-%	Co	ntrol Type	Rep 1	Rep	2 Rep 3			3					
		gative Control	0.7466									_	
.2			0.7964	0.84									
2.5			0.8643	0.71	49 0.7195								
5			0	0	0								
0			0	0	0								
00	- 68		0	0	0								
ombin	ed Prop	ortion Normal	Binomi	als	- 17					-			-
-%		ontrol Type	Rep 1	Rep	2 Rep 3								
	N	legative Control	165/221	1 184/									
.2			176/221	1 186/	221 180/221								
2.5			191/221	1 158/	221 159/221								
5			0/221	0/22									
0	10		0/221	0/22	1 0/221								
00	4		0/221	0/22	1 0/221								

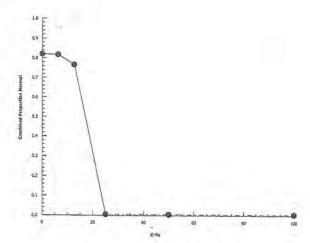
Report Date: Test Code:

30 Aug-17 13:43 (p 2 of 2) GAPWTIE-8 | 19-5395-0338

Echinoid Embryo-Larval Survival and Development Test

Nautilus Environmental

Analysis ID: Analyzed:


05-1129-3496 30 Aug-17 13:43

Endpoint: Combined Proportion Normal Analysis: Linear Interpolation (ICPIN)

CETIS Version: Official Results: Yes

CETISv1.8.7

Graphics

Echinoderm Development Toxicity Test Data Sheet

Sample ID: SED17-09, SED17-13
Test No.: 170467-TE

ED 17 – 13 End Date & Tend Dat

Start Date & Time: May 35/17 @ 1500h

End Date & Time: May 35/17 @ 1500h

Test species: 5. purporatus

Concentration/	Temp (*	Temperature (°C)	۵	Dissolved oxygen (ma/L)	en		pH (units)			Salinity (ppt)	
	0 24	48 72 96	0		72 96	0 24	48 7	72 96	0 24	48	72 96
Sw Centrol				-		7.6			87		
ENTA Control (200)	0.4)		83			ずがさ			82		
ENTA Contral (1902)	0,41		8.2			4,00			28		
Cl8 Central	0.41		8.3			7.8			82		
SFD13-09	14.5		7.3			7.4			52		
-09 EDITA (20,1)	0,41		3.8			7.4			62		
-09 ENTA (1801.)	0,41		7.8			4.4			62		
-09 CIR	14.0		7.7			3.6			54		3
SENIA-13	0,41		4.8			七十			31		
-13 FOTA (30/i)	0.41		b;t			ナナ			31		
-13 ENTA (1002)	0,41		8.0			4.6			31		
-13 C18	0,41		8,0			ナナ			31		113
Analyst Initials									9888	*1	
	Init	Initial Water Quality									
Conc.	Temp	DO p	ЬH	Salinity	Sample	e Description	OAdiust.	M1/0069	Sample Description: OAdjusted in NaOH to 7.4	T	
Control							,	ř.			
100% cample					1	Test Set up by: JAB / YYL	TAR/	しょく			

Comments: C

0 hrs: 24 hrs. 48 hrs.

2

Reviewed by:

الج

Date Reviewed:

8/11/2

Nautilus Environmental

Echinoderm Larvae Development Toxicity Test Data Sheet Larval Counts - Porewater

Client:	Gold			May 26, 2017 @ 150	Wh
Work Order #:	1704	169 -TIE		S purporatus	
Sample ID:	SEDI7-	09, SE017-13	Test set up by:	JAB, YYL	
			Initial Density/ 10	The state of the s	
Concentration	Rep	No. Normal	No. Abnormal	Comments	Initials
Control	A	203	46		Muc
SW	В	208	53		1
	С	178	45		
	D	178	40		1
EDTA.	A	199	38		
antral	В	199	SI		
(20 mg/2)	С	172	37		
(50 mg/ -)	D	0	44		
EDTA	A	196	57'		
Control	В	196	54		
	С	189	59		1 4 8 4 7 4
(100 mg/L)	D	193	54 59 51		
	A	191	14	3	
C18	В	181	47		
C18 Control	С	187	46		3.116
	D	208	46		
14 (2)	A	0	201		
SED17-	В	0	191		
09	С	0	198		
1	D	0	214		
SE017-09	A	0	204		
EDTA	В	0	197		
(20 mg/L)	C	0	213		
(20.1310)	D	0	198	· · · · · · · · · · · · · · · · · · ·	
SED17-09	Α	0	214	/	
EDTA	В	0	229		
(100 mg/2)	С	0	226		1//
(100 1310)	D	0	200		1 3
Comments:				-	
Reviewed by:		Ch	Date Reviewed:	Sep. 11/12	

Echinoderm Larvae Development Toxicity Test Data Sheet Larval Counts

Client:	00/	der	Start Date/Time:	May 26/17 @ 1500h	
Work Order #:	1704	19-TIE		Spurporetos	
Sample ID:	SED	17-09,-13			
		,	Initial Density/ 1		
Concentration	Rep	No. Normal	No. Abnormal	Comments	Initials
Gentrol Man	A	0	184		NW
SED17-09	В	0	176		1
C18	С	0	20		
~.0	D	0	175		
	Α	14	209		
SEDIT-	В	2	229	1	
13	С	• 17	216		
	D	9	227		
SEDI7-13	А	21	222		
SEDIT-13 EDTA	В	9	223		
(20.011)	C	6	239		
(20 mg/L)	D	12	239		
SED17-13	A	16	230		
SEDIT-13 EDTA	В	21	215		
(100 mgil)	C	20	216		
(19011315)	D	10	226		
SED17-13	Α	8	220		
	В		207		
C18	С	S.	201		
	D	12	209		J
	A				
	В				
	С				
	D				
	Α				=4,04
	В				
	С			H-0	
	D				_3.71111

Date Reviewed:

Reviewed by:

16h

APPENDIX B - Analytical Chemistry

Nautilus Environmental Water Quality Data For Ammonia

	Client :	Golder			Species :	S. purpe	ratus
	Work Order No:	170469-	TIE	3.	Species : Sample Type:	Porewa	ter
					Date Measure	d: July 7	117
No. 74			Salinity		Total	Unionized	W Table
Date	Sample ID	Temperature °C	(ppt)	pН	Ammonia as N (mg/L)	Ammonia (mg/L)	Tech. Init.
July 7/17	SED17-09	15.0	29	7.6	11.0	0.080	JAB
13	SED17-13	15.0	29	7.7	5.0	0.045	40
	SE017-22	15.0	29	7.8	37.0	8.423	V
Y	25 mg/L Amm	15.0	29	7.7	26.0	0.237	Cone
			- 2				
		1		-71			
V							
	1. 1.4.1.1.1	17100			1	,	
	alicylate Lot #:	A7150 A7162					
Ammonia C	yanurate Lot #:	77152					
Comments:							
	-10					C., .	110

Reviewd by:

August 9, 2017

Josh Baker
Nautilus Environmental Company Inc.
8664 Commerce Court
Burnaby, British Columbia
Canada V5A 4N7
josh@nautilusenvironmental.ca

RE: Project NAU-BC1702

Mr. Baker,

On July 12, 2017 Brooks Applied Labs (BAL) received five (5) porewater samples. The samples were logged-in for the analyses of dissolved Cu, Pb, Zn, and Hg, in accordance with the submitted chain-of-custody (COC) forms. Each sample had been field-filtered (0.45 μ m) by the client prior to receipt at BAL. All samples fractions for dissolved Cu, Pb, and Zn had also been field-preserved with nitric acid to a pH < 2. All samples were received, preserved, and stored according to BAL SOPs and EPA methodology.

Dissolved Metals Quantitation by ICP-QQQ-MS

Each preserved sample for dissolved Cu, Pb, and Zn quantitation was directly analyzed by inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS determinative method uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, <u>brooksapplied.com</u>.

The recoveries of the internal standards for the submitted samples drifted above the control limit of 125% in sequence 1700873, to a maximum of 156%. The internal standard recoveries of the batch matrix spike and matrix spike duplicate also drifted upward, to a maximum of 141%. Despite the elevated internal standards, the recoveries of Cu, Pb, and Zn in the matrix spikes were all within acceptance limits. These acceptable matrix spike recoveries for the analytes of interest demonstrate that the internal standards appropriately corrected for the observed instrument drift. Consequently, no corrective action or qualification of the data was deemed necessary.

Dissolved Mercury using MERX

Each water sample was preserved with bromine monochloride in its initial container and then analyzed in accordance with EPA Method 1631E.

All sample results reported for Hg were method blank corrected, while all other analyte results were *not* method blank corrected, as described in the calculations section of the relevant BAL SOPs. All results were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances where a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the relative percent difference (RPD) of the MS/MSD set was not calculated (N/C).

All data was reported without qualification and all other associated quality control results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited meet all NELAP requirements. For more information please see the *Report Information* page. Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Ben Wozniak Project Manager

ben@brooksapplied.com

Ben Woznick

Project ID: NAU-BC1702

PM: Ben Wozniak

BAL Report 1728036 Client PM: Joshua Baker Client Project: NAU-BC1702

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/>. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	standard reference material
ICV	initial calibration verification	Т	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 9/23/09)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- **H** Holding time and/or preservation requirements not met. Result is estimated.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- J-M Duplicate precision (RPD) for associated QC sample was not within acceptance criteria. Result is estimated.
- J-N Spike recovery for associated QC sample was not within acceptance criteria. Result is estimated.
- M Duplicate precision (RPD) was not within acceptance criteria. Result is estimated.
- N Spike recovery was not within acceptance criteria. Result is estimated.
- R Rejected, unusable value. A full explanation is presented in the narrative.
- **U** Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

BAL Report 1728036 Client PM: Joshua Baker Client Project: NAU-BC1702

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
SED17-09	1728036-01	Water	Sample	07/07/2017	07/12/2017
SED17-13	1728036-02	Water	Sample	07/07/2017	07/12/2017
SED17-22	1728036-03	Water	Sample	07/07/2017	07/12/2017
-09 C18	1728036-04	Water	Sample	07/07/2017	07/12/2017
-09 EDTA	1728036-05	Water	Sample	07/07/2017	07/12/2017

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
Cu	Water	EPA 1638 Mod	07/14/2017	07/24/2017	B171717	1700873
Hg	Water	EPA 1631 E	07/18/2017	07/21/2017	B171720	1700870
Pb	Water	EPA 1638 Mod	07/14/2017	07/24/2017	B171717	1700873
Zn	Water	EPA 1638 Mod	07/14/2017	07/24/2017	B171717	1700873

Project ID: NAU-BC1702

PM: Ben Wozniak

BAL Report 1728036 Client PM: Joshua Baker Client Project: NAU-BC1702

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
-09 C18										
1728036-04	Cu	Water	D	≤ 0.200	U	0.200	1.00	μg/L	B171717	1700873
1728036-04	Hg	Water	D	≤ 0.51	U	0.51	2.02	ng/L	B171720	1700870
1728036-04	Pb	Water	D	≤ 0.125	U	0.125	0.375	μg/L	B171717	1700873
1728036-04	Zn	Water	D	≤ 1.50	U	1.50	10.0	μg/L	B171717	1700873
-09 EDTA										
1728036-05	Cu	Water	D	0.374	J	0.200	1.00	μg/L	B171717	1700873
1728036-05	Hg	Water	D	≤ 0.51	U	0.51	2.02	ng/L	B171720	1700870
1728036-05	Pb	Water	D	≤ 0.125	U	0.125	0.375	μg/L	B171717	1700873
1728036-05	Zn	Water	D	2.35	J	1.50	10.0	μg/L	B171717	1700873
SED17-09										
1728036-01	Cu	Water	D	0.229	J	0.200	1.00	μg/L	B171717	1700873
1728036-01	Hg	Water	D	≤ 0.51	U	0.51	2.02	ng/L	B171720	1700870
1728036-01	Pb	Water	D	≤ 0.125	U	0.125	0.375	μg/L	B171717	1700873
1728036-01	Zn	Water	D	≤ 1.50	U	1.50	10.0	μg/L	B171717	1700873
SED17-13										
1728036-02	Cu	Water	D	0.516	J	0.200	1.00	μg/L	B171717	1700873
1728036-02	Hg	Water	D	1.10	J	0.51	2.02	ng/L	B171720	1700870
1728036-02	Pb	Water	D	≤ 0.125	U	0.125	0.375	μg/L	B171717	1700873
1728036-02	Zn	Water	D	≤ 1.50	U	1.50	10.0	μg/L	B171717	1700873
SED17-22										
1728036-03	Cu	Water	D	0.608	J	0.200	1.00	μg/L	B171717	1700873
1728036-03	Hg	Water	D	0.62	J	0.51	2.02	ng/L	B171720	1700870
1728036-03	Pb	Water	D	≤ 0.125	U	0.125	0.375	μg/L	B171717	1700873
1728036-03	Zn	Water	D	≤ 1.50	U	1.50	10.0	μg/L	B171717	1700873

BROOK

BAL Report 1728036 Client PM: Joshua Baker Client Project: NAU-BC1702

Accuracy & Precision Summary

Batch: B171717 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B171717-SRM1	Standard Reference Mate				Office	KEO & Ellillo	IN D & Ellints
2	Cu		3.780	3.551	μg/L	94% 75-125	
	Pb		0.4900	0.492	μg/L	100% 75-125	
	Zn		25.20	26.28	μg/L	104% 75-125	
B171717-SRM2	Standard Reference Mate	rial (1721039	, NIST 1640a	(batch SRM	(1))		
	Cu	•	85.75	83.97	μg/L	98% 75-125	
	Pb		12.10	12.63	μg/L	104% 75-125	
	Zn		55.64	56.16	μg/L	101% 75-125	
B171717-DUP1	Duplicate, (1728036-01)						
	Cu	0.229		0.228	μg/L		0.2% 20
	Pb	ND		ND	μg/L		N/C 20
	Zn	ND		ND	μg/L		N/C 20
B171717-MS1	Matrix Spike, (1728036-0	1)					
	Cu	0.229	250.0	204.8	μg/L	82% 75-125	
	Pb	ND	25.00	19.61	μg/L	78% 75-125	
	Zn	ND	250.0	211.7	μg/L	85% 75-125	
B171717-MSD1	Matrix Spike Duplicate, (1728036-01)					
	Cu	0.229	250.0	205.6	μg/L	82% 75-125	0.4% 20
	Pb	ND	25.00	19.18	μg/L	77% 75-125	2% 20
	Zn	ND	250.0	210.6	μg/L	84% 75-125	0.5% 20

BROOKS APPLIED ARS BAL Report 1728036 Client PM: Joshua Baker Client Project: NAU-BC1702

Accuracy & Precision Summary

Batch: B171720 Lab Matrix: Water Method: EPA 1631 E

Sample B171720-SRM1	Analyte Standard Reference Materia Hg		Spike THg SRM NIS 15.68	Result ST 1641d) 15.03	Units ng/L	96% 80-120	
B171720-MS1	Matrix Spike (1728014-04) Hg	5.14	20.41	21.83	ng/L	82% 71-12	5
B171720-MSD1	Matrix Spike Duplicate (172 Hg	8 014-04) 5.14	20.41	23.59	ng/L	90% 71-12	5 8% 24
B171720-MS2	Matrix Spike (1728014-10) Hg	5.95	20.41	23.37	ng/L	85% 71-12	5
B171720-MSD2	Matrix Spike Duplicate (172 Hg	8 014-10) 5.95	20.41	22.93	ng/L	83% 71-12	5 2% 24
B171720-MS6	Matrix Spike (1728038-01) Hg	4.61	20.41	22.18	ng/L	86% 71-12	5
B171720-MSD6	Matrix Spike Duplicate (172 Hg	8 038-01) 4.61	20.41	24.61	ng/L	98% 71-12	5 10% 24
B171720-MS4	Matrix Spike (1728069-04) Hg	570.1	1531	1934	ng/L	89% 71-12	5
B171720-MSD4	Matrix Spike Duplicate (172 Hg	8 069-04) 570.1	1531	2035	ng/L	96% 71-12	5 5% 24
B171720-MS8	Matrix Spike (1728074-04) Hg	28.43	101.0	115.3	ng/L	86% 71-12	5
B171720-MSD8	Matrix Spike Duplicate (172 Hg	28.43	101.0	130.7	ng/L	101% 71-12	5 13% 24

BAL Report 1728036 Client PM: Joshua Baker Client Project: NAU-BC1702

Method Blanks & Reporting Limits

Batch: B171717 Matrix: Water

Method: EPA 1638 Mod

Analyte: Cu

Sample	Result	Units
B171717-BLK1	-0.003	μg/L
B171717-BLK2	0.002	μg/L
B171717-BLK3	-0.003	μg/L
B171717-BLK4	-0.0001	μq/L

Average: -0.001 **MDL:** 0.008 **Limit:** 0.040 **MRL:** 0.040

Analyte: Pb

Sample	Result	Units
B171717-BLK1	0.00003	μg/L
B171717-BLK2	-0.0001	μg/L
B171717-BLK3	-0.0004	μg/L
B171717-BLK4	-0.0003	ua/L

Average: 0.000 **MDL:** 0.005 **Limit:** 0.015 **MRL:** 0.015

Analyte: Zn

Sample	Result	Units
B171717-BLK1	-0.03	μg/L
B171717-BLK2	-0.03	μg/L
B171717-BLK3	-0.03	μg/L
B171717-BLK4	-0.02	μg/L

 Average: -0.03
 MDL: 0.06

 Limit: 0.40
 MRL: 0.40

BAL Report 1728036 Client PM: Joshua Baker Client Project: NAU-BC1702

Method Blanks & Reporting Limits

Batch: B171720 Matrix: Water Method: EPA 1631 E

Analyte: Hg

 Sample
 Result
 Units

 B171720-BLK1
 0.21
 ng/L

 B171720-BLK2
 0.17
 ng/L

 B171720-BLK3
 0.10
 ng/L

 B171720-BLK4
 0.14
 ng/L

Average: 0.16 Standard Deviation: 0.05 MDL: 0.10

Limit: 0.50 **Limit:** 0.10 **MRL:** 0.40

BAL Report 1728036 Client PM: Joshua Baker Client Project: NAU-BC1702

Sample Containers

Sam	ID: 1728036-01 ple: SED17-09 Container Client-Provided - Hg	Size 120 mL		port Matrix: Water nple Type: Sample Preservation None	Pres-Lot NA		ted: 07/07/2017 ved: 07/12/2017 Ship. Cont. Cooler
В	Client-Provided - TM	125 mL	NA	HNO3 (Client)	NA	<2	Cooler
Lab ID: 1728036-02Report Matrix: WaterSample: SED17-13Sample Type: Sample				Collected: 07/07/2017 Received: 07/12/2017			
	Container	Size	Lot	Preservation	Pres-Lot	рН	Ship. Cont.
Α	Client-Provided - Hg	120 mL	NA	None	NA	NA	Cooler
В	Client-Provided - TM	125 mL	NA	HNO3 (Client)	NA	<2	Cooler
			port Matrix: Water nple Type: Sample Preservation Pres-Lot		Collected: 07/07/2017 Received: 07/12/2017 pH Ship. Cont.		
A	Client-Provided - Hg	120 mL	NA	None	NA	NA	Cooler
В	Client-Provided - TM	125 mL	NA	HNO3 (Client)	NA	<2	Cooler
Lab ID: 1728036-04 Sample: -09 C18 Report Matrix: Water Sample Type: Sample			Collected: 07/07/2017 Received: 07/12/2017				
	Container	Size	Lot	Preservation	Pres-Lot	рН	Ship. Cont.
Α	Client-Provided - Hg	120 mL	NA	None	NA	NA	Cooler
В	Client-Provided - TM	125 mL	NA	HNO3 (Client)	NA	<2	Cooler
Lab ID: 1728036-05 Sample: -09 EDTA Des Container Size Lot		San	Report Matrix: Water Sample Type: Sample Preservation Pres-Lot		Collected: 07/07/2017 Received: 07/12/2017		
		Size	Lot			pH	Ship. Cont.
A	Client-Provided - Hg	120 mL	NA	None	NA	NA	Cooler
В	Client-Provided - TM	125 mL	NA	HNO3 (Client)	NA	<2	Cooler

BAL Report 1728036 Client PM: Joshua Baker Client Project: NAU-BC1702

Shipping Containers

Cooler

Received: July 12, 2017 13:20

Tracking No: 9612019116911615276929 via FedEx

Coolant Type: Blue Ice Temperature: 14.9 °C Description: Cooler
Damaged in transit? No
Returned to client? No
Comments: IR#8

Custody seals present? No Custody seals intact? No COC present? Yes

As a global, employee-owned organisation with over 50 years of experience, Golder Associates is driven by our purpose to engineer earth's development while preserving earth's integrity. We deliver solutions that help our clients achieve their sustainable development goals by providing a wide range of independent consulting, design and construction services in our specialist areas of earth, environment and energy.

For more information, visit golder.com

Africa + 27 11 254 4800
Asia + 86 21 6258 5522
Australasia + 61 3 8862 3500
Europe + 44 1628 851851
North America + 1 800 275 3281
South America + 56 2 3616 2000

solutions@golder.com www.golder.com

Golder Associates Ltd. Suite 200 - 2920 Virtual Way Vancouver, BC, V5M 0C4 Canada

T: +1 (604) 296 4200

